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Abstract

We design fast numerical methods for Hamilton-Jacobi equations in density space (HJD),
which arises in optimal transport and mean field games. We proposes an algorithm using a
generalized Hopf formula1 in density space. The formula helps transforming a problem from
an optimal control problem in density space, which are constrained minimizations supported
on both spatial and time variables, to an optimization problem over only one spatial variable.
This transformation allows us to compute HJD efficiently via multi-level approaches and
coordinate descent methods. Rigorous derivation of the Hopf formula is provided under
restricted assumptions and for a relatively narrow case; meanwhile our practical investigation
allows us to conjecture that the actual range of applicability should be wider, and therefore
we conjecture the formula can be applied to a wider class of practical examples.

Keywords: Hamilton-Jacobi equation in density space; Generalized Hopf formula; Mean
field games; Optimal transport.

1 Introduction

In recent years, optimal control problems in density space have started to play vital roles in
physics [30], fluid dynamics [5] and probability [9]. Two typical examples are mean field games
(MFGs) [25, 27] and optimal transportation [32]. For these optimal control problems, Hamilton-
Jacobi equation in density space (HJD) determines the global information of the system [22, 23],
which describes the time evolution of the optimal value in density space. More precisely, HJD
refers to the functional differential equation as follows: Let x ∈ X where X be a compact
Reimannian manifold, and ρ(·) ∈ P(X) represent the probability density space supported on X.
Let U : [0,∞)× P(X)→ R be the value function. Consider{

∂sU(s, ρ) +H(ρ, δρU) = 0

U(0, ρ) = G(ρ),

where δρ is the L2 first variation w.r.t. ρ and H represents the total Hamiltonian function in
P(X):

H(ρ, δρ(x)U) :=

∫
X
H(x,∇xδρ(x)U)ρ(x)dx+ F (ρ), (1.1)
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1We drop the word “generalized” in what follows.
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with the given Hamiltonian function H on X. Here, F , G : P(X) → R are given interaction
potential and initial cost functional in density space, respectively.

In applications, HJD has been shown very effective at modeling population differential games,
also known as MFGs, which study strategic dynamical interactions in large populations by
extending finite players’ differential games. This setting provides powerful tools for modeling
macro-economics, stock markets, and wealth distribution [24]. In this setting, a Nash equilibrium
(NE) describes a status in which no individual player in the population is willing to change
his/her strategy unilaterally. A widely-studied special class of MFG is the potential game [29],
where all players face the same cost function or potential, and every player minimizes this
potential. This amounts to solving an optimal control problem in density space. In this case,
a NE refers to the characteristics of HJD, which form a PDE system consisting of continuity
equation and Hamilton-Jacobi equation in X. These two equations represent the dynamical
evolutions of the population density and the cost value, respectively.

Despite the importance of HJD, solving it numerically is not a simple task. It is known that
computing Hamilton-Jacobi equations using a grid in a dimension greater than or equal to three
is difficult. The cost increases exponentially with the dimension, which is known as the curse
of dimensionality [17]. HJD is even harder to compute since it involves an infinite-dimensional
functional PDE. In this paper, expanding the ideas in [16, 15, 14, 17], we overcome the curse
of infinite dimensionality in HJD by exploiting a Hopf formula in density space. This approach
considers a particular primal-dual formulation associated with the optimal control problem in
density space. Specifically, the Hopf formula is given as

U(t, ρ) := sup
Φt

{∫
X
ρtΦtdx−

∫ t

0

(
F (ρs)−

∫
X
ρsδρsF (ρs)dx

)
ds−G∗(Φ0) :

∂sρs = δΦsH(ρs,Φs), ∂sΦs = −δρsH(ρs,Φs)
ρ(x, t) = ρt(x), Φ(x, t) = Φt(x)

}
,

where Φ0(x) = Φ(0, x) and

G∗(Φ0) := sup
ρ0∈P(X)

∫
X
ρ0Φ0dx−G(ρ0).

In here, we would like to compare similarity and difference between the formula in [16, 15, 14,
17] and that is stated above. In [16, 15, 14, 17], we only have Hamiltonian H but there is
no potential/interaction energy F . In this work, however, we have both Hamiltonian H and
interaction F . Nonetheless, one may combine all the terms to obtain a total Hamiltonian H as
in (1.1). Now we may regard H as a full Hamiltonian and interpret that as an analog of the
Hamiltonian stated in [16, 15, 14, 17].

The rigorous derivation of the Hopf formula suggested is provided for a relatively narrow case;
however, the practical investigation allows to conjecture that the actual range of applicability
should be wider. We further discretize the above variational problem following the same
discretization as in optimal transport on graphs [11, 12, 13, 20, 28]. We then apply a multi-level
stochastic gradient descent method to optimize the discretized problem.

In the literature of numerical methods for potential MFGs are seminal works of Achdou,
Camilli, and Dolcetta [1, 2, 3]. Their approaches utilize the primal-dual structure of the optimal
control formulation, simplifying it by a Legendre transform and applying Newton’s method to
the resulting saddle point system. Different from their approaches, we focus on solving the dual
problem, in which the optimal control problem is an optimization problem over the terminal
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adjoint state Φ(x) := Φ(x, t), satisfying the MFG system. Since this is a functional of a single
variable, many optimization techniques for high-dimensional problems can be applied, for exam-
ple, coordinate gradient descent methods. Also, numerical methods for special cases of potential
games were introduced in [7]. They transform the optimal control problem into a regularized
linear program. Unlike these methods, our methods can be applied to general Lagrangians for
optimal control problems in density space. Yet another well-known line of research focuses on
stationary MFG systems [6, 4], for which proximal splitting methods have been used. They are
different from our focus on time-dependent MFGs. We would like to emphasize that rigorous
derivation of the Hopf formula suggested is performed only for a relatively narrow case; however,
the practical investigation allows to conjecture that the actual range of applicability should be
wider.

The Hopf maximization principle gives us an optimal balance between the indirect method
(Pontryagin’s maximum principle), e.g. the well-known MFG system (49)-(51) below in [27],
and the direct method (optimization over the spaces of curves), e.g. the primal-dual formulation
in [1, 2, 3] and Hopf formula (57)-(59) in [27]. This balance leads to computational efficiency.
There are several existing formulations for solving HJD numerically: (i) the original formulation
in (2.2a)-(2.2b) or its resulting (primal) Lagrangian formulation, (ii) the intermediate primal-
dual formulation in [1, 2, 3], (iii) the dual formulation (Hopf formula) (2.3) in (57)-(59) in [27],
(iv) the resulting KKT optimality condition (2.1) (the MFG system (49)-(51) in [27]), and (v) the
proposed Hopf formulation (3.4) in this paper. Under suitable conditions, the five formulations
are equivalent, but their effects on computation are different. Formulations (i), (ii), and (iii)
involve a larger number of variables, which lead to high complexities on problems with high
dimensions and long time intervals. The reason of that is that in these three formulations,
both {ρ(x, s)}x∈X,s∈[t,T ] and {Φ(x, s)}x∈X,s∈[t,T ] needs to be stored for each iteration; (iv) is
a forward-backward system that needs different numerical methods. Our approach (v) is a
balance between the indirect and direct methods and reduces the number of variables to a single
terminal adjoint state Φ(x, t). With this, since the computation of the PDE is done by moving
forward in time, at each time step s, only one time-step of {ρ(x, s)}x∈X and {Φ(x, s)}x∈X is
needed, and also only the initial Φ(x, t) is needed to be saved for each iteration after the whole
descent step. The memory requirement is thus reduced in our approach. On the other hand, we
keep a variable and a functional such that our algorithm produces a descending sequence that
converges to a local minimum.

We utilize the coordinate descent method, which avoids the difficulties coming from a non-
smooth functional. We remark that the proposed approach can handle Hamiltonians of ho-
mogeneous degree 1, which can be used as a mean-field level set approach for the reachability
problem. Moreover, we choose the Hopf formulation to handle the case where the Hamiltonian
H is non-convex. We propose to check the computed limit (i.e., whether it is a global minimum)
via the condition Φ(x, 0) ∈ ∂G(ρ(x, 0)).

The rest of this paper is organized as follows. In Section 2, we briefly review potential MFGs
and related HJD and formally derive the Hopf formula in density space. We also rigorously
established some of the solutions to HJD under mild assumptions and convexity assumptions,
and described a solution in a special case with non-convex Hamiltonian. We then propose a
rigorous approach on discrete grid approximations of optimal control problems and show the
validity of the Hopf formula under proper assumptions in Section 3. In Section 4, we design a
fast multi-level random coordinate descent method for solving the discrete Hopf formula that
we obtained in Section 3. Several numerical examples are presented in Section 5 to illustrate
the effectiveness of the proposed algorithm.
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2 Hopf formula in mean field games

In this section, we briefly review potential MFGs. They are related to optimal control
problems in density space, which induce Hamilton-Jacobi equations in density space. We propose
the Hopf formula in density space for subsequent numerical computation.

2.1 Potential mean field games

Consider a differential game played by one population, which contains countably infinitely
many agents. The state of each agent is described by a point on a compact manifold X, e.g.
d-dimensional torus. The choice of a compact manifold goes in line with classical literature,
e.g. in the seminal work of [9] on proving the convergence of N -player game to MFG master
equation and the important works of [1, 2, 3] on numerical methods on MFG. A main reason of
this choice is that compactness in many cases simplfies the proofs. The choice as a d-dimensional
torus is for convinient sake since the space is flat. We follow this convension to consider X being
compact. The aggregated state of the population can now be described by the population
state ρ(x) ∈ P(X) =

{
ρ(·) :

∫
X ρ(x)dx = 1, ρ(x) ≥ 0

}
, where ρ(x) represents the population

density of players choosing strategy x ∈ X. The game assumes that each player’s cost is
independent of his/her identity (autonomous game). In a differential game, each agent plays
the game dynamically facing the same Lagrangian L : T (X) → R, where T (X) represents the
tangent space of X. The term “mean field” makes sense when each player’s potential energy f
and terminal cost g rely on mean-field quantities of all other players’ choices, mathematically
written as f, g : X ×P(X)→ R. The controls of the game is now describes by a tangent vector
field, or a smooth section of T (X).

Under quite general and mild assumptions, it is proven rigorously e.g. in [8, 9], that a Nash
equilibrium (NE) exists for a class of mean field games, and is also the limit of N -player game
as N → ∞ of a N -player ε-Nash equilibrium in the setting of closed loop strategy (possibly
being associated with an open-loop control obtained by solving an ODE or SDE) when the cost
functions are permutation invariant. To recall, the NE now describes a status in which no player
in population is willing to change his/her strategy unilaterally. In a MFG, it is represented as
a primal-dual dynamical system:

∂sρ(x, s) +∇x · (ρ(x, s)DpH(x,∇xΦ(x, s))) = 0

∂sΦ(x, s) +H(x,∇xΦ(x, s)) + f(x, ρ(·, s)) = 0

ρ(x, t) = ρ(x), Φ(x, 0) = g(x, ρ(·, 0)),

(2.1)

where the Hamiltonian H is defined as

H(x, p) := sup
v∈TX

〈v, p〉 − L(x, v).

Here H relates to the Lagrangian L through a Legendre transform in v. And ρ(s, ·) represents
the population state at time s satisfying the continuity equation while Φ(s, ·) governs the velocity
of population according to the Hamilton-Jacobi equation.

A game is called a potential game when there exists a differentiable potential energy F : P(X)→
R and terminal cost G : P(X)→ R such that

δρ(x)F (ρ) = f(x, ρ), δρ(x)G(ρ) = g(x, ρ),

where δρ(x) is the L2 first variation operator. The above definition represents that the incentives
of all the players can be globally modeled by a functional called the potential [9]. In this case,
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the game is modeled as the following optimal control problem in density space:

inf
ρ,v

{∫ t

0

[ ∫
X
L(x, v(x, s))ρ(x, s) dx− F (ρ(·, s))

]
ds+G(ρ(·, 0))

}
, (2.2a)

where the infimum is taken among all vector fields v(x, s) and densities ρ(x, s) subject to the
continuity equation{

∂
∂sρ(x, s) +∇ · (ρ(x, s)v(x, s)) = 0, 0 ≤ s ≤ t ,
ρ(x, t) = ρ(x) .

(2.2b)

It can be shown that, under suitable conditions of L, F , G, NEs are minimizers of po-
tential games. In other words, every NE (2.1) satisfies the Euler-Lagrange equation (Karush-
Kuhn-Tucker conditions) of the optimal control problem (2.2). Let H(ρ,Φ) denote the total
Hamiltonian defined over the primal-dual pair (ρ,Φ):

H(ρ,Φ) :=

∫
X
ρ(x)H(x,∇xΦ(x)) dx+ F (ρ(·)),

where δρ, δΦ are L2 first variations w.r.t. ρ and Φ. Then, NE (2.1) is given as{
∂sρs = δΦsH(ρs,Φs), ∂sΦs = −δρsH(ρs,Φs)

ρt = ρ(x), Φ0 = δρ0G(ρ0).

The time evolution of the minimal value in optimal control satisfies the Hamilton-Jacobi
equation. In the case of density space, the optimal value function in (2.2a) is denoted by
U : [0,+∞) × P(X) → R. As shown in [22, 23], U satisfies the Hamilton-Jacobi equation in
density space {

∂sU(s, ρ(·)) +H(ρ(·), δρU) = 0

U(0, ρ) = G(ρ) .

Here, HJD is a functional partial differential equation. If U is solved, then its characteristics
in density space, i.e. (ρ,Φ), are known. In particular, Φ(t, x) = δρ(x)U(t, ρ). Thus, NE (2.1) is
found. Next, we shall design a fast numerical algorithm for HJD.

2.2 Hopf formula in density space

Our approach is based on a primal-dual reformulation of the optimal control problem (2.2),
which we call the Hopf formula, assuming the duality gap is zero and the saddle point problem
admits a saddle point.

Proposition 2.1 (Hopf formula in density space). Assume the duality gap between the primal
problem (2.2) and its dual problem is zero and the resulting primal dual problem admits a saddle
point, then

U(t, ρ) := sup
Φ

{∫
X
ρ(x)Φ(x)dx−

∫ t

0

(
F (ρ(·, s))−

∫
X
ρ(s, x)δρsF (ρ(·, s))dx

)
ds−G∗(Φ(·, 0)) :

∂sρ(x, s) +∇ · (ρ(x, s)DpH(x,∇Φ(x, s))) = 0
∂sΦ(x, s) +H(x,∇Φ(x, s)) + δρs(x)F (ρ(·, s)) = 0

ρ(x, t) = ρ(x), Φ(x, t) = Φ(x)

}
(2.3)
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where

G∗(Φ(·, 0)) := sup
ρ(·,0)∈P(X)

{
G(ρ(·, 0))−

∫
X
ρ(x, 0)Φ(x, 0)dx

}
.

Formal derivation. We first define the flux function m(s, x) := ρ(s, x)v(s, x) in (2.2). Thus
problem (2.2) takes the form

U(t, ρ) := inf
m,ρ

{∫ t

0

[ ∫
X
L

(
x,
m(x, s)

ρ(x, s)

)
ρ(x, s) dx− F (ρ(·, s))

]
ds+G(ρ(·, 0))

}
,

where the infimum is taken among all flux functions m(x, s) and densities ρ(x, s) subject to{
∂
∂sρ(x, s) +∇ ·m(x, s) = 0, 0 ≤ s ≤ t ,
ρ(x, t) = ρ(x).

Next, we compute the dual of the optimal control problem (2.2). Assume that, under suitable
assumptions of F , G, L, the duality gap of optimal control problem (2.2) is zero. Hence we can
switch “inf” and “sup” signs in our derivations. Let the Lagrange multiplier of continuity
equation (2.2b) be denoted by Φ(x, s). The optimal control problem (2.2) becomes

U(t, ρ) = inf
m(·,s),ρ(·,s),ρ(·,t)=ρ

sup
Φ(·,t)

{∫ t

0

∫
X
L

(
x,
m(x, s)

ρ(x, s)

)
ρ(x, s) dxds−

∫ t

0
F (ρ(·, s))ds+G(ρ(·, 0))

+

∫ t

0

∫
X

(∂sρ(x, s) +∇ ·m(x, s)) Φ(x, s)dxds

}

= sup
Φ(·,s)

inf
m(·,s),ρ(·,s),ρ(·,t)=ρ

{∫ t

0

∫
X
L

(
x,
m(x, s)

ρ(x, s)

)
ρ(x, s) dxds−

∫ t

0
F (ρ(·, s))ds+G(ρ(·, 0))

+

∫ t

0

∫
X

(∂sρ(x, s) +∇ ·m(x, s)) Φ(x, s)dxds

}

= sup
Φ(·,s)

inf
m(·,s),ρ(·,s),ρ(·,t)=ρ

{∫ t

0

∫
X

[
L

(
x,
m(x, s)

ρ(x, s)

)
− m(x, s)

ρ(x, s)
· ∇Φ(x, s)

]
ρ(x, s) dxds

−
∫ t

0
F (ρ(·, s))ds+G(ρ(·, 0)) +

∫ t

0

∫
X
∂sρ(x, s)Φ(x, s)dxds

}

= sup
Φ(·,s)

inf
ρ(·,s),ρ(·,t)=ρ

{
−
∫ t

0

∫
X
ρ(x, s)H(x,∇Φ(x, s)) dxds−

∫ t

0
F (ρ(·, s))ds

+G(ρ(·, 0)) +

∫ t

0

∫
X
∂sρ(x, s)Φ(x, s)dxds

}
,

where the third equality is given by integration by parts, and the fourth equality follows by the
Legendre transform in the third equality, i.e., with v(x, s) := m(x,s)

ρ(x,s) ,

H(x,∇Φ) = sup
v∈TX

∇Φ · v − L(x, v).
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By integration by parts w.r.t. s for the functional
∫ t

0

∫
X ∂sρ(x, s)Φ(x, s)dxds, we obtain

U(t, ρ) = sup
Φ(·,s)

inf
ρ(·,s),ρ(·,t)=ρ

{
−
∫ t

0

∫
X
ρ(x, s)H(x,∇Φ(x, s)) dxds−

∫ t

0
F (ρ(·, s))ds

+G(ρ(·, 0))−
∫
X
ρ(x, 0)Φ(x, 0)dx

+

∫
X
ρ(x, t)Φ(x, t)dx−

∫ t

0

∫
X
ρ(x, s)∂sΦ(x, s)dxds

}
.

Then, we see that, seperating the supremum over the functions Φ(·, s) into first taking supremum
over Φ(·, s) given Φ(·, t) = Φ then taking supremum over Φ, we obtain

U(t, ρ) = sup
Φ

sup
Φ(·,s),Φ(·,t)=Φ

inf
ρ(·,s),ρ(·,t)=ρ

{
−
∫ t

0

∫
X
ρ(x, s)H(x,∇Φ(x, s)) dxds−

∫ t

0
F (ρ(·, s))ds

−G∗(Φ(·, 0)) +

∫
X
ρ(x, t)Φ(x, t)dx−

∫ t

0

∫
X
ρ(x, s)∂sΦ(x, s)dxds

}
.

(2.4)

We optimize the above formula w.r.t. ρ(x, s) and φ(x, s). Suppose for a fixed Φ = Φ(t, ·),
the saddle point problem

sup
Φ(·,s),Φ(·,t)=Φ

inf
ρ(·,s),ρ(·,t)=ρ

{
−
∫ t

0

∫
X
ρ(x, s)H(x,∇Φ(x, s)) dxds−

∫ t

0

∫
X
ρ(x, s)∂sΦ(x, s)dxds

−
∫ t

0
F (ρ(·, s))ds−G∗(Φ(·, 0)) +

∫
X
ρ(x, t)Φ(x, t)dx

}
has a solution. It is simple to check that this saddle point satisfies (2.1). Substituting (2.1) into
(2.4), we derive the Hopf formula (2.3).

Equation (2.3) can be viewed as the Hopf formula of the optimal control problem (2.2). This
goes in line with [16, 15, 14]. That means that (2.3) contains an optimization problem and uses
a minimal number of unknown variables. We develop fast algorithms based on this formula.

Remark 2.2. We would like to emphasize that our deviation heavily relies on suitable assump-
tions of F , G, L that the duality gap of optimal control problem (2.2) is zero, and therefore
we may switch “inf” and “sup” signs in our derivations. This may happen when there exists a
saddle point for the saddle point problem, which can be imposed under convexity/monotonicity,
coercivity and and smoothness of (−F ), G and L. We would like to remark, however, that al-
though our derivation of the generalized Hopf formula is provided only for a relatively narrow
case, practical investigation allows us to conjecture the validity of the formula shall be wider.

Remark 2.3. When (−F ), G and L are convex and smooth, the discrete formulation of the
primal dual formulation of (2.2) has been used for numerical computation in [1, 2, 3] along
with Newton’s method. We, on the other hand, prefer sticking to the formulation (2.3) since we
hope to solve for non-convex (−F ), G and L with nonsmooth H(x, p), while keeping a minimal
number of variables. In addition, the Hopf formula (2.3) can be further simplified into

U(t, ρ) = sup
Φ(·,s)

{∫
X
ρ(x)Φ(x)dx−

∫ t

0
F ∗(Φ(·, s))ds−G∗(Φ(·, 0))

}
, (2.5)
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which coincides with (57)-(59) in [27]. However, the formulation (2.5), similar to the Lagrangian
formulation (2.2), has more independent variables after discretization of Φ(x, s). Hence, it is
not ideal for numerical computation.

Remark 2.4. The Hopf formula (2.3) is also related to the dual formulation of an optimal
transport problem. When F (ρ) = 0, the primal equation in (2.3) can be dropped. Let ρ = ρ1 in

U(t, ρ1) = sup
Φ

{∫
X
ρ(x)Φ(x)dx−G∗(Φ(·, 0)) : ∂sΦ(x, s) +H(x,∇Φ(x, s)) = 0, Φ(x, t) = Φ(x)

}
.

This is precisely the Kantorovich dual of the optimal transport problem from ρ0 to ρ1 when we
choose G(ρ) = ιρ0(ρ) and let t = 1. Here, for a set A and a subset B ⊂ A, the indicator function
ιB : A→ {0,∞} is defined as

ιB(x) =

{
0 if x ∈ B
∞ if x /∈ B

.

If B = {x0} is a singleton, we write ιx0(x) := ι{x0}(x), abusing the notation.

Remark 2.5. As in remark 2.4, our Hopf formula (2.3) reduces to Monge-Kantorovich duality
of the optimal transport with a specific choices of F , G and t. Moreover, the simplified formula
can be used to compute the proximal map of p-Wasserstein distance in the L2 sense. Let us
recall the connection between optimal transport and (2.2). The optimal transport problem can
be formulated in an optimal control problem in density space, known as the Benamou-Brenier
formula [32]. Consider L(x, q) = 1

2 |q|
p
2. Then,

U(1, ρ1)
(Definition)

=
inf

v(·,s),ρ(·,s)

{∫ 1

0

∫
X
L(v(x, s))ρ(x, s) dxds+G(ρ(x, 0)) :

∂sρ+∇ · (ρv) = 0, ρ(1) = ρ1

}
(Benamou-Brenier)

=
inf
ρ0

{(
Wp(ρ0, ρ1)

)p
+G(ρ0)

}
(Kantorovich duality)

=
inf
ρ0

sup
Φ1

{∫
Y

Φ(y, 1)ρ1(y)dy −
∫
X

Φ(x, 0)ρ0(x)dx+G(ρ0) :

∂sΦ(x, s) +H(∇Φ(x, s)) ≤ 0, Φ(x, 1) = Φ1(x)

}
(Convexity of G,H)

=
sup
Φ1

{∫
Y

Φ(y, 1)ρ1(y)dy −G∗(Φ(·, 0)) :

∂sΦ(x, s) +H(∇Φ(x, s)) = 0, Φ(x, 1) = Φ1(x)

}
,

where Wp(ρ0, ρ1) is the p-Wasserstein metric which can be defined via the Benamou-Brenier
formulation as follows:

(
Wp(ρ0, ρ1)

)p
:= inf

v(·,s),ρ(·,s)

{∫ 1

0

∫
X
L(v(x, s))ρ(x, s) dxds : ∂sρ+∇·(ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1

}
.
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If one aims to consider a general optimization problem over G regularized by W p
p as in

min
ρ0
{βW p

p (ρ0, ρ) +G(ρ0)},

we can either apply the above formulation directly or apply a splitting method, in which we need
the proximal maps of W p

p (in L2 sense) as

ProxβW p
p (·,ρ)(ρ1) = argmin

ρ0

{
βW p

p (ρ0, ρ) +
1

2
‖ρ0 − ρ1‖2

}
= ρ1 − β ˜̂

Φ,

where

˜̂
Φ := argmax

Φ̃

{∫
X
ρ(x)Φ̃(x)dx−

∫
X
ρ1(x)Φ(Φ̃, 0, ·)dx+

β

2
‖Φ(Φ̃, 0, ·)‖2 :

∂sΦ +H(x,∇xΦ) = 0 ,Φ(Φ̃, t, ·) = Φ̃

}
.

2.3 Some rigorously known solutions to HJD for specific Hamiltonians

In this subsection, we would like to describe some rigorously known solutions to the HJD
which provides us a platform to compare them with the Hopf solution and understand the
solutions that we computed in Section s5.

2.3.1 Optimal transport problem with some types of general cost

In this subsection we will discuss the viscosity solution to a HJ PDE coming from a general
optimal transport problem. Some of the following results are standard textbook materials and
shown in e.g. [5]. We are still providing here for completeness.

In what follows let us denote A to be either A = C0,1[0, T ] the Lipschitz space, or A =
W 1,q[0, T ] a Sobelov space for some 1 < q <∞.

Lemma 2.6. Let L : T (X) → [0,+∞] be such L(x(s), ẋ(s)) is Lebesgue measurable on [0, T ]
for all x(s) ∈ A. Define, for 0 < T ≤ ∞,

dL,T (x, y) := inf
γ∈A

{∫ T

0
L(γ(s), v(s))ds : γ̇ = v; γ(0) = x, γ(T ) = y

}
≥ 0

Then for all x, y, z ∈ X, the followings hold:

1. dL,T (x, y) = dL,T (y, x)

2. dL,T1+T2(x, z) ≤ dL,T1(x, y) + dL,T2(y, z)

3. dL,T (x, y) ≤ dL,S(x, y) if 0 < S < T ≤ ∞.

4. If we have L satisfying L(x, v) ≤ r−1L(x, r v) for 0 < r ≤ 1, then for 0 < S < T ≤ ∞

dL,T (x, y) = dL,T (x, y) and hence dL,T (x, z) ≤ dL,T (x, y) + dL,T (y, z) .
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Proof. The integral is well-defined since γ̇ exists a.e. w.r.t. Lebegue measure, and L(x(s), γ̇(s))
is Lebegue on [0, T ] if γ ∈ A. The first three statements are direct consequences of the definition
of infrimum via change of variable and set inclusions. The last statement comes from a change
of variable which gives

dL,S(x, y) ≤ dT
S
L(·, S

T
·),S(x, y) = dL,T (x, y) ≤ dL,S(x, y) .

Notice the above did not prevent dL,T (x, y) =∞ nor does this necessarily give dL,T (x, y) = 0⇒
x = y, and hence this is not a distance function even when L(x, v) ≤ r−1L(x, r v) for 0 < r ≤ 1.
Another remark is that we are not claiming a minimizer exists in any sense in this very general
setting. However, the followings are true.

Now let us define the following function for any compact subset C ⊂ X.

Definition 2.7. Let (x, v) 7→ L(x, v) be lower semi-continuous and C be compact. Let us define

ProjC,dL,T
(x) :=

{
y ∈ C : ∃{yn}n∈N ∈ C s.t. dL,T (x, yn)→ inf

z∈C
dL,T (x, z) and yn → y as n→∞

}
to be a set-valued function.

Definition 2.8. Given (x, v) 7→ L(x, v) be lower semi-continuous and C be compact. The
projection operator ProjC,dL,T

is said to satisfies property (Proj) for all x ∈ X, yx ∈ ProjC,dL,T
,

there exists a minimizing curve (geodesic) γx,yx ∈ A such that∫ T

0
L(γx,yx(s), γ̇x,yx(s))ds = dL,T (x, yx) ,

and hence

ProjC,dL,T
(x) = argminz∈CdL,T (x, z)

as a set-valued function.

Lemma 2.9. Assume L is lower semi-continuous. Then

1. ProjC,dL,T
(x) is a non-empty set-valued function.

2. For all yx ∈ ProjC,dL,T
(x), there exists a family of curves {γx,yx,n(t)}n∈N ∈ A satisfies

γx,n(0) = x, C 3 γx,n(T )→ yx as n→∞ and∫ T

0
L(γx,yx,n(s), γ̇x,yx,n(s))ds→ inf

z∈C
dL,T (x, z) as n→∞.

3. Let A = C0,1[0, T ]. If there exists R > 0 such that L(x, v) = ∞ for ‖v‖ > R, then for
all yx ∈ ProjC,dL,T

(x), there exists R-Lipschitz geodesic γx,yx(t) ∈ A with γx,yx(0) = x,
C 3 γx,yx(T ) = yx and∫ T

0
L(γx,yx(s), γ̇x,yx(s))ds = dL,T (x, yx) = inf

z∈C
dL,T (x, z) ,

Hence ProjC,dL,T
satisfies property (Proj).
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4. Let A = W 1,q[0, 1]. Assume 1
K ‖v‖

q − K ≤ L(x, v) ≤ K‖v‖q + K for some K where
1 < q < ∞; and (x, v) 7→ L(x, v) is differentiable w.r.t. x and convex w.r.t. v. Write
p := q/(q − 1), there exists an C0,α geodesic γx,yx(t) ∈ A for α < 1/p with γx,yx(0) = x,
C 3 γx,yx(T ) = yx and∫ T

0
L(γx,yx(s), γ̇x,yx(s))ds = dL,T (x, yx) = inf

z∈C
dL,T (x, z) ,

Hence ProjC,dL,T
satisfies property (Proj).

Proof. 1. First, notice that L(x(s), v(s)) is a non-negative Lebegue measruable function, and
thus dL,T is well-defined. Now fix x ∈ X, consider the problem infz∈C dL,T (x, z) ≥ 0, by
definition, there exists a sequence {yx,n ∈ C}n∈N such that dL,T (x, yx,n)→ infy∈C dL,T (x, y).
By compactness of C and renaming a subsequence, yx,n → yx for some yx ∈ C as n→∞.
Hence ProjC,dL,T

(x) is non-empty.

2. Let yx ∈ ProjC,dL,T
(x) be given. Then there exists {yx,n}n∈N ∈ C such that dL,T (x, yx,n)→

infz∈C dL,T (x, z) and yx,n → yx as n → ∞. Now form the definition of dL,T (x, yx,n),
for each n, there exists minimizing sequence {γmx,yx,n(t)}0≤t≤T ∈ C0,1[0, T ] such that
γmx,yx,n(0) = x, γmx,yx,n(T ) = yx,n and∫ T

0
L(γmx,yx,n(s), γ̇mx,yx,n(s))ds→ dL,T (x, yx,n) as m→∞.

A standard diagonal argument now provides an increasing sequence {mn} such that
{γx,yx,n(t) := γmn

x,yx,n(t)}0≤t≤T satisfying the desired properties.

3. Since there exists R > 0 such that L(x, v) = ∞ for ‖v‖ > R, we can always choose
the miniming sequences {γmx,yx,n(t)}0≤t≤T ∈ C0,1[0, T ] with ‖γmx,yx,n‖C0,1 ≤ R in Part 2.
Hence the resulting diagonal sequence {γx,yx,n(t)}0≤t≤T is R-Lipschitz and equicontinuous.
By Arzela-Ascoli theorem and again renaming the subsequence, we have γx,yx,n → γx,yx
uniformly as n→∞ for some R-Lipschitz γx,yx,n(s) with γx,yx(0) = x and γx,yx(T ) = yx.
Now by Fatou’s lemma and lower semi-continuity of L,

dL,T (x, yx) ≤
∫ T

0
L(γx,yx(s), γ̇x,yx(s))ds

≤
∫ T

0
lim inf

n
L(γx,yx,n(s), γ̇x,yx,n(s))ds

≤ lim inf
n

∫ T

0
L(γx,yx,n(s), γ̇x,yx,n(s))ds

= inf
z∈C

dL,T (x, z) ≤ dL,T (x, yx) .

4. Let A = W 1,q[0, 1]. If K‖v‖q −K ≤ L(x, v) ≤ K‖v‖q +K for some K wfhere 1 < q <∞,
we can always choose the miniming sequences {γmx,yx,n(t)}0≤t≤T ∈W 1,q[0, 1] in Part 2 with∫ T

0
‖γ̇mx,yx,n(s)‖qds < C

for some C. By Morrey’s inequality, the resulting diagonal sequence {γx,yx,n(t)}0≤t≤T is
then in uniformly bounded in C0,1/p. By Arzela-Ascoli theorem, for all α < 1/p, with
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a renaming of a subsequence, we have γx,yx,n → γx,yx in C0,α norm as n → ∞ More-
over, by reflexivity of strongly convex space and Mazur lemma, we have weak compact-
ness of W 1,p[0, T ] and hence with a renaming of a subsequence, we may further obtain
γx,yx ∈ W 1,p[0, T ] and γx,yx,n ⇀ γx,yx in Lq[0, T ] and γ̇x,yx,n ⇀ γ̇x,yx in Lq[0, T ]. Now by
differentiability of L w.r.t. x, convexity of L w.r.t. v, we have r(x, v) := ∂xL(x, v) and a
choice of s(x, v) ∈ ∂vL(x, v) subdifferential of L w.r. t. v at (x, v) with

〈r(γx,yx(s), γ̇x,yx(s)), γx,yx(s)− γx,yx,n(s)〉+ 〈s(γx,yx(s), γ̇x,yx(s)), γ̇x,yx(s)− γ̇x,yx,n(s)〉
≤ L(γx,yx,n(s), γ̇x,yx,n(s))− L(γx,yx(s), γ̇x,yx(s)) + o

(
‖γx,yx − γx,yx,n‖C0[0,1]

)
Now since |r(x, v)| ≤ K̃(|v|q + 1) and |s(x, v)| ≤ K̃(|v|q−1 + 1) for some K̃, hence
r(γx,yx(s), γ̇x,yx(s)) ∈ L1[0, T ] and s(γx,yx(s), γ̇x,yx(s)) ∈ Lp[0, T ], then by pointwise con-
vergence and weak convergence, we have as n→∞,∣∣∣∣∫ T

0
〈r(γx,yx(s), γ̇x,yx(s)), γx,yx(s)− γx,yx,n(s)〉

∣∣∣∣ ≤ ‖̃γx,yx − γx,yx,n‖C0[0,T ] → 0∫ T

0
〈s(γx,yx(s), γ̇x,yx(s)), γ̇x,yx(s)− γ̇x,yx,n(s)〉ds → 0 .

Therefore

0 = lim
n

∫ T

0
〈r(γx,yx(s), γ̇x,yx(s)), γx,yx(s)− γx,yx,n(s)〉ds

+ lim
n

∫ T

0
〈s(γx,yx(s), γ̇x,yx(s)), γ̇x,yx(s)− γ̇x,yx,n(s)〉ds

≤ lim inf
n

∫ T

0
L(γx,yx,n(s), γ̇x,yx,n(s))ds−

∫ T

0
L(γx,yx(s), ˙γx,yx(s))ds

Therefore γx,yx(s) ∈ A
⋂
C0,α[0, T ] and the definition of γx,yx,n(s) gives

dL,T (x, yx) ≤
∫ T

0
L(γx,yx(s), γ̇x,yx(s))ds

≤ lim inf
n

∫ T

0
L(γx,yx,n(s), γ̇x,yx,n(s))ds

≤ inf
z∈C

dL,T (x, z)

≤ dL,T (x, yx) .

Note that with our general definition, if dL,T (x, y) = ∞ for all y ∈ C, ProjC,dL,T
(x) = C. Also,

if C = {y}, then ProjC,dL,T
(x) = {y}.

Lemma 2.10. Assume L is lower semi-continuous and C ⊂ X be a compact subset. Assume
further that ProjC,dL,T

satisfies property (Proj). Then there exists (a possibly non-unique) Y :
X → C, x 7→ Y (x) and a (possibly non-unique) famly of curves {γx,Y (x)(t) ∈ A}x∈X,0≤t≤T with

1. Y (x) ∈ ProjC,dL,T
(x) ;

2. {γx,Y (x)(t)} satisfies conclusions in Lemma 2.9, part 3.
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3. If γx1,Y (x1)(t) = γx2,Y (x2)(t) for some x1, x2 ∈ X and 0 ≤ t ≤ T , then γx1,Y (x1)(s) =
γx2,Y (x2)(s) for all t < s ≤ T .

Proof. Now for all x ∈ X, applying Lemma 2.9, ProjC,dL,T
(x) is non-empty and for any yx ∈

ProjC,dL,T
(x), by property (Proj), there exists a minimizing γx,yx(t) joining x and yx. What

remains to be proved is that there exists a choice of yx such the third property holds.
Now let us consider the the collection of subsets L(X) ⊂ 2X := {X̃ ⊂ X} (partially ordered

by set inclusions) such that there is a choice Ỹ : X̃ → C, x 7→ Ỹ (x) if x1, x2 ∈ X̃ and 0 ≤ t ≤ T ,
γx1,Ỹ (x1)(t) = γx2,Ỹ (x2)(t), then γx1,Ỹ (x1)(s) = γx2,Ỹ (x2)(s). We want to show that L(X) = 2X .

Now take any subset X̃ ∈ L(X). Consider a point p /∈ X̃, let us obtain a curve γp,yp(t)

satisfying Lemma 2.9, part 3. Now let t̃ = inf{t ≤ T : γp,yp(t) = γx,Ỹ (x)(t) for some x ∈ X̃}.
If t̃ = T , then the image {γx,Ỹ (x)(t)}x∈X̃,0≤t<T and {γp,yp(t)}0≤t<T are disjoint. Therefore Z̃ :

X̃
⋃
{p} → C as Z̃(x) = Ỹ (x) if x 6= p and Z̃(p) = yp. Then {̃Z} and {γx,Ỹ (x)(t)}x∈X̃

⋃
{γ̃np (t)}

satisfy the desired property.
If t̃ < T by definition there exists a point a ∈ X̃ such that γp,yp(t̃) = γa,Ỹ (a)(t̃),.Now let us

define

γ̃p(t) =

{
γp,yp(t) for t < t̃

γa,Ỹ (a)(t) for t ≥ t̃

Now write Z̃ : X̃
⋃
{p} → C as Z̃(x) = Ỹ (x) if x 6= p and Z̃(p) = Ỹ (a). Then notice the new

family of curve {γx,Ỹ (x)(t)}x∈X̃
⋃
{γ̃p(t)} satisfies the third property. We now hope to argue∫ T

t̃
L(γa,Ỹ (a)(s), γ̇a,Ỹ (a)(s))ds ≤

∫ T

t̃
L(γp,yp(s), γ̇p,yp(s))ds .

Assume otherwise. Then there is a curve

γ̃a(t) =

{
γa,Ỹ (a)(t) for t < t̃

γp,yp(t) for t ≥ t̃

such that Ỹ (a) ∈ C and

inf
z∈C

dL,T (a, z) =

∫ T

0
L(γa,Ỹ (a)(s), γ̇a,Ỹ (a)(t))ds >

∫ T

0
L(γ̃a(s), ˙̃γa(s))ds ≥ inf

z∈C
dL,T (a, z)

and hence it yields a constradiction. Therefore we must have instead

inf
z∈C

dL,T (p, z) ≤
∫ T

t̃
L(γ̃p(s), ˙̃γp(s))ds ≤

∫ T

0
L(γp,yp(s), γp,yp(s))ds = inf

z∈C
dL,T (p, z) .

Thus we have Z̃(p) = Ỹ (a) = γ̃p(T ) ∈ ProjC,dL,T
(p) and

γ̃p ∈ argminγ∈A

{∫ T

0
L(γ(s), v(s))ds : γ̇ = v; γ(0) = a, γ(T ) = Z̃(p)

}
Either case, we have X̃

⋃
{p} ∈ L(X) if (̃X) ∈ L(X). Since L(X) ⊂ 2X is partially ordered

by inclusion. By axiom of choice/Zorn’s lemma, L(X) = 2X . Therefore X ∈ L(X).
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Lemma 2.11. Assume L is lower semi-continuous and C ⊂ X be a compact subset. Assume
further that ProjC,dL,T

satisfies property (Proj). Assume further that fixing x, v 7→ L(x, v) be
furthermore convex, and G(ρ) = ιP(C) Then

U(ρ, t) =

∫ t

0

∫
X

inf
z∈C

dL,t(z, x)ρ(x)dxds

where Y is given by Lemma 2.10, and furthermore the optimizer of ρ(x, t) in the problem U(ρ, t)
is given by ρ(x, s)dx = γ(·, s)#[ρ(x)dx] where γ(x, s) := γx,Y (x)(s) given by Lemma 2.10

Proof. Let us consider

U(ρ, t) = inf
ρ(·,s),v(·,s)

{
G(ρ(0))) +

∫ t

0

∫
X
L(x, v(x, s))ρ(x, s)dxds : ∂sρ+∇ · (vρ) = 0, ρt = ρ

}
= inf

m(·,s),v(·,s)

{
G(ρ(0))) +

∫ t

0

∫
X
f(x, ρ(x, s),m(x, s))dxds : ∂sρ+∇ ·m = 0, ρt = ρ

}
where f(x, ρ,m) is given by

f(x, ρ,m) = sup
(a,b)

{
aρ+ bm− a+ −H(x, b)

}
=


L(x, mρ )ρ if ρ > 0,m > 0

0 if ρ = 0,m = 0

∞ otherwise

.

Note now that fixing x since the function (a, b) 7→ a++H(x, b) is convex, then(ρ,m) 7→ f(x, ρ,m)
is also convex, and hence (ρ(x, s),m(x, s)) 7→

∫ t
0

∫
X L(x, v(x, s))ρ(x, s)dxds is now convex with

lower bound. Moreover the constraint ∂tρ+∇ ·m = 0 is linear. Hence an minimizer exists if G
is convex and there exists a bounded set κ such that G |P(X)\κ> inf G > −∞.

Now consider G(ρ) = ιP(C) and we try to manipulate the expression. For t > 0 we have

U(ρ, t) = inf
ρ(·,s),v(·,s)

{∫ t

0

∫
X
L(x, v(x, s))ρ(x, s)dxds : ∂sρ+∇ · (vρ) = 0, ρt = ρ, ρ0 ∈ P(C)

}
= inf

γ(·,s)

{∫ t

0

∫
X
L(γ(x, s), ∂sγ(x, s)) ρ(x)dxds : ρ(γ(x, t)) ∈ P(C)

}
Now we have

U(ρ, t) ≥ inf
Z(·)

{∫ t

0

∫
X

inf
γx∈C1,0[0,t]

{L(γx(s), ∂sγx(s)) : xt = Z(x)x0 = x} ρ(x)dxds : ρ(Z(x)) ∈ P(C)

}
≥ inf

Z(·)

{∫ t

0

∫
X
dL,t(Z(x), x)ρ(x)dxds : ρ(Z(x)) ∈ P(C)

}
≥

∫ t

0

∫
X

inf
z∈C

dL,t(z, x)ρ(x)dxds .

Now by Lemma 2.10, running t backward, there exists a Y : X → C such that Y (x) ∈
ProjC,dL,t

(x) and {γx,Y (x)(s)} satisfies conclusions in Lemma 2.9, part 3 (except now that
γx,Y (x)(0) = Y (x) and γx,Y (x)(t) = x), and moreover if γx1,Y (x1)(l) = γx2,Y (x2)(l) for some
x1, x2 ∈ X and 0 ≤ l ≤ t, then γx1,Y (x1)(l) = γx2,Y (x2)(l) for all 0 < s ≤ l. Now if A = C0,1[0, t],

v(x, t) := ∂−t γx,Y (x)(t) is well-defined a.e. w.r.t. Lebegue measure where ∂−t is the left derivative
w.r.t. t and is absolute continuous. Otherwise if A = W 1,q[0, t], γx,Y (x)(t) is absolute continuous
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and v(x, t) := ∂tγx,Y (x)(t) is in Lq[0, t]. In both cases, by fundamental theorem of calculus for

absolute continuous function, we have γ(x, t) := x −
∫ T
t v(x, s)ds. Now we may see that for

∂sρ+∇ · (vρ) = 0, ρt = ρ, then ρ(x, s)dx = γ(·, s)#[ρ(x)dx] and ρ(x, 0) ∈ P(C). Moreover, by
Lemma 2.10, we have∫ t

0

∫
X
L(x, v(x, s))ρ(x, s)dxds =

∫ t

0

∫
X
dL,t(Y (x), x)ρ(x)dxds =

∫ t

0

∫
X

inf
z∈C

dL,t(z, x)ρ(x)dxds

Hence the minimum is attained.

Combining Lemma 2.9 and Lemma 2.11, we directly have the following two corollaries.

Corollary 2.12. Assume L is lower semi-continuous and convex w.r.t. v and C ⊂ X is compact.
Moreover if there exists R > 0 such that L(x, v) = ∞ for ‖v‖ > R, then conclusion of Lemma
2.11 holds.

Corollary 2.13. Assume L is differentiable w.r.t. x, lower semi-continuous and convex w.r.t.
v, and C ⊂ X is compact. If K‖v‖q−K ≤ L(x, v) ≤ K‖v‖q +K for some K where 1 < q <∞,
then conclusion of Lemma 2.11 holds.

Note that [10] considered a simlar problem, but ρt ∈ P(X\C) for all t instead, hence C
represents an obstacle. The problem considered here is related but is different in a sense that
in our problem, we hope to move the density ρ to C.

Note that also from [21], if we considered the case when L(x, v) = h(v) where h is strongly
convex, then for any µ0 vanishing on any rectifiable set of dimension d − 1, we have that
the existence and uniqueness of optimal transport map Y = Id − ∇h−1 ◦ ∇φ, where φ is the
Kantorovich potential, which equals to φ(x) = Φ(x, 1) in the maximizer of the dual formlulation;
and the product of support of the two measure satisfies dL,1-cyclical monotoncity. Our previous
result can be generalized to that case, with where v(x, t) = ∇p(H∇φ(x, t)).

2.3.2 Differential game on probability space with two players driving the mass

We give a brief derivation of the link of a special form of non-convex HJPDE and a (2 player)
differential game problems on probability space. We follow discussions in [15, 14, 16, 17, 19], see
also [18], about optimal control and also for differential games, and their links with HJ PDE.

We consider two compact convex sets A ⊂ C0,1(X;Rd) and B ⊂ C0,1(X;Rd) (e.g. bounded
sets in C0,1(X;Rd)), in which control parameters lie. Then let us denoteA = {m : [t, T ]→ A : m is measurable},
which is referred to as the admissible set of Player I; and B = {n : [t, T ]→ B : n is measurable},
which is referred to as the admissible set of Player II. We call the measurable functions m :
[t, T ]→ A in the set A and the function n : [t, T ]→ B in the set B as controls performed by Play-
ers I and II respectively. Now consider the following system with 0 ≤ t < T, ρ ∈ (P2(X),W2),{

d
dsρ(x, s) = ∇ · (m(x, s)− n(x, s)) t ≤ s ≤ T ,
ρ(t) = ρ ,

(2.6)

Now notice that (m,n) 7→ ∇ · (m− n) is well-defined a.e. w.r.t. Lebegue measure and

‖∇ · (m− n)‖L∞ ≤ C1(‖m‖C0,1 + ‖n‖C0,1) ≤ C2 ,

for some constant C1, m ∈ A, n ∈ B. The unique solution to (2.6) is called the response of the
controls m(·), n(·). Then we introduce the payoff functional for a given pair of (t, ρ):

P (m,n) := Pt,ρ(m(·), n(·)) :=

∫ T

t

∫
X
f(x, ρ(s),m(s), n(s))dx ds+G(ρ(T )) ,
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where G : Rd → R satisfies{
|G(ρ)| ≤ C2

|G(ρ1)−G(ρ2)| ≤ C2 dW2(ρ1, ρ2) ,

and f satisfies

f(x, ρ,m, n) = f2(x, ρ,m)− f1(x, ρ, n)

where

fi(x, ρ,m) = sup
(a,b)

{
aρ+ bm− a+ −Hi(x, b)

}
=


Li(x,

m
ρ )ρ if ρ > 0,m > 0

0 if ρ = 0,m = 0

∞ otherwise

.

which are both convex and satisfying{
|
∫
X f(x, ρ,m, n)dx| ≤ C3

|
∫
X f(x, ρ1,m, n)dx−

∫
X f(s, ρ2,m, n)dx| ≤ C3 dW2(ρ1, ρ2) ,

for some constants C2, C3, m ∈ A, n ∈ B. In a differential game of the mass, the goal of player
I is to maximize the functional P by choosing his control m whereas that of player II is to
minimize P by choosing his control n.

We now define the lower and upper values of the differential game, based on the notation
introduced above. We first define the two sets containing the respective controls of players I and
II:

M(t) := {m : [t, T ]→ A : a is measurable.} ,
N(t) := {n : [t, T ]→ B : a is measurable.} .

Define a strategy for player I as the map

α : N(t)→M(t)

for each t ≤ s ≤ T and n, n̂ ∈ N(t) such that

n(τ) = n̂(τ) for a.e. t ≤ τ ≤ s ⇒ α[n](τ) = α[n̂](τ) for a.e. t ≤ τ ≤ s .

Therefore a strategy for player I α[n] is the control of player I given that of player II as n.
Similarly, let us define a strategy for player II as

β : M(t)→ N(t)

for each t ≤ s ≤ T and m, m̂ ∈M(t) such that

m(τ) = m̂(τ) for a.e. t ≤ τ ≤ s ⇒ β[m](τ) = β[m̂](τ) for a.e. t ≤ τ ≤ s .

Again a strategy for player II β[m] is the control of player II given that of player I as m.
Let Γ(t) denote the set of all strategies for I and ∆(t) for II beginning at time t. We define

the upper and lower values of the differential game. The lower value V (t, ρ) is defined as

V (t, ρ) := inf
β∈∆(t)

sup
m∈M(t)

Pt,ρ(m,β[m]) .
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where x(·) solves (2.6) for a given pair of (t, ρ). Likewise, the upper value U(t, ρ) is defined as

U(t, ρ) := sup
α∈Γ(t)

inf
n∈N(t)

Pt,ρ(α[n], n) .

Similar to [19], one may derive from dynamic programming optimality conditions in the lower
and upper values V and U are the viscosity solutions of a certain possibly nonconvex HJ PDE.

Hence we obtain Hamiltonians

H̃+(ρ,Ξ) := max
n∈B

min
m∈A

{∫
X
−〈m(x)− n(x),∇Ξ(x)〉 − f(x, ρ(x),m(x), n(x)) dx

}
=

∫
X
H1(x,∇Ξ(x))ρ(x)−H2(x,∇Ξ(x))ρ(x) dx

H̃−(ρ,Ξ) := min
m∈A

max
n∈B

{∫
X
−〈m(x)− n(x),∇Ξ(x)〉 − f(x, ρ(x),m(x), n(x)) dx

}
=

∫
X
H1(x,∇Ξ(x))ρ(x)−H2(x,∇Ξ(x))ρ(x) dx

Hence it happens that H̃+ and H̃− coincide. Writing

H̃(ρ,Ξ) = H̃1(ρ,Ξ)− H̃2(ρ,Ξ)

where

H̃i(ρ,Ξ) =

∫
X
Hi(x,∇Ξ(x))ρ(x) dx

Following a same argument [19], it is routine to show the dynamicaly programming principle
and also the following well-known theorem:

Lemma 2.14. [19] The function U and V are equal, and U is the viscosity solution to the HJ
PDE : {

∂
∂tU − H̃(x, δρU) = 0 on P(X)× (−∞, T ) ,

U(T, ρ) = G(ρ) on P(X) .

Now by a change of variable from t or to variable T − t, we have a variational representation of
solution to when the Hamiltonian is in the specific form H̃(ρ,Ξ) = H̃1(ρ,Ξ)− H̃2(ρ,Ξ).

3 Rigorous treatment after discretization

In this section, we aim to give a rigorous treatment to the discrete spatial states in potential
MFGs. Our spatial discretization follows the same work on optimal transport on graphs as
in [20, 28] and our proof follows the ideas in [16]. This discretization follows also the works in
[11, 12, 13]. Although we do not claim full generality of the following dicrete framework with the
aforementioned continuous framework, we expect a close connection under mild assumptions,
with numerical evidence that closed form solutions in previous solutions are compared with
numerically computed solution via the Hopf formula shown in Section 5.

For illustrative purposes, we focus on the following special form of the Lagrangian:

L(x, v) :=

n∑
i=1

L(vi),
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where L : R1 → R1 is a proper function, define the Hamiltonian H : R1 → R1 as

H(p) := sup
v∈R1

{pv − L(v)} .

Consider (V,E) as a uniform toroidal graph with equal spacing ∆x = 1
M in each dimension.

Here, V is a vertex set with |V | = (M + 1)d nodes, and each node, i = (ik)
d
k=1 ∈ V , 1 ≤ k ≤ d,

0 ≤ ik ≤ n, represents a cube with length ∆x:

Ci = {(x1, · · · , xd) ∈ [0, 1]d : |x1 − i1∆x| ≤ ∆x/2, · · · , |xd − id∆x| ≤ ∆x/2}.

Here E is an edge set, where i+ ev
2 := edge(i, i+ ev), and ev is a unit vector at vth column.

Define

ρi :=

∫
Ci

ρ(x)dx ∈ [0, 1]

on each i ∈ V . Let the discrete flux function be m := (mi+ ev
2

)i+ ev
2
∈E , where mi+ ev

2
represents

the discrete flux on the edge i+ ev
2 , i.e.,

mi+ ev
2
≈
∫
Ci+ ev

2
(x)
mv(x) dx ,

where m(x) = (mv(x))dv=1 is the flux function in continuous space.
Thus the discrete divergence operator is:

div(m)|i =
1

∆x

d∑
v=1

(mi+ 1
2
ev
−mi− 1

2
ev

).

The discretized cost functional forms

L(m, ρ) :=
∑

i∈V, i+ ev
2
∈E

L̃
(
mi+ 1

2
ev
, θi+ 1

2
ev

)
where

L̃
(
mi+ 1

2
ev
, θi+ 1

2
ev

)
:=


L

(
m

i+1
2 ev

θ
i+1

2 ev

)
θi+ 1

2
ev

if θi+ 1
2
ev
> 0 ;

0 if θi+ 1
2
ev

= 0 and mi+ ev
2

= 0 ;

+∞ Otherwise .

and θi+ 1
2
ev

:= 1
2(ρi + ρi+ev) is the discrete probability on the edge i+ ev

2 ∈ E.

We further introduce a time discretization. The time interval [0, 1] is divided into N intervals
with endpoints tn = n∆t, ∆t = 1

N , l = 0, 1, · · · , N . Combining the above spatial discretization
and a forward finite difference scheme on the time variable, we arrive at the following discrete
optimal control problem:

Ũ(t, ρ) := inf
m,ρ

{ N∑
n=1

∆tL(mn, ρn)−
N∑
n=1

∆t F (ρn) +G(ρ0)
}

(3.1a)

where the minimizer is taken among {ρ}ni , {m}ni+ ev
2

, such that for n = 0, ..., N − 1{
ρn+1
i − ρni + ∆t · div(mn+1)|i = 0 ,

ρNi = ρi .
(3.1b)
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We next derive the discrete Hopf formula for minimization (3.1). Denote ρNi := ρi and

(m, ρ,Φ) :=
(
{mn

i+ 1
2
ev
}N−1
n=0 , {ρ

n
i }N−1

n=0 , {Φ
n
i }Nn=1

)
∈ R|E|N × [0, 1]|V |N × R|V |N .

Hence by an application of Lagrange multiplier at (3.1), then we have

Ũ(t, {ρi}) = inf
{mn

i+1
2 ev
}N−1
n=0 ∈R|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

sup
{Φn

i }Nn=1∈R|V |N
F(m, ρ,Φ)

where

F(m, ρ,Φ) :=

N−1∑
n=0

∑
i∈V, i+ ev

2
∈E

∆tL
(
mn+1
i+ 1

2
ev
, θn+1
i+ 1

2
ev

)
−
N−1∑
n=0

∆t F ({ρ}n+1
i ) +G({ρ}0i )(3.2)

+

N−1∑
n=0

∑
i∈V

Φn+1
i

(
ρn+1
i − ρni + ∆t · div(mn+1)|i

)
. (3.3)

For a rigorous treatment, we assume:

(A1) The Lagrangian L : R→ R is a proper, lower semi-continuous, convex functional.

(A2) The Lagrangian L : R→ R has the following properties:

• for any fixed x 6= 0, limy→0+ L
(
x
y

)
y =∞;

• for any fixed y, the function (x, y) → L
(
x
y

)
y is equi-coercive (under parameter y)

w.r.t x in the following sense: for all N > 0, there exists K (independent of y)∣∣∣∣L(xy
)
y

∣∣∣∣ ≥ K
whenever |x| ≥ N .

(A3) The functional F : [0, 1]|V | → R is a proper, upper semi-continuous, strongly concave
functional.

(A4) The functional G : [0, 1]|V | → R is proper, lower semi-continuous, and convex in {ρi}|V |i=1.

(A5) H : R1 → R1 is in C2, and F : [0, 1]|V | → R and G : [0, 1]|V | → R are in C2((0, 1)|V |).

(A6) Denote the Legendre transform of the function F : [0, 1]|V | → R by F ∗. Suppose F ∗ is
coercive, i.e.

|F ∗(x)| → ∞

as x→∞.

(A7) The derivative of the function F : [0, 1]|V | → R1 satisfies, for any ρ̄ ∈ {0, 1}|V |

|∂ρF ({ρi})|22 →∞

whenever {ρi} → ρ̄.
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Under the above assumptions, we introduce the discrete Hopf formula by the following theorem

Theorem 3.1. If (A1)-(A7) holds, then the value function Ũ(t, {ρi}) in (3.1) equals

Ũ(t, {ρi}) = sup{Φi}∈R|V |

{∑
i∈V ΦN

i ρi −
∑N

n=1 ∆t (F ({ρ}ni )−
∑

i[∇ρF ({ρ}ni )]iρ
n
i )−G∗({Φ}0i ) :

ρni − ρ
n−1
i + ∆t

∑d
v=1DpH

(
1

∆x(Φn
i − Φn

i+ev
)
)
θn
i+ 1

2
ev

= 0

Φn+1
i − Φn

i + ∆t
4

∑d
v=1H

(
1

∆x(Φn
i − Φn

i+ev
)
)

+ ∆t[∇ρF ({ρ}ni )]i = 0
ρNi = ρi, ΦN

i = Φi

}
(3.4)

Remark 3.2. We remark that if ({ρni }, {Φn
i }) are computed according to the constraints given

in (3.4) for all n = 0, .., N − 1, then for each n, the numerical Hamiltonian

H(ρn,Φn) :=
∑

i∈V, i+ ev
2
∈E

H

(
1

∆x
(Φn

i − Φn
i+ev)

)
θn
i+ 1

2
ev

+ F ({ρ}ni ) (3.5)

is conserved, where we write ρn := {ρni } and Φn := {Φn
i }.

Remark 3.3. If F (ρ) = 0, (3.4) is an unstable scheme for initial value Hamilton-Jacobi equa-
tions. In computations, we handle it using a monotone scheme; see section 4 (Remark 4.1)
below.

Remark 3.4. We note in numerical examples in Section 5 that our formula appears to be
valid beyond the assumptions (A1)-(A7), e.g., in the case when H is a nonsmooth, nonconvex
Hamiltonian. The continuous analog of (3.4) is discussed and proposed in Section 2.2. The
minimal assumptions of validity for (3.4) to hold may be an interesting direction to explore, and
some possibilities are discussed in, e.g., [16, 27, 33].

We prove Theorem 3.1 by showing the following three lemmas.

Lemma 3.5. Assume (A1). Then, the functional L(m, ρ) is convex.

Proof. We shall show that L is convex. Since

L(m, ρ) :=
∑

i∈V, i+ ev
2
∈E

L̃
(
mi+ 1

2
ev
, θi+ 1

2
ev

)
We only need to show that L̃ is convex. In other words, for y > 0, L(xy )y is convex for (x, y).
In fact, that is true since

Hess

(
L

(
x

y

)
y

)
= L′′

(
x

y

)( 1
y − x

y2

− x
y2

x2

y3

)
� 0 .

We now proceed as in [16] and obtain the following lemma. This lemma is similar to the
primal-dual formulation in [1, 2, 3]. The argument to obtain this lemma is also similar to [16],
but we provide it here for the sake of completeness.
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Lemma 3.6. Write

(m, ρ,Φ) :=
(
{mn

i+ 1
2
ev
}N−1
n=0 , {ρ

n
i }N−1

n=0 , {Φ
n
i }Nn=1

)
∈ R|E|N × [0, 1]|V |N × R|V |N .

and
(ρ̃,Φ) :=

(
{ρni }N−1

n=0 , {Φ
n
i }Nn=1

)
∈ [0, 1]|V |N × R|V |(N−1) .

and let F(m, ρ,Φ) given in (3.3), and

F̃(ρ̃,Φ) := −
N∑
n=1

∑
i∈V, i+ ev

2
∈E

H

(
1

∆x
(Φn

i − Φn
i+ev)

)
θn
i+ 1

2
ev

∆t−
N∑
n=1

∆tF ({ρ}ni )−G∗({Φ}0i )

+
N−1∑
n=1

∑
i∈V

(
Φn
i − Φn+1

i

)
ρni +

∑
i∈V

ΦN
i ρi

If (A1), (A2), (A3), (A4) are satisfied, then

inf
{mn

i+1
2 ev
}N−1
n=0 ∈R|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

sup
{Φn

i }Nn=1∈R|V |N
F(m, ρ,Φ)

= sup
{Φn

i }Nn=1∈R|V |N
inf

{ρni }
N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃,Φ) .
(3.6)

Proof. In fact, from the equi-coercivity (A2), we find that there exists a closed and bounded
interval C ⊂ R s.t.

inf
{mn

i+1
2 ev
}N−1
n=0 ∈R|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

sup
{Φn

i }Nn=1∈R|V |N
F(m, ρ,Φ)

= inf
{mn

i+1
2 ev
}N−1
n=0 ∈C|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

sup
{Φn

i }Nn=1∈R|V |N
F(m, ρ,Φ)

Now that F(m, ρ,Φ) is lower-semicontinuous and quasi-convex w.r.t. (m, ρ) (from (A1), (A3)
and (A4)) and upper-semicontinuous and quasi-concave w.r.t. Φ (from linearity), as well as
C |E|N × [0, 1]|V |N , we have by an application of Sion’s minimax theorem [26, 31] that

inf
{mn

i+1
2 ev
}N−1
n=0 ∈C|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

sup
{Φn

i }Nn=1∈R|V |N
F(m, ρ,Φ)

= sup
{Φn

i }Nn=1∈R|V |N
inf

{mn

i+1
2 ev
}N−1
n=0 ∈C|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

F(m, ρ,Φ)

= sup
{Φn

i }Nn=1∈R|V |N
inf

{mn

i+1
2 ev
}N−1
n=0 ∈R|E|N , {ρni }

N−1
n=0 ∈[0,1]|V |N

F(m, ρ,Φ)

where the last equality is again obtained by equi-coercivity in (A2).
Now let us fix (ρ̃,Φ) = ({ρni }

N−1
n=1 , {Φn

i }Nn=1), and consider the optimization

inf
{mn

i+1
2 ev
}N−1
n=0 ∈R|E|N , {ρ0i }∈[0,1]|V |

F(m, ρ,Φ) .
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We next derive its duality formula. Following the summation by part, then

inf
{mn

i+1
2 ev
}N−1
n=0 ∈R|E|N , {ρ0i }∈[0,1]|V |

F(m, ρ,Φ)

= inf
{mn

i+1
2 ev
}N−1
n=0 ∈R|E|N , {ρ0i }∈[0,1]|V |

{
N−1∑
n=0

∑
i∈V, i+ ev

2
∈E

∆tL
(
mn+1
i+ 1

2
ev
, θn+1
i+ 1

2
ev

)
−
N−1∑
n=0

∆t F ({ρ}n+1
i ) +G({ρ}0i )

+
N−1∑
n=0

∑
i∈V

Φn+1
i

(
ρn+1
i − ρni + ∆t · div(mn+1)|i

)}

= inf
{ρ0i }∈[0,1]|V |

{
N−1∑
n=0

∑
i∈V, i+ ev

2
∈E

∆t inf
m

i+1
2 ev

{
L

mn+1
i+ 1

2
ev

θn+1
i+ 1

2
ev

 θn+1
i+ 1

2
ev

+
1

∆x
(Φn+1

i − Φn+1
i+ev

)mn+1
i+ 1

2
ev

}

−
N−1∑
n=0

∆t F ({ρ}n+1
i ) +G({ρ}0i ) +

N−1∑
n=0

∑
i∈V

Φn+1
i

(
ρn+1
i − ρni

)}

where the last equality is from the spatial integration by parts for
∑N−1

n=0

∑
i∈V Φn+1

i div(mn+1)|i.
From the Legendre transform

H(p) = sup
v∈R1

pv − L(v)

with p = 1
∆x(Φn

i+ev
− Φn

i ) and v =
mn+1

i+1
2 ev

θn+1

i+1
2 ev

, we have

inf
{mn

i+1
2 ev
}N−1
n=0 ∈R|E|N , {ρ0i }∈[0,1]|V |

F(m, ρ,Φ)

= inf
{ρ0i }∈[0,1]|V |

{
−

N∑
n=1

∑
i∈V, i+ ev

2
∈E

H

(
1

∆x
(Φn

i − Φn
i+ev)

)
θn
i+ 1

2
ev

∆t−
N∑
n=1

F ({ρ}n+1
i )∆t

+G({ρ}0i ) +
N−1∑
n=0

∑
i∈V

Φn+1
i

(
ρn+1
i − ρni

)}

= inf
{ρ0i }∈[0,1]|V |

{
−

N∑
n=1

∑
i∈V, i+ ev

2
∈E

H

(
1

∆x
(Φn

i − Φn
i+ev)

)
θn
i+ 1

2
ev

∆t−
N∑
n=1

F ({ρ}n+1
i )∆t+G({ρ}0i )

+

N−1∑
n=1

∑
i∈V

(
Φn
i − Φn+1

i

)
ρni +

∑
i∈V

ΦN
i ρi −

∑
i∈V

Φ0
i ρ

0
i

}
= F̃(ρ̃,Φ),

where the last line follows from the definition of Legendre transform for {ρ0}Vi .

Remark 3.7. We remark that [1, 2, 3] utilized a similar version of the above lemma and
computed the saddle point using Newton’s method. However, since we aim to reduce the number
of dimensions in our numerical scheme and also aim to handle nonsmooth cases, we do not stop
at this formulation.
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Lemma 3.8. If (A1), (A3),(A4), (A5), (A6),(A7) are satisfied, then

sup
{Φn

i }Nn=1∈R|V |N
inf

{ρni }
N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃,Φ)

= sup
{Φi}∈R|V |

{∑
i∈V

ΦN
i ρi −

N∑
n=1

∆t

(
F ({ρ}ni )−

∑
i

[∇ρF ({ρ}ni )]iρ
n
i

)
−G∗({Φ}0i ) :

ρni − ρ
n−1
i + ∆t

∑d
v=1DpH

(
1

∆x(Φn
i − Φn

i+ev
)
)
θn
i+ 1

2
ev

= 0

Φn+1
i − Φn

i + ∆t
4

∑d
v=1H

(
1

∆x(Φn
i − Φn

i+ev
)
)

+ ∆t[∇ρF ({ρ}ni )]i = 0
ρNi = ρi, ΦN

i = Φi

}
.

Proof. Writing (ρ̃, Φ̃) = ({Φn
i }

N−1
n=1 , {ρni }

N−1
n=1 ), then we have

sup
{Φn

i }Nn=1∈R|V |N
inf

{ρni }
N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃,Φ) = sup
{ΦN

i }∈RN

sup
{Φn

i }
N−1
n=1 ∈R|V |(N−1)

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN ).

Given (Φ̃,ΦN
i ), from (A3) and (A7), we have the resulting functional F̃(ρ̃, Φ̃,ΦN ) to be C2

w.r.t. ρ̃. Together with compactness of [0, 1]|V |(N−1), we therefore have that the infrimum

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN )

is attained, and the minimum is attained in the interior of the domain [0, 1]|V |(N−1) thanks to
(A7) and convexity assumption of F , that F is growing near the boundary. From the smoothness
given by (A5), the minimum ρ̃∗(Φ̃,ΦN ) shall satisfy the first order optimality condition

Φn+1
i − Φn

i

∆t
+

1

4

d∑
v=1

H

(
1

∆x
(Φn

i − Φn
i+ev)

)
+ [∇ρF ({ρ∗(Φ̃,ΦN )}ni )]i = 0

and by smoothness given by (A5) that the above equation is in C1, and strong convexity that
∇2
ρF is non-singular, then the implicit function theorem applies and ρ̃∗(Φ̃,ΦN ) smoothly depends

on (Φ̃,ΦN
i ). Now let us fix ΦN . From the definition, we have

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN )

= −
N∑
n=1

∆tF ∗

({
Φn+1
i − Φn

i

∆t
+

1

4

d∑
v=1

H

(
1

∆x
(Φn

i − Φn
i+ev)

)}n
i

)
−G∗({Φ}0i ) +

∑
i∈V

ΦN
i ρi.

Now for any given {V n
i }

N−1
n=1 , by iteratively solving the difference equation, there exists {Φn

i }
N−1
n=1

such that

Φn+1
i − Φn

i

∆t
+

1

4

d∑
v=1

H

(
1

∆x
(Φn

i − Φn
i+ev)

)
= V n−1

i .

Therefore we have bijectivity between {V n
i }

N−1
n=1 and {Φn

i }
N−1
n=1 , and therefore

sup
{Φn

i }
N−1
n=1 ∈R|V |(N−1)

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN )

= sup
{V n

i }
N−1
n=1 ∈R|V |(N−1)

{
−
N−1∑
n=0

∆tF ∗ (V n
i )−G∗({Φ}0i ) +

∑
i∈V

ΦN
i ρi

}
. (3.7)
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Note that by (A3), strong convexity of F implies strongly smoothness (i.e. at least differentia-
bility) and convexity of F ∗. Note that by (A6), the above function is also coercive, and therefore
the supremum in the above is attained, and hence there exists a maximum point {V ∗ni }N−1

n=0 for

the functional −
∑N−1

n=0 F
∗ (V n

i ). Now go back to find {Φ∗ni }N−1
n=1 such that

Φ∗n+1
i − Φ∗ni

∆t
+

1

4

d∑
v=1

H

(
1

∆x
(Φ∗ni − Φ∗ni+ev)

)
= V ∗n−1

i .

Now, fixing ΦN and noticing {Φ∗ni }N−1
n=1 is a maximum value of the function

Φ̃ = {Φn
i }N−1

n=1 7→ inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN ) = F̃(ρ̃∗(Φ̃,ΦN ), Φ̃,ΦN ),

we see that the maximum is attained and by (A5), we have the smooth first order optimality
condition for {Φ∗ni }N−1

n=1 and it can be characterized by

ρ∗(Φ̃,ΦN )
n

i − ρ
∗(Φ̃,ΦN )

n−1

i + ∆t
d∑
v=1

DpH

(
1

∆x
(Φ∗ni − Φ∗ni+ev)

)
θn
i+ 1

2
ev

(Φ̃,ΦN ) = 0.

Concluding the above argument, for each ΦN , we have

sup
{Φn

i }
N−1
n=1 ∈R|V |(N−1)

inf
{ρni }

N−1
n=1 ∈[0,1]|V |(N−1)

F̃(ρ̃, Φ̃,ΦN ) = F̃(ρ̃∗(ΦN ), Φ̃∗(ΦN ),ΦN ),

which satisfies the following pair of equations
ρni − ρ

n−1
i + ∆t

∑d
v=1DpH

(
1

∆x(Φn
i − Φn

i+ev
)
)
θn
i+ 1

2
ev

= 0

Φn+1
i − Φn

i + ∆t
4

∑d
v=1H

(
1

∆x(Φn
i − Φn

i+ev
)
)

+ ∆t[∇ρF ({ρ}ni )]i = 0

ρNi = ρi, ΦN
i = Φi

(3.8)

for all n = 0, 1, .., N − 1. The conclusion of the lemma thus follows.

Remark 3.9. We note that taking supremum of (3.7) over ΦN yields the discrete version of
the Hopf formula given in (57)-(59) of [27]. However, we are not trying to get back to (57)-(59)
in [27] since the formulation, though very elegant mathematically, contains too many variables
for numerical optimization of a low memory requirement, and is thus not our first choice.

Combining all the three lemmas above, we have proved Theorem 3.1.

Remark 3.10. The full set of (A1) to (A7) are indeed a bit too strong; however, as is illustrated
above, they make the argument as simple as possible. Some of the assumptions may be weaken
to obtain weaker but similar forms, e.g. Lemma 3.6 has an assumption weaker than Lemma
3.8, in that in many cases smoothness may be dropped by replacing derivatives with a version
of subdifferentials. We expect a proof of existence of saddle point shall be viable without much
modification. However the full generslity of our conjecture involves the hope of droping the
convexity assumption of H with respect p. Similar to [16], our hope is that the full generality
involves only a pseudoconvexity assumption (Definition 3.11 in [16]) and a similar form of
Conjecture 3.12 shall hold.
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4 Algorithm

In next section, we apply the discrete Hopf formula (3.4) to design numerical methods for
HJD. In this section, we compute the optimizer in the Hopf formula in (3.4). We shall perform
the following multi-level stochastic gradient descent method.

We first consider a sequence of step-size hi = 2−i where i = 0, . . . , N and a nested sequence
of finite dimensional subspaces Vh0 ⊂ Vh2 ⊂ · · · ⊂ VhN−1

⊂ VhN of a function space over tensor
product grid in d-dimensions over [−1, 1]d ⊂ X. Now, we also define a family of restriction and
extension operators:

Rij : Vhi → Vhj and Eji : Vhj → Vhi

Now, let us define the following approximation of the functional G(·) as

Gj : Vhj → R

Gj(Φ̃) :=

∫
X
RNj [ρ](x)Φ̃(x)dx−G∗(Φ(EjN [Φ̃], 0, ·))

−
∫ t

0

(
F (ρ(EjN [Φ̃], s, ·))−

∫
X

[∇ρF (ρ(EjN [Φ̃], s, ·))]ρ(EjN [Φ̃], s, x)dx

)
dt

(4.1)

where (ρ(EjN [Φ̃], s, x),Φ(EjN [Φ̃], s, x)) numerically solves the following terminal value problem:
∂sρ(EjN [Φ̃], s, x) +∇ · (ρ(EjN [Φ̃], s, x)DpH(x,∇Φ(EjN [Φ̃], s, x))) = 0

∂sΦ(EjN [Φ̃], s, ·) +H(x,∇Φ(EjN [Φ̃], s, x)) +∇ρF (ρ(EjN [Φ̃], s, ·)) = 0

ρ(EjN [Φ̃], t, x) = ρ(x), Φ(EjN [Φ̃], t, x) = EjN [Φ̃](x) .

The numerical method to compute this Cauchy problem will be discussed after we present the
main algorithm in Remark 4.1.

With the above notation, we are ready to present our variant of stochastic gradient descent
to optimize GN (·). We utilize the following coordinate descent algorithm:

Algorithm 1. Take an initial guess [Φ0]1 ∈ Vh0.

For i = 0, ..., N , do:

• Take an initial guess of the Lipschitz constant Li, set count := 0, vi := 1/Li, and an error
tolerence εi.

• For k = 1, ....,M , do:

1: Randomly select Ik ∈ 2{1,...,2
di},

2: Compute the following unit vector VIk where

[VIk ]l =

{
1/
√
|Ik| if l ∈ Ik,

0 otherwise.

3: Compute {
[Φi]

k+1
l = [Φi]

k
l − vi[VIk ]l∂VIkGi([Φi]

k
l ) if l ∈ I

[Φi]
k+1
l = [Φi]

k+1
l otherwise.
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4: If Eri,k+1

(
{[Φi]

r
l }
k+1
r=1

)
≥ εi , then set count := 0. If k = M , then reset k := 0 and

set vi := vi/2, (i.e. let Li := 2Li.)

5: If Eri,k+1

(
{[Φi]

r
l }
k+1
r=1

)
< εi, set count := count + 1.

5: If count = 2di, define [Φi]final := [Φi]
k+1
I , stop.

• If i < N , set [Φi+1]1 = Ei (i+1) ([Φi]final) .

Output [ΦN ]final.

where we now denote, for a given history of iteration {[Φi]
r
I}kr=1, the consecutive ergodic error

as the following

Eri,k

(
{[Φi]

r
l }kr=1

)
:=

∣∣∣∣∣
∑k

r=1Gi([Φi]
r
l )

k
−
∑k−1

r=1 Gi([Φi]
r
l )

k − 1

∣∣∣∣∣ (4.2)

The choice of such is in response to the fact that random stochastic gradient descent has an
averaged (ergodic) convergence rate of O(1/k). We would also like to mention that the above
choice of Ik and vIk give us a random coordinate descent along a random direction of the form
vIk = (0, .., 0, 1, 0, ..., 0, 1, 0, ..., 0, 1, 0, ...0)/|Ik|. This choice of descent direction is to enhence
speed of convergence via an average effect of grid points that are far away from each other to
allow information passing in a greater speed. Note that the size of the above random choice
of Ik does not depend on k. The coefficients, e.g. Li, M and N , are suitably chosen (and is
currently only done later in examples.)

Remark 4.1. For computation of
(
ρ(EjN [Φ̃], s, x),Φ(EjN [Φ̃], s, x)

)
with numerical PDE tech-

niques, we notice that the primal-dual system in (3.4), i.e. the conservation law and the HJD,
may not provide a stable PDE algorithm. One way to address this pathology is to modify the
numerical Hamiltonian that we have implicitly chosen when we derive our algorithm. We no-
tice indeed that the system (3.4) is a symplectic scheme that conserves the following numerical
Hamiltonian (writing ρn := {ρni } and Φn := {Φn

i }):

H(ρn,Φn) =
∑

i+ ev
2
∈E

H

(
1

∆x
(Φn

i − Φn
i+ev)

)
θn
i+ 1

2
ev

+ F ({ρ}ni ) .

On the other hand, we notice that the choice of such Hamiltonian is not unique: we can choose
another numerical Hamiltonian that corresponds to an upwind (monotone) scheme for the primal
system and monotone Hamiltonian for the dual system as follows (see also [1, 2, 3]):

H(ρn,Φn) :=
∑
i

d∑
v=1

H

([
1

∆x
(Φn

i − Φn
i+ev)

]+
)
ρni + F ({ρ}ni ),

where [·]+ := max(0, ·) and [·]− := min(0, ·). With this, the primal dual system will instead be
as follows:

ρni − ρ
n−1
i

∆t
+

d∑
v=1

DpH

([
1

∆x
(Φn

i − Φn
i+ev)

]+
)
ρni +

d∑
v=1

DpH

([
1

∆x
(Φn

i − Φn
i+ev)

]−)
ρni+ev = 0

Φn+1
i − Φn

i

∆t
+

1

2

d∑
v=1

H

([
1

∆x
(Φn

i − Φn
i+ev)

]+
)

+ [∇ρF ({ρ}ni )]i = 0.
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To further enhance stability, we can add, given a regularization parameter β, a Lax-Friedrichs
scheme numerical diffusion term:

ρni − ρ
n−1
i

∆t
+
{ d∑
v=1

DpH

([
1

∆x
(Φn

i − Φn
i+ev)

]+
)
ρni

+

d∑
v=1

DpH

([
1

∆x
(Φn

i − Φn
i+ev)

]−)
ρni+ev

}
+

β∆x

2(∆x)2

d∑
v=1

(ρni − ρni+ev) = 0

Φn+1
i − Φn

i

∆t
+

1

2

d∑
v=1

H

([
1

∆x
(Φn

i − Φn
i+ev)

]+
)

+ [∇ρF ({ρ}ni )]i +
β∆x

2(∆x)2

d∑
v=1

(Φn
i − Φn

i+ev) = 0 .

This adds a magnitude of β∆x numerical diffusion in the system. We notice in our numerical
examples that stability improves after imposing β > 0 and considering an upwind monotone
scheme.

5 Numerical results

In this section, we present numerical results for solving HJD by Algorithm 1. We tested
several cases with the different Hamiltonians, including the convex

H1(x, p) =
1

2
(|p1|2 + |p2|2) ,

the non-convex

H2(x, p) =
1

2
(|p1|2 − |p2|2) ,

and the convex 1-homogeneous Hamiltonian

H3(x, p) = |p1|+ |p2|.

For a given center x0 and radius R, we consider

G(ρ) = inf
ρ̃∈P(X)

{
ιP(BR(x0))(ρ̃) +

1

2η

∫
X

[ρ̃− ρ(x)]2dx

}
,

where η is a regularization parameter, and we recall that, for a given convex subset B ⊂ P(X),
the indicator function ιB(ρ) = 0 if ρ ∈ B and ιB(ρ) =∞ otherwise. A direct computation shows

ι∗P(BR(x0))(Φ) = sup
ρ∈P(BR(x0))

∫
X
ρ(x)Φ(x)dx. = sup

x∈BR(x0)
Φ(x) .

With the correspondence of summation and infimum convolution via Legendre transform, we
arrive at

G∗(Φ) = sup
x∈BR(x0)

Φ(x) +
ζ

2

∫
X

[Φ(x)]2dx.

In numerical examples, we set ζ = 10−3. This helps us compute a regularized projection of a
given ρ to the set of all the measures supported at an unit ball. For simplicity, we set F (ρ) = 0
in all our examples.
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We utilize Algorithm 1 for numerical computations. The number of levels N = 5 is always
chosen. The Lipschitz constant is always chosen as Li = L = 2. For numerical approximation of
PDE, we choose the upwind numerical Hamiltonian, together with an addition of Lax-Friedrichs
numerical diffusion where β = 2 is chosen. The discretization parameters are chosen as ∆x =
0.08 and ∆t = 0.008. In all experiments, we consider X = T2.

Example 5.1. In this example, we consider the Hamiltonian H1 and the input distribution ρ(x)
as follows:
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Figure 1: The distribution of the input ρ.

We choose the center and radius (x0, R) which helps to define G(ρ) as x0 = (0, 0), R = 1.
In order to provide illustration for the multi-level effect using Algorithm 1 to compute (3.4),

we have plot an optimizer obtained for (4.1) in each level as in Figure 7, for i = 1, ..., 4 in one
trial of randomization. As one may see, the minimizers are successively refined. The randomness
and assymmetry comes from comes the random nature of stochastic gradient descent.

Figure 3 gives the optimizer Φ̃ (left) in (3.4) in the finest level and its gradient ∇xΦ̃ (right)
computed using Algorithm 1 when t = 1 in the Hamiltonian. The gradient ∇xΦ̃ generates the
final kick of the drift for the masses to be flown accordingly.
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Figure 2: Left: optimizer Φ̃ in Gi([Φi]
k
l ) in (4.1) on coarse grids, i = 1, ..., 4.
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Figure 3: Left: optimizer Φ̃ in Gi([Φi]
k
l ) in (4.1), i = 5, i.e. the finest approximation of U(t, ρ) where

t = 1 in (2.3), right: vector field ∇xΦ̃.

To illustrate the multi-level effect using Algorithm 1,Table 1 shows also, for each i, k, the
respective number of epochs is defined as ceil(k/DoF ), the minimum value function Gi([Φi]

k
I )

obtained, where k is given by [Φi]final = [Φi]
k+1
I and Gi is given as (4.1), and the consecutive

ergodic error Eri,k defined as in (4.2). This illustrates the successive refinement nature of the
method.

Level i Degree of Freedom (DoF) Number of Epoch Value function Gi([Φi]
k
l ) Error Eri,k

1 25 4 0.5029 7.6999× 10−3

2 100 10 0.7729 5.2091× 10−4

3 361 13 0.9741 3.0454× 10−5

4 1444 99 1.0156 7.3882× 10−7

5 5625 125 1.0506 5.1721× 10−7

Table 1: Number of epochs, minimum value function Gi([Φi]
k
l ) obtained and consecutive ergodic error

Eri,k defined as in (4.2).

In Figure 4, we plot the distributions ρ(t, x) for different t = 0, 0.2, 0.4, 0.6, 0.8, 1.0. It de-
scribes the transportation of the masses according to the flow generated by the gradient of Φ(t, x)
at different times t.
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t = 0.4
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Figure 4: The distribution ρ(t, x) generating the convection on the mass for different t =
0, 0.2, 0.4, 0.6, 0.8, 1.0. The black circle is the boundary of B1(0).

From the figures, we can see that our proposed method identifies simultaneously the two non-
unique points closest from two mass lumps at antipodal positions to the ball in the center. In
particular, the projected measure is the average of the two Dirac masses at the boundary of the
circle, where each of them is the closest point of the mass lumps. The algorithm uses reversed
time, and the reconstruction moves from the points on the balls to the two respective masses.
Also, randomness of stochastic gradient descent and exponential error growth with respect to
initial condition of the initial value in PDE also contribute to some error and assymetry.

As for comparson, we have also computed the closed form solution given by Lemma 2.13
when ζ = 0. In Figure 5, we plot the distributions ρ(t, x) for different t = 0, 0.2, 0.4, 0.6, 0.8, 1.0.
As is shown in the figures, the movements of the major lumps/bulks matches, except with some
minor deflects. The deflects are caused by both numerical diffusion of the numerical scheme,
and as well as regularization paramenters ζ.
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t = 0.4
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Figure 5: The distribution ρ(t, x) generating the convection on the mass for different t =
0, 0.2, 0.4, 0.6, 0.8, 1.0 given by Lemma 2.11 The black circle is the boundary of B1(0).

Example 5.2. In this example, we consider the Hamiltonian H1 above and the input distribution
ρ(x) as follows:
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Figure 6: The distribution of the input ρ.

We choose the center and radius (x0, R), which helps to define G(ρ) as x0 = (3, 0), R = 2. Since
this is a torus, the mass sees a “non-convex” object from both sides from afar. We fix Li = 2 in
Algorithm 1.

So as to provide illustration for the multi-level effect using Algorithm 1 to compute (3.4),
an optimizer obtained for (4.1) in each level as in Figure 7, for i = 1, ..., 4 in one trial of
randomization is plot. As one may see, the minimizers are successively refined. The randomness
and assymmetry comes from comes the random nature of stochastic gradient descent.

Figure 8 gives the optimizer Φ̃ (left) in (2.3) in the finest level and its gradient ∇xΦ̃ (right)
computed using Algorithm 1 when t = 1 in the Hamiltonian.
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Figure 7: Left: optimizer Φ̃ in Gi([Φi]
k
I ) in (4.1) on coarse grids, i = 1, ..., 4.
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Figure 8: Left: optimizer Φ̃ in Gi([Φi]
k
l ) in (4.1), i = 5, i.e. the finest approximation of U(t, ρ) where

t = 1 in (2.3), right: vector field ∇xΦ̃.

Table 2 now shows also, for each i, k, the respective number of epochs is defined as ceil(k/DoF ),
the minimum value function Gi([Φi]

k
l ) obtained, where k is given by [Φi]final = [Φi]

k+1
l and Gi

is given as (4.1), and the consecutive ergodic error Eri,k defined as in (4.2). This illustrates
the successive refinement nature of the method, and also the effectiveness of the method, that a
small number of epochs

Level i Degree of Freedom (DoF) Number of Epochs Value function Gi([Φi]
k
l ) Error Eri,k

1 25 2 0.1724 1.7999× 10−3

2 100 2 0.2348 4.5542× 10−4

3 361 4 0.4236 8.3531× 10−5

4 1444 17 0.5373 9.4764× 10−6

5 5625 1 0.5560 1.0753× 10−6

Table 2: Number of epochs, minimum value function Gi([Φi]
k
l ) obtained and consecutive ergodic error

Eri,k defined as in (4.2).

In Figure 9, we plot the distributions ρ(t, x) for different t = 0, 0.2, 0.4, 0.6, 0.8, 1.0.
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Figure 9: The distribution ρ(t, x) generating the convection on the mass for different t =
0, 0.2, 0.4, 0.6, 0.8, 1.0. The black circle is the boundary of B1(0).

In this example, our method accurately finds the projections of a mass to the two non-unique
closest points on the “non-convex” body (which is in fact a ball ”split” in two). In particular,
the flow of the mass splits into two opposite directions; each brings half of the densities to the
boundary of the target body.

We also also computed the closed form solution given by Lemma 2.13 when ζ = 0. In Figure
10, we plot the distributions ρ(t, x) for different t = 0, 0.2, 0.4, 0.6, 0.8, 1.0. With non-unique
closest points on the “non-convex” body, the movement of the ball splits as in that from Hopf
formula. The movements of the split matches, again except with some minor deflects. The
deflects are caused by both numerical diffusion of the numerical scheme, and as well as regu-
larization paramenters ζ. Moreover, randomness of stochastic gradient descent and exponential
error growth with respect to initial condition of the initial value in PDE also contribute to some
error and assymetry.
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Figure 10: The distribution ρ(t, x) generating the convection on the mass for different t =
0, 0.2, 0.4, 0.6, 0.8, 1.0 given by Lemma 2.11 The black circle is the boundary of B1(0).

Example 5.3. In this example, we consider the non-smooth but convex Hamiltonian H3 above
and the input distribution ρ(x) in Figure 11.
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Figure 11: The distribution of the input ρ.

In order to compute the absolute value in the conservation law in a stable way, we replace
the sign function with a soft sign function as follows

soft-sign(x) :=
2

π
arctan(cx) ,
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where we choose c = 20. With this regularization, the Hamiltonian under consideration is
actually

H3,c(p) := Hc(p1) +Hc(p2)

where

Hc(s) =
2

π
s arctan(s)− 1

cπ
log(1 + c2s2) ,

and thus the Lagrangian cost functional is

L3,c(v) := Lc(v1) + Lc(v2),

where

Lc(t) =

{
1
cπ log

(
sec2

(
πt
2

))
if |t| < 1 ,

∞ if |t| ≥ 1 .

As in Example 1, we choose the center and radius (x0, R) which helps to define G(ρ) as x0 =
(0, 0), R = 1.

To illustrate for the multi-level effect using Algorithm 1 when we compute compute (3.4),
an optimizer obtained for (4.1) in each level as in Figure 12, for i = 1, ..., 4 in one trial of
randomization is plot. As one may see, the minimizers are successively refined. The randomness
and assymmetry comes from comes the random nature of stochastic gradient descent, but you
see the optimizer looks similar to the finer level in a very early stage.

Figure 13 gives the optimizer Φ̃ (left) in (2.3) in the finest level and its gradient ∇xΦ̃ (right)
computed using Algorithm 1 when t = 1 in the Hamiltonian.
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Figure 12: Left: optimizer Φ̃ in Gi([Φi]
k
l ) in (4.1) on coarse grids, i = 1, ..., 4.
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Figure 13: Left: optimizer Φ̃ in Gi([Φi]
k
l ) in (4.1), i = 5, i.e. the finest approximation of U(t, ρ) where

t = 1 in (2.3), right: vector field ∇xΦ̃.

Table 3 now shows also, for each i, k, the respective number of epochs is defined as ceil(k/DoF ),
the minimum value function Gi([Φi]

k
l ) obtained, where k is given by [Φi]final = [Φi]

k+1
l and Gi is

given as (4.1), and the consecutive ergodic error Eri,k defined as in (4.2).

Level i Degree of Freedom (DoF) Number of Epoch Value function Gi([Φi]
k
l ) Error Eri,k

1 25 4 0.6898 3.5999× 10−3

2 100 10 0.9309 2.2014× 10−4

3 361 27 0.9741 1.9953× 10−5

4 1444 99 1.3015 1.6259× 10−6

5 5625 76 1.3526 1.5398× 10−6

Table 3: Number of epochs, minimum value function Gi([Φi]
k
l ) obtained and consecutive ergodic error

Eri,k defined as in (4.2).

Figure 18 plots the distributions ρ(t, x) for different t = 0, 0.2, 0.4, 0.6, 0.8, 1.0.
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t = 0.8
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Figure 14: The distribution ρ(t, x) generating the convection on the mass for different t =
0, 0.2, 0.4, 0.6, 0.8, 1.0. The black circle is the boundary of B1(0).

We identify reachability of the measure to the boundary of the ball w.r.t. to the l1 Hamilto-
nian. With our choice of regularization, we, however, see a defect in our numerical computation:
there are three small tails that are left behind in the conservation law as the mass is moving since
the exact cutoff of the absolute value is regularized. Nonetheless, the solution makes perfect sense
in term of identifying reachability.

To compare the behavior, we also also computed the closed form solution given by Lemma 2.13
when ζ = 0. In Figure 15, we plot the distributions ρ(t, x) for different t = 0, 0.2, 0.4, 0.6, 0.8, 1.0.

Since L(x, v) = ι{‖·‖∞≤1}(v), we have non-uniqueness of even the projection as some points
will have infinity, rendering the value function to be infinite if ζ is zero. However, we may still
obtain a sensible solution that we shall expect by projecting the points as close possible to the
unique circle as possible using the infinity-norm ball. Comparing that with the solution computed
form Hopf formula, the movement of the mass still matches with some deflects caused by non-
uniqueness, regularization (now both by ζ and c ), and numerical diffusion. However as we can
see, the major part of the mass still matches and move with constant speed as we expect.
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t = 0.8
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Figure 15: The distribution ρ(t, x) generating the convection on the mass for different t =
0, 0.2, 0.4, 0.6, 0.8, 1.0 given by Lemma 2.11 The black circle is the boundary of B1(0).

Example 5.4. In this example, we consider the non-convex Hamiltonian H2 above and the input
distribution ρ(x) the same as in Example 1 in Figure 1. Again, we choose the center and radius
(x0, R), which helps to define G(ρ) as x0 = (0, 0), R = 1.

For the illustration of the multi-level effect using Algorithm 1 when we compute compute
(3.4), an optimizer obtained for (4.1) in each level as in Figure 16, for i = 1, ..., 4 in one trial
of randomization is plot. The successive refinement property is still observed, that on a coarse
level the solution looks similar to the fine level. The stochastic nature again contributes to the
randomness and assymmetry.

Figure 17 gives the optimizer Φ̃ (left) in (2.3) in the finest level and its gradient ∇xΦ̃ (right)
computed using Algorithm 1 when t = 1 in the Hamiltonian.
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Figure 16: Left: optimizer Φ̃ in Gi([Φi]
k
l ) in (4.1) on coarse grids, i = 1, ..., 4.
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Figure 17: Left: optimizer Φ̃ in Gi([Φi]
k
l ) in (4.1), i = 5, i.e. the finest approximation of U(t, ρ) where

t = 1 in (2.3), right: vector field ∇xΦ̃.

We now have Table 4 showing, for each i, k, the respective number of epochs is defined as
ceil(k/DoF ), the minimum value function Gi([Φi]

k
l ) obtained, where k is given by [Φi]final =

[Φi]
k+1
l and Gi is given as (4.1), and the consecutive ergodic error Eri,k defined as in (4.2).

Level i Degree of Freedom (DoF) Number of Epoch Value function Gi([Φi]
k
l ) Error Eri,k

1 25 1 0.0246 5.3129× 10−4

2 100 4 0.0975 2.1833× 10−4

3 361 27 1.1421 5.4065× 10−5

4 1444 42 2.5169 1.0120× 10−5

5 5625 77 3.4000 9.9348× 10−6

Table 4: Number of epochs, minimum value function Gi([Φi]
k
l ) obtained and consecutive ergodic error

Eri,k defined as in (4.2).

Figure 18 plots the distributions ρ(t, x) for different t = 0, 0.2, 0.4, 0.6, 0.8, 1.0.
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t = 0.8
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Figure 18: The distribution ρ(t, x) generating the convection on the mass for different t =
0, 0.2, 0.4, 0.6, 0.8, 1.0. The black circle is the boundary of B1(0).

We can see the competing nature of the Hamiltonian, where one part of the Hamiltonian tries
to drift the mass to the ball inward along one direction, while the other part of the Hamiltonian
tries to drift the mass away along another direction. In fact one may see clearly that they
are drifting along the characteristics lines of H2, although half in forward direction and half in
backward directions. This tears each mass lump apart into two lumps. The numerical behavior of
the solution shows the competing nature of a differential game problem in the mean field setting.

To understand our computed solution more thoroughly, we may refer our readers to section
2.3.2. Although it is not know that Lemma 2.14 holds when ζ = 0 which gives G not satisfying
the bounded and Lipschitz condition, Lemma 2.14 does hold after regularization when ζ > 0,
which gives G satisfying the bounded and Lipschitz condition. Therefore we may understand
our numerical solution as the solution both as the upper value and lower value according to
Lemma 2.14. Indeed, as we can see, with our Hamiltonian H2, control I is trying have the
vector component m stays in |m| < 1 and pushing the support of ρ(0) out from C and control II
is trying have the vector component n stays in |n| < 1 and pushing the support of ρ(0) out into
C.

6 Discussions

To summarize, we propose a generalized Hopf formula for potential mean field games. Our
algorithm inherits main ideas in optimal transport on graphs and the Hopf formula for state-
dependent optimal control problems.

Compared to the existing methods, the advantage of the proposed algorithm is three fold.
First, the Hopf formula in density space introduces a minimization with variables depending
on solely spatial grids. It has a lower complexity than the original optimal control problem.
Second, the Hopf formula gives a simple parameterization for boundary problems in NE. This
parameterization helps us design a simple first-order gradient descent method. This property
allows us to compute the case of nonconvex Hamiltonians efficiently. Finally, our spatial dis-
cretization follows the dual of optimal transport on graphs. Hence, it is approximately discrete
time reversible. This property conserves the primal-dual structure of potential mean field games.

We would like to emphasize that our rigorous derivation of the generalized Hopf formula is
provided only for a relatively narrow case. We notice that the Hopf formula in density space
appears to go beyond monotonicity conditions and give legitimate numerical results, as shown
in Section 5. Although it is beyond the scope of this paper, it is interesting to search for the
precise conditions for the validity of the Hopf formula. Also, our current study only considers
potential games without noise perturbations in players’ decision processes. We will extend it to
compute NEs for general non-potential games in future work.
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