Laplacian Smooth Gradient Descent

Stanley J. Osher Bao Wang
Department of Mathematics Department of Mathematics
University of California, Los Angeles University of California, Los Angeles
sjo@Gmath.ucla.edu wangbaonj@gmail.com
Penhang Yin Xiyang Luo
Department of Mathematics Department of Mathematics
University of California, Los Angeles University of California, Los Angeles
yph@ucla.edu xylmath@gmail.com
Farzin Barekat Minh Pham
Department of Mathematics Department of Mathematics
University of California, Los Angeles University of California, Los Angeles
fbarekat@math.ucla.edu minhrose@math.ucla.edu
Alex Lin

Department of Mathematics
University of California, Los Angeles
atlin@math.ucla.edu

April 29, 2019

Abstract

‘We propose a class of very simple modifications of gradient descent and stochastic gra-
dient descent. We show that when applied to a large variety of machine learning problems,
ranging from logistic regression to deep neural nets, the proposed surrogates can dramati-
cally reduce the variance, allow to take a larger step size, and improve the generalization
accuracy. The methods only involve multiplying the usual (stochastic) gradient by the
inverse of a positive definitive matrix (which can be computed efficiently by FFT) with
a low condition number coming from a one-dimensional discrete Laplacian or its high or-
der generalizations. It also preserves the mean and increases the smallest component and
decreases the largest component. The theory of Hamilton-Jacobi partial differential equa-
tions demonstrates that the implicit version of the new algorithm is almost the same as
doing gradient descent on a new function which (i) has the same global minima as the
original function and (ii) is “more convex”. Moreover, we show that optimization algo-
rithms with these surrogates converge uniformly in the discrete Sobolev H? sense and
reduce the optimality gap for convex optimization problems. The code is available at:
https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent

1 Introduction

Stochastic gradient descent (SGD) [37] has been the workhorse for solving large-scale machine
learning (ML) problems. It gives rise to a family of algorithms that enables efficient training of
many ML models including deep neural nets (DNNs). SGD utilizes training data very efficiently
at the beginning of the training phase, as it converges much faster than GD and L-BFGS
during this period [8, 16]. Moreover, the variance of SGD can help gradient-based optimization
algorithms circumvent local minima and saddle points and reach those that generalize well
[38, 18]. However, the variance of SGD also slows down the convergence after the first few
training epochs. To account for the effect of SGD’s variance and to ensure the convergence of
SGD, a decaying step size has to be applied which is one of the major bottlenecks for the fast
convergence of SGD [7, 41, 40]. Moreover, in training many ML models, typically the stage-wise

schedule of learning rate is used in practice [39, 38]. In this scenario, the variance of SGD usually
leads to a large optimality gap.

A natural question arises from the above bottlenecks of SGD is: Can we improve SGD
such that the variance of the stochastic gradient is reduced on-the-fly with negligible
extra computational and memory overhead and a larger step size is allowed to train
ML models?

We answer the above question affirmatively by applying the discrete one-dimensional Lapla-
cian smoothing (LS) operator to smooth the stochastic gradient vector on-the-fly. The LS
operation can be performed efficiently by using the fast Fourier transform (FFT). It is shown
that the LS reduces the variance of stochastic gradient and allows to take a larger step size.

Another issue of standard GD and SGD is that when the Hessian of the objective function has
a large condition number, gradient descent performs poorly. In this case, the derivative increases
rapidly in one direction, while growing slowly in another. As a by-product, numerically we will
show that LS can avoid oscillation along steep directions and help make progress in shallow
directions effectively [25]. The implicit version of our proposed approach is linked to an unusual
Hamilton-Jacobi partial differential equation (HJ-PDE) whose solution makes the original loss
function more convex while retaining its flat (and global) minima, and essentially works on this
surrogate function with a much better landscape. See [10] for earlier, related work.

1.1 Owur contribution

In this paper, we propose a new modification to the stochastic gradient-based algorithms, which
at its core uses the LS operator to reduce the variance of stochastic gradient vector on-the-fly.
The (stochastic) gradient smoothing can be done by multiplying the gradient by the inverse of
the following circulant convolution matrix

1+ 20 —0 0 0 —0
—0 1+ 20 —0 0 0

A, = 0 —o 1420 ... 0 0 (1)
—0 0 0 ... —o0o 1+20

for some positive constant ¢ > 0. In fact, we can write A, = I — oL, where I is the identity
matrix, and L is the discrete one-dimensional Laplacian which acts on indices. If we define the
(periodic) forward finite difference matrix as

-1 1 0 0 o0
0o -1 1 0 o0
D,.=1]0 0o -1 0 0
1 0 0o ... 0 -1
Then, we have A, =1 —oD_D,, where D_ = —DI is the backward finite difference.

We summarize the benefits of this simple LS operation below:

e It reduces the variance of stochastic gradient on-the-fly, and reduces the optimality gap
when constant step size is used.

o It allows us to take a larger step size than the standard (S)GD.

e It is applicable to train a large variety of ML models including DNNs with better gener-
alization.

e It converges faster for the objective functions that have a large condition number numer-
ically.

e It avoids local sharp minima empirically.

Moreover, as a straightforward extension, we generalize the LS to high-order smoothing
operators, e.g., biharmonic smoothing.

1.2 Related work

There is an extensive volume of research over the past decades for designing algorithms to speed
up the convergence. These include using momentum and other heavy-ball methods, reduce the
variance of the stochastic gradient, and adaptive the learning rate. We will discuss the related
work from these three perspectives.

The first type of idea to accelerate the convergence of GD and SGD is to apply the mo-
mentum. Around local optima, the surface curves can be much more steeply in one dimension
than in another [43], whence (S)GD oscillates across the slopes of the ravine while only mak-
ing hesitant progress along the bottom towards the local optimum. Momentum is proposed to
accelerate (S)GD in the relevant direction and dampens oscillations [34]. Nesterov accelerated
gradient (NAG) is also introduced to slow down the progress before the surface curve slopes up,
and it provably converge faster in specific scenarios [31]. There are lots of recent progress in the
development of momentum; a relatively complete survey can be found at [3].

Due to the bottleneck of the variance of the stochastic gradient, a natural idea is to reduce the
variance of the stochastic gradient. There are several principles in developing variance reduction
algorithms, including Dynamic sample size methods; Gradient aggregation, control variate type
of technique is widely used along this direction, some representative works are SAGA [11], SCSG
[24], and SVRG [19]; Iterative averaging methods. A thorough survey can be found at [8].

Another category of work tries to speed up the convergence of GD and SGD by using an
adaptive step size, which makes use of the historical gradient to adapt the step size. RMSProp
[44] and Adagrad [13] adapts the learning rate to the parameters, performing smaller updates
(i.e., low learning rates) for parameters associated with frequently occurring features, and more
substantial updates (i.e., high learning rates) for parameters associated with infrequent fea-
tures. Both RMSProp and Adagrad make the learning rate to be historical gradient dependent.
Adadelta [48] extends the idea of RMSProp and Adagrad, instead of accumulating all past
squared gradients, it restricts the window of accumulated past gradients to some fixed size w.
Adam [21] and AdaMax [21] behave like a heavy ball with friction, and they compute the de-
caying averages of past and past squared gradients to adaptive the learning rate. AMSGrad [36]
fix the issue of Adam that may fail to converge to an optimal solution. Adam can be viewed as
a combination of RMSprop and momentum: RMSprop contributes the exponentially decaying
average of past squared gradients, while momentum accounts for the exponentially decaying
average of past gradients. Since NAG is superior to vanilla momentum, Dozat [12] proposed
NAdam which combines the idea Adam and NAG.

1.3 Notations

Throughout this paper, we use boldface upper-case letters A, B to denote matrices and boldface
lower-case letters w, u to denote vectors. For vectors, we use || - || to denote the fo-norm for
vectors and spectral norm for matrices, respectively. And we use Ajaz(A), Amin(A), and X\;(A)
to denote the largest, smallest, and the i-th largest eigenvalues, respectively. For a function
f:R®” = R, we use Vf and V2f to denote its gradient and Hessian, and f* to denote a local
minimum of f. For a positive definite matrix A, we define the vector induced norm by the
matrix A as |w||a := v/{(w, Aw). List {1,2,--- ,n} is denoted by [n].

1.4 Organization

We organize this paper as follows: In section 2, we introduce the LS(S)GD algorithm and the
FFT-based fast solver. In section 3, we show that LS(S)GD allows us to take a larger step
size than (S)GD based on the and /5 estimate of the introduced discrete Laplacian operator.
In section 4, we show that LS reduces the variance of SGD both empirically and theoretically.
We show that LSGD can avoid some local minima and speed up convergence numerically in
section 5. In section 6, we show the benefit of LS in deep learning, including training LeNet
[23], ResNet [17], Wasserstein generative adversarial nets (WGAN) [27], and deep reinforcement
learning (DRL) model. The convergence analysis for LS(S)GD is provided in section 7. The
connection to the Hamilton-Jacobi partial differential equations (HJ-PDEs) and future direction
are discussed in section 8. Most of the technical proofs are provided in section 9.

Algorithm 1 LSSGD
Input: f;(w)fori=1,2,--- n.
w?: initial guess of w, T: the total number of iterations, and ng, & = 0,1,---,T: the
scheduled step size.
Output: The optimized weights w°P*.
for k=0,1,---,7 do
W =k AL (T, (wh).
return w”’

2 Laplacian Smoothing (Stochastic) Gradient Descent

We present our algorithm for SGD in the finite-sum setting. The GD and other settings follow
straightforwardly. Consider the following finite-sum optimization

Imnm:lme, (2)
v "=
where f;(w) = f(w,x;,y;) is the loss of a given ML model on the training data {x;,y;}. This
finite-sum formalism is an abstract of training many ML models mentioned above. To resolve
the optimization problem Eq. (2), starting from some initial guess w®, the (k + 1)-th iteration
of SGD reads
wkt = wk _ nkvfzk (wk)’ (3)

where 7y, is the step size, iy is a random sample with replacement from [n].

We propose to replace the stochastic gradient V f;, (w*) by the Laplacian smoothed surro-
gate, and we call the resulting algorithm LSSGD, which is written as

Wt = wb —n ATV fi, (wh). (4)

Intuitively, compared to the standard GD, this scheme smooths the gradient on-the-fly by an
elliptic smoothing operator while preserving the mean of the entries of the gradient. We adopt
fast Fourier transform (FFT) to compute AV f(w*), which is available in both PyTorch [33]
and TensorFlow [2]. Given a vector g, a smoothed vector d can be obtained by computing
d = A;lg. This is equivalent to g = d — ov * d, where v = [-2,1,0,---,0,1]" and * is the
convolution operator. Therefore

d— ifft <fft(9)> ,

1—o-fit(v)

where we use component-wise division (here, fft and ifft are the FFT and inverse FFT, respec-
tively). Hence, the gradient smoothing can be done in quasilinear time. This additional time
complexity is almost the same as performing a one step update on the weights vector w. For
many machine learning models, we may need to concatenate the parameters into a vector. This
reshaping might lead to some ambiguity, nevertheless, based on our tests, both row and column
majored reshaping work for the LS-GD algorithm. Moreover, in deep learning cases, the weights
in different layers might have different physical meanings. For these cases, we perform layer-wise
gradient smoothing, instead. We summarize the LSSGD for solving the finite-sum optimization
Eq. (2) in Algorithm 1.

Remark 1. In image processing and elsewhere, the Sobolev gradient [20] uses a multi-dimensional
Laplacian operator that operates on w, and is different from the one-dimensional discrete Lapla-
cian operator employed in our LS-GD scheme that operates on indices.

It is worth noting that LS is a complement to the heavy ball, e.g., Nesterov momentum,
and adaptive learning rate, e.g., Adam, algorithms. It can be combined with these acceleration
techniques to speed up the convergence. We will show the performance of these algorithms in
the Section 6.

2.1 Generalized smoothing gradient descent

We can generalize A, to the n-th order discrete hyper-diffusion operator as follows
I+ (-1)"cL™ = AL.

Each row of the discrete Laplacian operator L consists of an appropriate arrangement of weights
in central finite difference approximation to the 2nd order derivative. Similarly, each row of L™
is an arrangement of the weights in the central finite difference approximation to the 2n-th order
derivative.

Remark 2. The n-th order smoothing operator I+(—1)"a L™ can only be applied to the problem
with dimension at least 2n+1. Otherwise, we need to add dummy variables to the object function.

Again, we apply FFT to compute the smoothed gradient vector. For a given gradient vector
g, the smoothed surrogate, (A7)~ 1g = d, can be obtained by solving g = d+(—1)"ov,,*d, where

Up = (g, Cryas 2 Chng1, 0,00 ,0, ¢, ¢, -+ e _q,c) is a vector of the same dimension as
the gradient to be smoothed. And the coefficient vector €™ = (cf,c3,--- , ch, ;) can be obtained

recursively by the following formula
1 1=1,2n+1
' =(1,-2,1), '={ 245t i=22n
=27+ e otherwise.

Remark 3. The computational complexities for different order smoothing schemes are the same
when the FFT is utilized for computing the surrogate gradient.

3 The Choice of Step Size

In this section, we will discuss the step size issue of LS(S)GD with a theoretical focus on LSGD
on L-Lipschitz functions.

Definition 1 (L-Lipschitz). We say the function F is L-Lipschitz, if for any w,u € R™, we
have || f(w) — f(u)]| < Lljw — ul.

Remark 4. If the function F is L-Lipschitz and differentiable, then for any w, we have
IVf(w)|| < L.

For L-Lipschitz function, it is known that the largest suitable step size for GD is n$2 = 1

[32]. In the following, we will establish a {5 estimate of the square root of the LS operator when
it is applied to an arbitrary vector. Based on these estimates, we will show that LSGD can take
a larger step size than GD.

To determine the largest suitable step size for LSGD. We first do a change of variable in the
LSGD 2 by letting v* = H, '*w* where H, = A! then LSGD can be written as

v = oF — g HY2VF(HY %0b), (5)
which is actually the GD for solving the following minimization problem
min F(H/?v) := min G(v). (6)
v v

Therefore, to determine the largest suitable step size for LSGD, it is equivalent to find the largest
appropriate step size for GD for min,, G(v). Therefore, it suffices to determine the Lipschitz
constant for the function G(v), i.e., to find

L :=inf {||[VG(v)|||lv € dom(G)} .
Note that for Yvi, v, we have

|G(v1) — G(va)| = ||F(HY?vy) — F(HYvs)||
LI HY vy — HY *vs|

IN

To find the largest appropriate step size, we need to further estimate ||H;/2'v1 - H;/Q'UQ”.

3.1 /5 estimates of H(I,/zv

Proposition 1. Given any vector v € R™, let w = A;1/2'v, then
[0]1* = [[w]]? + 0| Dyw|?. (7)

Proof. Observe that v = AV w. Therefore,

o] = (AY*w, AL *w) = (Agw, w) = (w ~ sD_Dyw,w) = |w]* ~ (DD, w,w)

=|w|? - o{Dsw, ~Diw) = |w|? + | D+ w|?,
where we used DT = — D, for the second last equality. O

Proposition 1 shows that the Lipschitz constant of G is not larger than that of F, since
|H) o1 — HY 0s)* = [[v1 — ws* — 0| Dy (H ?01 — HY?05)|* < o1 — v,

Therefore, LSGD can take at least the same step size as GD. However, note that ||[Diw]|2 can
be arbitrarily close to zero, so LSGD cannot always take a larger step size than GD. Next, we
establish a high probability estimation for taking a larger step size when using LSGD.

Without any prior knowledge about v; — vy := v, let us assume it is sampled uniformly from
a ball in R" centered at the origin. Without loss of generality, we assume the radius of this ball
is one. For the sake of notation simplicity, in the following we denote H;/ 7= M, . Under the
above ansatz, we have the following result

Theorem 1 ({3-estimate). Let o > 0, and

g1 - 1
T m — 1420 —02; —0%;
where 21, - -+, zm are the m roots of unity. Let v be uniformly distributed in the unit ball of the

m dimensional {5 space. Then

2 a+1 (8)

2
9 (a-ad VB
P (| Mool > allo]) < 2exp | ~—m <f>
™

VB

for any a > 7%
v

The proof of this theorem is provided in the appendix. For high dimensional ML problems,
e.g., training DNNs, m can be as large as tens of millions so that the probability will be almost
one. The closed form of 3 is given in Lemma 1.

Lemma 1. If zq,..., 2z, denote the m roots of unity, then
1 «— 1 L+ am 1
= — = — , 9
P ngl—&—Za—azj—Uz’j (1—am)yioc+1 V1+do ©)

Jj=

as m — 00, where

20+ 1—+V4do+1
N 20

The proof of the above lemma requires some tools from complex analysis and harmonic
analysis, which is provided in the appendix. Table 1 lists some typical values for different o and
dimensions m.

1>« > 0.

Based on the estimate in Theorem 1, LSGD can take the largest step size ﬁ for high-
dimensional L-Lipschitz function with high probability. We will verify this result numerically
in the following sections.

Table 1: The values of § corresponding to some o and m. 8 converges quickly to its limiting
value as m increases.

o 1 2 3 4 5
m = 1000 0.447 0.333 0.277 0.243 0.218
m = 10000 0.447 0.333 0.277 0.243 0.218
m = 100000 0.447 0.333 0.277 0.243 0.218

4 Variance Reduction

The variance of SGD is one of the major bottlenecks that slows down the theoretical guaranteed
convergence rate in training ML models. Most of the existing variance reduction algorithms
require either the full batch gradient or the storage of stochastic gradient for each data point
which makes it difficult to be used to train the high-capacity DNNs. LS is an alternative
approach to reduce the variance of the stochastic gradient with negligible extra computational
time and memory cost. In this section, we rigorously show that LS reduces the variance of
the stochastic gradient and reduce the optimality gap under the Gaussian noise assumption.
Moreover, we numerically verify our theoretical results on both a quadratic function and a
simple finite-sum optimization problem.

4.1 Gaussian noise assumption

Stochastic gradient V f;, , for any iy € [n], is an unbiased estimate of VF, many existing works
model the variance between the stochastic gradient and full batch gradient VF as Gaussian
noise N(0,X), where X is the covariance matrix [28]. Therefore, ignoring the variable w for
simplicity of notation, we can write the equation involving gradient and stochastic gradient
vectors as

Vfi, =VF+n, (10)
where n ~ A(0,X). Thus for LS stochastic gradient, we have
AW, = AN (VE +n). (11)

The variances of stochastic gradient and LS stochastic gradient are basically the variance of n
and A ln, respectively. The following theorem quantifies the variance between n and A n.

Theorem 2. Let x denote the condition number of . Then, for m dimensional Gaussian
random vector n ~ N(0,X), we have

Sty Var[((A2)"'n)] 11 & 1
() 3

SroVarlm)] K wm 2 [+ o s (g /mP

(12)

j=0
The proof of Theorem 2 will be provided in the appendix.

Table 2 lists the ratio of variance after and before LS for an m-dimensional standard normal
vector, i.e., n ~ N(0,I). In practice, high order smoothing reduce variance more significantly.

Table 2: Theoretical upper bound of Y27, Var[((AZ)"'n).]/ > 21", Var[(n),] when n

is an m-dimensional standard normal vector with m > 10000.

o 1 2 3 4 5
n=1 0.268 0.185 0.149 0.129 0.114
n=2 0.279 0.231 0.207 0.192 0.181
n=3 0.290 0.256 0.238 0.226 0.218

Moreover, LS preserves the mean (Proposition 2), decreases the largest component and
increases the smallest component (Proposition 3) for any vector.

Proposition 2. For any vector g € R™, d = A;lg, let Jmax = argmax; d; and jmin =
argmin; d;. We have max; d; = d; <max; g; and min; d; = d;_. > g; . > min; g;.

max = Tmax

Proof. Since g = A,d, it holds that

Gimax = Djonae T (25,

a1 = D t1)s

Jmax d +1 > 0 We
< max; g;. A similar argument can show that min; d; = d;_, >

Jmin =

d;

Jmax

where periodicity of subindex are used if necessary. Since 2d;
have max; d; = d;
Gjmin = 1IN G

Jmax—1 T

max S g]max

Proposition 3. The operator A;' preserves the sum of components. For any g € R™ and
d= A'g, we have Zj d; = Zj g;, or equivalently, 1Td =1Tg.

Proof. Since g = A,d,
Z‘gl = 1Tg = 1T(I + O'DID+)d = 1Td = Zdw

where we used D1 = 0. O

4.2 Reduce the optimality gap

A direct benefit of variance reduction is that it reduces the optimality gap in SGD when constant
step size is applied. We state the corresponding result in the following.

Proposition 4. Suppose f is convex with the global minimizer w*, and f* = f(w*). Consider
the following iteration with constant learning rate n > 0

whtt = wh — (A7)t
where g~ is the sampled gmdz’ent in the k-th z'temtz'on at w satisfying E[g*] = V f(w"). Denote
Gar :=limg o0 3¢ Z ||g || (am-1 and W w’ Zk o " w /K the ergodic average of iterates.
Then the optimality gap is
nGan

lim E[f(w")] - f* <

K—oo 2

Proof. Since f is convex, we have

(Vf(wh),w* —w*) > f(w®) — f*. (13)
Furthermore,
Ef|w*™" —w*|%,] = E[Jw* —n(A7)"'g" —w|,]
= Ef|w" — w*|4,] - 20E[(g", w* —w")] + 7°E[[(A7) " 'g"|4,]
< Eflw" — w*|%,] - 20E[(V f(w"), w* — w)] +n?|g"|[Ea)
< E[[w® — w*|4,] = 20(E[f (w")] = [*) +7Pllg" [40) -1

where the last inequality is due to (13). We rearrange the terms and arrive at

N — 1 1 v
Elf(w™)] —f §%(E[||w —w|G,] — ElJw™ —w |G,]) + ——=—

Summing over k from 0 to K — 1 and averaging and using the convexity of f, we have

K—1 2
- o E[f(w")] Yo 9% 12 4n -
E KN\ _ % < k=0 _ 0 _ . .0x2 .
J") - < b= 1< Bl =)+ =
Taking the limit as K — oo above establishes the result. O

Remark 5. Since Gan is smaller than the corresponding value without LS. It shows that the
optimality gap is reduced when LS is used with a constant step size. In practice, this is also true
for the stage-wise step size since it is a constant in each stage of the training phase.

4.2.1 Optimization for quadratic function

In this part, we empirically show the advantages of the LS(S)GD and its generalized schemes for
the convex optimization problems. Consider searching the minima a* of the quadratic function
f(x) defined in Eq. (14).

50 50 o
TS
f(x1, 22, T100) = Zfﬂgiq + Z 15; (14)
i=1 i=1

To simulate SGD, we add Gaussian noise to the gradient vector, i.e., at any given point x,

we have 5
Vef(z) == Vf(z)+eN(0,1),

where the scalar € controls the noise level, N'(0, I) is the Gaussian noise vector with zero mean
and unit variance in each coordinate. The corresponding numerical schemes can be formulated
as

2 = oF — o (AY) IV f(2F), (15)
where o is the smoothing parameter selected to be 10.0 to remove the intense noise. We take di-
minishing step sizes with initial values 0.1 for SGD /smoothed SGD; 0.9 and 1.8 for GD /smoothed
GD, respectively. Without noise, the smoothing allows us to take larger step sizes, rounding to
the first digit, 0.9 and 1.8 are the largest suitable step size for GD and smoothed version here.
We study both constant learning rate and exponentially decaying learning rate, i.e., after every
1000 iteration the learning rate is divided by 10. We apply different schemes that corresponding
ton =0,1,2 in Eq. (15) to the problem (Eq. (14)), with the initial point % = (1,1,--- ,1).

Figure. 1 shows the iteration v.s. optimality gap when the constant learning rate is used.
In the noise free case, all three schemes converge linearly. When there is noise, our smoothed
gradient helps to reduce the optimality gap and converges faster after a few iterations.

10?4 — GD 102 — GD
—— Orderl —— Orderl
_ 107} —— Order2 = 10} —prder2
* *
E 1041 z 100
5 < 107!
2 107y g
102
10710,
10-3
10! 102 103 104 10! 102 103 104
iterations iterations
(a) e=0 (b) e =0.05
2]
10 102,
T 10)
2 2 10
. 1004 !
§ 10-! é 10%4
].072 10717
1034 ‘ i i ! | !
10! 10? 103 104 10! 102 103 10*
iterations iterations
(¢c) e=0.1 (d) e=0.5

Figure 1: Iterations v.s. optimality gap for GD and smoothed GD with order 1 and order 2
smoothing for the problem in Eq.(14). Constant step size is used.

The exponentially decaying learning rate helps our smoothed SGD to reach a point with a
smaller optimality gap, and the higher order smoothing further reduces the optimality gap, as
shown in Fig. 2. This is due to the noise removal properties of the smoothing operators.

1024 — GD] — GD
—— Orderl 10 —— Orderl
— 10714 —— Order2 = 104 —— Order2
* *
x >
? 1074+ '7-' 10° 5
= = 1]
g 10—7, 210
-2
107104 10
10—3_
101 102 10° 104 10! 102 103 104
iterations iterations
(a) e=0 (b) e =0.05
1021 —— GD 10] —— GD
— Orderl — Orderl
— 14 —— Order2 — —— Order2
= 10 o 101,
2 X
T 100 T
—_ ~ 104
£ 107! =
= =
1071_
102
-2
10-3 10
10! 10? 103 10* 10! 102 103 10*
iterations iterations
C) € =U. € = U.
0.1 d 0.5

Figure 2: Iterations v.s. optimality gap for GD and smoothed GD with order 1 and 2 smoothing
for the problem in Eq.(14). Exponentially decaying step size is utilized here.

4.2.2 Find the center of multiple points

Consider searching the center of a given set of 5K random points {x; € R%}2%%0. 1 This problem
can be formulate as the following finite-sum optimization

2
=2

min F(z) = %Zfi(m) _ %ZH% _ a2 (16)

x
i=1 i=1

We solve this optimization problem by running either SGD or LSSGD for 20K iterations starting
from the same random initial point with batch size 20. The initial step size is set to be 1.0 and
1.2, respectively, for SGD and LSSGD, and decays 1.1 times after every 10 iterations. As the
learning rate decays, the variance of the stochastic gradient decays [46], thus we decay o 10
times after every 1K iterations. Figure 3 (a) plots a 2D cross section of the trajectories of
SGD and LSSGD, and it shows that the trajectory of SGD is more noisy than that of LSSGD.
Figure 3 (b) plots the iteration v.s. loss for both SGD and LSSGD averaged over 3 independent
runs. LSSGD converges faster than SGD and has a smaller optimality gap than LSSGD. This
numerical result verifies our theoretical results on the optimality gap (Proposition 4).

4.2.3 Multi-class Logistic regression

Consider applying the proposed optimization sch—emes to train the multi-class Logistic regres-
sion model. We run 200 epochs of SGD and different order smoothing algorithms to maximize
the likelihood of multi-class Logistic regression with batch size 100. And we apply the exponen-
tially decaying learning rate with initial value 0.5 and decay 10 times after every 50 epochs. We
train the model with only 10 % randomly selected MNIST training data and test the trained
model on the entire testing images. We further compare with SVRG under the same setting.
Figure. 4 shows the histograms of generalization accuracy of the model trained by SGD (a);
SVRG (b); LS-SGD (order 1) (c); LS-SGD (oder 2) (d). It is seen that SVRG somewhat im-
proves the generalization with higher averaged accuracy. However, the first and the second
order LSSGD type algorithms lift the averaged generalization accuracy by more than 1% and

1We thank professor Adam Oberman for suggesting this problem to us.

10

(Averaged over 3 runs)

1 - 102
// T |©levelsetsof g —ssGD
od —_|™"LS-SGD —sGD
05t/
4 10°
7]
> of | g
-
NN 107
0.5 N N
1 S 10%
-1 -0.5 0 0.5 1 0 0.5 1 1.5 2 25
X Iteration % 10°

Figure 3: Left: a cross section of the trajectories of SGD and LSSGD. Right: Iteration v.s. Loss
for SGD and LS-SGD.

reduce tnt of Electrical Engineering and Computer Sciences University ofhe variance of the
generalization accuracy over 100 independent trials remarkably.

4.3 Iteration v.s. loss

In this part, we show the evolution of the loss in training the multi-class Logistic regression model
by SGD, SVRG, LSGD with first and second order smoothing, respectively. As illustrated in
Fig. 5. At each iteration, among 100 independent experiments, SGD has the largest variance,
SGD with first order smoothed gradient significantly reduces the variance of loss among different
experiments. The second order smoothing can further reduce the variance. The variance of loss
in each iteration among 100 experiments is minimized when SVRG is used to train the multi-
class Logistic model. However, the generalization performance of the model trained by SVRG is
not as good as the ones trained by LS-SGD, or higher order smoothed gradient descent (Fig. 4

(b))

4.4 Variance reduction in stochastic gradient

We verify the efficiency of variance reduction numerically in this part. We simplify the problem
by applying the multi-class Logistic regression only to the digits 1 and 2 of the MNIST training
data. In order to compute the variance of the (LS)-stochastic gradients, we first compute descent
path of (LS)-GD by applying the full batch (LS)-GD with learning rate 0.5 starting from the
same random initialization. We record the full batch (LS)-gradient on each point along the
descent path. Then we compute the (LS)-stochastic gradients on each points along the path by
using different batch sizes and smoothing parameters o. In computing (LS)-stochastic gradients
we run 100 independent experiments. Then we compute the variance of the (LS)-stochastic
gradient among these 100 experiments and regarding the full batch (LS)-gradient as the mean
on each point along the full batch (LS)-GD descent path. For each pair of batch size and o, we
report the maximum variance over all the coordinates of the gradient and all the points along
the descent path. We list the variance results in Table 3 (note the case ¢ = 0 corresponds to
the SGD). These results show that compared to the SGD, LSGD with ¢ = 3 can reduce the
maximum variance ~ 100 times for different batch sizes. It is worth noting that the high order
smoothing reduces more variance than the lower order smoothing, this might due to the fact
that the noise of SGD is not Gaussian.

Table 3: The maximum variance of the stochastic gradient generated by LS-SGD with different
o and batch size. ¢ = 0 recovers the SGD.

Batch Size 2 5 10 20 50
oc=0 1.50E-1 5.49E-2 2.37E-2 1.01E-2 4.40E-3
oc=1 3.40E-3 1.30E-3 5.45E-4 2.32E-4 9.02E-5
oc=2 2.00E-3 7.17E-4 3.46E-4 1.57E-4 5.46E-5
oc=3 1.40E-3 4.98E-4 2.56E-4 1.17E-4 3.97E-5

11

25 25
20 20 L __
15 15
HH H*
10 10
5 L 5
0 0
0.885 0.89 0.895 0.9 0.885 0.89 0.895 0.9
Accuracy Accuracy
(a) SGD (b) SVRG
40 25
30 20
15
* 20 *
10
10 h 5
0 0
0.885 0.89 0.895 0.9 0.885 0.89 0.895 0.9
Accuracy Accuracy

(¢) LS-GD: Order 1 (d) LS-GD: Order 2

Figure 4: Histogram of testing accuracy over 100 independent experiments of the multi-class
Logistic regression model trained on randomly selected 10% MNIST data by different algorithms.

5 Numerical Results on Avoid Local Minima and Speed
Up Convergence

We first show that LS-GD can bypass sharp minima and reach the global minima. We consider
the following function, in which we ‘drill’ narrow holes on a smooth convex function,

flz,y,2) = g (@=m*+y=m+(-m?) _ (17)

4 Z cos(z) cos(y)e A ((E=rsin(3)=m)* +(y—rcos(5)=m)*)

where the summation is taken over the index set {i € N| 0 < ¢ < 4x}, r and § are the
parameters that determine the location and narrowness of the local minima and are set to 1 and
ﬁ, respectively. We do GD and LS-GD starting from a random point in the neighborhoods
of the narrow minima, i.e., (o, 40, 20) € {U; Us(rsin(3) +m,7cos(%) +m,m)| 0 < i < 4m,i € N},
where Us(P) is a neighborhood of the point P with radius 6. Our experiments (Fig. 6) show
that, if § < 0.2 GD will converge to a narrow local minima, while LS-GD convergences to the
wider global minima.

Next, let us compare LSGD with some popular optimization methods on the benchmark
2D-Rosenbrock function which is a non-convex function. The global minimum is inside a long,
narrow, parabolic shaped flag valley. To find the valley is trivial. To converge to the global
minimum, however, is difficult. The function is defined by

flz,y) = (a—2)* +bly — 2°)?, (18)

it has a global minimum at (z,y) = (a,a?), and we set @ = 1 and b = 100 in the following
experiments.

Starting from the initial point with coordinate (—3, —4), we run 2K iterations of the following
optimizers including GD, GD with Nesterov momentum [31], Adam [21], RMSProp [44], and

12

067 0.4

0.3
0.4
w0 w
8 802
- -
0.2}
0.1
0 0
0 50 100 150 200 0 50 100 150 200
#lterations (x 60) #lterations (x 60)
(a) SGD (b) SVRG
0.57 0.4
0.4 0.3
W 03 w
o 80.2
—0.2 -
01 0.1
0 : : : : 0 : : : :
0 50 100 150 200 0 50 100 150 200
#lterations (x 60) #lterations (x 60)
(¢) LS-GD: Order 1 (d) LS-GD: Order 2

Figure 5: Iterations v.s. loss for SGD, SVRG, and LS-SGD with order 1 and order 2 gradient
smoothing for training the multi-class Logistic regression model.

LSGD (o = 0.5). The step size used for all these methods is 3e — 3. Figure 7 plots the
iteration v.s. objective value, and it shows that GD together with Nesterov momentum converges
faster than all the other algorithms. The second best algorithm is LSGD. Meanwhile, Nesterov
momentum can be used to speed up LSGD, and we will show this numerically in training DNNs
in section 6.

Figure 8 depicts some snapshots (The 300th, 600th, 900th, and 1200th iteration, respectively)
of the trajectories of different optimization algorithms. These figures show that even though
GD with momentum converge faster but it suffers from some overshoots, and they detour to
converge to the local minima. All the other algorithms go along a direct path to the minima,
and LSGD converges fastest.

Furthermore, we will show that LSGD can be further accelerated by using Nesterov momen-
tum. As show in Fig. 9, the LSGD together with Nesterov momentum converges much faster
than GD with momentum, especially for high dimensional Rosenbrock function.

6 Application to Deep Learning

6.1 Train neural nets with small batch size

Many advanced artificial intelligence tasks make high demands on training neural nets with
extremely small batch sizes. The milestone technique for this is group normalization [47]. In
this section, we show that LS-SGD successfully trains DNN with extremely small batch size.
We consider LeNet-5 [23] for MNIST classification. Our network architecture is as follows

LeNet-5: inputyg, 9 — cONVag 52 —> CONVso 52 — fes12 — softmax.

The notation conv ., denotes a 2D convolutional layer with ¢ output channels, each of which
is the sum of a channel-wise convolution operation on the input using a learnable kernel of size
k x k, it further adds ReLU nonlinearity and max pooling with stride size m. fcs12 is an affine

13

f(x,y,2.34)

Figure 6: Demo of GD and LS-GD. Panel (a) depicts the slice of the function (Eq.(17)) with
z = 2.34; panel (b) shows the paths of GD (red) and LS-GD (black). We take the step size to
be 0.02 for both GD and LS-GD. ¢ = 1.0 is utilized for LS-GD.

transformation that transforms the input to a vector of dimension 512. Finally, the tensors
are activated by a multi-class Logistic function. The MNIST data is first passed to the layer
inputyg, o5, and further processed by this hierarchical structure. We run 100 epochs of both SGD
and LS-SGD with initial learning rate 0.01 and divide by 5 after 50 epochs, and use a weight
decay of 0.0001 and momentum of 0.9. Figure. 10(a) plots the generalization accuracy on the
test set with the LeNet5 trained with different batch sizes. For each batch size, LS-SGD with
o = 1.0 keeps the testing accuracy more than 99.4%, SGD reduce the accuracy to 97% when
batch size 4 is used. The classification become just a random guess, when the model is trained
by SGD with batch size 2. Small batch size leads to large noise in the gradient, which may make
the noisy gradient not along the decent direction; however, Lapacian smoothing rescues this by
decreasing the noise.

6.2 Improve generalization accuracy

The skip connections in ResNet smooth the landscape of the loss function of the classical CNN
[17, 26]. This means that ResNet has fewer sharp minima. On Cifarl0 [22], we compare the
performance of LS-SGD and SGD on ResNet with the pre-activated ResNet56 as an illustration.
We take the same training strategy as that used in [17], except that we run 200 epochs with
the learning rate decaying by a factor of 5 after every 40 epochs. For ResNet, instead of
applying LS-SGD for all epochs, we only use LS-SGD in the first 40 epochs, and the remaining
training is carried out by SGD (this will save the extra computational cost due to LS, and
we noticed that the performance is similar to the case when LS is used for the whole training
process). The parameter o is set to 1.0. Figure 10(b) depicts one path of the training and
generalization accuracy of the neural nets trained by SGD and LS-SGD, respectively. It is seen
that, even though the training accuracy obtained by SGD is higher than that by LS-SGD, the
generalization is however inferior to that of LS-SGD. We conjecture that this is due to the
fact that SGD gets trapped into some sharp but deeper minimum, which fits better than a flat
minimum but generalizes worse. We carry out 25 replicas of this experiments, the histograms
of the corresponding accuracy are shown in Fig. 11.

6.3 Training Wassersterin GAN

Generative Adversarial Networks (GANs) [15] are notoriously delicate and unstable to train [4].
In [27], Wasserstein-GANs (WGANSs) are introduced to combat the instability in the training
GANs. In addition to being more robust in training parameters and network architecture,
WGANS provide a reliable estimate of the Earth Mover (EM) metric which correlates well with
the quality of the generated samples. Nonetheless, WGANs training becomes unstable with a
large learning rate or when used with a momentum based optimizer [27]. In this section, we
demonstrate that the gradient smoothing technique in this paper alleviates the instability in the
training, and improves the quality of generated samples. Since WGANs with weight clipping
are typically trained with RMSProp [44], we propose replacing the gradient g by a smoothed

14

17500/
—— GD + Momentum
—— RMSProp
15000/ — GD
—— ADAM
12500 LSGD
g
= 10000
>
(]
=
S 75001
2,
o
5000
2500
1A
0 250 500 750 1000 1250 1500 1750 2000

iterations

Figure 7: Iteration v.s. loss of different optimization algorithms in optimize the Rosenbrock
function.

version g, = A;'g, and also update the running averages using g, instead of g. We name this
algorithm LS-RMSProp.

To accentuate the instability in training and demonstrate the effects of gradient smoothing,
we deliberately use a large learning rate for training the generator. We compare the regular
RMSProp with the LS-RMSProp. The learning rate for the critic is kept small and trained
approximately to convergence so that the critic loss is still an effective approximation to the
Wasserstein distance. To control the number of unknowns in the experiment and make a mean-
ingful comparison using the critic loss, we use the classical RMSProp for the critic, and only
apply LS-RMSProp to the generator.

We train the WGANSs on the MNIST dataset using the DCGAN [35] for both the critic and
generator. In Figure 12 (top), we observe the loss for RMSProp trained with a large learning rate
has multiple sharp spikes, indicating instability in the training process. The samples generated
are also lower in quality, containing noisy spots as shown in Figure 13 (a). In contrast, the curve
of training loss for LS-RMSProp is smoother and exhibits fewer spikes. The generated samples
as shown in Fig. 13 (b) are also of better quality and visibly less noisy. The generated characters
shown in Fig. 13 (b) are more realistic compared to the ones shown in Fig. 13 (a). The effects are
less pronounced with a small learning rate, but still result in a modest improvement in sample
quality as shown in Figure 13 (¢) and (d).We also apply LS-RMSProp for training the critic, but
do not see a clear improvement in the quality. This may be because the critic is already trained
near optimality during each iteration, and does not benefit much from gradient smoothing.

6.4 Deep reinforcement learning

Deep reinforcement learning (DRL) has been applied to playing games including Cartpole [9],
Atari [30], Go [42, 29]. DNN plays a vital role in approximating the Q-function or policy
function. We apply the Laplacian smoothed gradient to train the policy function to play the
Cartpole game. We apply the standard procedure to train the policy function by using the
policy gradient [9]. And we use the following network to approximate the policy function:

input, — fcog — relu — fco — softmax.

15

rosenbrock rosenbrock
4 —— GD + Momentum 4 —— GD + Momentum
—— RMSProp —— RMSProp
5] —— GD 5 —— GD
—— ADAM —— ADAM
LSGD LSGD
0 0
-2 -2
-4 -4
4 -2 0 2 4 4 2 0 2 4
Iteration: 300 (b) Tteration: 600
rosenbrock rosenbrock
4 —— GD + Momentum 4 —— GD + Momentum
—— RMSProp —— RMSProp
5 — GD 2 — GD
—— ADAM —— ADAM
LSGD LSGD
0- 0
-2 -2
-4 -4
4 -2 0 2 4 4) 0 2 4
Iteration: 900 (d) Tteration: 1200
Figure 8: Some snapshots of trajectories of different optimization algorithms on the Rosenbrock
function.
Rosenbrock (dim=10) 105 Rosenbrock (dim=100) Rosenbrock (dim=1000)
102 104
R 07— -
5 1071 \Vg\ 3 10-1 “ g 1o
© | © ©
>) Lfff,,\\ > \ > 1072
210 N - 2 10 ‘ 2
S \ G ‘ S 107
& 107 ‘ = 1077 A £
o L °© | © 10-8
10-10 GD + Nesterov 10-10 GD + Nesterov GD + Nesterov
LSGD + Nesterov LSGD + Nesterov 107 LSGD + Nesterov
10! 102 103 104 10! 102 103 104 10! 102 103
iterations iterations iterations

Figure 9: Iteration v.s.
Nesterov momentum.

objective value for GD with Nesterov momentum and LSGD with

The network is trained by RMSProp and LS-RMSProp with o = 1.0, respectively. The learning
rate and other related parameters are set to be the default ones in PyTorch. The training is
stopped once the average duration of 5 consecutive episodes is more than 490. In each training
episode, we set the maximal steps to be 500. Left and right panels of Fig. 14 depict a training
procedure by using RMSProp and LS-RMSProp, respectively. We see that Laplacian smoothed
gradient takes fewer episodes to reach the stopping criterion.
experiments 5 times independently, and apply the trained model to play Cartpole. The game
lasts more than 1000 steps for all the 5 models trained by LS-RMSProp, while only 3 of them
lasts more than 1000 steps when the model is trained by vanilla RMSProp.

7 Convergence Analysis

Moreover, we run the above

Note that the LS matrix A ! is positive definite and its largest and smallest eigenvalues are 1

1

and Tio

, respectively. It is straightforward to show that all the convergence results for (S)GD

still hold for LS(S)GD. In this section, we will show some additional convergence for LS(S)GD

16

104

WsGD
[JLs-sGD
100
0.8
95
5,0.6 r
§ 5 90
0.4 8
<
[—SGD Train
0.2 85 —SGD Test
--LS-SGD Train
I --LS-SGD Test
0 L 80
2 4 8 16 32 64 50 100 150 200
Batch Size Epochs

Figure 10: (a). Testing accuracy of LeNet5 trained by SGD/LS-SGD on MNIST with various
batch sizes. (b). The evolution of the pre-activated ResNet56’s training and generalization
accuracy by SGD and LS-SGD. (Start from the 20-th epoch.)

SGD LS-SGD with o = 1.0

0 0
0.925 0.93 0.935 0.925 0.93 0.935
Accuracy Accuracy

Figure 11: The histogram of the generalization accuracy of the pre-activated ResNet56 on
Cifar10 trained by SGD and LS-SGD over 25 independent experiments.

with a focus on LSGD, the corresponding results for LSSGD follow in a similar way.

Proposition 5. Consider the algorithm wF™' = w* — np(A2) "'V f(wF). Suppose f is L-
Lipschitz smooth and 0 < 77 < 1 < 7 < 2. Then limy_,o |V f(w*)|| — 0. Moreover, if the
Hessian V2f of f is continuous with w* being the minimizer of f, and 7||V2f|| < 1, then
|w® — w*||an — 0 as k — oo, and the convergence is linear.

Proof. By the Lipschitz continuity of V# and the descent lemma [5], we have
Faokt) = fak — n(AZ) 1Y ()
<) (9), (42719 G0 + 5L | a2t p 2
< 1) el gy s + IV 1) 2y
< flt) = (1= 5) 9w >||%Ag>fl

Summing the above inequality over k, we have

(1——)Z||v,f Wy s < F(w0®) — Tim f(2*) < oo.

k—o0

Therefore, ||Vf(wk)||%An)_1 — 0, and thus ||V f(w")| = 0.

17

RMSProp

0.14
¢ 0.09
@]
—
0O 0.04 M#]
-0.01 : : : :
0 4 8 12 16 20
Steps(K)
LS-RMSProp, o = 3.0
0.14
¢ 0.09
(o]
—
0O 0.04 Mw]
-0.01 : : : :
0 4 8 12 16 20
Steps(K)

Figure 12: Critic loss with learning rate IrD = 0.0001, IrG = 0.005 for RMSProp (top) and
LS-RMSProp (bottom), trained for 20K iterations. We apply a mean filter of window size 13
for better visualization. The loss from LS-RMSProp is visibly less noisy.

RMSProp

Figure 13: Samples from WGANSs trained with RMSProp (a, ¢) and LS-RMSProp (b, d). The
learning rate is set to irD = 0.0001, {rG = 0.005 for both RMSProp and LS-RMSProp in (a)
and (b). And IrD = 0.0001, irG = 0.0001 are used for both RMSProp and LS-RMSProp in (c)
and (d). The critic is trained for 5 iterations per step of the generator, and 200 iterations per
every 500 steps of the generator.

For the second claim, we have

warl — w*

= w" —w* — (A7) (Vf(w") - Vf(w"))
= w’ —w* - (A")” (/ V2 f(w* + 7(w*H! w*))-(wk—w*)dT)
an (

—wk—w — Nk

/ V2f(w* 4 7(w* —w*))dr - (w* — w))

_(An) %((A / V flw® 4 r(wh *>>d7<A2>-%>) (AT} (w — ")
18

RMSProp LS-RMSProp, sigma = 1.0

Training Training
500 4 500
400 q 4001
.5 300 - .5 3001
=] =
i i
=1 =1
2 200 8 2004
100 - 1001
0 o]
0 100 200 300 400 0 25 50 75 100 125 150 175 200
Episode Episode

Figure 14: Durations of the cartpole game in the training procedure. Left and right are training
procedure by RMSProp and LS-RMSProp with o = 1.0, respectively.

Therefore,

1
[0** — w4y < HI (AT / V2 fla® + 7(wht — w))dr(AT)

wh — w|ay-

So if n||[V2f|| < W =1, the result follows. O

Remark 6. The convergence result in Proposition 5 is also call H -convergence. This is because
(u, AQu) = ||lul|® + 0| D} u|? = [lulF,.

8 Discussion and Conclusion

8.1 Some more properties of Laplacian smoothing

In Theorem 8, we established a high probability estimate of the LS operator in reducing the /5
norm of any given vector. The ¢; type of high probability estimation can be established in the
same way. These estimates will be helpful to develop privacy-preserving optimization algorithms
to train ML models that improve the utility of the trained models without sacrifice the privacy
guarantee [45].

Regarding the ¢; /¢5 estimates of the LS operator, we further have the following results.

Proposition 8. Given vectors g and d = AJ'g, for any p € N, it holds that |DVd||; <
|D% gll1. The inequality is strict unless D% g is a constant vector.

Proof. Observe that A, and D, commute; therefore, for any p € N, A, (D" d) = D" g. Thus
we have

(1420)(DYd), = (Dg); + o(D)i + (DY)

So
(1+20)|(DYd)i| < [(D59)il + o|(Did)it1| + o[(Did)i—1].

The inequality is strict if there are sign changes among the (D% d);_y, (D%d);, (D%d);41.
Summing over ¢ and using periodicity, we have

(1+20)> |(D Z (D" g) |+20’Z|Dp
=1 i=1

i=1

and the result follows. The inequality is strict unless DY g is a constant vector. O
Proposition 6. Given any vector g € R™ and d = (A")"'g, then
lgl* = l|d|* + 20| D}d||* + o*| L"d]]?, (19)

the variance of d is much less than that of g.

19

Proof. Observe that g = A?d = d + (—1)"oL™d. Therefore,
lgl* = (d+ (-1)"oL"d,d + (-1)"oL"d) = ||d||* + 2(-1)"o(d, L"d) + o*[|IL"d|*. (20)
Next, note D_ and D, are commute; thus

L"=(D_Dy)-(D_D.)=D_---D_D,---D, =D"D". (21)

n n n

Now, we have
(d,L"d) = (d, D" D'd) = (D")"d,D"d) = ((-1)"D%d, D}d) = (-1)"|D}d|*, (22)

where we used Eq. (21) in the first equality and D_ = —DJTr in the second to last equality.
Substituting Eq. (22) into Eq. (20), yields Eq. (19). O

8.2 Connection to Hamilton-Jacobi PDEs

The motivation for the proposed LS-SGD comes from the Hamilton-Jacobi PDE (HJ-PDE).
Consider the following unusual HJ-PDE with the empirical risk function, f(w), as initial con-
dition

{ut + 1V, A7 Vopu) = 0, (w,t) € Q x [0,00) (23)

U(’U),O):f(’lU), w € ()

By the Hopf-Lax formula [14], the unique viscosity solution to Eq. (23) is represented by

u(w,t) = ir;f {f(v) + %@ —w,A,(v— 'w)>}

This viscosity solution u(w,t) makes f(w) ”more convex”, an intuitive definition and theo-
retical explanation of "more convex” can be found in [10], by bringing down the local maxima
while retaining and widening local minima. An illustration of this is shown in Fig. 15. If we
perform the smoothing GD with proper step size on the function u(w,t), it is easier to reach
the global or at least a flat minima of the original nonconvex function f(w).

j

-5 0 3}

30

25§

20

15

10|

'

Figure 15: f(w) = ||w||?(1 + 3 sin(27|lw])) is made more convex by solving Eq.(23). The plot
shows the cross section of the 5D problem with o = 1 and different ¢ values.

20

Proposition 1. Suppose f(w) is differentiable, the LS-GD on u(w,t)

wht = wh — tAJ Vo, u(w”, t)
is equivalent to the smoothing implicit GD on f(w)

wh ! = wh —t ATV f(wh). (24)
Proof. We define

z(w,v,t) := f(v) + %(v —w, Az (v —w)),

and rewrite u(w,t) = inf, z(w,v,t) as z(w,v(w,t),t), where v(w,t) = argmin, z(w,v,t).
Then by the Euler-Lagrange equation,

Vwtu(w,t) = Vyz(w, v(w, t),t) = Jpv(w, t)Vyz(w, v(w, t),t) + Vwz(w, v(w,t),t),

where Jp,v(w,t) is the Jacobian matrix of v w.r.t. w. Notice that V,z(w,v(w,t),t) =0,
1
ku(wa t) = vwz(wa v('w, t)v t) = _ZAU(/U(wa t) - U))
Letting w = w* and w**! = v(wk,t) = arg min, z(w*, v,t) in the above equalities, we have
X 1
Vwu(w®) = —;Ag(wkJrl —wh).

In summary, the gradient descent w**! = w* — A1V u(w”, t) is equivalent to the proximal
point iteration w*™! = argmin, f(v) + (v — w*, A, (v — w")), which yields w**! = wk —

tASIV f(wh D). O

The studied LS-GD algorithm is an explicit relaxation of the implicit algorithm in Eq.(24).

8.3 Conclusion

Motivated by the theory of Hamilton-Jacobi partial differential equations, we proposed Lapla-
cian smoothing gradient descent and its high order generalizations. This simple modification
dramatically reduces the variance and optimality gap in stochastic gradient descent, allows us to
take a larger step size, and helps to find better minima. Extensive numerical examples ranging
from toy cases and shallow and deep neural nets to generative adversarial networks and deep re-
inforcement learning, all demonstrate the advantage of the proposed smoothed gradient. Several
issues remain, in particular devising an on-the-fly adaptive method for choosing the smoothing
parameter ¢ instead of using a fixed value.

9 Appendix

9.1 Proof of Theorem 1

In this part, we will give a proof for Theorem 1.

Lemma 2. [1] Let t,u > 0, v be an m-dimensional standard normal random vector, and let
F:R™ — R be a function such that ||F(x) — F(y)| < ||& — y|| for all x, y € R™. Then

2
P(F(v) > EF(v) +u) <exp <—tu + % (W;)) (25)

Taking ¢t = % in Lemma 2, we obtain

Lemma 3. Let u > 0, v be an m-dimensional standard normal random vector, and let F :
R™ — R be a function such that |F(x) — F(y)|| < ||z — y|| for all ¢, y € R™. Then

P(F(v) > EF(v) + u) < exp <—7T22u2>. (26)

21

Lemma 4. Let v be an m-dimensional standard normal random wvector. Let 1 < p < oco. Let
0 <u < El|vl,. Let T € R™*™ be such that | Tx|,, < ||, for allx € R™. Then

E|Tol, + »
P ||T > —F <2 —-—— .
(1o, > St el) < 20 (~Zu

Proof. By Lemma 3,
2 2
P(|[Tvlle, > E|Tv[lg, +u) <e” ="

and
2

_ 2
P(—|lvlle, > —E|lvlle, +u) <e 7" .
The second inequality gives

2

2
P(llvlle, < Ellvfle, —u) <e==".

Therefore,

E||Tv|e, +u
P(|T > —r
(1o, > et

2

_7u2
<P(|Tvle, > E|Tvlle, +u) +P(lv]le, <Elvfle, —u) < 2e77%.
O

Lemma 5. Let 1 < p < 2. Let T € R™* ™. Let v be an m-dimensional standard normal

random vector. Then)

E|Tol,, <ms % (Trace T*T)* (E|v;[?)7
where vy is the first coordinate of v.

Proof. We write T = (T; j)1<i j<n- Then

n n p E
E(|Tvl,, = E(>_ D Tiv,
i=1|j=1
< § E E T; jv;
i=1 |j=1
1
2 »

IA
3
T
(NS

Z Tz2g Elv, [

1<i,j<n
1_1 3 >
= n» 2 (Trace T*T)? (E|v,|P)?,

where the second equality follows from the assumption that v is an m-dimensional standard
normal random vector. O

Lemma 6. Let v be an m-dimensional standard normal random vector. Then
E||lv|le, > vVm — 7.

Proof. By Lemma 3,
B(lolle, > Ellvll, +) < o=
and
P(—|[v]le, > —Elvlle, +u) < e ==

22

Thus,

2

P(lllvlle; = Ellvlle,| > u) < 277
Consider the random variable W = ||v||s,. We have
EW —EW|* = / P(W —EW| > u)du < / 27" du = 2.
0 0
Since E|W — EW|? = EW? — (EW)?, we have

EW > (EW?)? — (E|W —EW[?)? > /m — .

O
Lemma 7. Let0<e<1—f Let 0 > 0. Let
1 & 1
= E;lﬁ-QO’—UZi—O’Z’
where 21, ...,2zmn are the m roots of unity. Let B be the circular shift operator on R™. Let v be

an m-dimensional standard normal random vector. Then

f+

: (ll((1 +20)] —oB —oB")" o], > ”||42> < 267
\/m —€

1-—

Proof. Let T = ((1+20)I — 0B — 0 B*)~/2. Taking u = \/me in Lemma 4, we have

E|[Toll, + e e
P (1ol > Gt Ll) < 26”0
2

By Lemma 5, E|Tv|lg, < (Trace T*T)%. we have TraceT*T = mf. It is easy to show that
Trace T*T) = mf So E||T'U||g2 < v/mf. Also by Lemma 6, E||lv|¢, > +/m — m. Therefore,

f+e

P <||((1 +20)I — 0B — oB*) ||, > .
W

||vf2> < 9emFme
— €

O

Proof of Theorem 1. Theorem 1 follows from Lemma 7 by substituting W and using homo-
-2
geneity and direct calculations. O

9.2 Proof of Theorem 2
In this part, we will give a proof for Theorem 2.

Lemma 8 ([6]). Let <,, denotes weak majorization. Denote eigenvalues of Hermitian matriz
X, by M(X) > ... > Mu(X). For every two Hermitian positive definite matrices A and B, we
have

(AM(AB), -+, An(AB)) <w (M(A)A(B), -+, Am(A) A (B)).

In particular,
m m
STN(AB) <> M (A)A
j=1 j=1

proof of Theorem 2. Let)\1 > ... > A\ denote the eigenvalues of 3. The eigenvalues of (A%)~?
are given by {[1 4 4”0 sin? (ﬂ'j/m)] }] =1 which we denote by 1 = aq > ... > am >
(1+4"0)~2. We have

m

ZVar[nj} = trace(X) = Z)\j. (27)

j=1 j=1

23

On the other hand we also have

m

ZVar[(AZ)’lnj] = trace((A?) " 'S(AM) 1) = trace((A”)2%) < i QA (28)

where the last inequality is by lemma 8. Now,

m m

DA D ad = (-
Jj=1 J

i=1 j=1
> Am(m — ZO‘J’)
j=1
A m
==(m-Ya)
j=1
LU

Rearranging and simplifying above implies that

m m 1 Zm:l aj
ZajAj < (Z Aj)(1 - Pl]min)'
j=1 j=1

Substituting Eq. (27) and Eq. (28) in the above inequality, yields Eq. (12). O

9.3 Proof of Lemma 1

To proof Lemma 1, we first introduce the following lemma.

Lemma 9. For 0 <60 < 27w, suppose
1
F(0) =
() 1+ 20(1 —cos(6))’

has the discrete-time Fourier transform of series f[k]. Then, for integer k,

k]

Vo +1

where
_20+1-— Vo +1
‘= 20
Proof. By definition,
1 1 [etk

SIK] (29)

27
:7/ F(0)e™? db =
2w 0

Computing Eq. (29) using Residue Theorem is a well-known technique in complex analysis.
First, note that because F(0) is real valued, f[k] = f[—k]; therefore, it suffices to compute
Eq. (29) for nonnegative k. Set z = €. Observe that cos(f) = 0.5(z + 1/2) and dz = izdf.
Substituting in Eq. (29) and simplifying yields that

db
2 Jo 14 20(1 — cos(9))

MW= g f ot (30)
C2mic) (z—a_)(z—ay)
where the integral is taken around the unit circle, and ayr = % Viotl are the roots of

quadratic —02% + (20 + 1)z — 0. Note that a_ lies within the unit circle; whereas, oy lies
outside of the unit circle. Therefore, because k is nonnegative, o is the only singularity of
the integrand in Eq. (30) within the unit circle. A straightforward application of the Residue
Theorem yields that i
k
flk] = — = :
ola- —ay) Vdo+1

This completes the proof. O

24

Next, we give a proof for Lemma 1.

Proof of Lemma 1. First observe that we can re-write the left hand side of Eq. (9) as

—

m—

1 1
o 27j\ (31)
m jgo 1+20(1 —cos(=32))

It remains to show that the above summation is equal to the right hand side of Eq. (9). This
follows by lemmas 9 and standard sampling results in Fourier analysis (i.e. sampling 6 at points

{27 /m};’:()l). Nevertheless, we provide the details here for completeness: Observe that that
the inverse discrete-time Fourier transform of

271y
Go) =3 a0 - =)
=0
is given by
m/2m if k divides m,
o) = .
0 otherwise.

Furthermore, let
1

F®) = 1+20(1—cos(h))’

and use f[k] to denote its inverse discrete-time Fourier transform. Now,

m—1

1 1 1 [2r
m Z 1+ 20(1 fcos(%)) B %/0 F(0)G(0)

Jj=0

= %ﬂ DTFT'[F - G][0]
_ %(DTFT*I[F] # DTFT'[G])[0]

oo

=2 S flrlgl]

T=—00

oo

2w m
o Z f[—fm]%

l=—00

= > fl-eml]

{=—o00

The proof is completed by substituting the result of lemma 9 in the above sum and simplifying.
O

25

Acknowledgments

This material is based on research sponsored by the Air Force Research Laboratory under
grant numbers FA9550-18-0167 and MURI FA9550-18-1-0502, the Office of Naval Research
under grant number N00014-18-1-2527, the U.S. Department of Energy under grant number
DOE SC0013838, and by the National Science Foundation under grant number DMS-1554564,
(STROBE). We would like to thank Jialin Liu and professors Pratik Chaudhari, Adam Oberman
and Ming Yan for stimulating discussions.

References

[1] 254a, notes 1: Concentration of measure. https://terrytao.wordpress.com/2010/01/
03/254a-notes-1-concentration-of-measure/.

[2] M. Abadi, A. Agarwal, and et al. Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[3] Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.
Journal of Machine Learning Research, 18:1-51, 2018.

[4] M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial
networks. arXiv preprint arXiv:1701.04862, 2017.

[5] D. P. Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[6] R. Bhatia. Matriz Analysis. Springer, 1997.

[7] L. Bottou. Stochastic gradient descent tricks. Neural Networks, Tricks of the Trade,
Reloaded, 7700, 2012.

[8] L. Bottou, E. F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. STIAM Review, 60(2):223-311, 2018.

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

. audhari, A. erman, S5. Osher, 5. Soatto, an . Guillame. Deep relaxation: partia

10] P. Chaudhari, A. Ob S. Osher, S. S d C. Guill D 1 i ial
differential equations for optimizing deep neural networks. arXiv preprint arXiv:1704.04932,
2017.

[11] A. Defazio and F. Bach. Saga: A fast incremental gradient method with support for
non-strongly convex composite objectives. In Advances in Neural Information Processing
Systems, 2014.

[12] T. Dozat. Incorporating nesterov momentum into adam. In 4th International Conference
on Learning Representation Workshop (ICLR 2016), 2016.

[13] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.

[14] L.C. Evans. Partial differential equations. 2010.

[15] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C.
Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural Information
Processing Systems, pages 2672-2680, 2014.

[16] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In 33rd International COnference on Machine Learning (ICML 2016),
2016.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In

Proceedings of the IEEFE conference on computer vision and pattern recognition, pages 770—
778, 2016.

26

[18]

[19]

[20]

S. Jastrzebski, Z. Kenton, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey. Dnn’s sharpest
directions along the sgd trajectory. arXiv preprint arXiv:1807.05031, 2018.

R. Johoson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, 2013.

M. Jung, G. Chung, G. Sundaramoorthi, L. Vese, and A. Yuille. Sobolev gradients and
joint variational image segmentation, denoising, and deblurring. In Computational Imaging
VII, volume 7246, page 724601. International Society for Optics and Photonics, 2009.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 81:2278-2324, 1998.

L. Lei, C. Ju, J. Chen, and M. Jordan. Nonconvex finite-sum optimization via scsg methods.
In Advances in Neural Information Processing Systems, 2017.

F. Li and et al. Cs231n: Convolutional neural networks for visual recognition. 2018.

H. Li, Z. Xu, G. Taylor, and T. Goldstein. Visualizing the loss landscape of neural nets.
arXww preprint arXiw:1712.09913, 2017.

S. Chintala M. Arjovsky and L. Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875,
2017.

S. Mandt, M. Hoffman, and D. Blei. Stochastic gradient descent as approximate bayesian
inference. Journal of Machine Learning Research, 18:1-35, 2017.

Mnih and et al. Human-level control through deep reinforcement learning. Nature, 518:529—
533, 2015.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou, D. Wierstra, and M. Ried-
miller. Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

Y. Nesterov. A method for solving the convex programming problem with convergence rate
o(1/k?). Dokl. akad. nauk Sssr, 269:543-547, 1983.

Y. Nesterov. Introductory lectures on convex programming volume i: Basic course. Lecture
Notes, 1998.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

N. Qian. On the momentum term in gradient descent learning algorithms. Neural Networks
: The Official Journal of the International Neural Network Society, 12(1):145-151, 1999.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

S. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In 6th
International Conference on Learning Representation (ICLR 2018), 2018.

H. Robinds and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400-407, 1951.

J Schmidhuber. Deep learning in neural networks: An overview. arXiv preprint
arXiw:1404.7828, 2014.

A. Senior, G. Heigold, M. Ranzato, and K. Yang. An empirical study of learning rates
in deep neural networks for speech recognition. In IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013.

27

[40]

[41]

[42]

[43]

O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes. In 30th International Conference on Machine
Learning (ICML 2013), 2013.

A. Shapiro and Y. Wardi. Convergence analysis of gradient descent stochastic algorithms.
Journal of Optimization Theory and Applications, 91(2):439-454, 1996.

D. Silver and et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529:484-489, 2016.

R. Sutton. Two problems with backpropagation and other steepest-descent learning pro-
cedures for networks. In Proc. 8th Annual Conf. Cognitive Science Society, 1986.

T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26-31,
2012.

B. Wang, Q. Gu, M. Boedihardjo, F. Barekat, and S. Osher. Privacy-preserving erm
by laplacian smoothing stochastic gradient descent. UCLA Computational and Applied
Mathematics Reports, 19-24, 2019.

M. Welling and Y. Teh. Bayesian learning via stochastic gradient langevin dynamics. In
28th International Conference on Machine Learning (ICML 2011), 2011.

Y. Wu and K. He. Group normalization. In Furopean Conference on Computer Vision,

2018.

M. Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

28

