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Hyperspectral Anomaly Detection via Global and
Local Joint Modeling of Background

Zebin Wu, Senior Member, IEEE, Wei Zhu, Jocelyn Chanussot, Fellow, IEEE, Yang Xu, Member, IEEE, and
Stanley Osher

Abstract—Anomaly detection is a hot topic in hyperspectral
signal processing. The key point of hyperspectral anomaly detec-
tion is the modeling of the background. In this paper, we propose
a novel anomaly detection method via global and local joint
modeling of background. Based on the observation that the local
3D patch belonging to the background in hyperspectral image
(HSI) usually lies in a low dimensional manifold, we propose to
reconstruct the background part of a HSI from its subsample
by scalable low dimensional manifold modeling (SLDMM). Thus
the background of HSI can be well characterized in both global
and local aspects. Taking into consideration that the SLDMM
reconstructs the background part at a low sampling ratio, we
propose a multiple random sampling reconstruction strategy to
further improve the detection accuracies and robustness. The
final background is generated by the mean of backgrounds
reconstructed from the multiple random sampling and the
anomalies are contained in the residual between the observed
HSI and the mean background. Experimental results on three
real data sets demonstrate that the proposed anomaly detection
method outperforms other state-of-the-art hyperspectral anomaly
detection methods.

Index Terms—Hyperspectral image, anomaly detection, low
dimensional manifold model, multiple random sampling.

I. INTRODUCTION

NOMALY detection is one of the most critical signal

and image processing tasks in hyperspectral imaging[1-
5]. Hyperspectral images(HSIs) provide hundreds of images
in wavelengthes covering the visible, near-infrared, and short-
wave infrared bands [6-9]. The reliable and nearly contin-
uous spectra in HSI allows accurate measures of the cap-
tured scene and provides discriminative information of the
ground materials in pixel level. Different materials usually
have different electromagnetic energy at different and specific
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wavelengths. Using this property, we can use HSI to detect
anomalous material which has a significantly different spectral
signature from their neighboring background clutter pixels
in the captured scene [10-13]. Since the last two decades,
HSI anomaly detection has been widely used in military and
civilian applications .

Many methods have been proposed for HSI anomaly de-
tection [14-16] which can be categorized into two groups:
global methods and local methods. In global methods, the
HSI is processed as integrated data. We detect the anomalous
pixels according to the background statistic calculated from the
whole data. The Reed-Xiaoli (RX) [17] detector is regarded as
a classical global method. Given the assumption that the back-
ground follows a multivariate normal distribution, it estimates
the probability of a pixel belonging to the background. In
global methods, the background statistic is estimated from the
whole image. However, the Gaussian distribution assumption
in RX detector could not capture the complexity of the
background which is composed of multiple materials. Other
improved methods based on RX detector were proposed. The
Gaussian mixture model methods (GMMM) [12] uses the
mixture of multivariate Gaussian distributions to model the
background statistic information. The cluster-based anomaly
detection method [18] first segments the image into different
homogeneous parts and then detects anomalies in each part. In
[19], the weighted-RX and linear-filter-based RX methods are
introduced to improve the background information estimation.
Kernel based methods such as kernel-RX [20, 21] and support
vector data description [22, 23] were proposed to extend the
original spectral space to a higher dimensional feature space.
In addition, some non-RX based methods are well developed.
To separate the anomalies and background pixels, a robust
anomaly degree metric [24] is proposed using discriminative
information. Kang et. al. proposed an attribute and edge-
preserving filters based anomaly detection method [25] which
makes full use of the spatial correlations among adjacent
pixels. Oleg et al. [26] proposed a dimensionality reduction
method that can preserve the anomaly pixels in HSI. The
subspace is obtained by minimizing the maximal-norm of
misrepresentation residuals. In [27], a random-selection-based
anomaly detector was proposed which randomly selected rep-
resentative background pixels and employed sufficient number
of random selections. By this way, the background statistic
is purified. Moreover, subspace based methods have attracted
more attentions in HSI anomaly detection. The robust principal
component analysis (RPCA) based anomaly detector assumes
the background is low-rank. Sun et al. [28] proposed the ran-
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domized subspace learning based method by means of random
techniques. Further, Xu et al. [29] proposed the low rank and
sparse representation model to separate the background and
anomalies. In this model, the background is assumed to lie
in the union of multiple subspaces which is more suitable for
HSI. Niu et at. [30] improved the LRASR method by a learned
dictionary. Then, tensor methods have also been applied in
anomaly detection. Xu et al. [31] recovered HSI and detected
the anomalies from compressive data by combining tensor
nuclear norm and RX detector. In [32], Tucker decomposition
is used to factorize the HSI cube into background part and
anomaly part.

In the local methods, a sliding double concentric window
is used to compute the neighboring background statistic in-
formation for the test pixel. The local RX (LRX) detector
[33] uses the pixels in the out window to estimate the
background statistic. Sparse representation based [2, 34, 35]
and collaborative representation based [36] detectors assumes
the background dictionary consisting of the the pixels in the
out window region, so the background pixels can be well
represented by the background dictionary while the anomalies
can not. The local summation anomaly detection method [37]
combines the multiple local distributions from neighboring
local window with spectral-spatial feature. Multiple-window
anomaly detection [38] is designed to capture the local spectral
variations.

From the previous works, it can be observed that the key
point of hyperspectral anomaly detection lies in the modeling
of the background. Low rank constraint is a common way
to model the background structure. However, low rank can
only capture the global correlation of the scene’s pixels and
assumes the pixels lie in the common subspace spanned by
the same bases. In this case, the local structures of HSI are
ignored by assuming all the local patches follow the same
subspace. In practice, both global low dimensional structure
of the background pixels and the variability of local patches
should be considered. In this paper, we propose to model
the background of HSI in a global and local joint way, by
scalable low dimensional manifold model (SLDMM). Unlike
the traditional subspace method which models the background
pixels as a whole, we extract the local 3D patches and
discover their local low dimensional structures. Based on
the observation that 3D patches of a HSI’s background part
typically sample a collection of low dimensional manifolds,
we can use the dimension of the patch manifold as a regular-
ization term in a variation functional when reconstructing the
background part of a HSI[39—41] . Thus both the global and
local low dimensional structures of the background are taken
into consideration. The resulted Euler-Lagrange equation can
be solved by the point integral method (PIM)[42, 43], or the
weighted nonlocal Laplacian [44]. Since a hyperspectral image
is a collection of 2D images of the same scene, the spatial
similarity matrix can be shared across all the bands which
allows to design a fast algorithm to solve the reconstruction
problem. In this paper, the reconstruction of background part
is depended on the random sampling of the original HSI.
To make the detection result robust to random sampling, we
propose a multiple random sampling reconstructions strategy
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and take the mean result of several reconstruction as the final
reconstructed background part. Experimental results show that
the scalable low dimensional manifold model based detection
method achieves higher detection accuracies and is more
robust compared to other stated-of-the-art anomaly detection
methods.

The remainder of the paper is organized as follows: Section
II describes the motivation for the proposed method. In Section
III, the proposed hyperspectral anomaly detection method is
presented. Section IV experimentally assesses the proposed
method and conclusions are reported in Section V.

II. MOTIVATION

The state-of-the-art anomaly detection methods usually rely
on the background modeling. The anomalies can be obtained
by subtracting the background directly or extracting the back-
ground information from the observed data. In global anomaly
detection methods, it is assumed that the background part of
a HSI is composed of limited ground materials which can be
represented in a subspace, and the background is modeled as a
whole data. In local anomaly detection methods, it is assumed
that the local 3D patch of background is smooth and have sim-
ilar spectral characteristics. An anomaly pixel is determined
by comparing with the neighboring pixels. However, to the
best of our knowledge, there is no method having the ability
of modeling the background in both global and local aspects.
Take into consideration that the background part lies in a low
dimensional subspace globally and is composed of smooth
local 3D patches, it is important to include both global and
local information in the background modeling. Therefore, we
propose to model the HSI background by SLDMM, which can
efficiently reconstruct the background part at a low sampling
ration.

However, since the background is generated based on ran-
dom sampling, it is possible that some information of the
anomalies are sampled at the very first initialization. In this
case, the accuracy and robustness of anomaly detection algo-
rithm are greatly affected. It is necessary to design effective
strategy to handle this issue. Therefore, a multiple random
sampling strategy is proposed to avoid the anomalies contained
in the background.

To sum up, Fig.l graphically illustrates the proposed
method.

III. PROPOSED METHOD
A. SLDMM based background modeling

In the proposed method, the background is modeled by
the scalable low dimensional manifold model (SLDMM). Let
a hyperspectral image be represented as X € RM*NxB
where M, N, and B represent the rows, columns and band
number of the HSL For any ¢ € Q = [m] x [n], where
[m] = {1,2,...,M}, [n] = {1,2,...,N}, we define a 3D
patch Py (&X) as a 3D block of size dy x da x B of the original
HSI X, where d; and ds represent the patch size. The 3D
patch set P(X) is defined as the collection of all 3D patches:

PX)={Py(X):q€ Q) CRY d=d; xdy x B. (1)
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Fig. 1. Flow chart of the proposed anomaly detection method

As discussed in [45], the point cloud P(X) is typically close
to a collection of low dimensional smooth manifolds M =
UE | M, embedded in R?. We call the collection of manifolds
3D patch manifolds of X. The patch set P(X) has a trivial 2D
parameterization which is given as g — P, (X). In this sense,
the patch set is locally a 2D sub-manifold embedded in R,
However, this parameterization is globally not injective, thus it
will lead to high curvature variations and self-intersections. For
HSI X without anomalies, the patch manifold M (X) is always
of low dimensionality. In the following analysis, we use X" as a
discrete sampling of the continuous function X : [0,1]> — R.
Specifically, X (i, j,k) = X(z;,y;,tr), where, (x;,y;,tx) =
(1Az, jAy, kA;). In the linear mixing model (LMM), only
a small collection of constituent elements (endmembers) e; €
QZ([O7 1]),1 =1,2,..., K are able to generate the entire image
X € L?([0,1]3). Thus, we have

X (2,y,t) Zﬂzl’yez ,Bilz,y) 0. ()

Denote ¢ = (=, y), then the patch P, )X € R? can be written
as:
P(L,y)X(Z7]a k) = ‘%(x + 2,y + Yjs tk)

S 3)
= Bilw+ iy +ye(tr).
=1
The size of the patches d; x ds is chosen small enough
to be consistent with the spatial resolution of HSI. Thus, the

abundance f;(x + x;,y + y;)) can be approximated by Taylor
expansion:

P(l y)X(Z ]ak)
= 9 9
=3 (o) + G i+ Gh o)) )

- 98 98
Z (ﬁl(x Y) —&—za—l(m YA, +J l(ac YAy )el(kAt).
x oy
“4)

Therefore the underlying local 3D patch manifold P(X)
can be approximated by a manifold of dimension 3K. We can
infer that the HSI without anomalies can be reconstructed by
using the low dimensionality of the patch manifold as a prior
knowledge.

Generally, the background of HSI is composed of limited
ground materials. Thus we assume all the 3D patches of the
background lie in the same low dimensional manifold. With
the 3D patch manifold, we can reconstruct the background part
of the HSI from its incomplete observation @ € RM*NxB,
Here we assume for any spectral band ¢ € [B], O is known on
a random subset Q! C €2, with a sampling ratio r. According
to [41, 45], the dimension of the 3D patch manifold is used
as a regularizer to reconstruct X from O:

B
. . t t
e /M dim(M(z))dz + A ; X — O (e
MCR

subject to : P(X) M,

)
where X! is the t-th spectral band of the HSI X, M(z)
denotes the smooth manifold M; to which z belongs. Also
S dim(M(z))dx = SoF L IMy| dim(M,) is the L' norm of
the local dimension. According to Proposition 3.1 in [39], the
first term in Eq. (5) can be written as the L? norm of the

coordinate function ! : M — R. Moreover, Eq. (5) can be

written as:
d; B B
om0 Y IV aadlle ey + A 12 = Ol
Mcrd  FLEEL t=1
subject to : P(X) C M,
(6)
where ds = dj X dg is the spatial dimension, a! is the

coordinate function that maps every point z = (z!);; € M
into its (,t)-th coordinate p!. Since Eq. (5) is nonconvex,
we solve it by alternating the direction of minimization with
respect to X and M. Assume we are in the k-th step and
MF) and X(*) are given satisfying P(X*)) ¢ M*). Thus,
we have

1. Fixing M®), update X **+1 by solving:

B
rr}gnz HVMUc)OéE”%z(M(m) +A Z X"~ OtHLZ(Qt)2
it t=1
subject to : o (PX ¥ (q)) = PIX(q), qeQ
N
where P!X(q) is the (i,t)-th element in the patch PgX
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2. Update the manifold M*+1) as the image under the
perturbed coordinate function a:

The manifold update (8) can be easily implemented and
Eq. (7) can be implemented using the weighted nonlocal
Laplacian (WNLL))[44]. It discretizes the Dirichlet energy

HVM%)O‘H@?M(k)) as

Q 2
|'Qt| > Y wa,8) (al(PXD(q) - al(PX M (s)))
g€ 5€0
2
+ Y Y wla.s) (al(PXM (@) - al(PX M (5)))
g€\t sl
_ ©))
where Q! = {q € Q : P!X¥)(q)is sampled} is a spatially
translated version of Qf, |Q|/|Qf| = 1/r is the inverse of

the sampling rate. w(q,s) = w(PX®) (q), PX*)(s)) is the
similarity between the patches as

a2

o(u)o(v)

w(u,v) = exp <
where o(u) is the normalizing factor. Combining the WNLL

discretization and Eq. (7), the update of X in (7) can be
discretized as

B
min )\; X" — Ol 12ty

YYD wlg,s)(PiX(g) — (PiX(s)))’
it geQ\Qt seQ
+ % > ) wlg,s)(PiX(q) — (PiX(s))*].
q9€Q! 5€Q
(11)

According to [41, 45], for any given ¢ € [B], the similarity
matrix W is the same since it is built on 2D coordinates ¢, s €
Q,. Thus, we only need to solve the following problem:

min A& = O 120

+i[ > Y wa.s)

=1 geQ\Qt seQ

£ Y wa s

qeQl s

PiX'(q)) — (PiX'(s)))*

Pix'(a)) - (PiX'(s))?].
12)
The Euler-Lagrange equation of Eq. (12) is:
ds
0=y Pilo | Y wla.s)(Pix'(@) - Pi'(s))]
=1 s€Q
“FZP*[ZQU) q,8)(P:X"(q) — P;X'(s)) (13)
seQ
+u Z

seQt
+ Mqe (X! — 0,

5)(PiX'(q) ~ PiX'(s))]

Vg € Q
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where p = 1/r — 1, P is the adjoint operator of P;, Iq: is
the projection operator that sets X?(q) to zero for ¢ ¢ Q.
Using the notation g; to denote j-th component (in the spatial
domain) after ¢ in a patch. It has been verified in [41]
PiX'(q) = X'(¢;~), and P;X'(q) = X*(g;—). Similar to
[41] and [45], Eq (13) is rewritten as

0 ufm[ZZ (@75 875) (X' (@) — X'(s)]

scq =1
+Z[Zzw L)X @ - X)) gy
=1 scQ
Y Wlars) (X' (@) — X' ()]
seQt
+ Mo (X' -0, VgeQ

Denote w(g, s) = ZZ L W(¢5— 8775)» Eq. (14) is equal to

0=2) ilg,s — X)) + M (Xt — O)

s€Q
+ gy [Z (g, 5)(X'(q) - X'(s))] (15)
s€qQ
+p Yy (g, s)(X'(g) — X'(s), VgeQ
st
Eq. (15) is a linear system for X* € RM¥ and the coef-

ficient matrix is not symmetric. To simplify the problem, the
similarity matrix w(q, s) is truncated to 20 nearest neighbors.
Thus, Eq. (15) is a sparse linear system and can be solved by
the generalized minimal residual method (GMRES).

Firstly, background part is usually piece-wise smooth in
spatial direction. Pixels in a small window can be seen as
local 3D patch which consists of same materials and have
similar spectral characteristics. Thus, these local 3D patches
are considered to lie on a low dimensional manifold. However,
since the spectral signature of anomalies are different from
their neighboring background clutter pixels, the local 3D patch
which contain the anomalies are not in the low dimensional
manifold. Thus it is possible to reconstruct the background by
SLDMM with high precision, without containing anomalies.

Secondly, the objective function of SLDMM is the sum
of all the 3D patches’ manifold. To minimize the objective
function, the low dimensional manifold of all 3D patches are
considered together which can well characterize the global low
dimensional structure of the background.

Last but not least, it is worth noticing that random sampling
of the observed HSI is performed in the first step for SLDMM.
Although the anomalous pixels take only a small fraction
of the whole scene, it is possible that there is anomalous
information contained in the samples. Hence, if the sampling
ratio is high, it is more likely to contain anomalies in the
reconstructed HSI. To avoid this situation, the sampling ratio
should be low. However, it is still important to maintain high
reconstruction accuracy to well characterize all the background
part. Fortunately, SLDMM is proven to have the ability of
reconstructing the HSI at a low sampling ratio with high
accuracy. Thus, it is reasonable to reconstruct the background
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part of HSI by SLDMM which can well model the background
from both global and local aspects.

B. Strategy of Multiple random sampling reconstruction

It is worth noting that, although we can use random sam-
pling with low ratio for the initialization of SLDMM, it is
possible that some information of anomalies are included in
the sampling pixels, which greatly affects the effectiveness
of our proposed anomaly detection method. Thus, we design
a multiple random sampling reconstruction strategy to further
improve the accuracy and robustness of the detection method,.

When employing SLDMM for anomaly detection, it is
important to make sure that the sampled values are randomly
distributed in the whole scene. However, in this case, it is
unavoidable to sample the information of anomaly pixels. If
we randomly sample the pixels, the anomalous pixels may be
sampled. Fortunately, the anomalies are sparsely distributed
in the scene and the probability of sampling the anomalous
information is very low. Bearing in mind that random tech-
nology can greatly improve the detection efficiency[24, 25],
we believe the impact of sampling anomalous information can
be further descreased with enough times of random sampling
and multiple reconstruction. The proposed strategy of multiple
random sampling reconstruction are presented in the following
steps:

Step 1: Randomly sample the observed HSI Y L times in a
low sampling ratio and obtain the subsampled image O;,] =
1,2,...,L.

Step 2: Employ SLDMM to reconstruct each subsample’s
background part X';.

Step 3: Compute the final background part by the mean of
the L reconstructed HSIs, i.e. X = Zlel X;.

Step 4: The anomaly part is computed as S =Y — X and
the anomalies for pixel (4, ) is determined by Lo norm of the
spectrum in S:

If it is larger than a threshold, pixel (7, j) is claimed to be an
anomalous pixel. Then, the proposed method of hyperspectral
anomaly detection via scalable low dimensional manifold
model (SLDMM-AD) can be summarized as Algorithm 1.

IV. EXPERIMENTAL RESULTS
A. Data Set Description

In this paper, three real hyperspectral data sets are used to
evaluate our proposed method. Two of the data sets are col-
lected by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor over San Diego, CA, USA. After removing
the low SNR and water absorption bands, there are 186 bands
available in the source image. In the experiment, we use
the first 128 bands. Two groups of airplanes appeared in the
captured scene are the anomalous targets to be detected. The
first group are in the up-left corner of the image. A sub-region
of size 128 x 128 is chosen to be the the first experimental
data set which is denoted as SanDiego-1. There are 57 anomaly
pixels in total which form three airplanes in the data set. The

Algorithm 1 SLDMM-AD for HSI anomaly detection

Input: The observed HSI Y € RM*NXB times of random
sampling L
For I=1:L
Random sampled HST O; from Y.
Initial guess X l(o)
while not convergence do
Extract the patch set PX l(k) from X l(k).
Compute the similarity matrix on the spatial domain

wi(g,s) = w(PXM(q),PX"(s)), ¢,5€Q (17

A e

7 Assemble the new similarity matrix
ds
wi(g,s) = Y Wigr=,57) (18)
j=1

8  For every spectral band ¢, update (X)(**+1) as the
solution of Eq. (15) using GMRES.
9: k+—k+1
10: end while
1: X; = Xl(k).
12: End for
13: Compute mean background: X = Zle X,
14: Compute the anomaly part: S =Y — X
Output: The detection map T according to Eq. (16)

false color image is shown in Fig. 2(a) and the ground-truth
image is shown in Fig. 2(b) where the white pixels represent
the anomaly pixles. The second group of airplanes lies in the
middle of the complete San Diego image. A sub-region of size
128 x 128 is chosen as the experimental data set. It contains
120 anomaly pixels forming three airplanes. We denote this
data set as SanDiego-2. The false color image and groundtruth
map are shown in Fig. 2(b) and (e), respectively.

The third data set is acquired by the Hyperion imaging
sensor [24] in 2008. It captured an agricultural area in the
State of Indiana, USA. There are 149 bands available after
removal of the low SNR and uncalibrated bands. We choose a
sub-region of size 128 x 128 x 128 containing 12 anomalous
pixels as the experimental data set. The false color image of
the scene and the ground-truth map are shown in Fig. 2(c) and
(f), respectively.

B. Experimental Details

To evaluate the performance of the proposed method,
we demonstrate the global RX(GRX), collaborative
representation-based detector (CRD) [36], RPCA-RX,
low rank and sparse representation (LRASR) [29]. The
RPCA-RX first decomposes the observed HSI into a low-rank
component and a sparse error component using RPCA. Then
the resulted detection result is obtained by using the RX
detector applied on the sparse error component. Similarly,
LRASR decomposes the tested HSI into background and
anomalies part, but the background is assumed to lie
in multiple subspaces. Thus the background part can be
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Fig. 2. False color images and ground-truth maps. (a) and (d) SanDiego-1,
(b) and (e) SanDiego-2, (c) and (f) Indiana.

represented by a dictionary multiplying the corresponding
coefficient matrix.

Empirically, it is easier for SLDMM to converge with
a reasonable initialization of X(?). We use the result of
the low-rank matrix completion algorithm APG [46] as an
initialization. The initialization obtained by APG can also
be considered as the background reconstructed by low-rank
matrix completion model. Similar to the proposed method, we
use the residual between the tested HSI and the background
obtained by APG as the anomaly part. Here we denote this
anomaly detection method as APG-AD.

The receiver operating characteristic (ROC) curves [47] are
used to measure the performance of the compared methods.
A better method would lie nearer to the upper leftmost corner
and result in a larger area under the curve. Meanwhile an
quantitative index— area under ROC curve (AUC) is calculated
for numerical comparison. A higher AUC value indicates the
detector has a better detection performance.

In our experiments, the patch size is set to 2 x 2 and the
sampling ratio is 5%. Details about the parameters will be
discussed later.

C. Detection Performance

In this section, the anomaly detection performance of the
proposed SLDMM-AD is evaluated. All the compared meth-
ods and the proposed method are performed on SanDiego-
1, SanDiego-2, and Indiana data sets. Fig. 3 illustrates the
ROC curves of the proposed SLDMM-AD and other compared
methods on the three data sets. For the SanDiego-1 data set,
the LRASR curve has the largest probability of detection
with a small false alarm rate less than 0.01 and the proposed
SLDMM-AD has the second highest probability of detection.
With the increasing of false alarm rate, our method achieves
the highest probability of detection. This indicates that most
part of the anomalies can be detected easily by LRASR but
not all the anomalies. Whereas the proposed SLDMM-AD can
detect almost all the anomalies at a low false alarm rate. For
the SanDiego-2 data set shown in Fig. 3(b), SLDMM-AD has
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the lowest false alarm rate at 100% probability of detection.
And at most of the false alarm rate period, SLDMM-RX has
the highest probability of detection. LARSR is close to our
method at low false alarm rate but it cannot detect all the
anomalies when the false alarm rate is less than 0.1. For the
Indiana data set shown in Fig. 3(c). GRX and CRD performs
slights better than the proposed method when the false alarm
rate is less than 0.005. But the SLDMM-AD reaches 100% at
the lowest false alarm rate. Among all the three data sets,
the proposed method are better than APG-AD at all false
alarm rate. This indicates that the proposed method can better
reconstruct the background part than the low-rank model.

~SLDMM-AD
APG-AD
£0.8-|~GRX
3 ~CRD
£ RPCA-RX
=0.6"—LRASR
=]
2z
=04
|
=]
=]
£02
0 ‘ — Lol
10 107 107 10° 10" 10°
False alarm rate
(a)
1
£038
3
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2
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<
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[=]
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0 ;
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©

Fig. 3. The logarithmic receiver operating characteristic (ROC) curves on the
three HSI data sets. (a) SanDiego-1; (b)SanDiego-2; (c)Indiana.

Table I shows the AUC results of SLDMM-AD and other
compared method on the three data sets. The best scores
are emphasized in bold for each data set. Fig. 4-6 show
the detection maps of all six methods on the SanDiego-1,
SanDiego-2 and Indiana data sets with normalized anomaly
values between 0 and 1. The SLDMM-AD has the highest
AUC:s on the three data sets among all the methods. Although
the performance of LRASR is relatively stable, it does not
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provide the best AUC scores in any case. The APG-AD
performs well in SanDiego-1 data set. But in SanDiego-2 and
Indiana data sets, the SLDMM-AD shows obvious advantage
over APG-AD. It can be inferred that the SLDMM-AD is
more robust in background modeling. Since SLDMM directly
sums the low dimension manifold of every 3D patch instead
of modeling the whole image, SLDMM is more flexible than
low-rank model. From the detection maps in Fig. 4-6, we can
see the proposed method can detect the anomalies and suppress
the background pixels simultaneously. In general, the detection
maps are consistent with the AUC values reported in Table
I. Thus, it is able to conclude that the SLDMM-AD shows
competitive performances for hyperspectral anomaly detection.

D. Parameters Analysis

In this section, we investigate the impacts from the patch
size and sampling ratio in the detection performance of
SLDMM-AD on the three data sets. First, we manually set the
range of patch size on the three data sets as [1,2,3,4,5,6].
Fig. 7 shows the AUC scores of SLDMM-AD on the three
data sets with the changing patch size. The results shown that
the best patch size is 2 x 2 which gives the highest AUC scores
in all the data sets. Since we assume the local 3D patching
lying in the low dimensional manifold, a larger patch size will
accordingly increase the dimension of the manifold which will
have impacts on the reconstruction of background. Patch size
of 1 x 1 abandon the spectral-spatial structures in HSI which
is important in HSI analysis. Thus, we set the patch size as
2 x 2 in our experiments.

Then we evaluate the impact of sampling ratio in the detec-
tion performance of SLDMM-AD. We manually set the range
of the sampling ratio as [0.02, 0.05, 0.08,0.10,0.13, 0.15]. Fig.
8 shows the AUC scores of SLDMM-AD on the tested data
sets with the changing sampling size. As can be seen from Fig.
8, for SanDiego-1 data set, the best sampling ratio is 0.05. For
the other data sets, when the sampling ratio is larger than 0.05,
the AUC scores trend to be stable. In addition, the AUC scores
trends to decrease slowly when the sampling ratio is larger
than 0.10. Although larger sampling ratio can increase the
reconstruction accuracy, the probability of sampling anomaly
information will be higher. Therefore, we set the sampling
ratio as 0.05 in the experiments.

V. CONCLUSIONS

In this paper, a novel hyperspectral anomaly detection
method via global and local joint modeling of background
is proposed. The background modeling is the key factor for
hyperspectral anomaly detection. Assuming that the local 3D
patches of background lie in a low dimensional manifold, the
background of HSI is effectively characterized via SLDMM.
The objective function is to minimize the manifold dimen-
sion and can be efficiently solved by a scalable weighted
nonlocal Laplacian algorithm. A strategy of multiple random
sampling reconstruction is proposed to further improve the
robustness and accuracy of hyperspectral anomaly detection.
Experimental results on three real HSI data sets show that
the proposed method outperforms the other state-of-the-art
anomaly detection methods.
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