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Abstract

We study the problem of visibility-based exploration, reconstruction and surveillance in
the context of supervised learning. Using a level set representation of data and information,
we train a convolutional neural network to determine vantage points that maximize visibility.
We show that this method drastically reduces the on-line computational cost and determines
a small set of vantage points that solve the problem. This enables us to efficiently produce
highly-resolved and topologically accurate maps of complex 3D environments. We present
realistic simulations on 2D and 3D urban environments.

I. INTRODUCTION
We consider the problem of generating a minimal sequence of observing locations to

achieve complete visibility (line-of-sight) coverage of an environment. If the environ-
ment is initially unknown, the problem is called exploration and reconstruction. This is
particularly useful for autonomous agents to map out unknown, or otherwise unreachable
environments, such as undersea caverns. If the environment is known, the problem is
one of surveillance: how should a minimal set of sensors be placed to maintain complete
surveillance of an environment?

A. PROBLEM FORMULATION
Let X be the space consisting of all possible environment configurations. Take Ω ∈ X .

Ω is an open set representing the free space and Ωc is a closed set consisting of a finite
number of connected components.

Let O = {xi}ki=0 be the sequence of vantage points. For each vantage point, the
operator PxiΩ is a projection of Ω along xi. Then PxiΩ is a set of range measurements
defined on the unit sphere. The back projection Q maps the range measurements to
the visibility set VxiΩ := Q(Pxi)Ω; that is, points in this set are visible from xi. As
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Fig. 1: An illustration of the environment. Dashed and dotted lines are the horizons from
x0 and x1, respectively. Their shadow boundary, B1, is shown in thick, solid blue. The
area of the green region represents g(x1; Ω0,Ω).

more range measurements are acquired, the environment can be approximated by the
cumulatively visible set Ωk:

Ωk =
k⋃
i=0

VxiΩ

P is reminiscent of the projection operator in computed tomography which maps higher
dimensional data into a low dimensional manifold.

By construction, Ωk admits partial ordering: Ωi−1 ⊂ Ωi. For suitable choices of xi, it
is possible that

Ωn → Ω

(say, in the Hausdorff distance). We aim at determining a minimal number of vantage
points from which every point in Ω can be seen.

One may formulate a constrained optimization problem and look for sparse solutions
in the following context. Let D ⊂ Rd, d = 2, 3, be the bounded cubic region in which we
wish to solve the exploration or surveillance problems. Let I be a real valued function
defined on a grid over D, with M nodes in each dimension. The constrained optimization
problem is defined as:

min
I:RMd 7→{0,1}

||I||0 subject to
⋃
{I=1}

VxΩ = Ω. (1)



B. A GREEDY APPROACH
We propose a greedy approach which sequentially determines a new vantage point,

xk+1, based on the information gathered from all previous vantage points, x0, x1, · · · , xk.
The strategy is greedy because xk+1 would be a location that maximizes the information
gain.

If the environment Ω is known, we define the gain function

g(x; Ωk,Ω) := |VxΩ ∪ Ωk| − |Ωk|,

i.e. the volume of the region that is visible from x but not from x0, x1, · · · , xk. Thus,
for surveillance, we consider:

xk+1 = arg max
x∈Ω

g(x; Ωk,Ω). (2)

In other words, the next vantage point should be chosen to maximize the newly surveyed
area. On a Cartesian grid over the domain D, the brute force search is expensive with
complexity O(M2d) where M is the number of grid points along one dimension.

The problem of Exploration is even more challenging since, by definition, the envi-
ronment is not known. However, we remark that in practice, one is typically interested
only in a subset S of all possible environments X . For example, cities generally follow
a grid-like pattern. Knowing these priors can help guide our estimate of g for certain
types of Ω, even when Ω is unknown initially.

We propose to encode these priors formally into the parameters, θ, of a learned
function:

gθ(x; Ωk, Bk) for Ω ∈ S,

where Bk is the part of ∂Ωk that may actually lie in the free space Ω. More precisely,

Bk = ∂Ωk\Ωc. (3)

See Figure 2 for an example gain function. We shall demonstrate that while training
for gθ, incorporating the shadow boundaries as an additional restriction helps, in some
sense, localize the learning of g, and is essential in creating usable gθ.

II. RELATED WORKS
The surveillance problem is related to the art gallery problem in computational geom-

etry, where the task is to determine the minimum number of guards who can together
observe a gallery. For simply-connected polygonal scenes, Chvátal showed the minimum
number of guards is upper bounded by bn/3c patrols, where n is the number of vertices
in the triangulation of the scene [4]. However, determining the optimal set of observers
is NP-complete [21].
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Fig. 2: Left: the map of a scene consisting of two disks. Right: the intensity of the
corresponding gain function. The current vantage point is shown as the red dot. The
location which maximizes the gain function is shown as the red x.

Goroshin et al. propose an alternating minimization scheme for optimizing the visi-
bility of n observers [5]. They suggest gradually incrementing the number of observers
while applying this algorithm in order to find an approximately minimal set. This is very
inefficient. Similarly, Kang et al. use a level set framework and system of differential
equations to optimize the location and orientation of sensors to maximize surveillance
[6]. The number of sensors is assumed to be given.

For the exploration problem, the ”wall-following” strategy may be used to map out
simple environments. See e.g. [23]. LaValle and Tovar et al. [17], [10], [18] combine
wall-following with a gap navigation tree to keep track of gaps, critical events which hide
a connected region of the environment that is occluded from a vantage point. Exploration
is complete when all gaps have been eliminated. This approach does not produce any
geometric representation of the environment upon completion, due to limited information
from simple gap sensors.

Landa et al. [9], [7], [8] extend the idea of chasing the gap to range sensors, resulting
in an algorithm that is efficient, guaranteed to converge in finite time, and reconstructs
the environment upon completion. Unfortunately as the algorithm relies on estimation
of the curvature of ∂Ωk, extension to 3D environments seem complicated.

Valente et al. [22] use a heuristic based on the area of the shadow boundary, weighted
by the viewing angle from the vantage points, to define potential information gain.
This formulation is straight-forward to apply in 3D. However, computing this energy is
expensive as it requires evaluating a surface integral at each spatial location.

Bai et al. [1] use convolutional neural networks to choose an action from a fixed set of
moves. Their approach terminates when there is no occlusion within view of the agent,
even if the global map is still incomplete. Bircher et al. use an occupancy grid and a
geometric random tree to determine optimal paths in a receding horizon fashion [2], [3].
Due to high computational complexity, the occupancy maps are coarse. The algorithm
executes a second pass in order to reconstruct the environment.

Both Bircher et al. and Bai et al. assume that the sensor range is smaller than the



domain size. They use a notion of information gain that makes no distinction between
obstacles and free space. That is, each unmapped voxel is assumed to be unoccupied if
it comes within range of the sensor.

Our work is closer to the ideas of Valente et al., using a gain function to steer a
greedy approach. We also assume that the visibility range is larger than the domain,
which makes the problem more global and challenging. We leverage the convenience
of a volumetric representation of the geometries and convolutional neural networks for
efficiency. Our non-myopic framework allows for steps of arbitrary distances and takes
the geometry of the environment into account.

III. METHODOLOGY
The data needed for the training and evaluation of gθ are computed by the level set

method [14], [16], [13]. The training geometry is embedded by a level set function,
denoted by φ. For each vantage point xi, the visibility set is represented by the level set
function ψxi , which is computed efficiently using the algorithm described in [19].

In the calculus of level set functions, unions and intersections of sets are translated,
respectively, into taking maximum and minimum of the corresponding characteristic
functions. The cumulatively visible sets Ωk are represented by the level set function
Ψk(x), which is defined recursively by Ψk = max (Ψk−1, ψxk), point-wise, with Ψ0 =
ψx0 .

Thus we have Ω = {φ > 0}, VxiΩ = {ψxi > 0}, and Ωk = {Ψk > 0}. The shadow
boundaries Bk are approximated by the ”smeared out” delta function bk:

bk(x) := δε(Ψk) · [1−H(δε(φ))] , (4)

where δε(x) = 2
ε

cos2
(
πx
ε

)
· 1[− ε

2
, ε
2

](x), and H(x) is the Heaviside function. In our
implementation, we take ε = 3∆x where ∆x is the grid node spacing. We refer the
readers to [20] for a short review of relevant details.

A. SURVEILLANCE
When the environment Ω is known, we can compute the gain function exactly

g(x; Ωk,Ω) =

∫
H(ψx(ξ)−Ψk(ξ)) dξ. (5)

We remark that H(ψ − Ψ) will be 1 where the new vantage point uncovers something
not previously seen. Computing g for all x is costly. We approximate it with a function
g̃θ parameterized by θ such that

g̃θ(x; Ψk, φ, bk) ≈ g(x; Ωk,Ω).



B. EXPLORATION
If the environment is unknown, we directly approximate the gain function by learning

the parameters θ of a function

gθ(x; Ψk, bk) ≈ g(x; Ωk,Ω)H(Ψk)

using only the observations as input. Note the H(Ψk) factor is needed for collision
avoidance during exploration because it is not known a priori whether an occluded
location y is part of an obstacle or free space. Thus gθ(y) must be zero.

C. TRAINING
Ω is randomly sampled from a library. For each Ω, a sequence of data pairs is generated

and included into the training set T :(
{Ψk, bk}, g(x; Ωk,Ω)H(Ψk)

)
, k = 0, 1, 2, . . . .

The function gθ is learned by minimizing the empirical loss across all data pairs for
each Ω in the training set T :

argmin
θ

1

N

∑
Ω∈T

∑
k

L
(
gθ(x; Ψk, bk), g(x; Ωk,Ω)H(Ψk)

)
where N is the total number of data pairs. We use the cross entropy loss function:

L(p, q) =

∫
p(x) log q(x) + (1− p(x)) log(1− q(x)) dx

D. MODEL ARCHITECTURE
We use convolutional neural networks (CNNs) to approximate the gain function, which

depends on the shape of Ω and the location x. CNNs have been used to approximate
functions of shapes effectively in many applications. The gain function g(x) does not
depend directly on x, but rather, x’s visibility of Ω, with a domain of dependence bounded
by the sensor range. So, we expect certain translation invariance in the computation of
the gain function. Thus, we employ a fully convolutional approach for learning g. Finally,
CNN’s feedforward evaluations are efficient if the off-line training cost is ignored. Our
approach can therefore be easily applied to domains of different sizes, with straight-
forward generalization to 3D.

We base the architecture of the CNN on U-Net [15], which has had great success in
dense inference problems, such as image segmentation. It aggregates information from
various layers in order to have wide receptive fields while maintaining pixel precision.
The main design choice is to make sure that the receptive field of our model is sufficient.
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Fig. 3: A training data pair consists of the cumulative visibility and shadow boundaries
as input, and the gain function as the output. a) The underlying map with current vantage
points shown in red. b) The cumulative visibility of the current vantage points. c) The
corresponding shadow boundaries. d) The corresponding gain function.

That is, we want to make sure that the value predicted at each voxel depends on a
sufficiently large neighborhood. For efficiency, we use convolution kernels supported in
the 3d-pixel set. By stacking multiple layers, we can achieve large receptive fields. Thus
the complexity for feedforward computations is linear in the total number of grid points.

Define a conv block as the following layers: convolution, batch norm, leaky relu
activation, stride 2 convolution, batch norm, and leaky relu activation. Each conv block
reduces the image size by a factor of 2. The latter half of the network increases the image
size using deconv blocks: bilinear 2x upsampling, convolution, batch norm, and leaky
relu activation.

Our 2D network uses 6 conv blocks followed by 6 deconv blocks, while our 3D network
uses 5 of each block. We choose the number of blocks to ensure that the receptive field
is at least the size of the training images: 128x128 and 64x64x64. The first conv block
outputs 4 channels. The number of channels doubles with each conv block, and halves
with each deconv block.

The network ends with a single channel, kernel of size 1 convolution layer followed
by the sigmoid activation. This ensures that the network aggregates all information into
a prediction of the correct size and range.
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Fig. 4: Comparison of predicted (left) and exact (right) gain function for an Austin map.
Although the functions are not identical, the predicted gain function peaks in similar
locations to the exact gain function, leading to similar steps.

IV. EXPERIMENTS
We present some experiments to demonstrate the efficacy of our approach. Also, we

demonstrate its limitations.
First, we train on 128x128 aerial city blocks cropped from INRIA Aerial Image

Labeling Dataset [11]. It contains binary images with building labels from several urban
areas, including Austin, Chicago, Vienna, and Tyrol. We train on all the areas except
Austin, which we hold out for evaluation. We call this model City-CNN. We train a
similar model NoSB-CNN on the same training data, but omit the shadow boundary
from the input. Third, we train another model on synthetically-generated radial maps,
such as the one in Figure 10. We call this model Radial-CNN.

Given a map, we randomly select an initial location. In order to generate the sequence
of vantage points, we apply (2), using gθ in place of g. Ties are broken by choosing
the closest point to xk. We repeat this process until there are no shadow boundaries,
the gain function is smaller than ε, or the residual is less than δ, where the residual is
defined as:

r =
|Ω \ Ωk|
|Ω|

. (6)

We compare these against the algorithm which uses the exact gain function, which
we call Exact. We also compare against Random, a random walker, which chooses
subsequent vantage points uniformly from the visible region. We analyze the number of
steps required to cover the scene and the residual as a function of the number of steps.

Lastly, we present a simulation for exploring a 3D urban environment. Due to the
lack of adequate 3D urban datasets, the model, 3D-CNN, is trained using synthetically-
generated 64x64x64 voxel images consisting of tetrahedrons, cylinders, ellipsoids, and
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Fig. 5: Distribution of the residual and number of steps generated across multiple runs
over an Austin map. The proposed method is robust against varying initial conditions.
The algorithm reduces the residual to roughly 0.1 % within 39 steps by using a threshold
on the predicted gain function as a termination condition.

cuboids of random positions, sizes, and orientations. In the site1, the interested reader
may inspect the performance of the 3D-CNN in some other challenging 3D environ-
ments.

For our experiments using trained networks, we make use of a CPU-only machine
containing four Intel Core i5-7600 CPU @ 3.50GHz and 8 GB of RAM. Additionally,
we use an Nvidia Tesla K40 GPU with 12 GB of memory for training the convolutional
neural networks and predicting the gain function in 3D scenes.

A. 2D CITY
The City-CNN model works well on 2D Austin maps. First, we compare the predicted

gain function to the exact gain function on a 128x128-pixel map, as in Figure 4. Without
knowing the underlying map, it is difficult to accurately determine the gain function.
Still, the predicted gain function peaks in locations similar to those in the exact gain
function. This results in similar sequences of vantage points.

The algorithm is robust to the initial positions. Figure 5 show the distribution of the
number of steps and residual across over 800 runs from varying initial positions over
a 512x512 Austin map. In practice, using the shadow boundaries as a stopping criteria
can be unreliable. Due to numerical precision and discretization effects, the shadow
boundaries may never completely disappear. Instead, the algorithm terminates when the
maximum predicted gain falls below a certain threshold ε. In this example, we used
ε = 0.1. Empirically, this strategy is robust. On average, the algorithm required 33
vantage points to reduce the occluded region to within 0.1% of the total explorable area.

Figure 6 shows an example sequence consisting of 36 vantage points. Each subsequent
step is generated in under 1 sec using the CPU and instantaneously with a GPU.

Even when the maximizer of the predicted gain function is different from that of the
exact gain function, the difference in gain is negligible. This is evident when we see

1http://visibility.page.link/demo



Fig. 6: An example of 36 vantage points (blue disks) using City-CNN model. White
regions are free space while gray regions are occluded. Black borders indicate edges of
obstacles.

the residuals for City-CNN decrease at similar rates to Exact. Figure 9 demonstrates
an example of the residual as a function of the number of steps for one such sequence
generated by these algorithms on a 1024x1024 map of Austin. We see that City-CNN
performs comparably to Exact approach in terms of residual. However, City-CNN takes
140 secs to generate 50 steps on the CPU while Exact takes more than 16 hours to
produce 50 steps.

B. EFFECT OF SHADOW BOUNDARIES
The inclusion of the shadow boundaries as input to the CNN is critical for the

algorithm to work. Without the shadow boundaries, the algorithm cannot distinguish
between obstacles and occluded regions. If an edge corresponds to an occluded region,
then choosing a nearby vantage point will reduce the residual. However, choosing a
vantage point near a flat obstacle will result in no change to the cumulative visibility. At
the next iteration, the input is same as the previous iteration, and the result will be the
same; the algorithm becomes stuck in a cycle. To avoid this, we prevent vantage points
from repeating. Still, the vantage points tend to cluster near flat edges, as in Figure
7. This clustering behavior causes the NoSB-CNN model to be, at times, worse than
Random. See Figure 9 to see how the clustering inhibits the reduction in the residual.



Fig. 7: A sequence of 50 vantage points generated from NoSB-CNN. The points cluster
near flat edges due to ambiguity and the algorithm becomes stuck. Gray regions without
black borders have not been fully explored.

C. EFFECT OF SHAPE
The shape of the obstacles, i.e. Ωc, used in training affects the gain function predic-

tions. Figure 10 compares the gain functions produced by City-CNN and Radial-CNN.

D. FREQUENCY MAP
The efficiency of the CNN method allows us to address many surveillance related

questions. Here we present one of our studies concerning the exclusivity of vantage
point placements in Ω. We generated sequences of vantage points starting from over
800 different initial conditions using City-CNN model on a 512x512 Austin map. Then,
we model each vantage point as a Gaussian with fixed width, and overlay the resulting
distribution on the Austin map in Figure 8. This gives us a frequency map of the most
recurring vantage points. These hot spots reveal regions that are more secluded and
therefore, the visibility of those regions is more sensitive to vantage point selection.

E. ART GALLERY PROBLEM
Our proposed approach outperforms the computational geometry solution [12] to the

art gallery problem, even though we do not assume the environment is known. The key
issue with computational geometry approaches is that they are heavily dependent on



Fig. 8: Distribution of vantage points generated by City-CNN method from various
initial positions. Hot spots are brighter and are visited more frequently since they are
essential for completing coverage.

the triangulation. In an extreme example, consider an art gallery that is a simple convex
n-gon. Even though it is sufficient to place a single vantage point anywhere in the interior
of the room, the triangulation-based approach produces a solution with bn/3c observers.

Figure 11 shows an example gallery consisting of 58 vertices. The computational
geometry approach requires 19 vantage points to completely cover the scene, while
City-CNN, on average, across various initial positions, requires only 8 vantage points,
despite not knowing the environment.

F. 3D ENVIRONMENT
We present a 3D simulation of a 250m×250m environment based on Castle Square

Parks in Boston. The map is discretized as a level set function on a 768x768x64 voxel
grid. At this resolution, small pillars are accurately reconstructed by our exploration
algorithm. Each step can be generated in 3 seconds using the GPU or 300 seconds using
the CPU. Parallelization of the distance function computation will further reduce the
computation time significantly. A map of this size was previously unfeasible. See Figure
12 for snapshots of the algorithm in action. See Supplemental Material for a video clip
of the exploration process.
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Fig. 9: Graph showing the decrease in residual over 50 steps among various algorithms
starting from the same initial position for an Austin map. Without using shadow boundary
information, NoSB-CNN can at times be worse than Random. Our City-CNN model
is significantly faster than Exact while remaining comparable in terms of residual.

V. CONCLUSION
From the perspective of inverse problems, we proposed a greedy algorithm for au-

tonomous surveillance and exploration. We show that this formulation can be well-
approximated using convolutional neural networks. The inclusion of shadow boundaries,
computed using the level set method, is crucial for the success of the algorithm. Our
approach is amenable to a wide range of three dimensional real-world applications.
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Fig. 10: Comparison of gain functions produced with various models on a radial scene.
Naturally, the CNN model trained on radial obstacles best approximates the true gain
function. a) The underlying radial map with vantage points show in red. b) The exact gain
function c) City-CNN predicted gain function. d) Radial-CNN predicted gain function.



Fig. 11: Comparison of the computational geometry approach and the City-CNN
approach to the art gallery problem. The blue circles are the vantage points computed by
the methods. Left: A result computed by the computational geometry approach, given
the environment. Right: An example sequence of 7 vantage points generated by the
City-CNN model.



Fig. 12: Snapshots demonstrating the exploration of an initially unknown 3D urban
environment using sparse sensor measurements. The green spheres indicate the vantage
point. The gray surface is the reconstruction of the environment based on line of
sight measurements taken from the sequence of vantage points. New vantage points
are computed in virtually real time using 3D-CNN.
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