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Abstract
We improve the robustness of deep neural nets to adversarial attacks by using an

interpolating function as the output activation. This data-dependent activation function
remarkably improves both classification accuracy and stability to adversarial perturbations.
Together with the total variation minimization of adversarial images and augmented training,
under the strongest attack, we achieve up to 20.6%, 50.7%, and 68.7% accuracy improvement
w.r.t. the fast gradient sign method, iterative fast gradient sign method, and Carlini-
Wagner L2 attacks, respectively. Our defense strategy is additive to many of the existing
methods. We give an intuitive explanation of our defense strategy via analyzing the
geometry of the feature space. For reproducibility, the code is made available at: https:
//github.com/BaoWangMath/DNN-DataDependentActivation.

1 Introduction
The adversarial vulnerability [27] of deep neural nets (DNNs) threatens their applicability in
security critical tasks, e.g., autonomous cars [1], robotics [9], DNN-based malware detection
systems [21, 8]. Since the pioneering work by Szegedy et al. [27], many advanced adversarial
attack schemes have been devised to generate imperceptible perturbations to sufficiently fool the
DNNs [7, 20, 6, 30, 12, 3]. And not only are adversarial attacks successful in white-box attacks,
i.e. when the adversary has access to the DNN parameters, but attacks are also successful in
black-box attacks, i.e. it has no access to the parameters. Black-box attacks are successful
because one can perturb an image so it misclassifies on one DNN, and the same perturbed image
also has a significant chance to be misclassified by another DNN; this is known as transferability
of adversarial examples [23]. Due to the transferability of adversarial examples, it is very easy
to attack neural nets in a black-box fashion [15, 5]. In fact, there exist universal perturbations
that can imperceptibly perturb any image and cause misclassification for any given network [17].
There is much recent research on designing advanced adversarial attacks and defending against
adversarial perturbation.
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In this work, we propose to defend against adversarial attacks by changing the DNNs’ output
activation function to a manifold-interpolating function, in order to seamlessly utilize the training
data’s information when performing inference. Together with the total variation minimization
(TVM) and augmented training, we show state-of-the-art defense results on the CIFAR-10
benchmark. Moreover, we show that adversarial images generated from attacking the DNNs
with an interpolating function are more transferable to other DNNs, than those resulting from
attacking standard DNNs.

2 Related Work
Defensive distillation was recently proposed to increase the stability of DNNs which dramatically
reduces the success rate of adversarial attacks [22], and a related approach ([28]) cleverly modifies
the training data to increase robustness against black-box attacks, and adversarial attacks in
general. To counter the adversarial perturbations, [10] proposed to use image transformation, e.g.,
bit-depth reduction, JPEG compression, TVM, and image quilting. Similar idea of denoising the
input was later explored by [18], where they divide the input into patches, denoise each patch, and
then reconstruct the image. These input transformations are intended to be non-differentiable,
thus making adversarial attacks more difficult, especially for gradient-based attacks. Song et
al [26] noticed that small adversarial perturbations shift the distribution of adversarial images
far from the distribution of clean images. Therefore they proposed to purify the adversarial
images by PixelDefend. Adversarial training is another family of defense methods to improve the
stability of DNNs [7, 16, 19]. GANs are also employed for adversarial defense [25]. In [2], the
authors proposed a straight-through estimation of the gradient to attack the defense methods
that is based on the obfuscated gradient. Meanwhile, many advanced attack methods have been
proposed to attack the DNNs [30, 12].

Instead of using softmax functions as the DNNs’ output activation, Wang et al [29] utilized a
class of non-parametric interpolating functions. This is a combination of both deep and manifold
learning which causes the DNNs to sufficiently utilize the geometric information of the training
data. The authors show a significant amount of generalization accuracy improvement, and the
results are more stable to when only has a limited amount of training data.

3 Deep Neural Nets with Data-Dependent Activation Func-
tion

In this section, we summarize the architecture, training, and testing procedures of the DNNs
with the data-dependent activation [29]. An overview of training and testing of the standard
DNNs with softmax output activation is shown in Fig. 1 (a) and (b), respectively. In the kth
iteration of training, given a mini-batch of training data X,Y, the procedure is:

Forward propagation: Transform X into features by a DNN block (ensemble of convolutional
layers, nonlinearities and others), and then through the softmax activation to get the predictions
Ỹ:

Ỹ = Softmax(DNN(X,Θk−1),Wk−1).

Then the loss is computed (e.g., cross entropy) between Y and Ỹ: L = Loss(Y, Ỹ).
Backpropagation: Update weights (Θk−1, Wk−1) by gradient descent (learning rate γ):

Wk = Wk−1 − γ ∂L
∂Ỹ
· ∂Ỹ
∂W

, Θk = Θk−1 − γ ∂L
∂Ỹ
· ∂Ỹ
∂X̃
· ∂X̃
∂Θ

.

Once the model is optimized, the predicted labels for testing data X are:

Ỹ = Softmax(DNN(X,Θ),W).

[29] proposed to replace the data-agnostic softmax activation by a data-dependent interpolat-
ing function, defined in the next section.
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(a) (b) (c) (d)

Figure 1: Training and testing procedures of the DNNs with softmax and WNLL functions as
the last activation layer. (a) and (b) show the training and testing steps for the standard DNNs,
respectively; (c) and (d) illustrate the training and testing procedure of the WNLL activated
DNNs, respectively.

3.1 Manifold Interpolation - A Harmonic Extension Approach
Let X = {x1,x2, · · · ,xn} be a set of points in a high dimensional manifold M ⊂ Rd and
Xte = {xte

1 ,x
te
2 , · · · ,xte

m} be a subset of X which are labeled with label function g(x). We want
to interpolate a function u that is defined on the entire manifold and can be used to label the
entire dataset X. The harmonic extension is a natural and elegant approach to find such an
interpolating function, which is defined by minimizing the Dirichlet energy functional:

E(u) =
1

2

∑
x,y∈X

w(x,y) (u(x)− u(y))
2
, (1)

with the boundary condition:
u(x) = g(x), x ∈ Xte,

where w(x,y) is a weight function, typically chosen to be Gaussian: w(x,y) = exp(− ||x−y||
2

σ2 )
with σ being a scaling parameter. The Euler-Lagrange equation for Eq. (1) is:{∑

y∈X (w(x,y) + w(y,x)) (u(x)− u(y)) = 0 x ∈ X/Xte

u(x) = g(x) x ∈ Xte.
(2)

By solving the linear system (Eq. (2)), we obtain labels u(x) for unlabeled data x ∈ X/Xte. This
interpolation becomes invalid when the labeled data is tiny, i.e., |Xte| � |X/Xte|. To resolve
this issue, the weights of the labeled data is increased in the Euler-Lagrange equation, which
gives: 

∑
y∈X (w(x,y) + w(y,x)) (u(x)− u(y)) +(
|X|
|Xte| − 1

)∑
y∈Xte w(y,x) (u(x)− u(y)) = 0 x ∈ X/Xte

u(x) = g(x) x ∈ Xte.

(3)

The solution u(x) to Eq. (3) is named weighted nonlocal Laplacian (WNLL), denoted as
WNLL(X,Xte,Yte). For classification tasks, g(x) is the one-hot labels for the example x.

3.2 Training and Testing the DNNs with Data-Dependent Activation
Function

In both training and testing of the WNLL activated DNNs, we need to reserve a small portion of
data/label pairs, denoted as (Xte,Yte), to interpolate the label for new data Y. We name the
reserved data (Xte,Yte) as the template. Directly replacing softmax by WNLL has difficulties
in back propagation, namely, the true gradient ∂L

∂Θ is difficult to compute since WNLL defines
a very complex implicit function. Instead, to train WNLL activated DNNs, a proxy via an
auxiliary neural net (Fig.1(c)) is employed. On top of the original DNNs, we add a buffer block
(a fully connected layer followed by a ReLU), and followed by two parallel branches, WNLL and
the linear (fully connected) layers. The auxiliary DNNs can be trained by alternating between
training DNNs with linear and WNLL activations, respectively. The training loss of the WNLL
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activation function is backpropped via a straight-through estimation approach [2, 4]. At test
time, we remove the linear classifier from the neural nets and use the DNN and buffer blocks
together with WNLL to predict new data (Fig. 1 (d)); here for simplicity, we merge the buffer
block to the DNN block. For a given set of testing data X, and the labeled template {(Xte,Yte)},
the predicted labels for X is given by

Ỹ = WNLL(DNN(X,Xte,Θ),Yte).

4 Adversarial Attacks
We consider three benchmark attack methods in this work, namely, the fast gradient sign method
(FGSM) [7], iterative FGSM (IFGSM) [14], and Carlini-Wagner’s L2 (CW-L2) [6] attacks. We
denote the classifier defined by the DNNs with softmax activation as ỹ = f(θ,x) for a given
instance (x, y). FGSM finds the adversarial image x′ by maximizing the loss L(x′, y), subject
to the l∞ perturbation ||x′ − x||∞ ≤ ε with ε as the attack strength. Under the first order
approximation i.e., L(x′, y) = L(x, y) +∇xL(x, y)T · (x′ − x), the optimal perturbation is given
by

x′ = x + ε sign · (∇xL(x, θ)) . (4)

IFGSM iterates FGSM to generate enhanced adversarial images, i.e.,

x(m) = x(m−1) + ε · sign
(
∇x(m−1)L(x(m−1), y)

)
, (5)

where m = 1, · · · ,M , x(0) = x and x′ = x(M), with M be the number of iterations.
The CW-L2 attack is proposed to circumvent defensive distillation. For a given image label

pair (x, y), and ∀t 6= y, CW-L2 searches the adversarial image that will be classified to class t by
solving the optimization problem:

min
δ
||δ||22, subject to f(x + δ) = t, x + δ ∈ [0, 1]n, (6)

where δ is the adversarial perturbation (for simplicity, we ignore the dependence of θ in f).
The equality constraint in Eq. (6) is hard to satisfy, so instead Carlini et al. consider the

surrogate
g(x) = max

(
max
i6=y

(Z(x)i)− Z(x)y, 0

)
, (7)

where Z(x) is the logit vector for an input x, i.e., output of the neural net before the softmax
layer. Z(x)i is the logit value corresponding to class i. It is easy to see that f(x + δ) = t is
equivalent to g(x + δ) ≤ 0. Therefore, the problem in Eq. (6) can be reformulated as

min
δ
||δ||22 + c · g(x + δ) subject to x + δ ∈ [0, 1]n, (8)

where c ≥ 0 is the Lagrangian multiplier.
By letting δ = 1

2 (tanh(w) + 1)−x, Eq. (8) can be converted to an unconstrained optimization
problem. Moreover, Carlini et al. introduce the confidence parameter κ into the above formulation.
Above all, CW-L2 attacks seek adversarial images by solving the following problem

min
w
||1

2
(tanh(w) + 1)− x||22 + c ·max

(
−κ,max

i 6=y
(Z(

1

2
(tanh(w)) + 1)i)− Z(

1

2
(tanh(w)) + 1)y

)
. (9)

This unconstrained optimization problem can be solved efficiently by the Adam optimizer
[13]. All three of the attacks clip the values of the adversarial image x′ to between 0 and 1.

4.1 Adversarial Attack for DNNs with WNLL Activation Function
In this work, we focus on untargeted attacks and defend against them. For a given small batch
of testing images (X,Y) and template (Xte,Yte), we denote the DNNs modified with WNLL
as output activation as Ỹ = WNLL(Z({X,Xte}),Yte), where Z({X,Xte}) is the composition
of the DNN and buffer blocks defined in Fig. 1 (c). By ignoring dependence of the loss
function on the parameters, the loss function for DNNs with WNLL activation can be written as
L̃(X,Y,Xte,Yte). The above attacks for DNNs with WNLL activation on the batch of images,
X, are formulated below.
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• FGSM
X′ = X + ε · sign

(
∇XL̃(X,Y,Xte,Yte)

)
. (10)

• IFGSM
X(m) = X(m−1) + ε · sign

(
∇X(m−1)L̃(X(m−1),Y,Xte,Yte)

)
, (11)

where m = 1, 2, · · · , N ; X(0) = X and X′ = X(M).

• CW-L2

min
W
||1

2
(tanh(W) + 1)−X||22+ (12)

c ·max

(
−κ,max

i6=Y
(Z(

1

2
(tanh(W)) + 1)i)− Z(

1

2
(tanh(W)) + 1)Y

)
,

where i is the logit values of the input images X.

Based on our numerical experiments, the batch size of X has minimal influence on the
adversarial attack and defense. In all of our experiments we choose the batch size of X to be
500. Similar to [29], we choose the size of the template to be 500.

We apply the above attack methods to ResNet-56 [11] with either softmax or WNLL as the
output activation function. For IFGSM, we run 10 iterations of Eqs. (5) and (11) to attack DNNs
with two different output activations, respectively. For CW-L2 attacks (Eqs. (9, 12)) in both
scenarios, we set the parameters c = 10 and κ = 0. Figure 2 depicts three randomly selected
images (horse, automobile, airplane) from the CIFAR-10 dataset, their adversarial versions
by different attack methods on ResNet-56 with two kinds of activation functions, and the TV
minimized images. All attacks successfully fool the classifiers to classify any of them correctly.
Figure 2 (a) shows that FGSM and IFGSM with perturbation ε = 0.02 changes the contrast of the
images, while it is still easy for humans to correctly classify them. The adversarial images of the
CW-L2 attacks are imperceptible, however they are extremely strong in fooling DNNs. Figure 2
(b) shows the images of (a) with a stronger attack, ε = 0.08. With a larger ε, the adversarial
images become more noisy. The TV minimized images of Fig. 2 (a) and (b) are shown in Fig. 2
(c) and (d), respectively. The TVM removes a significant amount of detailed information from
the original and adversarial images, meanwhile it also makes it harder for humans to classify both
the TV-minimized version of the original and adversarial images. Visually, it is hard to discern
the adversarial images resulting from attacking the DNNs with two types of output layers.

(a) (b) (c) (d)

Figure 2: Samples from CIFAR-10. Panel (a): from the top to the last rows show the original,
adversarial images by attacking ResNet-56 with FGSM, IFGSM, CW-L2 (ε = 0.02); and attacking
the ResNet-56 with WNLL as output activation. Panel (b) corresponding to those in panel (a)
with ε = 0.08. Charts (c) and (d) corresponding to the TV minimized images in (a) and (b),
respectively.
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5 Analysis of the Geometry of Features
We consider the geometry of features of the original and adversarial images. We randomly select
1000 training and 100 testing images from the airplane and automobile classes, respectively.
We consider two visualization strategies for ResNet-56 with softmax activation: (1) extract the
original 64D features output from the layer before the softmax, and (2) apply the principle
component analysis (PCA) to reduce them to 2D. However, the principle components (PCs)
do not encode the entire geometric information of the features. Alternatively, we add a 2 by
2 fully connected (FC) layer before the softmax, then utilize the 2D features output from this
newly added layer. We verify that the newly added layer does not change the performance of
ResNet-56 as shown in Fig. 3 that the training and testing performance remains essentially the
same for these two cases.

(a) (b)

Figure 3: Training and testing epochs v.s. accuracy of ResNet-56 on CIFAR-10. (a): without
the additional FC layer; (b): with the additional FC layer.

Figure 4 (a) and (b) show the 2D features generated by ResNet-56 with additional FC layer
for the original and adversarial testing images, respectively, where we generate the adversarial
images by using FGSM (ε = 0.02). Before adversarial perturbation (Fig. 4 (a)), there is a straight
line that can easily separate the two classes. The small perturbation causes the features to
overlap and there is no linear classifier that can easily separate these two classes (Fig. 4 (b)).
The first two PCs of the 64D features of the clean and adversarial images are shown in Fig. 4
(c) and (d), respectively. Again, the PCs are well separated for clean images, while adversarial
perturbation causes overlap and concentration.

The bottom charts of Fig. 4 depict the first two PCs of the 64D features output from the
layer before the WNLL. The distributions of the unperturbed training and testing data are
the same, as illustrated in panels (e) and (f). The new features are better separated which
indicates that DNNs with WNLL is more robust to small random perturbation. Panels (g) and
(h) plot the features of the adversarial and TV minimized adversarial images in the test set. The
adversarial attacks move the automobiles’ features to the airplanes’ region. The TVM helps to
eliminate the outliers. Based on our computation, most of the adversarial images of the airplane
classes can be correctly classified with the interpolating function. The training data guides the
interpolating function to classify adversarial images correctly. The fact that the adversarial
changes the features’ distribution was also noticed in [26].

6 Adversarial Defense by Interpolating Function and TVM
To defend against adversarials, we combine the ideas of data-dependent activation, input
transformation, and training data augmentation. We train ResNet-56, respectively, on the
original training data, the TV minimized training data, and a combination of the previous two.
On top of the data-dependent activation output and augmented training, we further apply the
TVM [24] used by [10] to transform the adversarial images to boost defensive performance. The
basic idea is to reconstruct the simplest image z from the sub-sampled image, X � x, with X
the mask filled by a Bernoulli binary random variable, by solving the following TVM problem

min
z
||(1−X)� (z− x)||2 + λTV · TV2(z),

where λTV > 0 is the regularization constant.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Visualization of the features learned by DNNs with softmax ((a), (b), (c), (d)) and
WNLL ((e), (f), (g), (h)) activation functions. (a) and (b) plot the 2D features of the original
and adversarial testing images; (c) and (d) are the first two principle components of the 64D
features for the original and adversarial testing images, respectively. Charts (e), (f) plot the
first two components of the training and testing features learned by ResNet-56 with WNLL
activation; (g) and (h) show the two principle components of the adversarial and TV minimized
adversarial images for the test set.

7 Numerical Results

7.1 Transferability of the Adversarial Images
To verify the efficacy of attack methods for DNNs with WNLL output activation, we consider
the transferability of adversarial images. We train ResNet-56 on the aforementioned three types
of training data with either softmax or WNLL activation. After the DNNs are trained, we attack
them by FGSM, IFGSM, and CW-L2 with different ε.Finally, we classify the adversarial images
by using ResNet-56 with the opponent activation. We list the mutual classification accuracy
on adversarial images in Table. 1. The adversarial images resulting from attacking DNNs with
two types of activation functions are both transferable, as the mutual classification accuracy is
significantly lower than testing on the clean images. Overall, when applying ResNet-56 with
WNLL activation to classify the adversarial images resulting from attacking ResNet-56 with
softmax activation, the network has a remarkably higher accuracy. For instance, for DNNs that
are trained on the original images and attacked by FGSM, DNNs with the WNLL classifier have
at least 5.4% higher accuracy (56.3% v.s. 61.7% (ε = 0.08)). The accuracy improvement is more
significant in many other scenarios.

7.2 Adversarial Defense
Figure 5 plots the result of adversarial defense by combining the WNLL activation, TVM, and
training data augmentation. Panels (a), (b) and (c) show the testing accuracy of ResNet-56 with
and without defense on CIFAR-10 data for FGSM, IFGSM, and CW-L2, respectively. It can be
observed that with increasing attack strength, ε, the testing accuracy decreases rapidly. FGSM
is a relatively weak attack method, as the accuracy remains above 53.5% (ε = 0.1) even with the
strongest attack. Meanwhile, the defense maintains accuracy above 71.8% (ε = 0.02). Figure 5
(b) and (c) show that both IFGSM and CW-L2 can fool ResNet-56 near completely even with
small ε. The defense maintains the accuracy above 68.0%, 57.2%, respectively, under the CW-L2
and IFGSM attacks. Compared to state-of-the-art defensive methods on CIFAR-10, PixelDefend,
our method is much simpler and faster. Without adversarial training, we have shown our defense
is more stable to IFGSM, and more stable to all three attacks under the strongest attack than
PixelDefend [26]. Moreover, our defense strategy is additive to adversarial training and many
other defenses including PixelDefend.

To analyze the defensive contribution from each component of the defensive strategy, we
separate the three parts and list the testing accuracy in Table. 2. Simple TVM cannot defend
FGSM attacks except when the DNNs are trained on the augmented data, as shown in the first
and fourth horizontal blocks of the table. WNLL activation improves the testing accuracy of
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Table 1: Mutual classification accuracy on the adversarial images resulting from attacking ResNet-56 with
the softmax and the WNLL activation functions.

Attack Method Training data ε = 0.02 ε = 0.04 ε = 0.06 ε = 0.08 ε = 0.1

Classification accuracy of ResNet-56 with softmax on adversarial images produced by attacking ResNet-56 with WNLL

FGSM Original data 59.6 59.5 58.0 56.3 54.3
FGSM TVM data 50.7 40.6 41.2 37.4 34.5
FGSM Original + TVM data 62.9 61.7 60.6 59.4 58.9

IFGSM Original data 49.1 43.6 40.4 36.8 34.8
IFGSM TVM data 30.3 23.7 20.1 18.0 17.3
IFGSM Original + TVM data 53.9 49.2 44.7 41.9 39.9

CW-L2 Original data 54.7 54.2 54.4 53.8 54.0
CW-L2 TVM data 59.8 59.5 58.7 59.8 59.1
CW-L2 Original + TVM data 81.5 81.5 81.8 81.2 81.5

Classification accuracy of ResNet-56 with WNLL on adversarial images produced by attacking ResNet-56 with softmax

FGSM Original data 65.4 65.9 63.6 61.7 60.5
FGSM TVM data 61.5 56.7 50.8 44.7 41.0
FGSM Original + TVM data 69.7 67.6 65.5 64.8 63.4

IFGSM Original data 51.9 43.9 38.9 35.4 34.2
IFGSM TVM data 32.1 22.8 19.5 17.8 16.1
IFGSM Original + TVM data 60.0 53.0 47.5 41.6 38.4

CW-L2 Original data 81.5 81.4 81.5 81.6 81.4
CW-L2 TVM data 57.6 58.4 57.8 58.4 58.4
CW-L2 Original + TVM data 90.6 90.6 90.5 90.1 90.4

(a) (b) (c)

Figure 5: Attack strength ε v.s. accuracy without defense, and defending by WNLL activation,
TVM and augmented training. (a), (b), (c) plot results for FGSM, IFGSM, and CW-L2 attack,
respectively.

adversarial attacks significantly and persistently. Augmented training can improve the stability
consistently as well.

8 Concluding Remarks
In this paper, by analyzing the influence of adversarial perturbations on the geometric structure of
the DNNs’ features, we propose to defend against adversarial attack by applying a data-dependent
activation function, total variation minimization on the adversarial images, and training data
augmentation. Results on ResNet-56 with CIFAR-10 benchmark reveal that the defense improves
robustness to adversarial perturbation significantly. Total variation minimization simplifies the
adversarial images, which is very useful in removing adversarial perturbation. Another interesting
direction to explore is to apply other denoising methods to remove adversarial perturbation.
Moreover, we noticed that an adversarial perturbation changes the features’ distribution severely,
and one possible way to correct this is to design algorithms that purify the adversarial images.
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Table 2: Testing accuracy of ResNet-56 on the adversarial/TVM CIFAR-10 dataset. The testing
accuracy without any defense are in red italic; and the results with all three defenses are in boldface.

Attack Method Training data ε = 0 ε = 0.02 ε = 0.04 ε = 0.06 ε = 0.08 ε = 0.1

Vanilla ResNet-56

FGSM Original data 93.0 60.4/39.4 60.3/39.4 58.2/40.2 55.8/30.9 53.5/40.1
FGSM TVM data 88.3 54.1/39.6 49.5/41.6 43.6/44.3 39.5/45.1 35.9/45.0
FGSM Original + TVM data 93.1 63.2/66.6 62.7/67.8 62.4/68.7 62.0/68.1 61.3/68.7

IFGSM Original data 93.0 20.6/35.0 11.6/32.3 8.6/31.0 7.5/28.8 6.5/27.6
IFGSM TVM data 88.3 10.3/32.9 6.7/31.1 6.1/31.7 6.1/30.8 6.0/29.2
IFGSM Original + TVM data 93.1 32.1/61.5 24.5/57.4 20.1/54.1 17.1/51.3 15.9/48.9

CW-L2 Original data 93.0 4.7/36.8 3.5/36.4 0/36.8 0/36.8 0/35.9
CW-L2 TVM data 88.3 8.2/36.5 8.1/36.0 8.0/35.9 8.0/35.8 8.0/36.3
CW-L2 Original + TVM data 93.1 13.6/62.2 13.6/62.2 13.0/62.1 12.0/62.1 12.0/61.9

Data-Dependent Activated ResNet-56

FGSM Original data 94.5 71.1/49.9 72.1/51.1 71.3/51.7 70.6/52.2 67.3/51.8
FGSM TVM data 90.6 62.6/49.3 56.8/54.1 52.1/56.2 46.0/56.6 41.0/57.1
FGSM Original + TVM data 94.7 70.6/71.8 68.8/73.1 67.2/74.9 66.9/73.6 63.7/74.1

IFGSM Original data 94.5 43.7/44.7 35.3/42.1 31.3/39.5 28.2/37.8 27.0/35.5
IFGSM TVM data 90.6 12.1/44.3 7.1/41.1 7.2/37.4 6.9/37.2 6.8/35.3
IFGSM Original + TVM data 94.7 35.0/67.4 25.1/64.9 20.5/61.9 17.5/58.7 16.3/57.2

CW-L2 Original data 94.5 11.9/40.1 11.7/40.8 11.0/40.8 10.8/41.2 10.8/40.5
CW-L2 TVM data 90.6 52.6/48.5 52.7/48.4 52.2/45.8 52.8/47.7 51.9/44.8
CW-L2 Original + TVM data 94.7 61.6/68.6 61.1/68.0 61.9/68.1 61.2/69.2 61.5/68.7
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