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Abstract. We elaborate the notion of a Ricci curvature lower bound for parametrized
statistical models. Following the seminal ideas of Lott-Strum-Villani, we define this
notion based on the geodesic convexity of the Kullback-Leibler divergence in a Wasser-
stein statistical manifold, that is, a manifold of probability distributions endowed with
a Wasserstein metric tensor structure. Within these definitions, the Ricci curvature is
related to both, information geometry and Wasserstein geometry. These definitions al-
low us to formulate bounds on the convergence rate of Wasserstein gradient flows and
information functional inequalities in parameter space. We discuss examples of Ricci
curvature lower bounds and convergence rates in exponential family models.

1. Introduction

The Ricci curvature lower bound on sample space plays a crucial role in various fields,
including heat semi-groups [3] and differential geometry (Brunn-Minkowski inequality)
[24]. In particular, it provides sharp bounds for convergence rates of diffusion processes [3]
and functional inequalities [22]. In recent years, optimal transport contributes a view-
point that connects Ricci curvature and information functionals. In this study, optimal
transport, in particular the L2-Wasserstein metric, introduces a Riemannian structure in
probability density space, named density manifold [14]. The Ricci curvature lower bound
in sample space is equivalent to the geodesic convexity of the Kullback-Leibler divergence
in the density manifold1. Following this angle, Lott-Strum-Villani [19, 23] define the Ricci
curvature on non-smooth metric sample spaces, and Erbar-Maas [9] introduce it on discrete
sample spaces.

In statistics and machine learning, we often are interested in constructing, or selecting,
a density that models the behavior of some observed data, according to some quality
criterion. Very often we restrict the search to a subset of densities, as this allows us
to handle large state spaces and also to incorporate prior knowledge into our search.
Parametrized statistical models are a ubiquitous and powerful approach. In this paper, we
develop the theory of Ricci curvature lower bounds for this situation. The Ricci curvature
lower bound governs the dissipation rates of the cross entropy. In the context of learning,
this corresponds to the rates of convergence of gradient descent methods for minimizing
the Kullback-Leibler (KL) divergence and computing information projections.

Key words and phrases. Ricci curvature; information projection; Wasserstein statistical manifold;
Fokker-Planck equation on parameter space; machine learning.

1Geodesic convexity is a synthetic definition. If a function f on manifold (M, g) is second differentiable,
then f is λ-geodesic convex whenever HessM f � λg.

1



2 LI, MONTÚFAR

The Wasserstein metric tensor of a statistical manifold (a parametrized set of probabil-
ity densities) has been defined in [16]. A statistical manifold endowed with a Wasserstein
metric tensor structure is called Wasserstein statistical manifold. We define the Ricci
curvature lower bound via geodesic convexity of the KL divergence on a Wasserstein sta-
tistical manifold. We obtain a definition of the Ricci-curvature that connects Wasserstein
geometry [24] and information geometry [1, 2], much in the spirit of [15, 16], and take a
natural further step towards connecting the two fields, in particular, relating notions from
learning applications and the geometry of the statistical models. We focus on discrete
sample spaces, which allows us to present a clear picture of the relations deriving from
this theory, and leave the details of continuous settings for future work.

We consider a discrete statistical model described by a tuple (Θ, I,p) consisting of
a parameter space Θ, a discrete sample space (or state space) I = {1, · · · , n}, and a
parametrization p : Θ → P(I). Here P(I) denotes the set of all probability distributions
on I. We say that (Θ, I,p) has Ricci curvature lower bound κ ∈ R with respect to a given
reference measure q, if and only if, for any θ ∈ Θ, it holds that

GF (θ) +
∑
a∈I

(
dθθpa(θ) log

pa(θ)

qa
− ΓW,a(θ)

d

dθa
DKL(p(θ)‖q)

)
� κGW (θ).

Here GF is the Fisher-Rao metric tensor, GW is the L2-Wasserstein metric tensor, dθθp
is the second differential of the parameterization, ΓW (θ) are the Christoffel symbols of

the Wasserstein statistical manifold, and DKL(p(θ)‖q) =
∑n

i=1 pi(θ) log pi(θ)
qi

is the KL di-

vergence. This definition depends on the reference measure q. In statistics and learning
applications, the reference measure will play the role of a target or empirical data distri-
bution. A schematic illustration of the spaces and relations that we consider is provided
in Figure 1.

The Ricci curvature on discrete state spaces has been studied by many groups. (i) Ol-
livier [20] introduces a discrete Ricci curvature via L1-Wasserstein metric. Many inequali-
ties on graphs are shown under this setting; see, e.g., [12, 13, 21]. (ii) Lin-Yau et al. [17, 18]
also define a Ricci curvature lower bound by heat semi-groups and Bakery-Emery Γ2 op-
erators. (iii) Erbar-Maas introduce the Ricci curvature lower bound in [9] by by means
of equivalence relations with Lott-Strum-Villani in the Wasserstein probability manifold,
under which several information functional inequalities are established. This notion has
been studied extensively in [6, 7, 8, 10, 11]. However, the notion of a Ricci curvature
lower bound on the parameter space of a statistical manifold has not been studied so far.
Parametrized Wasserstein probability sub-manifolds were not introduced until recently
in [4, 16]. Our definition of the Ricci curvature lower bound for parametrized statistical
models is close in spirit to the definitions by Lott-Strum-Villani and Erbar-Maas.

This paper is organized as follows. In Section 2, we briefly review the connections
between Ricci curvature, optimal transport, and KL divergence. We further demonstrate
these connections in the context of information projections. In Section 3, we introduce
Wasserstein statistical manifolds in parameter space. This is intended as a short review of
the definitions from [16]. We derive the Fokker-Planck equation on parameter space, which
is the Wasserstein gradient flow of the KL divergence. The main technical contributions
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Figure 1. Our discussion involves a state space I, a parameter space Θ,
and a parametrized set p(Θ) in the space P(I) of probability distributions
on I. For a reference measure q ∈ P(I), a positive Ricci curvature lower
bound implies that the Wasserstein geodesic connecting two distributions,
p(θ0) and p(θ1), ‘bends’ towards q. The figure depicts the geodesic as a thick
curve, together with the level sets of DKL(p(·)‖q), in Θ and p(Θ). In terms
of the state space I, when q is uniform, a decrease of the KL divergence
with respect to q corresponds to an increase of the entropy, meaning that
along the geodesic, the ‘volume’ of states under the distributions ‘bulges’.
This corresponds to the synthetic notion of positive curvature in sample
space. Note how the geodesics are constrained to lie within the model
p(Θ), which in general does not contain q. See Definition 7, Theorem 8,
Proposition 9, and Figures 2 and 3 for more details.

of this paper are contained in Section 4. We describe the convergence rate of the Fokker-
Planck equation in terms of a Ricci curvature lower bound. Further, we use the notion
of Ricci curvature lower bound to establish information functional inequalities. We also
discuss methods to estimate the Ricci curvature lower bound in practice. In Section 5, we
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present experiments on small examples of exponential families. These allow us to illustrate
the notions introduced in the paper, and gain more intuition about their meaning.

2. Ricci curvature and information projections

In this section, we review the connection of optimal transport and information theory
put forward in Villani’s book [24], and we further connect with the notion of informa-
tion projections described by Csiszár-Shields [5]. In later sections we will develop these
connections for the case of parametric statistical models.

2.1. Wasserstein geometry. Consider a continuous measure space (Ω, gΩ, q). Here Ω
is a finite dimensional compact smooth Riemannian manifold without boundary, gΩ is its
metric tensor, dx is the volume from of Ω, and q ∈ C∞(Ω) is the measure volume form
with

∫
Ω q(x) = 1, q(x) > 0. The Ricci curvature tensor on (Ω, gΩ, q) refers to

Ric = RicΩ−HessΩ log q, (1)

where RicΩ denotes the Ricci curvature on Ω and HessΩ is the Hessian operator on Ω. Note
that this notion of curvature depends on the reference measure q. Later in our discussion,
the reference measure will play the role of a target or empirical data distribution.

On the one hand, optimal transport, in particular the L2-Wasserstein metric, introduces
an infinite-dimensional Riemannian structure in density space. In the context of our
discussion, consider the set of smooth and strictly positive densities

P+(Ω) =
{
ρ ∈ C∞(Ω): ρ(x) > 0,

∫
Ω
ρ(x)dx = 1

}
.

The tangent space of P+(Ω) at ρ ∈ P+(Ω) is given by

TρP+(Ω) =
{
σ ∈ C∞(Ω):

∫
Ω
σ(x)dx = 0

}
.

Definition 1 (L2-Wasserstein metric tensor). Define the inner product gρ : TρP+(Ω) ×
TρP+(Ω)→ R by

gρ(σ1, σ2) =

∫
Ω
σ1(x)(−∆ρ)

†σ2(x)dx,

where ∆†ρ : TρP+(Ω)→ TρP+(Ω) is the inverse of elliptical operator ∆ρ = ∇ · (ρ∇). Here
∇ and ∇· are the gradient and divergence operators in Ω, respectively.

Following [14], we call (P+(Ω), g) a Wasserstein density manifold or a Wasserstein man-
ifold for short. The metric tensor introduces a variational formulation of a metric function.
More precisely, the square of the L2-Wasserstein metric function is equal to the geometric
energy (action) of geodesics in the Wasserstein manifold. For any ρ0, ρ1 ∈ P+(Ω), the
L2-Wasserstein metric function is defined as

W (ρ0, ρ1)2 = inf
{∫ 1

0
gρt(∂tρt, ∂tρt)dt : ρt ∈ P+(Ω), t ∈ [0, 1]

}
.

One can extend the definitions from P+(Ω) to the set P2(Ω) of Borel probability measures
with finite second moments. It is well known that the L2-Wasserstein metric defines
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a metric function on P2(Ω), and hence (P2(Ω),W ) forms a length space. See related
analytical treatments in [24].

2.2. Wasserstein gradient flow of the KL divergence. On the other hand, informa-
tion theory considers a particular functional on density space, namely the KL divergence.
Given a smooth reference measure q ∈ P+(Ω), the KL divergence of a given ρ with respect
to q is defined by

DKL(ρ‖q) =

∫
Ω
ρ(x) log

ρ(x)

q(x)
dx.

Notice that the KL divergence is precisely the free energy. Indeed, if we write q(x) =
1
K e
−V (x) with K =

∫
Ω e
−V (x)dx, we see that

DKL(ρ‖q) =

∫
Ω
ρ(x) log ρ(x)dx+

∫
Ω
V (x)ρ(x)dx+ logK

=−H(ρ) + Eρ[V (X)] + logK ,

where H(ρ) = −
∫

Ω ρ(x) log ρ(x) dx is the Boltzmann-Shannon entropy, X is a random
variable satisfying the law of density ρ and E is the expectation operator.

The Ricci curvature on sample space is related both to the KL divergence and the
L2-Wasserstein metric tensor. This interaction starts with the gradient flow of the KL
divergence in the Wasserstein manifold (P+(Ω), g), which describes the time evolution of
the density following the negative Wasserstein gradient of the KL divergence:

∂ρt
∂t

=− gradW DKL(ρ‖q)

=∇ · (ρt∇(log
ρt
q

+ 1))

=∇ · (ρt∇V ) + ∆ρt.

(2)

The second line is by Definition 1 of the Wasserstein metric tensor. The last equality holds
since q(x) = 1

K e
−V (x) and ∇ · (ρ∇ log ρ) = ∇ · (∇ρ) = ∆ρ.

It is worth noting that there are several perspectives based on (2). Firstly, the flow (2) is
a well-known dynamics called Fokker-Planck equation (FPE). It describes the probability
transition equation of drift diffusion process

Ẋt = −∇V (Xt) +
√

2Ḃt,

where Bt is the canonical Brownian motion in sample space. Secondly, along the flow (2),
the KL divergence converges to zero. I.e. ρt converges to the minimizer of the KL di-
vergence (free energy), known as the Gibbs measure, q(x) = 1

K e
−V (x). This reminds

of iterative methods for computing information projections [5] in statistics and machine
learning. In this context, one seeks to reproduce the behavior of a teacher system in terms
of a model. To this end, the learning rule proceeds by adjusting the model parameters
so as to maximize the likelihood of the observations, which is equivalent to minimizing
the divergence, for instance using Wasserstein gradient descent. The flow is the continu-
ous limit of the gradient descent learning rule. We shall go to this connection shortly, in
Section 2.5.
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2.3. Dissipation rates and the Ricci curvature lower bound. As it turns out, the
Ricci curvature lower bound governs the exponential dissipation rate of (2) towards the
Gibbs measure q. In the setting of learning, this corresponds precisely to the exponential
rate of convergence of the learning dynamics. To see this, the following calculations in
dynamical system are used. One can find the convergence rate of (2) by comparing the
ratio between the first and second time derivatives along the flow. By some computations,
the first time derivative of the KL divergence along the flow is found to be equal to

− d

dt
DKL(ρt‖q) =gρt(∂tρt, ∂tρt)

=

∫
Ω

Γ(log
ρt
q
, log

ρt
q

)ρt dx,

while the second time derivative is given by

d2

dt2
DKL(ρt‖q) = HessW DKL(ρt‖q)(∂tρt, ∂tρt)

=

∫
Ω

Γ2(log
ρt
q
, log

ρt
q

)ρt dx .

Here HessW is the Hessian operator with respect to the Wasserstein metric tensor, and Γ
and Γ2 are the Bakery-Emery operators defined by

Γ(f, f) =

∫
Ω
gΩ(∇f,∇f) dx,

and

Γ2(f, f) = (RicΩ−HessΩ log q)(∇f,∇f) + tr(HessΩ f,HessΩ f),

where RicΩ is the Ricci curvature tensor on Ω, HessΩ is the Hessian operator on Ω, and
tr is the trace operator. By the above formulas, the ratio between d

dt DKL(ρt‖q) and
d2

dt2
DKL(ρt‖q) relates to the integral version of Γ, Γ2, i.e. the expectation values of the

operators Γ, Γ2. Notice that tr(HessΩ f,HessΩ f) ≥ 0. Classical results [24] show that
the lower bound of Ricci curvature governs the smallest ratio between d

dt DKL(ρt‖q) and
d2

dt2
DKL(ρt‖q), which further gives the exponential convergence rate of (2). In addition,

the above computation demonstrate that the lower bound of the Ricci curvature, infor-
mally speaking, is equivalent to the smallest eigenvalue of the Hessian operator of the KL
divergence in the Wasserstein manifold.

Theorem 2. Given κ ∈ R and q(x) ∈ P+(Ω), the following statements are equivalent.

(i) κ is a Ricci curvature lower bound of (Ω, gΩ, q). I.e. κ is the largest number for
which, uniformly over Ω,

Ric = RicΩ−HessΩ log q � κgΩ;

(ii) Γ2(f, f) ≥ κΓ(f, f), for any f ∈ C∞(Ω);
(iii) For any constant speed geodesic ρt, t ∈ [0, 1], connecting ρ0 and ρ1 in (P2(Ω),W ),

DKL(ρt‖q) ≤ (1− t) DKL(ρ0‖q) + tDKL(ρ1‖q)−
κ

2
t(1− t)W (ρ0, ρ1)2.
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Theorem 2 opens the door to define a notion of Ricci curvature lower bound on sample
space via its equivalent statements. In the literature, Bakery-Emery [3] define the Ricci
curvature lower bound by applying (ii) for smooth Riemannian sample spaces, while Lott-
Strum-Villani [19, 23] define it using (iii) for non-smooth metric sample spaces, and Erbar-
Maas [9] define it by (iii) in a discrete sample space. In this paper, we shall define the
notion of Ricci curvature lower bound for parametric statistics taking an approach based
on (iii), known as the geodesic convexity property of the KL divergence.

2.4. Learning in a parametrized model. In statistics and machine learning applica-
tions one often considers a parametrized set {p(·; θ) : θ ∈ Rd} of candidate probability
distributions from which one wishes to choose one to model the distribution of some given
data.

One motivation for using parametrized models is reducing the dimensionality associated
with large state spaces. For instance, we may be considering a state space consisting of
images presented as arrays of pixel intensities, corresponding to {0, 1}n with n easily in
the order of thousands. In this case, storing a probability distribution as a vector p ∈ R2n

of individual probabilities p(x), x ∈ {0, 1}n, is an impossibility. With a parametric model,
instead of storing the probability vector, we store only a parameter vector θ ∈ Rd, with
a more manageable d, and fix a mapping that allows us to recover individual values
p(x; θ) of the probability distribution for a given x, or, in other cases, which allows us
to generate samples from p(·; θ) that we can also use to estimate any expectation values
of interest. Reducing the dimensionality is useful not only in terms of storage, but also
in a statistical sense, in relation to overfitting. Without going into details, the richer the
class of hypotheses, with more free parameters, the more prone we are to fitting statistical
nuisances of the data, instead of capturing the true general behavior of the data. By
working with a parametrized model, we can incorporate priors into the learning system
and limit its vulnerability to overfitting.

When working with a parametrized model, obtaining the best possible hypothesis, e.g.
the maximizer of the data likelihood, is usually a non trivial problem and one has to resort
to iterative methods. A relevant question then is the computational effort needed for this.
In particular, one is interested in the number of iterations needed until reaching a solution
that is within ε of the best possible. The Ricci curvature can be regarded as a way to
obtain bounds on the convergence rate of gradient optimization of the KL divergence for
a given a target distribution, uniformly over the start distribution. We elaborate on this
in the next paragraph. The situation is illustrated in Figures 1, 2, and 3.

2.5. I-projections. In the context of information theory and statistics, Csiszár-Shields [5]
define the I-projection of a distribution Q onto a non-empty closed convex set N of dis-
tributions as the point P ∗ ∈ N such that

D(P ∗‖Q) = min
P∈N

D(P‖Q).

The notion of I-projection considers the minimization of the KL divergence with respect to
the first argument, but it is also relevant in the context of maximum likelihood estimation,
where the minimization is with respect to the second argument. Given an empirical data



8 LI, MONTÚFAR

E

N

D(P‖P ∗)

D(P ∗‖Q)

D(P‖Q)

Q

P ∗

P

Figure 2. For a distribution Q in an exponential family E and a distribu-
tion P in an orthogonal linear family N , the Pythagorean relation holds:
D(P‖Q) = D(P‖P ∗)+D(P ∗‖Q), where P ∗ is the unique intersection point
of E and N .

distribution P , a maximum likelihood estimator over a set E is a point P ∗ ∈ E (the closure
of E), with

D(P‖P ∗) = inf
Q∈E

D(P‖Q).

If we consider an exponential family model E = {p ∝ Q exp(θTF ) : θ ∈ Rd} on a finite
state space I, with sufficient statistics F : I → Rd and reference measure Q ∈ P+(I), then
the maximum likelihood estimator P ∗ of the target distribution P can be obtained as the
I-projection of Q onto the orthogonal linear family defined by N = {p :

∑
x F (x)p(x) =∑

x F (x)P (x)}. We have namely that

P ∗ = argminQ∈E D(P‖Q) = argminP∈N D(P‖Q).

This is a consequence of the well known Pythagorean relation [5, 1] illustrated in Figure 2.

Csiszár and Shields [5] consider iterative methods for computing I-projections, and ob-
tain upper bounds on the divergence along the resulting parameter trajectories, which
describe the convergence to the optimum value. For two sets of distributions, P and Q,
together with two functions D(·, ·) : P × Q → R and δ(·, ·) : P × P → R, satisfying cer-
tain conditions, they describe an iterative algorithm (alternating divergence minimization)
which iterates pn ∈ P and qn ∈ Q, and give an upper bound of the form

D(pn+1, qn)−Dmin ≤ δ(p∞, pn)− δ(p∞, pn+1). (3)

In this paper we are in the special setting where Q = {q} and P is the set of all densities.
There is a natural connection between (3) and the Fokker-Planck-equation (2). Indeed,
setting D as the KL divergence and qn = q = p∞, pn = ρt, pn+1 = ρt+∆t, where ∆t is the
step size, we demonstrate in Proposition 9 that we can substitute

δ(q, p) =
1

2κ∆t
DKL(p‖q),
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DKL(p(θt)‖q)

p(θ0)

p(θ1)

t0 t1

1
8 κ dW (θ0, θ1)2

Figure 3. Illustration of the Ricci curvature lower bound κ in connection
to the geodesic convexity of the KL divergence and the rate of convergence
of the information projection flow. Here p(θt) is a Wasserstein geodesic con-
necting p(θ0) and p(θ1). When q = p(θ1), the KL divergence DKL(p(θt)‖q)
is monotonically decreasing.

where κ is the Ricci curvature lower bound that we will define later on. Strictly speaking,
for this correspondence, we need to assume that κ > 0, which is a natural requirement sim-
ilar to requiring that the KL divergence is geodesic convex in set P. Each step dissipation
in (3) then gives

DKL(ρt+∆t‖q)−Dmin ≤δ(p∞, pn)− δ(p∞, pn+1)

=
1

2κ∆t

{
DKL(ρt‖q)−DKL(ρt+∆t‖q)

}
=− 1

2κ

d

dt
DKL(ρt‖q) + o(∆t).

In other words, the Fokker-Planck equation is a monotone information projection flow, in
which the dissipation quantity is governed by the difference of relative entropy divided by
twice the Ricci curvature lower bound. In the limit where ∆t goes to zero,

DKL(ρt‖q)−Dmin ≤ −
1

2κ

d

dt
DKL(ρt‖q).

Grönwall’s inequality then implies that this I-projection flow (2) converges to the minimizer
at the rate of e−2κt, i.e.

DKL(ρt‖q)−Dmin ≤ e−2κt
(

DKL(ρ0‖q)−Dmin

)
.

The above shows that the learning rate for the Fokker-Planck equation is linear, whose
lower bound is governed by κ. Following these connections, we will pursue the definition
of the Ricci curvature lower bound on parameter space. The convergence rate, in relation
to the Ricci curvature lower bound and the geodesic convexity of the KL divergence, is
illustrated schematically in Figure 3. More details will be provided in Proposition 9.
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3. Wasserstein statistical manifolds

In preparation for the definitions and results on the Ricci curvature that we will present
in the next section, we briefly review the definition of a Wasserstein statistical manifold
with discrete sample space from [16], and present the Fokker-Planck equation on parameter
space.

3.1. Wasserstein geometry on the probability simplex. We recall the definition
of discrete probability simplex with L2-Wasserstein Riemannian metric. Consider the
discrete sample space I = {1, · · · , n}. The probability simplex on I is the set

P(I) =
{

(p1, · · · , pn) ∈ Rn :
n∑
i=i

pi = 1, pi ≥ 0
}
.

Here p = (p1, . . . , pn) is a probability vector with coordinates pi corresponding to the
probabilities assigned to each node i ∈ I. The probability simplex P(I) is a manifold
with boundary. We denote the interior by P+(I). This consists of the strictly positive
probability distributions, with pi > 0 for all i ∈ I. To simplify the discussion, we will
focus on the interior P+(I). For the studies related to the boundary ∂P(I), we refer the
reader to [15].

Next we define the L2-Wasserstein metric tensor on P+(I), which also encodes the
metric tensor of discrete states I. We need to give a ground metric notion on sample
space. We do this in terms of a undirected graph with weighted edges, G = (I, E, ω),

where I is the vertex set, E ⊆
(
I
2

)
is the edge set, and ω = (ωij)i,j∈I ∈ Rn×n is a matrix

of edge weights satisfying

ωij =

{
ωji > 0, if (i, j) ∈ E
0, otherwise

.

The set of neighbors (adjacent vertices) of i is denoted by N(i) = {j ∈ V : (i, j) ∈ E}.
The normalized volume form on node i ∈ I is given by di =

∑
j∈N(i) ωij∑n

i=1

∑
i′∈N(i) ωii′

.

The graph structure G = (I, E, ω) induces a graph Laplacian matrix function.

Definition 3 (Weighted Laplacian matrix). Given an undirected weighted graph G =
(I, E, ω), with I = {1, . . . , n}, the matrix function L(·) : Rn → Rn×n is defined by

L(p) = DTΛ(p)D, p = (pi)
n
i=1 ∈ Rn,

where

• D ∈ R|E|×n is the discrete gradient operator defined by

D(i,j)∈E,k∈V =


√
ωij , if i = k, i > j

−√ωij , if j = k, i > j

0, otherwise

,

• −DT ∈ Rn×|E| is the oriented incidence matrix, and
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• Λ(p) ∈ R|E|×|E| is a weight matrix depending on p,

Λ(p)(i,j)∈E,(k,l)∈E =

{
1
2( 1
di
pi + 1

dj
pj) if (i, j) = (k, l) ∈ E

0 otherwise
.

The Laplacian matrix function L(p) is the discrete analog of the weighted Laplacian
operator −∇ · (ρ∇) from Definition 1.

We are now ready to present the L2-Wasserstein metric tensor. Consider the tangent
space of P+(I) at p,

TpP+(I) =
{

(σi)
n
i=1 ∈ Rn :

n∑
i=1

σi = 0
}
.

Denote the space of potential functions on I by F(I) = Rn, and consider the quotient
space

F(I)/R = {[Φ] | (Φi)
n
i=1 ∈ Rn},

where [Φ] = {(Φ1+c, · · · ,Φn+c) : c ∈ R} are functions defined up to addition of constants.

We introduce an identification map via the weighted Laplacian matrix L(p):

V : F(I)/R→ TpP+(I), VΦ = L(p)Φ.

We know that L(p) has only one simple zero eigenvalue with eigenvector c(1, 1, · · · , 1), for
any c ∈ R. This is true since for (Φi)

n
i=1 ∈ Rn,

ΦTL(p)Φ = (DΦ)TΛ(p)(DΦ) =
∑

(i,j)∈E

ωij(Φi − Φj)
2(

1

2
(

1

di
pi +

1

dj
pj)) = 0,

implies Φi = Φj , (i, j) ∈ E. It the graph is connected, as we assume, then (Φi)
n
i=1 is

a constant vector. Thus VΦ : F(I)/R → TpP+(I) is a well defined map, linear, and one
to one. I.e., F(I)/R ∼= T ∗pP+(I), where T ∗pP+(I) is the cotangent space of P+(I). This
identification induces the following inner product on TpP+(I).

Definition 4 (L2-Wasserstein metric tensor). The inner product gp : TpP+(I)×TpP+(I)→
R takes any two tangent vectors σ1 = VΦ1 and σ2 = VΦ2 ∈ TpP+(I) to

gp(σ1, σ2) = σT1 Φ2 = σT2 Φ1 = ΦT
1L(p)Φ2. (4)

In other words,

gp(σ1, σ2) := σ1
TL(p)†σ2, for any σ1, σ2 ∈ TpP+(I),

where L(p)† is the pseudo inverse of L(p).

Following the inner product (4), the Wasserstein metric (distance function) W : P+(I)×
P+(I)→ R is defined by

W (p0, p1)2 := inf
p(t),Φ(t)

{∫ 1

0
Φ(t)TL(p(t))Φ(t)dt

}
. (5)

Here the infimum is taken over pairs (p(t),Φ(t)) with p ∈ H1((0, 1),Rn) and Φ: [0, 1]→ Rn
measurable, satisfying

d

dt
p(t)− L(p(t))Φ(t) = 0, p(0) = p0, p(1) = p1.
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3.2. Wasserstein statistical manifold. We next consider a statistical model defined by
a triplet (Θ, I,p). Here, I = {1, · · · , n} is the sample space, Θ is the parameter space,
which is an open subset of Rd, d ≤ n − 1, and p : Θ → P+(I) is the parametrization
function,

p(θ) = (pi(θ))
n
i=1, θ ∈ Θ.

We define a Riemannian metric gW on Θ as the pull-back of metric g on P+(I). In
other words, we require that p : (Θ, gW )→ (P+(I), g) is an isometric embedding:

gWθ (a, b) :=gWp(θ)(dθp(θ)(a), dθp(θ)(b))

=
(
dθp(θ)(a)

)T
L(p(θ))†

(
dθp(θ)(b)

)
, for all a, b ∈ Tθ(Θ).

Since dp(θ)(a) =
(∑d

j=1
∂pi(θ)
∂θj

aj
)n
i=1

= Jθp(θ)a, we arrive at the following definition.

Definition 5 (L2-Wasserstein metric tensor on parameter space). For any pair of tangent
vectors a, b ∈ TθΘ = Rd, define

GW (θ) := Jθp(θ)
TL(p(θ))†Jθp(θ), (6)

and
gWθ (a, b) := aTGW (θ)b,

where Jθ(p(θ)) = (∂pi(θ)∂θj
)1≤i≤n,1≤j≤d ∈ Rn×d is the Jacobi matrix of the parametrization p.

This inner product is consistent with the restriction of the Wasserstein metric gW to
p(θ). We will assume that rank(Jθp(θ)) = d, so that the parametrization pi is locally
injective and the metric tensor gW is positive definite. We call (Θ, I,p), together with the
induced Riemannian metric gW , Wasserstein statistical manifold (WSM).

In this case, the constrained Wasserstein distance function dW : Θ × Θ → R+ is given
by the geometric action energy

dW (θ0, θ1)2 = inf
θ(t)∈C1([0,1],Θ)

{∫ 1

0
θ̇(t)TGW (θ(t))θ̇(t)dt : θ(0) = θ0, θ(1) = θ1

}
. (7)

When working on the full probability simplex, with θ = p, the metric function dW corre-
sponds precisely to the metric function W given in (5).

3.3. Fokker-Planck equation on parameter space. We next derive the Fokker-Planck
equation on parameter space by Wasserstein gradient flow of KL divergence.

Given a reference measure q ∈ P+(I), consider the Kullback-Leibler divergence (relative
entropy) on parameter space

DKL(p(θ)‖q) =

n∑
i=1

pi(θ) log
pi(θ)

qi
.

Proposition 6 (Fokker-Planck equation on parameter space). The gradient flow for the
negative Boltzmann-Shannon entropy in (Θ, g) is

dθ

dt
= −

(
Jθp(θ)

TL(p(θ))†Jθp(θ)
)†
Jθp(θ)

T log
p(θ)

q
. (8)
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Proof. The gradient flow of entropy on (Θ, gW ) satisfies

dθ

dt
=− gradW DKL(p(θ)‖q)

=−GW (θ)†∇θ DKL(p(θ)‖q)

=−
(
Jθp(θ)

TL(p(θ))†Jθp(θ)
)†
Jθp(θ)

T(log
p(θ)

q
+~1),

where ∇θ represents the Euclidean gradient operator, log p(θ)
q = (log pi(θ)

qi
)ni=1 and ~1 =

(1, · · · , 1) ∈ Rn. Since p(θ)T~1 = 1, we have Jθp(θ)
T~1 = ~0. This completes the proof. �

Remark 1. Consider the full probability set with continuous sample space Ω. Denote the
probability pi(t) by a density ρ(t, x) ∈ P(Ω), then (8) recovers the FPE (2).

We next study the convergence properties of the Fokker-Planck equation on parameter
space. In other words, how fast does the solution of (8) converge to its equilibrium? As
in the full probability space, we define the concept of Ricci curvature lower bound on
parameter space to give the bound of the convergence rate for (8).

4. Ricci curvature lower bound on parameter space

This section contains the main contributions of this paper. We define the Ricci curvature
lower bound on parameter space and prove equivalent conditions for this definition, which
connect information geometry and Wasserstein geometry. In addition, we present several
information functional inequalities on parameter space. Finally, we give a simple guide
for computing these quantities in practice.

4.1. Ricci curvature lower bound on parameter space.

Definition 7. We say (Θ, I,p) has the Ricci curvature lower bound κ ∈ R if for any
constant speed geodesic θt, t ∈ [0, 1], connecting θ0, θ1 in (Θ, gW ), it holds that

DKL(p(θt)‖q) ≤ (1− t) DKL(p(θ0)‖q) + tDKL(p(θ1)‖q)− κ

2
t(1− t)dW (θ0, θ1)2.

In this case we also write
Ric(Θ, I,p) ≥ κ.

If (Θ, gW ) forms a compact smooth Riemannian manifold and p(θ) is smooth. Then
κ is the smallest eigenvalue of the Hessian of the KL divergence over the Wasserstein
statistical manifold, i.e.

HessW DKL(p(θ)‖q) � κGW (θ),

for any θ ∈ Θ.

Definition 7 is based on the definition of geodesic convexity in geometry. It is a more
general definition than the one in terms of the Hessian operator begin bounded below
by κ. The reason is as follows. On the one hand, the probability set is a manifold with
boundary. Suitable regularity studies are needed to take care of the boundary when using
the Hessian operator [15]. On the other hand, not all parameterizations p(θ) are twice
differentiable.
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Definition 7 shares the same spirit of Lott-Strum-Villani and Erbar-Maas. If p(θ) =
P(I) is the whole probability simplex, then Ric(Θ, I,p) is the Ricci curvature bound on
discrete sample space. Our definition extends this idea to a statistical manifold. In other
words, Ric(Θ, I,p) inherits properties from both probability submanifold and Ricci curva-
ture bound on sample space. Note that Ric(Θ, I,p) is different from the Ricci curvature
on (Θ, gW ), in which the former represents how the changes ratio KL divergence takes
effect on the parameterized sample space, while the later reflects the curvature on the set
of probability itself.

We next given an equivalent condition for Definition 7. It naturally connects Ricci
curvature (R), Information geometry (I) and Wasserstein geometry (W). We call it Ricci-
Information-Wasserstein (RIW) condition.

Theorem 8 (RIW condition). Assume Θ is a compact set. Ric(Θ, I,p) ≥ κ holds if and
only if for any θ ∈ Θ,

GF (θ) +
∑
a∈I

(
dθθpa(θ) log

pa(θ)

q
− ΓW,a(θ)

d

dθa
DKL(p(θ)‖q)

)
� κGW (θ), (9)

where GF (θ) = (GF (θ)ab)1≤a,b≤d is the Fisher-Rao metric tensor

GF (θ)ab =
∑
i∈I

d log pi(θ)

dθa

d log pi(θ)

dθb
pi(θ), (10)

ΓW,k = (ΓW,kij )1≤i,j≤n is the Wasserstein Christoffel symbol

ΓW,kij =
1

2

n∑
l=1

(GW,kl)
−1
(
∇θiGW,jl +∇θjGW,il −∇θlGW,ij

)
,

and GW (θ) is the Wasserstein metric tensor defined in (6).

Proof. Let θt be a constant speed geodesic, i.e. θ̈t + ΓW (θ̇t, θ̇t) = 0 with θ0 = θ ∈ Θ and

θ̇0 = a ∈ TθΘ. Consider the Taylor expansion

DKL(p(θt)‖q) = DKL(p(θ)‖q) +
d

dt

∣∣∣∣
t=0

DKL(p(θt)‖q)t+
1

2

d2

dt2

∣∣∣∣
t=0

DKL(p(θt)‖q)t2 + o(t2).

Then the Hessian operator on Riemannian manifold (Θ, gW ) forms

HessW DKL(p(θt)‖q)(θ̇t, θ̇t) =
d2

dt2
DKL(p(θt)‖q)

=
d

dt
(dθDKL(p(θt)‖q)Tθ̇t)

=θ̇Tt dθθ DKL(p(θt)‖q)θ̇t − dθ DKL(p(θt)‖q)TΓW (θ̇t, θ̇t)

=θ̇Tt dθθ DKL(p(θt)‖q)θ̇t − θ̇Tt (
∑
k∈I

d

dθk
DKL(p(θt)‖q)ΓW,k)θ̇t.
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In addition,

dθ DKL(p(θt)‖q) =

n∑
i=1

(
dθpi(θt) log pi(θt) + pi(θt)dθ log pi(θt)− dθpi(θt) log qi

)
=

n∑
i=1

(
dθpi(θt) log pi(θt)− dθpi(θt) log qi

)
,

where
∑n

i=1 pi(θt)dθ log pi(θt) =
∑n

i=1 pi(θt)
1

pi(θt)
Jθpi(θt) = 0, since

∑n
i=1 pi(θ) = 1. Thus

dθθ DKL(p(θt)‖q) =
n∑
i=1

dθθpi(θt) log
pi(θt)

q
+

n∑
i=1

1

pi(θt)
dθpi(θt)dθpi(θt)

T

=
n∑
i=1

dθθpi(θt) log
pi(θt)

q
+GF (θ),

where GF denotes the Fisher-Rao metric tensor: GF (θt) =
∑n

i=1
1

pi(θt)
dθpi(θt)dθpi(θt)

T =∑n
i=1 dθ log pi(θt)dθ log pi(θt)

Tpi(θ), with the fact 1
pi(θt)

dθpi(θt) = dθ log pi(θt).

Thus HessW DKL(p(θ)‖q) � κGW (θ) is equivalent to (9). This concludes the proof. �

Remark 2. If we replace I by the continuous sample space (Ω, gΩ) and consider the full
probability simplex, then RIW condition (9) is equivalent to the integral version of Bakery-
Emery condition. See details in [15, Proposition 19].

4.2. Entropy dissipation on parameter space. With the Ricci curvature lower bound
in hand, we can prove the following convergence properties of Fokker-Planck equations on
parameter space.

Proposition 9 (Bakery-Emery condition on parameter space). Assume Θ is a compact
set. If Ric(Θ, I,p) ≥ κ > 0, then there exists a unique equilibrium θ∗ ∈ Θ, with

θ∗ = arg min
θ∈Θ

DKL(p(θ)‖q).

In addition, for any initial condition θ0 ∈ Θ, the solution θ(t) of (2) converges to θ∗

exponentially fast, with

DKL(p(θt)‖q)−DKL(p(θ∗)‖q) ≤ e−2κt
(

DKL(p(θ0)‖q)−DKL(p(θ∗)‖q)
)
, for all t. (11)

Remark 3. This result will apply for any geometry defined on Θ, whenever κ is the smallest
eigenvalue of the corresponding Hessian operator of the divergence function.

Proof. The proof comes from the classical study of gradient flow in Riemannian manifold
(Θ, gW ). Since HessW DKL(p(θ)‖q) ≥ κ > 0, the DKL(p(θ)‖q) is κ-geodesics convex in
(Θ, gW ). Thus θ(t) converges to the unique equilibrium θ∗, which is also the unique
minimizer of KL divergence.

We next investigate how fast θ(t) converges to θ∗. The speed of convergence is obtained
by comparing the first and second derivatives of the KL divergence w.r.t. time t along (2).
We have

d

dt
DKL(p(θt)‖q) = −gW (gradW DKL(p(θt)‖q), gradW DKL(p(θt)‖q)

)
,



16 LI, MONTÚFAR

and

d2

dt2
DKL(p(θt)‖q) = 2 HessW DKL(p(θt)‖q)

(
gradW DKL(p(θt)‖q), gradW DKL(p(θt)‖q)

)
.

From Ric(Θ, I,p) ≥ κ > 0, then HessW DKL(p(θ)‖q) ≥ κ > 0, i.e.

d2

dt2
DKL(p(θt)‖q) ≥ −2κ

d

dt
DKL(p(θt)‖q), for all t ≥ 0. (12)

Then by integrating the above formula over [t,+∞), one obtains

d

dt
[DKL(p(θ∗)‖q)−DKL(p(θt)‖q)] ≥ −2κ[DKL(p(θ∗)‖q)−DKL(p(θt)‖q)].

Proceed with the Grönwall’s inequality, the result is proved. �

4.3. Functional inequalities on parameter space. In literature [22], the convergence
rate of FPE is used to prove several functional inequalities, including Log-Sobolev, Tala-
grand and HWI inequalities. The HWI inequality is a relation between the relative entropy
(H), Wasserstein metric (W), relative Fisher information functional (I). We shall derive
the counterparts of these inequalities on parameter space.

Here the Log-Sobolev inequality describes a relationship between relative entropy and
relative Fisher information functional on parameter space. Here the relative Fisher infor-
mation functional is defined by

I(p(θ)‖q) :=gW (gradW DKL(p(θt)‖q), gradW DKL(p(θt)‖q)). (13)

In particular, we formulate (13) as follows:

I(p(θ)‖q) = log
p(θ)

q

T

Jθ(p(θ))
(
Jθp(θ)

TL(p(θ))†Jθp(θ)
)†
Jθp(θ)

T log
p(θ)

q

=
(

Projθ log
p(θ)

q

)T
L(p(θ))

(
Projθ log

p(θ)

q

)
=

n∑
i=1

∑
j∈N(i)

1

2di
ωij

(
(Projθ log

p(θ)

q
)i − (Projθ log

p(θ)

q
)j

)2
pi(θ),

where Projθ = (Jθp(θ)
T)†Jθp(θ)

T ∈ Rn×n is the projection matrix, which projects the
differential operator in full probability into the one in parameter space. We compare (13)
with the one in continuous sample space and full probability space:

I(ρ‖q) =

∫
Ω
gΩ(∇ log

ρ

q
,∇ log

ρ

q
)ρ dx.

We note that the functional (13) is different from the commonly known Fisher information
matrix (10) in parameter space. It contains the ground metric structure in the sample
space, which is inherited from the L2-Wasserstein metric tensor L(p)†. In other words,
when applying the Fisher information in full probability set into parameter space, the
following two angles arrive. Here (13) keeps the differential structure of sample space and
project the differential of KL divergence into the parameter space, while Fisher information
matrix (10) replaces the differential structures of sample space to the ones in parameters.

In the following, we derive inequalities based on (13).
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Proposition 10 (Functional inequalities on parameter space). Consider a statistical man-
ifold (Θ, I,p). The following inequalities hold.

(i) If Ric(Θ, I,p) ≥ κ > 0, then the Logarithmic Sobolev inequality on parameter space

DKL(p(θ)‖q)−DKL(p(θ∗)‖q) ≤ 1

2κ
I(p(θ)‖q), (14)

holds for any θ ∈ Θ.
(ii) If Ric(Θ, I,p) ≥ κ > 0, then the Talagrand inequality on parameter space

κ

2
dW (θ, θ∗)2 ≤ DKL(p(θ)‖q)−DKL(p(θ∗)‖q),

holds for any θ ∈ Θ.
(iii) If Ric(Θ, I,p) ≥ κ ∈ R (κ not necessarily positive), then the HWI inequality on

parameter space

DKL(p(θ)‖q)−DKL(p(θ∗)‖q) ≤
√
I(p(θ)‖q)dW (θ, θ∗)− κ

2
dW (θ, θ∗)2,

holds for any θ ∈ Θ.

Proof. Here we mainly follow the heuristic arguments in [22]. In finite dimensional param-
eter space, these approaches are rigorous. We demonstrate the proofs for the completeness
of paper.

(i) The proof follows Proposition 9. Consider the Fokker-Planck equation (2) with initial
condition θ(0) = θ. The dissipation along gradient flow of entropy gives

I(p(θt)‖q) =− d

dt
DKL(p(θt)‖q)

=gW
(

gradW DKL(p(θt)‖q), gradW DKL(p(θt)‖q)
)
.

(15)

Since (12) holds, by integrating over time t ∈ [0,∞), we have

− d

dt
DKL(p(θt)‖q)|∞t=0 ≥ −2κ[DKL(p(θ∗)‖q)−DKL(p(θ0)‖q)].

From (15) and θ(0) = θ, we have

I(p(θ)‖q)− I(p(θ∗)‖q) ≤ 2κ[DKL(p(θ)‖q)−DKL(p(θ∗)‖q)],
where we use the fact gradW DKL(p(θ)‖q) = 0, so that I(p(θ∗)‖q) = 0. It proves the
result.

(ii) Consider θ(t) satisfy the FPE (2) on parameter space with θ(0) = θ. Since
Ric(Θ, I,p) ≥ κ > 0, then limt→∞ θ(t) = θ∗. Define

Ψ(t) = dW (θ, θ(t)) +

√
2

κ

√
DKL(p(θt)‖q)−DKL(p(θ∗)‖q).

Thus Ψ(0) =
√

2
κ

√
DKL(p(θ)‖q)−DKL(p(θ∗)‖q) and Ψ(∞) = limt→∞Ψ(t) = dW (θ, θ∗).

We claim that Ψ(t) is nondecreasing. If so, then Ψ(0) ≤ Ψ(∞), which proves the result.

To show Ψ(t) is nondecreasing, we shall prove that

d

dt

+

Ψ(t) = lim sup
h→0+

Ψ(t+ h)−Ψ(t)

h
≤ 0.
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Here we assume θ(t) 6= θ∗, otherwise Ψ(t + h) = Ψ(t) for any h, which shows the upper
derivative zero.

On the one hand, by triangle inequality,

|dW (θ, θt)− dW (θ, θt+h)| ≤ dW (θt, θt+h),

so that

lim sup
h→0+

dW (θt, θt+h)

h
=
√
gW (gradW DKL(p(θt)‖q), gradW DKL(p(θt)‖q)) =

√
I(p(θt)‖q).

(16)

On the other hand, since θ(t) 6= θ∗, then√
2

κ

d

dt

√
DKL(p(θt)‖q)−DKL(p(θ∗)‖q)

=− gW (gradW DKL(p(θt)‖q), gradW DKL(p(θt)‖q))√
2κ(DKL(p(θt)‖q)−DKL(p(θ∗)‖q))

=− I(p(θt)‖q)√
2κ(DKL(p(θt)‖q)−DKL(p(θ∗)‖q))

.

From (14), we have√
2

κ

d

dt

√
DKL(p(θt)‖q)−DKL(p(θ∗)‖q) ≤ −

√
I(p(θt)‖q). (17)

From (16) and (17), we have d
dt

+
Ψ(t) = lim suph→0+

Ψ(t+h)−Ψ(t)
h ≤ 0, which finishes the

proof.

(iii) From the definition of Ric(Θ, I,p) ≥ κ, then HessW DKL(p(θ)‖q) � κGW . Denote
θt be a geodesic curve of least energy in manifold (Θ, gW ), joining θ0 = θ and θ1 = θ∗.
Thus

dW (θ, θ∗) =

√
gW (

dθt
dt
,
dθt
dt

).

From the Taylor expansion on the (Θ, gW ), we have

DKL(p(θ∗)‖q) = DKL(p(θ)‖q) +
d

dt
|t=0 DKL(p(θt)‖q) +

∫ 1

0
(1− t) d

2

dt2
DKL(p(θt)‖q)dt.

We note that

d

dt
|t=0 DKL(p(θt)‖q) =gW (gradW DKL(p(θt)‖q),

dθt
dt

)|t=0

≥−
√
gW (gradW DKL(p(θt)‖q), gradW DKL(p(θt)‖q))|t=0

√
gW (

dθt
dt
,
dθt
dt

)|t=0

=−
√
I(p(θ)‖q)dW (θ, θ∗),



RICCI CURVATURE FOR PARAMETRIC STATISTICS 19

and ∫ 1

0
(1− t) d

2

dt2
DKL(p(θt)‖q)dt =

∫ 1

0
(1− t)gW (HessW DKL(p(θt)‖q) ·

dθt
dt
,
dθt
dt

)dt

≥
∫ 1

0
κ(1− t)gW (

dθt
dt
,
dθt
dt

)dt

=
κ

2
dW (θ, θ∗)2.

Combining the above formulas, we prove the result. �

4.4. Computing the Ricci curvature lower bound and convergence rate. In this
section, we design an algorithm for Ricci curvature lower bound κ.

We first approximate κ by RIW condition in Theorem 8. In other words, we compute
formulas for (9) via

κ = Smallest eigenvalue of GW (θ)−1
{
GF (θ)+

∑
a∈I

(
dθθpa(θ) log

pa(θ)

q
−ΓW,a(θ)

d

dθa
DKL(p(θ)‖q)

)}
.

where dθθpa(θ), ΓW,a(θ), d
dθa

DKL(p(θ)‖q) are computed by numerical differentiation.

In practice, we also compute a uniform convergence rate K ≥ κ as the smallest ratio of
d
dt DKL(p(θt)‖q) and d2

dt2
DKL(p(θt)‖q) along the gradient flow (8) for any initial conditions.

I.e.

K = min
θ0∈Θ

1

2T

DKL(p(θ2T )‖q)− 2 DKL(p(θT )‖q) + DKL(p(θ0)‖q)
DKL(p(θT )‖q)−DKL(p(θ0)‖q)

,

where T is a given short time, θT is the solution of (11) with initial condition θ0. Whenever
K > 0, it is always the tight bound for functional inequalities in Proposition 10.

Convergence rate

Input: Sample initial conditions {θs0}
|S|
s=1;

Target distribution q;
A suitable initial step size h > 0;
A short terminal time T > 0.

Output: Approximation K of the uniform convergence rate;

for s ∈ {1, · · · , |S|}
for k = 1, 2, . . . , 2T/h

θsk+1 = θsk − hGW (θsk)
−1∇θ DKL(p(θsk)‖q) ;

end
end

K = mins∈{1,··· ,|S|}
1

2T
DKL(p(θs2T )‖q)−2 DKL(p(θsT )‖q)+DKL(p(θs0)‖q)

DKL(p(θsT )‖q)−DKL(p(θs0)‖q) .
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5. Examples

In this section, we illustrate some of the concepts introduced in the previous sections
by means of evaluating them on a simple class of exponential family models. We illustrate
the effects from the choice of the ground metric on sample space in relation to the choice
of the statistical model, and the relationships between the Ricci curvature lower bound
and the rates of convergence in learning.

Example 1 (Ricci curvature for a one-dimensional exponential family on three states).
We study how the Ricci curvature changes with the choice of a probability model and with
the choice of the ground metric on sample space. In order to obtain a picture as complete
as possible, we consider the small setting of three states and one dimensional exponential
families.

Consider the sample space I = {1, 2, 3} with a fully connected graph with edges E =
{(1, 2), (2, 3), (1, 3)}, and weights ω = (ω12, ω23, ω13). The probability simplex is a triangle

P(I) =
{

(pi)
3
i=1 ∈ R3 :

3∑
i=1

pi = 1, pi ≥ 0
}
.

We consider statistical manifolds of the form

p(θ) =
1

Z(θ)
(eθc1 , eθc2 , eθc3),

with sufficient statistic c = (c1, c2, c3) ∈ R3, parameter θ ∈ Θ = [θmin, θmax] ⊂ R1, and

partition function Z(θ) =
∑3

i=1 e
θci. These are exponential families specified by the choice

of the sufficient statistic c. Here, addition of constants is immaterial. Multiplicative
scaling by non-zero numbers does not change the model. For better comparability, we
always choose c to have norm one.

In particular, these models can be indexed by the projective line, which for simplicity we
can represent by a half circle, or an angle.

We fix a uniform reference measure q = (1
3 ,

1
3 ,

1
3). The KL divergence then takes the

form

DKL(p‖q) =

3∑
i=1

pi log
pi
qi

=

3∑
i=1

pi log pi + log 3.

We evaluate the Ricci curvature lower bound for 30 different exponential families and
10 different choices of the ground metric. We choose the sufficient statistics as evenly
spaced points on a radius 1 half circle, and set the parameter domain as Θ = [−2, 2].

The results are shown in Figure 4. The left panel estimates K as the minimum rate
of convergence of the Wasserstein gradient flow of the KL divergence, over a grid of 10
different initial conditions on the parameter domain. As can be seen, the convergence is
faster, the better ω connects the end points of the exponential family.
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Figure 4. Lower bound on the Ricci curvature for one-dimensional expo-
nential families on three states. Each simplex corresponds to a different
choice of ω = (ω12, ω23, ω13), indicated at the bottom. Within each simplex
there are 30 different exponential families (which are curves) with sufficient
statistics of norm one and parameter domain Θ = [−1, 1]. The color of each
exponential family corresponds to the value of K estimated as the minimum
convergence rate (left panel), and the value of κ as the minimum eigenvalue
of the Hessian (right panel), over the parameter domain. Blue corresponds
to lower and yellow to higher values. We give a direct comparison of K
and κ in Figure 5.

The right panel estimates κ as the minimum eigenvalue of the Hessian operator of the
KL divergence over a grid of parameter values in the domain. Figure 5 gives a direct com-
parison of the estimates obtained from convergence rates and the Hessian. As can be seen,
the Hessian is always a lower bound of the convergence rate, which reflects Proposition 9.

If the parameter domain is smaller, the Hessian gives a closer bound to the rate of
convergence. If, on the contrary, the parameter domain is larger, the gaps between the
Hessian and the convergence rates tend to be larger. Larger parameters correspond to
distributions closer to the boundary of the simplex. We illustrate these effects in the
Appendix, where we provide figures with different choices of Θ (Figures 6 and 7), and also
comparing the Hessian and rates of convergence at individual parameter values (Figure 8).

6. Discussion

To summarize, we introduced a notion of Ricci curvature lower bound for parametric
statistical models and illustrated its possible relevance in the context of parameter estima-
tion and learning. This notion is based on the geodesic convexity of the KL divergence in
Wasserstein geometry. Following the program from [16], we hope that this paper continues
to strengthen the interactions between information geometry and Wasserstein geometry.
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Figure 5. This figure compares the values of K and κ from Figure 4.
Each subplot corresponds to one choice of ω, indicated at the top, with
x axis corresponding to the 30 different exponential families. As can be
seen, the curvature κ obtained as the smallest Hessian eigenvalue (red) is,
indeed, always a lower bound of the convergence rate K (blue).

The Ricci curvature lower bound depends on the target distribution, the statistical
model, and the ground metric on sample space. We think that this notion can serve
to capture the general properties of learning in different models, and hence that it can
serve to guide the design of statistical models (e.g., the graph of a graphical model or the
connectivity structure of a neural network) and the ground metric. Our experiments show
that an adequate choice of the two, in conjunction, can significantly increase the rates of
convergence in learning. On the other hand, the Ricci curvature depends on both, the
information and the Wasserstein metric tensors. An interesting question arises; namely to
find the statistical interpolation of such a connection.

We note that the Ricci curvature lower bound is a global notion over the probability
model. This is advantageous to provide a uniform analysis, but it can also lead to difficul-
ties, especially when the models include points near the boundary of the simplex, where
the behavior is not as regular. Our experiments indicate that restricting the parameter
domain to a region bounded away from the boundary of the simplex allows us to closely
track the rates of convergence. Another challenge is that, being a global quantity, the
computation can be challenging. Nonetheless, we point out that computing the curvature
in terms of the Hessian is much cheaper than estimating the learning rates empirically.
We have focused on discrete sample spaces, which allowed us to obtain an intuitive and
transparent picture of the relationships that derive form this theory. However, we expect
that the derivations extend naturally to the case of continuous sample spaces.

Another interesting line of investigation is the following. Our definitions are based
on the KL divergence and the Wasserstein and Fisher metric tensors. In principle, it is
possible to derive analogous definitions for other metric structures. In particular, one can
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consider the family of f-divergences. Such an analysis could allow us to compare different
learning paradigms.
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[6] M. Erbar and M. Fathi. Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for

Markov chains with non-negative Ricci curvature. Journal of Functional Analysis, 274(11):3056–3089,
2018.

[7] M. Erbar, C. Henderson, G. Menz, and P. Tetali. Ricci curvature bounds for weakly interacting Markov
chains. Electronic Journal of Probability, 22, 2017.

[8] M. Erbar and E. Kopfer. Super Ricci flows for weighted graphs. arXiv:1805.06703 [math], 2018.
[9] M. Erbar and J. Maas. Ricci Curvature of Finite Markov Chains via Convexity of the Entropy. Archive

for Rational Mechanics and Analysis, 206(3):997–1038, 2012.
[10] M. Erbar, J. Maas, and P. Tetali. Discrete Ricci Curvature bounds for Bernoulli-Laplace and Random
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Appendix A. Additional figures to Example 1
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Figure 6. Similar to Figure 4 but with Θ = [−1/2, 1/2]. Note how on this
tight parameter domain around θ = 0 (the value of the reference measure),
the Ricci curvature lower bound gives a very close lower bound on the
minimum rate of convergence for each of the models. The middle shows
the direct comparison of the two values across the 30 exponential families.
The minimum rate of convergence is shown in blue, and the Hessian in red.
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Figure 7. Similar to Figures 4, but with a larger parameter domain Θ =
[−4, 4]. On this relatively large parameter domain, the models contain
points close to the boundary of the simplex, where the Hessian (and the
Ricci curvature) can have large oscillations. In turn, we observe larger gaps
to the minimum rate of convergence, compared with Figure 6.
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Figure 8. Convergence rates and minimum Hessian eigenvalue at in-
dividual parameter choices. Here we fixed the ground metric ω =
(ω12, ω23, ω13) = (1/2, 1/2, 0). Each subplot corresponds to one exponen-
tial family, with sufficient statistic indicated at the top. Within a region
around θ = 0 (the value of the reference measure), the minimum of the
Hessian is closer to the convergence rates. In fact, the Hessian eigenvalue
intersects the rate of convergence at θ = 0. The Hessian at θ = 0 is the
asymptotic rate of convergence. The lower row zooms in the y axis of the
upper row. For these exponential families, the convergence rates do not
vary much across choices of the initial parameter value.
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