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Abstract
We introduce a new method for training GANs by
applying the Wasserstein-2 metric proximal on the
generators. The approach is based on Wasserstein
information geometry. It defines a parametriza-
tion invariant natural gradient by pulling back op-
timal transport structures from probability space
to parameter space. We obtain easy-to-implement
iterative regularizers for the parameter updates of
implicit deep generative models in GANs. Our ex-
periments demonstrate that this method improves
the speed and stability of training in terms of wall-
clock time and Fréchet Inception Distance (FID)
learning curves.

1. Introduction
Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) are a powerful approach to learning genera-
tive models. Here, a discriminator tries to tell apart the
data generated by a real source and the data generated by a
generator, whereas the generator tries to fool the discrimina-
tor. This adversarial game is formulated as an optimization
problem over an implicit generative model for the generator.
An implicit generative model is a parametrized family of
functions mapping a noise source to sample space. In trying
to fool the discriminator, the generator should try to recreate
the probability density of the real source.

The problem of matching a target density can be formu-
lated as the minimization of a discrepancy measure. The
Kullback–Leibler (KL) divergence is known to be difficult
when the densities have a low dimensional support set, as is
commonly the case in applications with structured data and
high dimensional sample spaces. An alternative approach
to define a discrepancy measure between densities is opti-
mal transport, a.k.a. Wasserstein distance or Earth Mover’s
distance. This has been used recently to define the loss
function for learning generative models (Montavon et al.,
2016; Frogner et al., 2015). In particular, the Wasserstein
GAN (Arjovsky et al., 2017) has attracted much interest in

recent years.

Besides defining the loss function, optimal transport can
also be used to introduce structures serving the optimization
itself, in terms of the gradient operator. In full probability
space, this method is known as the Wasserstein steepest de-
scent flow (Jordan et al., 1998; Otto, 2001). In this paper we
derive the Wasserstein steepest descent flow for deep gen-
erative models in GANs. We use the Wasserstein-2 metric
function, which allows us to obtain a Riemannian structure
and a corresponding natural (i.e., Riemannian) gradient. A
well known example of a natural gradient is the Fisher-Rao
natural gradient, which is induced by the KL-divergence. In
learning problems, one often finds that the natural gradients
offer advantages compared to the Euclidean gradient (Amari,
1998; 2016). In GANs, the densities under consideration
typically have a small support set, which prevents imple-
mentations of the Fisher-Rao natural gradient. Therefore,
we propose to use the gradient operator induced by the
Wasserstein-2 metric on probability models (Li & Montúfar,
2018a;b).

We propose to compute the parameter updates of the gen-
erators in GANs by means of a proximal operator where
the proximal penalty is a squared constrained Wasserstein-2
distance. In practice, the constrained distance can be approx-
imated by a neural network. In implicit generative models,
the constrained Wasserstein-2 metric exhibits a simple struc-
ture. We generalize the Riemannian metric and introduce
two methods: the relaxed proximal operator for generators
and the semi-backward Euler method. Both approaches
lead to practical numerical implementations of the Wasser-
stein distance and the proximal operator for GANs. The
method can be easily implemented as a drop-in regularizer
for the generator updates. Experiments demonstrate that
this method improves the stability of training and reduces
the training time.

This paper is organized as follows. In Section 2 we introduce
the Wasserstein natural gradient and proximal optimization
methods. In Section 3 we derive practical computational
methods and study their theoretical properties. In Section 4,
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we demonstrate the effectiveness of the proposed methods
in experiments with various types of GANs. In Section 5
we review related work.

2. Wasserstein natural proximal optimization
In this section, we briefly present the Wasserstein natural
gradient and the corresponding proximal method.

2.1. Motivation and Illustration

The natural gradient method is an approach to parameter op-
timization in probability models, which has been promoted
especially within information geometry (Amari, 2016; Ay
et al., 2017). This method chooses the steepest descent di-
rection when the size of the step is measured by means of a
metric on probability space. In this way, the natural gradient
is parameterization invariant (Amari, 1998) and provides
more stability in training. In contrast, the ordinary gradient
method follows the steepest descent direction calculated
from Euclidean distance in parameter space. This can be
unstable because distances in parameter space do not reflect
distances in probability space, and the parameterization of
the model affects the descent direction.

If F (θ) is the loss function, the steepest descent direction is
the vector dθ that solves

min
dθ

F (θ + dθ) subject to D(ρθ, ρθ+dθ) = ε (1)

for a small enough ε. Here D is a divergence function on
probability space. Expanding the divergence to second order
and solving leads to an update of the form

dθ ∝ G(θ)−1∇θF (θ),

where G is the Hessian of D. Usually the Fisher-Rao metric
is considered for G, which corresponds to having D as the
KL-divergence.

In this work, we use structures derived from optimal trans-
port. Concretely, we replace D in equation (1) with the
Wasserstein-p distance. This is defined as

Wp(ρθ, ρθk)p = inf

∫
Rn×Rn

‖x− y‖pπ(x, y)dxdy, (2)

where the infimum is over all joint probability densities
π(x, y) with marginals ρθ, ρθk . We focus on p = 2. In
this case, the Wasserstein-2 metric introduces a metric ten-
sor in probability space making it an infinite dimensional
Riemannian manifold. Later on, we will introduce a finite
dimensional metric tensor G on the parameter space of a
generative model.

The Wasserstein metric allows us to introduce a natural
gradient even when the support of the distributions is low
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Figure 1. Illustration of the Wasserstein proximal operator. Here
the Wasserstein proximal penalizes parameter steps in proportion
to the mass being transported, which results in updates pointing
towards the minimum of the loss function. The Euclidean proximal
penalizes all parameters equally, which results in updates naively
orthogonal to the level sets of the loss function.

dimensional and the Fisher-Rao natural gradient is not well
defined. We will use the proximal operator, which computes
the parameter update by minimizing the loss function plus a
penalty on the step size. This saves us the need to compute
the matrix G explicitly. As we will show, the Wasserstein
metric can be translated to practical proximal methods for
implicit generative models.

We next present a toy example, with explicit calculations, to
illustrate the effectiveness of Wasserstein proximal operator.

Consider a probability model consisting of mixtures of pairs
of delta measures. Let Θ = {θ = (a, b) : a < 0 < b}, and
define

ρ(θ, x) = αδa(x) + (1− α)δb(x),

where α ∈ [0, 1] is a given ratio and δa(x) is the delta
measure supported at point a. See Figure 2.1. For a loss
function F , writing θ = (a, b) the proximal update is

θk+1 = arg min
θ∈Θ

F (θ) +
1

2h
D(ρθ, ρθk),

We check the following common choices of the function D
to measure the distance between θ and θk, θ 6= θk.

1. Wasserstein-2 distance:

W2(ρθ, ρθk)2 = α(a− ak)2 + (1− α)(b− bk)2;

2. Euclidean distance:

‖θ − θk‖2 = (a− ak)2 + (b− bk)2;

3. Kullback–Leibler divergence:

DKL(ρθ‖ρθk) =

∫
Rn
ρ(θ, x) log

ρ(θ, x)

ρ(θk, x)
dx =∞;

4. L2-distance:

L2(ρθ, ρθk) =

∫
Rn
|ρ(θ, x)− ρ(θk, x)|2dx =∞.
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As we see, the KL-divergence and L2-distance take value
infinity, which tells the two parameters apart, but does not
quantify the difference in a useful way. The Wasserstein-2
and Euclidean distances still work in this case. The Eu-
clidean distance considers the difference in the locations of
the delta measures, but not their relative weights. On the
other hand, the Wasserstein-2 takes these into account. As
illustrated in Figure 1 and shown in the next proposition, the
Wasserstein proximal update decreases the Wasserstein-1
loss function more strongly than the Euclidean proximal
update.

Proposition 1 Given θ∗ = (a∗, b∗) ∈ Θ, consider the
Wasserstein-1 metric as the loss function, i.e.,

FW1
(θ) := W1(ρθ, ρθ∗) = α|a− a∗|+ (1− α)|b− b∗|.

If θk+1
W and θk+1

E denote the Wasserstein and Euclidean
proximal parameter updates, from an initial parameter θ,
then

FW1
(θk+1
E ) ≥ FW1

(θk+1
W ).

Proof in Appendix B.

2.2. Wasserstein Natural Gradient

We next present the Wasserstein natural gradient operator
for general probability models.

Definition 2 (Wasserstein natural gradient operator)
Given a loss function F : Θ→ R and a probability model
ρθ := ρ(θ, x) with locally injective parametrization, the
Wasserstein natural gradient operator is given by

gradF (θ) = G(θ)−1∇θF (θ),

where G(θ) = (G(θ)ij)1≤i,j≤d ∈ Rd×d is given by

G(θ)ij =

∫
Rn

(
∇θiρ(θ, x),G(ρθ)∇θjρ(θ, x)

)
dx,

and G(ρθ) is the Wasserstein-2 metric tensor in probability
space. More precisely, G(ρ) = (−∆ρ)

−1 is the inverse of
the elliptical operator ∆ρ := ∇ · (ρ∇).

For convenience of the reader, we provide details on this
definition in Appendix B. Our main focus here will be on
deriving practical computational methods that allow us to
apply these structures to optimization in GANs.

Consider the gradient flow of the loss function:

dθ

dt
= −gradF (θ) = −G(θ)−1∇θF (θ). (3)

There are several discretization schemes for a gradient flow
of this type. One of them is the forward Euler method,
known as the steep descent method:

θk+1 = θk − hG(θk)−1∇θF (θk), (4)

where h > 0 is the learning rate (step size).

In practice we usually do not have a closed formula for the
metric tensor G(θ). In equation 4, we need to solve for
the inverse Laplacian operator, the Jacobian of the proba-
bility model, and compute the inverse of G(θ). When the
parameter θ ∈ Θ is high dimensional, these computations
are impractical. Therefore, we will consider a different
approach based on the proximal method.

2.3. Wasserstein Natural Proximal

To practically apply the Wasserstein natural gradient, we
present another way to discretize the gradient flow, known
as the proximal method. The proximal operator computes
updates of the form

θk+1 = arg min
θ

F (θ) +
Dist(θ, θk)2

2h
, (5)

where Dist is an iterative regularization term, given by the
Riemannian metric function as follows:

Dist(θ, θk)2 = inf
{∫ 1

0

θ̇Tt G(θt)θ̇tdt : θ0 = θ, θ1 = θk
}
.

Here the infimum is taken among all continuously differen-
tiable parameter paths θt = θ(t) ∈ Θ, t ∈ [0, 1].

The proximal operator is defined implicitly, in terms of a
minimization problem, but in some cases it can be written
explicitly. Interestingly, it allows us to consider an iterative
regularization term in the parameter update.

We observe that there are two time variables in the proximal
update (5). One is the time discretization of gradient flow,
known as the learning rate h > 0; the other is the time
variable in the definition of Riemannian distance Dist(θ, θk).
The variation in the time variable of the Riemannian distance
can be further simplified.

Proposition 3 (Semi-backward Euler method) The iter-
ation

θk+1 = arg min
θ
F (θ) +

D̃(θ, θk)2

2h
, (6)

with

D̃(θ, θk)2 =

∫
Rn

(
ρθ − ρθk ,G(ρθ̃)(ρθ − ρθk)

)
dx,

and θ̃ = θ+θk

2 , is a consistent time discretization of the
Wassserstein natural gradient flow (3).

Here the distance term in (5) is replaced by D̃, which is
obtained by a mid-point approximation in time. The mid-
point θ̃ can be chosen in many ways between θ and θk. For
simplicity and symmetry of D̃(θ, θk), we let θ̃ = θ+θk

2 .

3



Formula (6) is called the semi-backward Euler method
(SBE), because it can also be expressed as

θk+1 = θk − hG(θ̃)−1∇θF (θk+1) + o(h).

We point out that all methods described above (forward
Euler method (4), backward Euler method (5), and semi-
backward Euler method (6)), are time consistent discretiza-
tions of the Wasserstein natural gradient flow (3) with first
order accuracy in time. See details about this in Appendix B.

We shall focus on the semi-backward Euler method (6)
and derive practical formulas for the iterative regularization
term.

3. Computational methods
In this section, we present two methods for implement-
ing the Wasserstein natural proximal for GANs. The first
method is based on solving the variational formulation of
the proximal penalty over an affine space of functions. This
leads to a low-order version of the Wasserstein metric tensor
G(ρθ). The second method is based on a formula for the
Wasserstein metric tensor for 1-dimensional sample spaces,
which we relax to the case of arbitrary dimensions.

3.1. Implicit Generative Models

Before proceeding, we briefly recall the setting of GANs.
For each parameter θ ∈ Θ ⊆ Rd, let the generator be given
by gθ : Rm → Rn; z 7→ x = g(θ, z). This takes an input
Z in latent space Rm with distribution p(z) to an output
X = g(θ, Z) in sample space Rn with distribution ρ(θ, x).
We have then

EZ∼pf(g(θ, Z)) = EX∼ρθf(X), for any f ∈ C∞c (Rn).

3.2. Affine Space Variational Approximation

The mid point approximation D̃ can be written using dual
coordinates (cotangent space) of probability space in the
variational form

D̃(θ, θk)2 = sup
Φ∈C∞(Rn)

{∫
Rn

Φ(x)(ρ(θ, x)− ρ(θk, x))

−1

2
‖∇Φ(x)‖2ρ(θ̃, x) dx

}
.

In order to obtain an explicit formula, we consider a function
approximator of the form

Φξ(x) =
∑
j

ξjψj(x) = ξ>Ψ(x),

where Ψ(x) = (ψj(x))Kj=1 are given basis functions on
sample space Rn and ξ = (ξj)

K
j=1 ∈ RK is the parameter.

In other words, consider

D̃(θ, θk)2 = sup
ξ∈RK

{∫
Rn

Φξ(x)(ρ(θ, x)− ρ(θk, x))

− 1

2
‖∇Φξ(x)‖2ρ(θ̃, x) dx

}
.

(7)

Theorem 4 (Affine metric function D̃) Consider
some Ψ = (ψ1, . . . , ψK)> and assume that
M(θ) = (Mij(θ))1≤i,j≤K ∈ RK×K is a regular
matrix with entries

Mij(θ) = EZ∼p
( n∑
l=1

∂xlψi(g(θ̃, Z))∂xlψj(g(θ̃, Z))
)
,

θ̃ = θ+θk

2 . Then,

D̃(θ, θk)2 =
(
EZ∼p[Ψ(g(θ, Z))−Ψ(g(θk, Z))]

)>
M(θ̃)−1

(
EZ∼p[Ψ(g(θ, Z))−Ψ(g(θk, Z))]

)
.

There are many possible choices for the basis Ψ. We will
focus on for degree one and degree two polynomials.

If K = n, ψk(x) = xk, k = 1, . . . , n, then M(θ) is the
identity matrix. Thus

D̃(θ, θ̃)2 = ‖EZ∼p(g(θ, Z)− g(θk, z))‖2.

In Appendix C we provide an explicit solution of (7) in the
case of degree two polynomials.

3.3. Relaxation from 1-D

We next present a second method for approximating D̃. In
the case of implicit generative models with 1-dimensional
sample space, the constrained Wasserstein-2 metric tensor
has an explicit formula. This allows us to define a relaxed
Wasserstein metric for implicit generative models with sam-
ple spaces of arbitrary dimension.

Theorem 5 (1-D sample space) If n = 1, then

Dist(θ0, θ1)2 = inf
{∫ 1

0

EZ∼p‖
d

dt
g(θ(t), Z)‖2 dt :

θ(0) = θ0, θ(1) = θ1

}
,

where the infimum is taken over all continuously differen-
tiable parameter paths. Therefore, we have

D̃(θ, θk)2 = EZ∼p‖g(θ, Z)− g(θk, Z)‖2.

In sample spaces of higher dimension, we do not have the
explicit formula for D̃. The relaxed metric consists of using
the same formulas from the theorem. Later on, we show
that this formulation of D̃ still provides a metric with pa-
rameterization invariant properties in the proximal update.
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3.4. Algorithms

The Wasserstein natural proximal method for GANs op-
timizes the parameter θ of the generator by the proximal
iteration (6). We do this in a few ways:

(1) The first and simplest method follows Section 3.3, and
updates the generator by:

θk+1 = arg min
θ∈Θ

F (θ) +
1

2h
EZ∼p‖g(θ, Z)− g(θk, Z)‖2,

We call this the Relaxed Wasserstein Proximal (RWP)
method.

(2) The second method is based on the discussion from
Section 3.2, approximating Φ by linear functions. We update
the generator by:

θk+1 = arg min
θ∈Θ

F (θ) +
1

2h
‖EZ∼p

(
g(θ, Z)− g(θk, Z)

)
‖2,

We call this the Order-1 SBE (O1-SBE) method. In an
analogous way, we can approximate Φ by quadratic func-
tions (details in Appendix C), to obtain the Order-2 SBE
(O2Diag-SBE) method:

θk+1 = arg min
θ∈Θ

F (θ)

+
1

h

(
1

2
‖EZ∼p[g(θ, Z)− g(θk, Z)]− EZ∼p[Qg(θk, Z)]‖2

+
1

2
EZ∼p[〈g(θ, Z), Qg(θ, Z)〉]

− 1

2
EZ∼p[

〈
g(θk, Z), Qg(θk, Z)

〉
]

− 1

2
EZ∼p[‖Qg(θk, Z)‖2]

)
,

where Q = diag(qi)
n
i=1 is the diagonal matrix

qi =
1

2

EZ∼p[(g(θ, Z)i − g(θk, Z)i)
2]

Var(g(θk, Z)i)

+
CovZ∼p(g(θ, Z)i, g(θk, Z)i)

VarZ∼p(g(θk, Z)i)
− 1.

where g(θ, Z)i is the ith component.

These methods can be regarded as iterative regularizers.
RWP penalizes the expected squared norm of the differences
between samples (second moment differences). O1-SBE
penalizes the squared norm of the expected differences be-
tween samples. O2Diag-SBE penalizes a combination of
squared norm of the expected differences plus variances.
They all encode the statistical information of generators. All
these approaches regularize the generator by the expecta-
tion and variance of the samples.

The method is implemented as shown in Algorithm 1. We
give a detailed practical guide in Appendix D. Shortly, we
discuss convergence and consistency of these methods.

Algorithm 1 Wasserstein Natural Proximal
Require: Fω, a parameterized function to minimize (e.g.,

Wasserstein-1 with a parameterized discriminator); gθ,
the generator.

Require: OptimizerFω ; Optimizergθ .
Require: h proximal step-size; B batch size; max itera-

tions; generator iterations.
1: for k = 0 to max iterations do
2: Sample real data {xi}Bi=1 and latent data {zi}Bi=1

3: ωk ← OptimizerFω
(

1
B

∑B
i=1 Fω(gθ(zi))

)
4: for ` = 0 to generator iterations do
5: Sample latent data {zi}Bi=1

6: D̃ = RWP, or O1-SBE, or O2Diag-SBE (Sec. 3.4)
7: θk ← Optimizergθ

(
1
B

∑B
i=1 Fω(gθ(zi))

8: + 1
2hD̃(θ, θk)2

)
.

9: end for
10: end for

3.5. Theoretical guarantees

We show that the Wasserstein natural proximal algorithms
introduced in the previous sections are consistent.

Theorem 6 Algorithm 1 provides a consistent numerical
time discretization of the gradient flow

d

dt
θ = −G̃(θ)†∇θF (θ).

Here G̃† is the pseudo inverse of the Hessian of D̃ and is a
positive semi-definite matrix. In particular, the loss function
is a Lyapunov function of gradient flow, meaning that it is
non-increasing along the gradient flow. If θ∗ is a critical
point of F and λmin

(
G̃(θ∗)†HessF (θ∗)

)
> 0, then θ(t)

locally converges to θ∗.

This theorem implies that the Wasserstein natural proximal
methods developed in the previous sections, have all the
expected properties of natural (Riemannian) gradient flows,
including parametrization invariance. We note that with
the approximation, G might not always be strictly positive
definite, possibly introducing more critical points to the
flow. This is a general phenomenon in gradient optimization
with approximation and can be addressed by a variety of
simple methods, such as the Levenberg-Marquard modifica-
tion (Chong & Zak, 2013).

The Wasserstein metric in probability models introduces
different convergence rates and convergence regions. We
demonstrate the advantages of the method in the following
experimetns.
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4. Experiments
Here we present numerical experiments using the Relaxed
Wasserstein Proximal (RWP) and the Semi-Backward Euler
(SBE) methods in order to perform Wasserstein gradient-
descent on various GANs. We find that the Relaxed Wasser-
stein Proximal provides both better speed (measured by
wallclock) and stability in training GANs.

4.1. Experimental Setup

The Relaxed Wasserstein Proximal (RWP), O1-SBE, and
O2Diag-SBE algorithms are intended to be an easy-to-
implement, drop-in replacement to improve speed and con-
vergence of GAN training. They apply regularizations on
the generator updates during training. This is different from
most GAN training, which focuses on regularizing the dis-
criminator, e.g. with a gradient penalty (Gulrajani et al.,
2017b; Petzka et al., 2017; Kodali et al., 2018; Adler &
Lunz, 2018; Miyato et al., 2018). There has been limited
exploration in regularizing the generator (Chen et al., 2016).
Specifically, we modify the update rule for the generator by:

• Update for ` number of iterations before updating the
discriminator:

θ ← Optimizerθ

(
Original loss +

1

2h
D̃(θ, θk)

)
where D̃(θ, θk) can be chosen to be one of the distances
found in the previous section 3.4. So two hyperparameters
are introduced: the proximal step-size h, and the number of
iterations `. In some GANs, one may update the discrim-
inator a number of times and then update the generator a
number of times, and then repeat; we will call one loop of
this update an outer-iteration. A more detailed description
of the algorithm is given in Appendix D.

We test the Relaxed Wassersteing Proximal, O1-SBE, and
O2Diag-SBE regularization on three GAN types: Vanilla
GANs (Goodfellow et al., 2014) (Jenson-Shannon), WGAN-
GP (Gulrajani et al., 2017a), and DRAGAN (Kodali et al.,
2018). We use the CIFAR-10 dataset (Krizhevsky, 2009),
and the aligned and cropped CelebA dataset (Liu et al.,
2015). And we utilize the DCGAN (Radford et al., 2015)
architecture for the discriminator and generator. To measure
the quality of generated samples, we employ the Fréchet In-
ception Distance (FID) (Heusel et al., 2017) both to measure
performance and to measure convergence of GAN training
(lower FID is better); we used 10,000 generated images to
measure the FID. For CIFAR-10, we measure the FID every
1000 outer-iterations.

It is tricky to compare the result of using the regularizers,
as it performs multiple generator iterations. We thus align
the comparison according to wallclock time (this procedure
was also used by Heusel et al., 2017).

Our particular hyperparameter choices for training are given
in Appendix E.1. Note that since we are testing these ef-
fectiveness of these regularizations as a drop-in tool, the
hyperparameters (i.e. not h nor `) are chosen to work well
before applying our regularization.

Samples from the models are provided in Appendix F. We
also performed latent space walks (Radford et al., 2015)
to show RWP regularization does not cause the GAN to
memorize. For details see Appendix G ).

4.2. Results on the CIFAR-10 dataset

We summarize our results for the tested regularizations on
CIFAR10. We see in Figure 2 that RWP, O1-SBE, and
O2Diag-SBE improve the speed of convergences regard-
ing wallclock time. In DRAGAN, our experiments show
that the regularizations provide better stability, in the sense
of less oscillations in FID values. We also see that our
method achieves lower FID values. This is especially true
in the case of O1-SBE and O2Diag-SBE, and in particular
under WGAN-GP where they achieve the same final FID,
but about six times faster. Overall, we see that the fastest
method to train CIFAR10 out of the presented methods is
Vanilla GANs with O1-SBE or RWP. For O2Diag-SBE, it is
possible that different h and ` values can improve wallclock
time. However we did not do much hyperparameters tuning,
and were still able to obtain excellent performance.

In the appendix G, we also examine if our models exhibit
memorization by performing a latent-space walk and we
find that it does not. Thus, even when we are updating the
generator multiple times per outer-iteration (see the previous
section), it still does not overfit. In appendix E.1, we provide
all hyperparameter settings for our experiments.

4.3. Results on the CelebA dataset

Our results on the CelebA dataset are presented in Figure 3.
In this case, we only examine the effect of RWP, O1-SBE,
and O2Diag-SBE on the Vanilla and WGAN-GP GANs, as
they are the two most popular ones.

For Vanilla GANs, we see that RWP, O1-SBE, as well as
O2Diag-SBE improve the speed of GAN training according
to wallclock time, and they also achieve a lower FID.

For WGAN-GP, our regularizations are comparable to the
standard WGAN-GP. In Figure 3, we see that adding the
regularizations actually improves the stability of WGAN-
GP under higher learning rates (0.002 vs 0.0001, 20 times
larger) and higher momentum (Adam β1 = 0.5 v.s. 0).
Overall, it seems the fastest method to train CelebA accord-
ing to the methods we have presented is Vanilla GAN with
O2Diag-SBE.
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Figure 2. The effect of using RWP, O1-SBE, and O2Diag-SBE regularization on the CIFAR-10 dataset. The experiments are averaged
over 5 runs. The bold lines are the average, and the enveloping lines are the minimum and maximum. From the three graphs, we see that
using the easy-to-implement RWP, O1-SBE, O2Diag-SBE regularizations all improve speed as measured by wallclock time, and it also
can achieve a lower FID.

Figure 3. The effect of RWP, O1-SBE, and O2Diag-SBE regularization on Vanilla GANs and WGAN-GP, on the CelebA dataset. The
experiment was averaged over 5 runs. The bold lines are the average, and the enveloping lines are the minimum and maximum. We see
that RWP, O1-SBE, and O2Diag-SBE regularizations improve the speed (via wallclock time), and achieve lower FID values. For RWP, we
note multiple generator iterations might cause initial learning to fail, but once it starts then it remains successful. It is practically easy to
detect, so we show successful runs. Note for the standard Vanilla GANs (i.e. no regularization), we removed a troublesome run whose FID
values spiked up so the average is over 4 runs instead. For WGAN-GP, we see that RWP, O1-SBE, and O2Diag-SBE are comparable to it.

Figure 4. Here we see that RWP, O1-SBE, and O2Diag-SBE all improve the training by providing a lower FID when the learning rate or
momentum is high. For a high learning rate, WGAN-GP quickly reaches an FID of around 50, but then it diverges and goes up to 100.
The regularizations help in stabilizing the FID to be about 50. For a high momentum, we see that WGAN-GP quickly reaches an FID of
around 20, but again quickly jumps up, whereas our regularizations help keep the FID at approximately 20, which we consider optimal
and converged.
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5. Related Works
In the literature, many different aspects of optimal transport
have been considered in machine learning and GANs.

1. Wasserstein Loss function. Many studies apply the
Wasserstein distance as the loss function (Frogner et al.,
2015; Montavon et al., 2016). On the one hand, the Wasser-
stein distance is a statistical distance depending on the met-
ric of the sample space. So it introduces a statistical esti-
mator, named the minimal Wasserstein estimator (Bassetti
et al., 2006), depending on the geometry of the data. On the
other hand, the Wasserstein distance is useful for comparing
probability distributions supported on lower dimensional
sets. In the framework of GAN, the loss function is cho-
sen as the Wasserstein-1 distance function (Arjovsky et al.,
2017). In its computations, the discriminator, also called the
Kantorovich dual variable, needs to satisfy the 1-Lipschitz
condition. Many studies work on the regularization of the
discriminator to fulfill this condition (Gulrajani et al., 2017b;
Petzka et al., 2017). In contrast to current works, we apply
the Wasserstein-2 distance to construct gradient operators
in optimizations of GANs. It will result at an iterative regu-
larization on generators.

2. Wasserstein Gradient flows. The Wasserstein-2 met-
ric provides a metric tensor structure (Lott, 2007; Otto,
2001; Li, 2018), under which the probability space forms
an infinite-dimensional Riemannian manifold, named the
density manifold (Lafferty, 1988). The gradient flow in
the density manifold links with many transport-related par-
tial differential equations (Villani, 2009; Nelson, 1985). A
famous example is that the Fokker-Planck equation, the
probability transition equation of Langevin dynamics, is
the gradient flow of the KL-divergence function. In this
perspective, two angles have been developed in the learning
communities. Firstly, many groups try to leverage the gra-
dient flow structure in probability space supported on the
parameter space. They study the stochastic gradient descent
by the transition equation in the probability over parameters
(Mei et al., 2018). Secondly, many nonparametric mod-
els have been studied, such as the Stein gradient descent
method (Liu, 2017). It is a generalization of Wasserstein
gradient flow. Also, (Frogner & Poggio, 2018) consider an
approximate inference method for computing Wasserstein
gradient flow. Here an approximation towards Kantorovich
dual variables is introduced. Comparing to these works,
we consider Wasserstein structure constrained on parameter
space. In this direction, (Carlen & Gangbo, 2003) studied
the constrained Wasserstein gradient with fixed mean and
variance. Here the density subset is still infinite dimensional.
Many approaches also focus on Gaussian families or ellipti-
cal distributions (Takatsu, 2011). The Wasserstein gradient
flow in Gaussian family has been studied by (Malagò et al.,
2018). Compared to previous works, our approach applies

the Wasserstein gradient to work on implicit generative mod-
els.

3. Wasserstein Proximal operator. The gradient flow is often
computed or approximated by the proximal operator. In full
probability space with Wasserstein-2 distance, this proximal
iteration is often named the Jordan-Kinderlehrer-Otto (JKO)
scheme (Jordan et al., 1998). It is also the backward Euler
method in a Riemannian manifold concerning Wasserstein-2
metric tensor. Many numerical methods have been build
in this direction (Caluya & Halder, 2018). Compared to
current works, we propose the proximal operator within
probability models. Instead of applying the Backward Euler
method (JKO) on parameter space, we consider the semi-
backward method. See similar approaches in (Vantzos et al.,
2017). We further approximate the Wasserstein proximal
in affine function space. It results at an analytical iterative
regularization term depending on the statistical information
of generators. In future, many another sampling efficient
computational method could also be considered.

6. Discussion
In this work, we develop methods to implement the Wasser-
stein natural gradient method for learning implicit genera-
tive models. To practically apply the method, we consider a
proximal parameter update. We obtain explicit formulas ex-
pressed regarding statistics of the generated samples, which
can be implemented at little to no additional cost over cur-
rent methods. One salient aspect of our approach is that it
regularizes the generator, whereas much of the present work
focuses on regularizing the discriminator. Experimentally,
we found that the proposed method does not harm in sim-
ple data sets, but that it can provide substantial benefits in
more complex data sets, allowing us to obtain a better mini-
mizer in the sense of FID, with faster convergence speeds
in wall-clock time. Moreover, our method can offer benefits
concerning stability to the choice of hyperparameters such
as step size and momentum. It can save the needs for ex-
tensive hyperparameter tuning that is typically required to
achieve state of the art results with current methods.
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A. Review of Wasserstein Information
geometry

In this section, we briefly review the geometry of L2-
Wasserstein metric tensor in the probability set and proba-
bility models.

Consider the probability density set with finite second mo-
ment P2(Rn). Consider a metric function W2 : P2(Rn)×
P2(Rn)→ R+,

W2(ρ0, ρ1)2 = inf
Φt

{∫ 1

0

∫
Rn
‖∇Φ(t, x)‖2ρ(t, x)dxdt :

∂tρ(t, x) +∇ · (ρ(t, x)∇Φ(t, x)) = 0,

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x)
}
,

(8)

where the infimum is taken among all feasible Borel poten-
tial functions Φ: [0, 1]× Rn → R and continuous density
path ρ : [0, 1] × Rn → R+ satisfying the continuity equa-
tion.

The variational formulation in (8) introduces a Rieman-
nian structure in density space. We plain this as follows.
Consider the set of smooth and strictly positive probability
densities

P+ =
{
ρ ∈ C∞(Rn) : ρ(x) > 0,

∫
Rn
ρ(x)dx = 1

}
⊂ P2(Rn).

Denote F := C∞(Rn) the set of smooth real valued func-
tions. The tangent space of P+ is given by

TρP+ =
{
σ ∈ F :

∫
Rn
σ(x)dx = 0

}
.

Given Φ ∈ F and ρ ∈ P+, define

VΦ(x) := −∇ · (ρ(x)∇Φ(x)).

Thus VΦ ∈ TρP+. The elliptic operator∇ · (ρ∇) identifies
the function Φ modulo additive constants with the tangent
vector VΦ of the space of densities.

Given ρ ∈ P+, σi ∈ TρP+, i = 1, 2, define

gWρ (σ1, σ2) =

∫
Rn

(∇Φ1(x),∇Φ2(x))ρ(x)dx,

where Φi(x) ∈ F/R, such that −∇· (ρ∇Φi) = σi. Denote
Φi = −∆ρ)

−1σi, then

gWρ (σ1, σ2) =

∫
Rn

(
σ1(x), (−∆ρ)

−1σ2(x)
)
dx.
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The inner product gW endowsP+ with a Riemannian metric
tensor. In other words, the variational problem equation 8 is
a geometric action energy in (P+, g

W ).

Given a loss function F : P+ → R, the Wasserstein gradient
operator in (P+, g

W ) is given as follows.

gradWF (ρ) =
(

(−∆ρ)
−1
)−1 δ

δρ(x)
F (ρ)

=−∇ · (ρ∇ δ

δρ(x)
F (ρ)).

Thus the gradient flow satisfies

∂ρ

∂t
= −gradWF (ρ) = ∇ · (ρ∇ δ

δρ(x)
F (ρ)).

More analytical results on the Wasserstein-2 gradient flow
are provided in (Ambrosio et al., 2005).

We next consider Wasserstein-2 metric and gradient operator
constrained on statistical models. A statistical model is
defined by a triplet (Θ,Rn, ρ). For simple presentation
of paper, we assume Θ ⊂ Rd and ρ : Θ → P(Rn) is a
parameterization function. In this case, ρ(Θ) ⊂ P(Rn). We
assume that the parameterization map ρ is locally injective
and under suitable regularities. We define a Riemannian
metric g on ρ(Θ) by pulling back the Wasserstein-2 metric
tensor gW .

Definition 7 (Wasserstein statistical manifold) Given
θ ∈ Θ and θ̇i ∈ TθΘ, i = 1, 2, we define

gθ(θ̇1, θ̇2) =

∫
Rn

(
(θ̇1,∇θρ), (−∆ρ)

−1(∇θρ, θ̇2)
)
dx.

In other notations,

gθ(θ̇1, θ̇2) =

∫
Rn
∇Φ1(x)∇Φ2(x)ρ(θ, x)dx,

where

−∇ · (ρ(θ, x)∇Φi(x)) = (∇θρ(θ, x), θ̇i).

Here ∇θρ = ( ∂
∂θi
ρ(θ, x))di=1 ∈ Rd and (·, ·) is an Eu-

clidean inner product in Rd.

In particular, we denote

gθ(θ̇1, θ̇2) = θ̇T1G(θ)θ̇2,

where G(θ) = (G(θ)ij)1≤i,j≤d ∈ Rd×d is the associated
metric tensor defined in Theorem 2. Thus the distance

function can be written into the geometry action functional

Dist(θ, θk)2

= inf
{∫ 1

0

θ̇(t)TG(θ(t))θ̇(t)dt : θ(0) = θ, θ(1) = θk
}

= inf
{∫ 1

0

∫
Rn

(∂tρ(θ(t), x),G(ρθ)∂tρ(θ(t), x))dxdt :

θ(0) = θ, θ(1) = θk
}

= inf
{∫ 1

0

∫
Rn
‖∇Φ(t, x)‖2ρ(θ(t), x)dxdt :

∂tρ(θ(t), x) +∇ · (ρ(θ(t), x)∇Φ(t, x)) = 0,

θ(0) = θ, θ(1) = θk
}
.

(9)

B. Proofs
Proof of Proposition 1. This example allows us to com-
pute the proximal operator explicitly. On the one hand, we
compute the Wasserstein proximal operator explicitly:

θk+1
W = (ak+1

W , bk+1
W )

= arg min
θ
FW1

(θ) +
1

2h
W (ρθ, ρθk)2

= arg min
(a,b)

α|a− a∗|+ (1− α)|b− b∗|

+
1

2h
(α|a− ak|2 + (1− α)|b− bk|).

I.e.,

aWk+1 = arg min
a
|a− a∗|+ 1

2h
|a− ak|2,

bWk+1 = arg min
b
|b− b∗|+ 1

2h
|b− bk|2.

Here

ak+1
W = shrinka∗(ak, h) =


ak − h if ak > a∗ + h;
ak + h if ak < a∗ − h;
a∗ otherwise.

Similarly, bk+1
W = shrinkb∗(bk, h).

On the other hand, we calculate the Euclidean proximal
operator explicitly:

θk+1
E = (ak+1

E , bk+1
E )

= arg min
θ
FW1

(θ) +
1

2h
dE(θ, θk)2

= arg min
(a,b)

α|a− a∗|+ (1− α)|b− b∗|

+
1

2h
(|a− ak|2 + |b− bk|2).
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I.e.,

ak+1
E = arg min

a
α|a− a∗|+ 1

2h
|a− ak|2,

bk+1
E = arg min

b
(1− α)|b− b∗|+ 1

2h
|b− bk|2.

Here

ak+1
E = shrinka∗(ak, αh) =


ak − αh if ak > a∗ + αh;
ak + αh if ak < a∗ − αh;
a∗ otherwise.

Similarly, bk+1
E = shrinkb∗(bk, (1− α)h).

Here we only need to check that for all possible cases,
FW1

(θk+1
E ) > FW1

(θk+1
W ). If ak > a∗+h and bk > b∗+h,

then

FW1
(θk+1
W ) = α[(ak − a∗ − h) +

h

2
]

+ (1− α)[(bk − b∗ − h) +
h

2
]

= α(ak − a∗) + (1− α)(bk − b∗)− h

2
,

and

FW1
(θk+1
E ) =α[(ak − a∗ − αh)] +

(αh)2

2h

+ (1− α)[(bk − b∗ − αh)] +
(1− α)2h2

2h

= α(ak − a∗) + (1− α)(bk − b∗)

− h

2
[α2 + (1− α)2].

Since α ∈ [0, 1], then α2 + (1−α)2 ≤ [α+ (1−α)]2 = 1,
then FW1

(θk+1
W ) ≤ FW1

(θk+1
E ). In other cases, the proof

follows similarly. We finish the proof.

Derivation of Wasserstein natural gradient. Here we briefly
explain the Definition 2.

The gradient operator on a Riemannian manifold (Θ, gθ) is
defined as follows. For any σ ∈ TθΘ, then the Riemannian
gradient ∇Wθ F (θ) ∈ TθΘ satisfies

gθ(σ, gradF (θ)) = (∇θF (θ), σ).

In other words,

θ̇TG(θ)gradF (θ) = ∇θF (θ)Tσ.

Since θ ⊂ Rd and G(θ) is positive definite, then

gradF (θ) = G(θ)−1∇θF (θ).

Proof of Proposition 3. We next present the derivation of
the proposed semi-backward method.

Claim: Denote ‖θ − θk‖ = h, then

(θk − θ)TG(θ̃)(θk − θ) = Dist(θ, θk)2 + o(h2), (10)

and

1

2
(θk − θ)TG(θ̃)(θk − θ) +O(h2)

= sup
Φ

∫
Rn

Φ(x)(ρ(θ, x)− ρ(θk, x))

− 1

2
‖∇Φ(x)‖2ρ(θ̃, x)dx.

(11)

Proof of Claim. We next prove the claim. Denote the
geodesic path θ∗(t), t ∈ [0, 1], with θ∗(0) = θ, θ∗(1) = θk,
s.t.

Dist(θ, θk)2 =

∫ 1

0

(
d

dt
θ∗(t))TG(θ∗(t))

d

dt
θ∗(t)dt.

We reparameterize the time of θ∗(t) into the time interval
[0, h]. Denote τ = ht and θ(τ) = θ∗(ht). Thus θ(τ) =

θk + θ−θk
h τ +O(τ2) and d

dτ θ(τ) = θ−θk
h +O(τ),

Dist(θ, θk)2

=h

∫ h

0

d

dτ
θ(τ)TG(θ(τ))

d

dτ
θ(τ)dτ

=h

∫ h

0

(
θ − θk
h

+O(h))TG(θ̃ +O(h))(
θ − θk
h

+O(h))dτ

=(θ − θk)TG(θ̃)(θ − θk) + o(h2),

which proves equation (10).

We next prove equation (11). On the L.H.S. of equation
(11),

∇θρ(θ̃, x)(θ − θk) = ρ(θ, x)− ρ(θk, x) + o(h).

From the definition of G(θ),

1

2
(θ − θk)TG(θ̃)(θ − θk)

=
1

2

∫
Rn
‖∇Φ(x)‖2ρ(θ̃, x) dx,

where

−∇ · (ρ(θ̃, x)∇Φ(x)) = ∇θρ(θ̃, x)(θ − θk)

= ρ(θ̃, x) + o(h).

On the R.H.S. of equation (11), the maximizer Φ∗ satisfies

ρ(θ, x)− ρ(θk, x) +∇ · (ρ(θ̃, x)∇Φ∗(x)) = 0. (12)
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Applying equation (12) into the R.H.S. of (11), we have∫
Rn

Φ∗(x)(ρ(θ, x)− ρ(θ̃, x))− 1

2
‖∇Φ∗(x)‖2ρ(θ̃, x) dx

=

∫
Rn

Φ∗(x)[−∇ · (ρ(θ̃, x)∇Φ∗(x)]

− 1

2
‖∇Φ∗(x)‖2ρ(θ̃, x) dx

=

∫
Rn
‖∇Φ∗(x)‖2ρ(θ̃, x)− 1

2
‖∇Φ∗(x)‖2ρ(θ̃, x) dx

=
1

2

∫
Rn
‖∇Φ∗(x)‖2ρ(θ̃, x) dx.

Comparing the L.H.S. and R.H.S. of (11), we prove the
claim. From the claim,

θk+1 = arg min
θ∈Θ

F (θ) +
1

h

Dist(θ, θk)2

2

= arg min
θ∈Θ

F (θ) +
1

2h

{
(θk − θ)TG(θ̃)(θk − θ) + o(h2)

}
= arg min

θ∈Θ
F (θ) +

1

h

{
sup

Φ

∫
Rn

Φ(x)(ρ(θ, x)− ρ(θk, x))

− 1

2
‖∇Φ(x)‖2ρ(θ̃, x)dx+ o(h2)

}
.

In above, we notice the fact that

(θk − θ)TG(θ̃)(θk − θ) + o(h2)

=

∫
Rn

(ρθk − ρθ),G(ρθ̃)(ρθk − ρθ)dx.

Thus we derive a consistent numerical method in time,
known as the Semi-backward method:

θk+1 = θk − hG(θ̃)−1∇θF (θk+1) + o(h).

Proof of Theorem 4. For the constrained Wasserstein metric,
we have the gradient w.r.t. the input space

∇Φ = (
∑
j

ξj∂iψj(x))ni=1.

The norm is then

‖∇Φ‖2 =
∑
i

(
∑
j

ξj∂iψj(x))2 =
∑
i

∑
j

ξj∂iψj
∑
k

ξk∂iψk

=
∑
j

∑
k

ξjξk(
∑
i

∂iψj(x)∂iψk(x))

=ξ>C(x)ξ

where Cij(x) =
∑
k ∂kψi∂kψj .

Now we consider the distance

D̃(θ, θk)2

= sup
Φ∈Fξ

∫
Rn

Φ(ρθ − ρθk)dx− 1

2

∫
Rn

(∇Φ)2ρθ̃dx

= sup
ξ
ξ>(Eθψ − Eθkψ)− 1

2
ξ>Eθ̃Cξ.

Here Eθ̃C is a semi-positive definite matrix. Since for any
ξ ∈ RK , we have

ξTEθ̃Cξ =

∫
Rn

∑
i

(
∑
j

ξj∂iψj(x))2ρθdx ≥ 0.

Under the assumption that EθC is invertible, then the opti-
mization is a strictly concave problem. At the maximizer,
we have

ξ∗ = (Eθ̃C)−1(Eθψ − Eθkψ).

Thus

D̃(θ, θk)2 = (Eθψ − Eθkψ)T (Eθ̃C)−1(Eθψ − Eθkψ),

which finishes the proof.

Derivation of SBE order 1. Here ψj(x) = xj . Thus if i = j,
then

Mij(θ) =Ez∼p
n∑
l=1

∂xlψi(x)∂xlψj(x)

=1.

Otherwise, Mij(θ) = 0, if i 6= j. Thus

Mij(θ̃) =

{
1 if i = j;
0 otherwise.

Then we derive the result.

Proof of Theorem 5. The implicit model is given by the fol-
lowing push-forward relation. Denote gθ#p(z) = ρ(θ, x),
i.e., ∫

Rm
f(g(θ, z))p(z)dz =

∫
Rn
f(x)ρ(θ, x)dx,

for any f ∈ C∞c (Rn).

We next rewrite the Wasserstein metric (9) in term of gener-
ators gθ.

On the one hand, consider f ∈ C∞c (Rn), then

d

dt
EZ∼p(z)f(g(θ(t), Z))

=
d

dt

∫
Rm

f(g(θ(t), z))p(z)dz

=
d

dt

∫
Rn
f(x)ρ(θ(t), x)dx

=

∫
Rn
f(x)

∂

∂t
ρ(θ(t), x)dx

=

∫
Rn
f(x)(−∇ · (ρ(θ(t), x)∇Φ(t, x)))dx

=

∫
Rn
∇f(x)∇Φ(t, x)ρ(θ(t), x)dx

=

∫
∇f(g(θ, z))∇Φ(t, g(θ, z))p(z)dz.

(13)
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where the last equality holds from the push forward relation.

On the other hand, consider

d

dt
EZ∼p(z)f(g(θ(t), Z))

= lim
∆t→0

EZ∼p(z)
f(g(θ(t+ ∆t), Z)− f(g(θ(t), Z))

∆t

= lim
∆t→0

∫
Rm

f(g(θ(t+ ∆t), z))− f(g(θ(t), z))

∆t
p(z)dz

=

∫
Rm
∇f(g(θ(t), z))

d

dt
g(θ(t), z)p(z)dz.

(14)

where ∇, ∇· are gradient and divergence operators w.r.t.
x ∈ Rn. The second to last equality holds from the push
forward relation, and the last equality holds using the in-
tegration by parts w.r.t. x. Since (13) equals (14) for any
f ∈ C∞c (Rn), then we have∫

∇f(g(θ, z))∇Φ(t, g(θ, z))p(z)dz

=

∫
∇f(g(θ(t), z))

d

dt
g(θ(t), z)p(z)dz.

Thus∫
∇f(g(θ, z))

(
∇Φ(t, g(θ, z))− d

dt
g(θ(t), z)

)
p(z)dz = 0.

If n = 1, then ∇f can be any function in R1. For each
t, choosing ∇f(g(θ, z)) = ∇Φ(t, g(θ, z)) − d

dtg(θ(t), z),
then ∫

|∇Φ(t, g(θ, z))− d

dt
g(θ(t), z)|2p(z)dz = 0.

Thus
d

dt
g(θ(t), z) = ∇Φ(t, g(θ(t), z)).

Thus by the definition of the push forward operation, we
have

EZ∼p(z)‖
d

dt
g(θ(t), Z)‖2

=

∫
Rn
‖∇Φ(t, g(θ(t), z))‖2p(z)dz

=

∫
Rn
‖∇Φ(t, x)‖2ρ(θ(t), x)dx,

which finishes the proof.

Proof of Theorem 6. Here we only present the second order
expansion of D̃. By taylor expansion, we simply check that

D̃(θ, θ + h) = hTG(θ)h+ o(h2), (15)

where

G̃(θ)ij =
〈
EZ∼pΨ(g(θ, Z))∇θig(θ, z),

M(θ)EZ∼pΨ(g(θ, Z))∇θjg(θ, Z)
〉
,

which is clear semi-positive definite. Similar as the proof in
proposition 3, we know that the algorithm has the update

θk+1 = θk − hG(θ̃)†∇θF (θk+1) + o(h).

This is the first order time discretization of gradient flow.
We next check that

d

dt
F (θ(t)) = −∇θF (θ)TG̃(θ)†∇θF (θ) ≤ 0.

We observe that F (θ) decreases along the gradient flow.
Thus we finish the proof.

C. Order 2 Semi-backward Euler method
Here we consider the Order 2 semi-backeward Euler method.
We approximate the potential Φ by a quadratic function,
where the second order term is restricted to a diagonal ma-
trix.

Proof of Order 2 Diagonal SBE Formula. Here we show
that when we approximate

Φ(x) =
1

2
xTQx+ aTx+ b,

with a diagonal matrix Q = diag(q1, . . . , qN ). We get that

sup
a,Q

Φ(g(θ, z))− Φ(g(θk−1, (z))−
1

2
‖∇Φ(g(θk−1, Z))‖2

=
1

2
‖E[g(θ, z)− g(θk−1, z)−Qg(θk−1, z)]‖2

+
1

2
E[g(θ, Z)TQg(θ, Z)]− 1

2
E[g(θk−1, Z)TQg(θk−1, Z)]

−1

2
E[‖Qg(θk−1, Z)‖2]

which will be used in the O2Diag-SBE update. We note
that x = g(θ, z) and y = g(θk−1, z). Then we have that the
above becomes

sup
a,Q

Ex,y
[
aT (x− y)− 1

2
xTQx− 1

2
yTQy − ‖a+Qy‖2

]
= Ex,y

[
aT (x− y)− 1

2

∑
qix

2
i −

1

2
qiy

2
i

− ‖a+ diag(q1, . . . , qN )y‖2
]

The above is a quadratic equation in a and Q =
diag(q1, . . . , qN ), so we can formulate the above into,

= (a,Q)`− 1

2
(a,Q)M(a,Q)T

where ` =
(
E(x− y), 1

2E(x2 − y2)
)

and

M =
1

B

B∑
b=1

(
1
yb

)(
1
yb

)T

14



which is the matrix for the quadratic term ‖a +
diag(q1, . . . , qN )y‖2. Then the maximum obtained is at,

(a∗, Q∗) = M−1`

By explicitly computing the formula in Q∗, we finish the
proof.

D. A practical description of the Wasserstein
Proximal

As mentioned in Section 4.1, the Relaxed Wasserstein Prox-
imal is meant to be an easy-to-implement, drop-in regu-
larization. For instructional purposes, we take a specific
example to showcase the algorithm: Relaxed Wasserstein
Proximal on Vanilla GANs (with non-saturating gradient
for the generator):

• Given:

– A generator gθ, and discriminator Dω ,
– The distance function Fω(gθ) =

Ex∼real[log(Dω(x))] − Ez∼N (0,1)[log(1 −
Dω(gθ(z))],

– Choice of optimizers, Adamω and Adamθ,
– Proximal step-sizes h, and generator iterations `,

and
– Batch size B.

Then the algorithm follows:

1. Sample real data {xi}Bi=1, and latent data {zi}Bi=1.

2. Update the discriminator:

ωk ← Adamω

(
− 1

B

B∑
i=1

log(Dω(xi))

− 1

B

B∑
i=1

log(1−Dω(gθ(zi)))

)

3. Sample latent data {zi}Bi=1

4. Perform Adam gradient descent ` number of times:

θk ← Adamθ

(
− 1

B

B∑
i=1

log(Dω(gθ(zi)))

− 1

B

B∑
i=1

1

2h
‖gθ(zi)− gθk−1(zi)‖22

)
,

for ` number of times.

5. Repeat the above until a chosen stopping condition
(e.g. maximum number of iterations).

As one can analyze above, the only difference between
the standard way of training GANs and using the Relaxed
Wasserstein Proximal, are the ‖gθ(zi)− gθk−1(zi)‖22 terms
and the number of generator iterations `. Note that in this
paper, we call a single loop of updating a discriminator a
number of times and then updating the generator a number
of a time, an outer-iteration.

E. Details on the Experiments
E.1. Hyperparameters for Relaxed Wasserstein

Proximal experiments

The following hyperparameter settings for the RWP, Order-1
SBE, and Order-2 Diagonal SBE experiments in Section 4.1
are:

• A batch size of 64 for all experiments.

• For CIFAR-10 with WGAN-GP: The Adam optimizer
with learning rate 0.0001, β1 = 0.5, and β2 = 0.9 for
both the generator and discriminator. We used a latent
space dimension of 128. For RWP, we used h = 0.1,
and ` = 10 generator iterations. For Order-1 SBE, we
used h = 0.5, and ` = 5. For Order-2 Diagonal SBE,
we used h = 0.2 and ` = 5.

• For CIFAR-10 with Vanilla and DRAGAN: The Adam
optimizer with learning rate 0.0002, β1 = 0.1, and
β2 = 0.999 for both the generator and discriminator.
We used a latent space dimension of 100. For RWP,
we used h = 0.2, and ` = 5 generator iterations. For
Order-1 SBE, we used h = 0.2 and ` = 5. For Order-2
Diagonal SBE, we used h = 0.2 and ` = 5

• For aligned and cropped CelebA with Vanilla: The
Adam optimizer with learning rate 0.0002, β1 = 0.5,
and β2 = 0.999 for both the generator and discrimina-
tor. We used a latent space dimension of 100 For RWP,
we used h = 0.2, and ` = 5 generator iterations. For
Order-1 SBE, we used h = 0.2 and ` = 5. For Order-2
Diagonal SBE, we used h = 0.2 and ` = 5

• For aligned and cropped CelebA with WGAN-GP: The
Adam optimizer with learning rate 0.0001, β1 = 0.5,
and β2 = 0.9 for both the generator and discriminator.
We used a latent space dimension of 128. For RWP,
we used h = 0.1, and ` = 10 generator iterations. For
Order-1 SBE, we used h = 0.5 and ` = 5, but we
raised the number of discriminator iterations to 7 (as
opposed to the usual 5. For Order-2 Diagonal SBE, we
used h = 0.2 and ` = 5

• For the high-learning rate for CelebA with WGAN-
GP: The hyperparameters are the same as WGAN-GP
except in the following: the learning rate is raised to
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0.002, for RWP we have h = 0.1 and ` = 5, for
Order-1 SBE we have h = 0.05 and ` = 5, for Order-2
Diagonal SBE we have h = 0.05 and ` = 3

• For the high Adam β1 momentum for CelebA with
WGAN-GP: The hyperparameters are the same as
WGAN-GP except in the following: the β1 param-
eter is raised to 0.5 (as opposed to 0), for RWP we
have h = 0.1 and ` = 10, for Order-1 SBE we have
h = 0.05 and ` = 5, for Order-2 Diagonal SBE we
have h = 0.05 and ` = 3

F. Generated samples from the model
In Figure 5, we have samples generated from a Vanilla GAN
with RWP regularization, trained on the CelebA dataset.
The FID of these images was 17.105.

In Figure 6, we have samples generated from WGAN-GP
with RWP , trained on the CIFAR-10 dataset. The FID for
these images is 38.3.

Figure 5. A sample of images generated by RWP regularization on
Vanilla GANs, on CelebA.

Figure 6. A sample of images generated by RWP regularization on
WGAN-GP, on CIFAR-10.

G. Latent space walk
(Radford et al., 2015) suggest that walking in the latent space
could detect whether a generator was memorizing. We see
in Figure 7 and Figure 8 that we have smooth transitions, so
this is not the case for GANs with RWP regularization. Re-
sults for Order-1 SBE, and Order-2 Diagonal SBE showed
similar results.

Figure 7. A latent space walk for a network with RWP regulariza-
tion on Vanilla GANs, on CelebA. As we have smooth transitions,
this shows the generator is not overfitting. The latent space walk is
done by interpolating between 4 points in the latent space.

Figure 8. A latent space walk for a network with RWP regulariza-
tion on WGAN-GP, on CIFAR-10. As we have smooth transitions,
this shows the generator is not overfitting. The latent space walk is
done by interpolating between 4 points in the latent space.
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