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Abstract. We propose a fast algorithm for the calculation of the Wasserstein-1 distance, which4
is a particular type of optimal transport distance with homogeneous of degree one ground metric. Our5
algorithm is built on multilevel primal-dual algorithms. Several numerical examples and complexity6
analysis are provided to demonstrate its computational speed. On some commonly used image7
examples of size 512 × 512, the proposed algorithm gives solutions within 0.5 seconds on a single8
CPU, which is much faster than the state-of-the-art algorithms.9
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1. Introduction. Optimal transport (OT) plays crucial roles in many areas,13
including fluid dynamics [45], image processing [39, 40], machine learning [1, 20] and14
control [11, 12]. It is a well-posed distance measuring two probability distributions15
over a given domain. The distance is often named Earth Mover’s distance (EMD) or16
the Wasserstein distance. Plenty of theories on OT have been introduced [3, 4, 21, 32,17
45]. Despite the theoretical development, computing the distance is still challenging18
since the OT problems usually do not have closed-form solutions. Fast numerical19
algorithms are essential for the related applications.20

Recently, a particular class of OT, named the Wasserstein-1 distance, has been21
widely used in machine learning problems [1, 23, 37]. It gains rising interests in the22
computational mathematics community [25, 29, 2, 44]. The Wasserstein-1 distance is23
named as its ground metric is homogeneous of degree one. In this paper, we focus on24
numerically computing Wasserstein-1 distances.25

In literature, many numerical schemes have been proposed for the OT problem.26
[27, 39, 30, 36, 35, 31, 2] modeled the OT problem as a linear programming (LP)27
with specific structures. They utilized these structures to develop efficient solvers.28
[33, 38, 5, 24, 29, 28, 41] modeled OT as a nonsmooth convex optimization problem29
and introduced iterative algorithms to solve it. [14, 6, 43, 18, 9, 19, 15] studied the30
OT problems with regularizers and proposed efficient algorithms to solve them. In31
particular, some algorithms have been developed for calculating the Wasserstein-132
distance and its variants. Ling and Okada [30] exploited the structure of the problem33
to improve the transportation simplex algorithm [27] and proposed Tree-EMD. Pele34
and Werman [35, 36] proposed and solved EMD with a thresholded ground metric.35
Li et al. [29] studied a primal-dual algorithm for calculating Wasserstein-1 distances36
that is friendly to parallel programming and has an implementation on CUDA. Jacobs37
et al. [28] introduced the proximal PDHG method, whose number of iterations is38
independent of the grid size. Bassetti et al. [2] studied the connections between the39
Wasserstein-1 distance and the uncapacitated minimum cost flow problem and applied40
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2 J. LIU, W. YIN, W. LI AND Y.T. CHOW

the network simplex algorithm to solve it.41
Motivations and our contributions. Although many numerical algorithms [30, 2,42

29, 28] have been proposed to calculate the Wasserstein-1 distance, there is still some43
room to speed them up, especially for large-scale problems, for example, a grid of 512×44
512. Motivated by the success of multigrid methods [46] for calculating Wasserstein-45
p (p > 1) distance [31, 24], we apply the cascadic multilevel method [7] to calculate46
Wasserstein-1 distances. We compute the distances on different grid levels and use the47
solutions on the coarse grids to initialize the calculation of solutions on the finer grids.48
We use this method to speed up the state-of-the-art algorithms [29, 28], dramatically49
reducing the computational expense on the finest grids and lessening the total time50
consumption by 2 ∼ 200 times. The speedup effect depends on the size of the problem.51
It is significant for large-scale problems.52

The rest of this paper is organized as follows. In Section 2, we briefly review the53
Wasserstein-1 distance. In Section 3, we demonstrate our multilevel algorithms and54
provide a complexity analysis in Section 4. In Section 5, we numerically validate the55
assumptions used in Section 4. Finally, in Section 6, we present several numerical56
examples.57

2. Problem description. Given a domain Ω ⊂ <d, the EMD, or the Wasser-58
stein distance, is a commonly-used metric to measure the distance between two prob-59
ability distributions defined on Ω: ρ0, ρ1 : Ω → <. In the 1D case (d = 1), the60
Wasserstein Distance has a closed-form solution [45]. With two or higher dimensions61
(d ≥ 2), the distance is no longer given in a closed form, and it is obtained via iterative62
algorithms. In this paper, we consider the following Wasserstein−1 distance:63

(2.1)

minimize
π:Ω×Ω→<

∫
x,y∈Ω

‖x− y‖pπ(x, y)dxdy

subject to
∫
y∈Ω

π(x, y)dy = ρ0(x), ∀x ∈ Ω∫
x∈Ω

π(x, y)dx = ρ1(y), ∀y ∈ Ω,

π(x, y) ≥ 0, ∀x, y ∈ Ω,

64

where ‖ ·‖p, 1 ≤ p ≤ ∞, is the “ground metric” of the Wasserstein distance. The mini-65
mization variable π is a joint distribution π : Ω×Ω→ < whose marginal distributions66
are ρ0, ρ1. The dual problem of (2.1), also named the Kantorovich dual problem, is:67

(2.2)
maximize
φ0,φ1:Ω→<

∫
x∈Ω

φ0(x)ρ0(x)dx−
∫
y∈Ω

φ1(y)ρ1(y)dy

subject to φ0(x)− φ1(y) ≤ ‖x− y‖p, ∀x, y ∈ Ω,

68

where φ0, φ1 are (Kantorovich) dual variables.69

2.1. Problem settings. In this paper, we focus on an equivalent and simpler70
form of (2.2). Since ‖ · ‖p is homogeneous of degree one, by [45], there is an equivalent71
form of (2.2), where φ0 = φ1 = φ. In other words,72

(2.3)
maximize
φ:Ω→<

∫
x∈Ω

φ(x)(ρ0(x)− ρ1(x))dx

subject to ‖∇φ(x)‖q ≤ 1, ∀x ∈ Ω,

73
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where 1/p + 1/q = 1 and 1 ≤ q ≤ ∞. The following minimization problem, which is74
the dual problem of (2.3), is also considered in this paper:75

(2.4)

minimize
m:Ω→<d

∫
x∈Ω

‖m(x)‖pdx

subject to div(m(x)) = ρ0(x)− ρ1(x), ∀x ∈ Ω,

m(x) · n(x) = 0, ∀x ∈ ∂Ω

76

where “div” denotes the divergence operator div(m(x)) =
∑d
i=1

∂mi
∂xi

(x) and n(x) is77
normal to ∂Ω. Here m is a d dimensional field satisfying the zero flux boundary78
condition [3], the solution of (2.4) m∗ is called “the optimal flux”.79

2.2. Discretization. We set Ω = [0, 1]d. Let Ωh be a grid on Ω with step size80
h > 0:81

Ωh = {0, h, 2h, 3h, · · · , 1}d.82

Let N = 1/h be the grid size. Any x ∈ Ωh is a d dimensional tensor, of which the value83
of the ith component xi is chosen from: xi ∈ {0, h, 2h, 3h, · · · , 1}. The discretized84
distributions ρ0

h, ρ
1
h are (N + 1)d tensors, and the discretized flux mh is a (N + 1)d×d85

tensor, which represents a map Ωh → <d: ρ0
h = {ρ0(x)}x∈Ωh , ρ1

h = {ρ1(x)}x∈Ωh , and86
mh = {m(x)}x∈Ωh . The discretized version of (2.4) can be written as87

(2.5)
minimize
mh:Ωh→<d

∑
x∈Ωh

‖mh(x)‖phd

subject to divh(mh(x)) = ρ0
h(x)− ρ1

h(x), ∀x ∈ Ωh,

88

where the discrete divergence operator is:89

divh(mh(x)) =

d∑
i=1

Dh,im(x),

Dh,im(x) =


(mh,i(x−i, xi))/h, xi = 0

(mh,i(x−i, xi)−mh,i(x−i, xi − h))/h, 0 < xi < 1

(−mh,i(x−i, xi − h))/h, xi > 1

90

In the definition of divh, mh(x) ∈ <d means the flow at point x, mh,i(x) ∈ < is the91
ith component of mh(x). The notion “−i” refers to all the components excluding i:92
x−i = {xj : j ∈ {1, 2, · · · , d}, j 6= i}.93

To simplify our notation, we rewrite the above problem (2.5) as:94

(2.6)
minimize
mh:Ωh→<d

f(mh)

subject to Ahmh = ρh.
95

where f(·) denotes a norm of mh, Ah denotes the divergence operator, which is linear,96
and ρh = ρ0

h − ρ1
h.97

The dual problem of (2.6), which is also the discrete version of (2.3), is:98

(2.7)
minimize
φh:Ωh→<

∑
x∈Ωh

φh(x)ρh(x)hd

subject to ‖A∗hφh(x)‖q ≤ 1, ∀x ∈ Ωh,

99
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4 J. LIU, W. YIN, W. LI AND Y.T. CHOW

where φh : Ωh → < is the Kantorovich potential : φh = {φ(x)}x∈Ωh . The adjoint100
operator of Ah, A∗h, denotes the gradient operator.101

In this paper, we solve (2.6) and (2.7) jointly by primal-dual algorithms.102
Define some norms on Ωh:103

‖mh‖22 =
∑
x∈Ωh

‖m(x)‖22, ‖mh‖2L2 =
∑
x∈Ωh

‖m(x)‖22hd,

‖φh‖22 =
∑
x∈Ωh

φ2(x), ‖φh‖2L2 =
∑
x∈Ωh

φ2(x)hd,

‖ϕh‖22 =
∑
x∈Ωh

‖ϕ(x)‖22, ‖ϕh‖2L2 =
∑
x∈Ωh

‖ϕ(x)‖22hd.

104

Define inner products on Ωh:105

〈φh, φ′h〉 =
∑
x∈Ωh

φh(x)φ′h(x),106

107
〈φh, φ′h〉h =

∑
x∈Ωh

φh(x)φ′h(x)hd.108

3. Algorithm description. In this section, we review two recent primal-dual109
algorithms designed for (2.6) and (2.7). We apply a multilevel framework (Section110
3.2) to further accelerate these algorithms.111

3.1. Two recent algorithms for (2.6) and (2.7).112
Algorithm 1 (Li et al. [29]). Problems (2.6) and (2.7) can be jointly solved by the113

following min-max problem:114

(3.1) min
mh

max
φh

L(mh, φh) = f(mh) + 〈φh, Ahmh − ρh〉h.115

Inspired by the Chambolle-Pock Algorithm [10], the authors of [29] proposed the116
following algorithm to solve (3.1):117

(3.2)

mk+1
h = arg min

mh

L(mh, φ
k
h) +

1

2µ
‖mh −mk

h‖2L2 ,

m̄k+1
h = 2mk+1

h −mk
h,

φk+1 = arg max
φh

L(m̄k+1
h , φh)− 1

2τ
‖φh − φkh‖2L2 .

118

Parameters µ, τ > 0 need to be tuned. If µτ‖Ah‖2 < 1, then we have the iteration119
(mk

h, φ
k
h) → (m∗h, φ

∗
h), which is the solution of (3.1). In this paper, we use1 µ = τ =120

1/(2‖Ah‖). The iteration stops when the following fixed point residual (FPR) Rk falls121
below a threshold:122

(3.3) Rkh :=
1

µ
‖mk+1

h −mk
h‖2L2 +

1

τ
‖φk+1

h −φkh‖2L2−2
〈
φk+1
h −φkh, div

h(mk+1
h −mk

h)
〉
h
.123

The algorithm is summarized in Algorithm 1.124

1The parameter choice µ = τ = 1/(2‖Ah‖) is convenient for complexity analysis. Practically,
µ = τ = 1/‖Ah‖ is better although it does not guarantee convergence theoretically.
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Algorithm 1: A primal-dual algorithm for EMD [29]
Input: Distributions ρ0, ρ1, grid step size h, initial point m0, φ0, tolerance ε.
while Rkh < ε is not satisfied do

Execute (3.2).
end
Output: mK , φK

Algorithm 2 (Jacobs et al. [28]). Problem (2.6) can be written as:125

min
mh,uh

max
ϕh

f(uh) + δAhmh=ρh(mh) + 〈ϕh,mh − uh〉h,126

which is equivalent with127

(3.4) min
mh

max
ϕh

L̃(mh, ϕh) = δAhmh=ρh(mh)− f∗(ϕh) + 〈ϕh,mh〉h.128

In the above formula, ϕh : Ωh → <d is the dual variable, that is the gradient of the129
Kantorovich potential: ϕh = A∗hφh. Function δAhmh=ρh is the indicator function of130
Ahmh = ρh:131

δAhmh=ρh(mh) =

{
0, if Ahmh = ρh,

+∞, if Ahmh 6= ρh.
132

Function f∗ is the convex conjugate of f :133

f∗(ϕh) = sup
uh

〈ϕh, uh〉h − f(uh)134

The authors of [28] solve (3.4) in the following way:135

(3.5)

mk+1
h = arg min

mh

L̃(mh, ϕ̄
k
h) +

1

2µ
‖mh −mk

h‖2L2

ϕk+1
h = arg max

ϕh

L̃(mk+1
h , ϕh)− 1

2τ
‖ϕh − ϕkh‖2L2

ϕ̄k+1
h = 2ϕk+1

h − ϕkh,

136

where the first subproblem solving mk+1
h requires computing a projection onto the137

affine space {mh|Ahmh = ρh}. Since the discrete Laplacian inverse ((Ah)∗Ah)−1 can138
be easily computed by FFT, the projection could be efficiently calculated [28].139

Parameters µ, τ > 0 need to be tuned. As long as µτ < 1, we have the iteration140
(mk

h, ϕ
k
h) → (m∗h, ϕ

∗
h), which is the solution of (3.4). In this paper, we choose2 µ =141

τ = 1/2. The stopping condition is to have the following fixed point residual Gk small142
enough:143

(3.6) Gkh =
1

µ
‖mk+1

h −mk
h‖2L2 +

1

τ
‖ϕk+1

h − ϕkh‖2L2 + 2
〈
ϕk+1
h − ϕkh,mk+1

h −mk
h

〉
h
.144

With ϕ∗h in hand, the Kantorovich potential φ∗h can be easily solved by the method145
given in Appendix B.146

The algorithm is listed in Algorithm 2.147

2The parameter choice µ = τ = 1/2 is convenient for complexity analysis. Practically, µ = τ = 1
is better.

This manuscript is for review purposes only.



6 J. LIU, W. YIN, W. LI AND Y.T. CHOW

Algorithm 2: Prox-PDHG for EMD [28]
Input: Distributions ρ0, ρ1, grid step size h, initial point m0, ϕ0, tolerance ε.
while Gkh < ε is not satisfied do

Execute (3.5).
end
Output: mK , ϕK

3.2. A framework: multilevel initialization. In this subsection, we describe148
a framework, inspired by the cascadic multilevel method [7], to substantially speed149
up Algorithms 1 and 2. With the multilevel framework, Algorithms 1 and 2 lead to150
Algorithms 1M and 2M respectively.151

Suppose we have L levels of grids with step sizes h1, h2, · · · , hL respectively. The152
step sizes satisfy153

h1 > h2 > · · · > hL−1 > hL = h.154

The finest step size hL = h. On each level, the space Ω is respectively discretized as155

Ωh1 , · · · ,ΩhL−1 ,ΩhL .156

If h is the power of 1/2, we take hl = 2L−lh. Then we have157

Ωh1 ⊂ Ωh2 ⊂ · · ·ΩhL−1 ⊂ Ωh.158

On the lth level, the optimal flux problem (2.6) is159

(3.7)
minimize
mhl :Ω

hl→<d
f(mhl)

subject to Ahlmhl = ρhl

160

We apply the cascadic multilevel technique [7] to the OT problem. We use 0161
initial solution on the level l = 1 and solve a sequence of minimization problem (3.7)162
with one pass from the coarsest level l = 1 to the finest level l = L. On each level,163
we use Algorithm 1 or Algorithm 2 that is stopped as the iterate is accurate enough164
(Rkh1

< ε for Algorithm 1, Gkh1
< ε for Algorithm 2). The obtained solution is denoted165

by (mK
h1
, φKh1

) or (mK
h1
, ϕKh1

). After that, we interpolate the obtained solutions to the166
next level l = 2 and treat them as the initial solutions of level l = 2. The process167
is repeated for l = 3, · · · , L. Algorithms 1M and 2M are the multilevel versions of168
Algorithms 1 and 2 respectively.169

Practically, the solution on a coarse level is a good estimate of that on a finer170
level. Thus, the cascadic multilevel method works well.171

3.3. Cross-level interpolation. In this subsection, we describe the cross-level172
interpolations in Algorithms 1M and 2M in detail.173

Interpolation of potentials φh. For any x ∈ Ωhl on level l, we partition the set of174
the components xj into two subsets, depending on whether they also belong to the175
grid on the coarser level l − 1:176

(3.8)
J =

{
j : xj ∈ {0, hl−1, 2hl−1, · · · , 1}

}
J̄ =

{
j : xj ∈ {0, hl, 2hl, · · · , 1}, xj /∈ {0, hl−1, 2hl−1, · · · , 1}

}177
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Algorithm 1M Multilevel version of Algorithm 1
Input : Distributions ρ0, ρ1, grid step size h, tolerance ε.
Initialization: Let mK

h0
= 0, φKh0

= 0.

for l = 1, 2, · · · , L do
Initialize the current level:

m0
hl

= Interpolate(mK
hl−1

), φ0
hl

= Interpolate (φKhl−1
)

Call Algorithm 1:

(mK
hl
, φKhl) = Algorithm 1(ρ0, ρ1, hl,m

0
hl
, φ0
hl
, ε)

end
Output: mK

hL
, φKhl

Algorithm 2M Multilevel version of Algorithm 2
Input : Distributions ρ0, ρ1, grid step size h, tolerance ε.
Initialization: Let mK

h0
= 0, ϕKh0

= 0.
for l = 1, 2, · · · , L do

Initialize the current level:

m0
hl

= Interpolate (mK
hl−1

), ϕ0
hl

= Interpolate (ϕKhl−1
)

Call Algorithm 2:

(mK
hl
, ϕKhl) = Algorithm 2(ρ0, ρ1, hl,m

0
hl
, ϕ0

hl
, ε)

end
Output: mK

hL
, φKhl (Obtain φKhl from ϕKhl , see Appendix B)

Let the elements in J̄ be denoted as j1, j2, · · · , j|J̄|. The mapping φhl = Interpolate178

(φhl−1
) is defined pointwisely as the average value of a neighborhood. For x ∈ Ωhl ,179

(3.9)

φhl(x) =
1

2|J̄|

∑
|yj1−xj1 |≤hl

∑
|yj2−xj2 |≤hl

· · ·
∑

|yj|J̄|−xj|J̄| |≤hl

φhl−1
(xJ , yj1 , yj2 , · · · , yj|J̄|).180

For example, if d = 2 (2D case) and hl = hl−1/2, (3.9) can be written as:181

φhl(x1, x2) =



φhl−1
(x1, x2), if x1/hl, x2/hl are even(

φhl−1
(x1, x2 − hl) + φhl−1

(x1, x2 + hl)
)
/2, if x1/hl is even(

φhl−1
(x1 − hl, x2) + φhl−1

(x1 + hl, x2)
)
/2, if x2/hl is even(

φhl−1
(x1 − hl, x2 − hl) + φhl−1

(x1 − hl, x2 + hl)...

+φhl−1
(x1 + hl, x2 − hl) + φhl−1

(x1 + hl, x2 + hl)
)
/4, otherwise

182

Figure 1 gives an illustration of this 2D interpolation.183
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φ0.5(0.5, 1)

φ0.5(0, 0.5)

φ0.5(1, 0.5)

φ0.5(0.5, 0)

φ0.5(0.5, 0.5)

φ1(0, 0) φ1(0, 0)φ1(0, 1) φ1(0, 1)

φ1(1, 0) φ1(1, 0)φ1(1, 1) φ1(1, 1)

φ0.5 = Interpolate(φ1), h = 0.5φ1, h = 1

φ0.5(0.5, 0.5) = φ1(0,0)+φ1(0,1)+φ1(1,0)+φ1(1,1)
4

φ0.5(0.5, 1) = φ1(0,1)+φ1(1,1)
2 φ0.5(0, 0.5) = φ1(0,0)+φ1(0,1)

2

φ0.5(1, 0.5) = φ1(1,0)+φ1(1,1)
2 φ0.5(0.5, 0) = φ1(0,0)+φ1(1,0)

2

Figure 1. An illustration of (3.9) (2D case): from 1× 1 grid to 2× 2 grid

Interpolation of flux mh. Due to the zero-flux boundary condition for (2.4), in-184
terpolating m is different from φ. The flow m can be viewed as “edge weights” on the185
grid [29, 2], as in Figure 2. With the definition of J (3.8), mhl = Interpolate (mhl−1

)186
is pointwisely defined in (3.10). For x ∈ Ωhl , i = 1, 2, · · · , d,187

(3.10) mhl,i(x) =



1
2|J̄|

∑
|yj1−xj1 |≤hl

· · ·
∑
|yj|J̄|−xj|J̄| |≤hl

mhl−1,i(xJ , yj1 , yj2 , · · · , yj|J̄|), i ∈ J
1

2|J̄|

∑
|yj1−xj1 |≤hl

· · ·
∑
|yj|J̄|−xj|J̄| |≤hl

mhl−1,i(xJ , yi, yj1 , yj2 , · · · , yj|J̄|), i /∈ J,

188

where yi is an element in {0, hl−1, 2hl−1, · · · , 1} which is the nearest to xi.189
For example, if d = 2 (2D case) and hl = hl−1/2, (3.10) can be written as:190

mhl,1(x1, x2) =



mhl−1,1(x1, x2), if x1/hl, x2/hl are even
mhl−1,1(x1 − hl, x2), if x2/hl is even(
mhl−1,1(x1, x2 − hl) +mhl−1,1(x1, x2 + hl)

)
/2, if x1/hl is even(

mhl−1,1(x1 − hl, x2 − hl) +mhl−1,1(x1 − hl, x2 + hl)
)
/2,

otherwise

191

192

mhl,2(x1, x2) =



mhl−1,2(x1, x2), if x1/hl, x2/hl are even
mhl−1,2(x1, x2 − hl), if x1/hl is even(
mhl−1,2(x1 − hl, x2) +mhl−1,2(x1 + hl, x2)

)
/2, if x2/hl is even(

mhl−1,2(x1 − hl, x2 − hl) +mhl−1,2(x1 + hl, x2 − hl)
)
/2,

otherwise

193
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Figure 2. An illustration of (3.10) (2D case): from 1× 1 grid to 2× 2 grid

Figure 2 illustrates the above formula.194
Interpolation of ϕh. Since ϕh has the same dimension with mh, the interpolation195

of ϕh is the same with interpolation of flux mh (3.10).196

4. Analysis of computational costs. In this section, we provide complexity197
analysis of Algorithms 1, 2, 1M and 2M.198

4.1. Analysis of Algorithms 1 and 1M. Let zh = (mh, φh) and Z∗hl be the199

solution set of the lth level min-max problem:200

Z∗hl =
{

(m∗hl , φ
∗
hl

)
∣∣∣(m∗hl , φ∗hl) is a saddle point of L(mhl , φhl)

}
,201

where L is defined in (3.1).202

Assumption 1. The solution sets on all the levels are nonempty and bounded,203
i.e.,204

(4.1) ‖z∗hl‖
2
L2 ≤ C1, ∀z∗hl ∈ Z

∗
hl
, ∀l = 1, 2, · · · , L205

Assumption 1 is mild. Since z∗hl = (m∗hl , φ
∗
hl

), the norm of z∗hl can be decomposed206

as ‖z∗hl‖
2
L2 = ‖m∗hl‖

2
L2 + ‖φ∗hl‖

2
L2 . The dual solution φ∗hl , by the definition in (2.7),207

has the property: ‖A∗hφ∗hl(x)‖q ≤ 1,∀x ∈ Ωhl , where A∗h is the gradient operator208

defined on Ωhl . It implies that all the dual solutions φ∗hl are Lipschitz continuous209

uniformly on the compact domain Ω = [0, 1]d. Thus, all the dual solutions φ∗hl are210
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10 J. LIU, W. YIN, W. LI AND Y.T. CHOW

uniformly bounded as long as they are kept zero-meaned. Actually keeping φ∗hl to be211
zero-meaned is not difficult, see [45]. The primal solution m∗hl , by definition, is the212
solution of minimization problem (3.7). Thus, f(m∗hl) must be uniformly bounded.213

Although the L2 norm may not be controlled by f(m∗hl) =
∑
x∈Ωhl ‖m∗hl(x)‖phdl , on214

commonly used examples, we numerically validated Assumption 1 in Table 3 and215
observed that C1 exists and is independent of grid size.216

Assumption 2. For any optimal solution z∗hl ∈ Z∗hl on level l, there exists an217
optimal solution z∗hl+1

∈ Z∗hl+1
on the finer level l + 1 such that218

(4.2) ‖Interpolate(z∗hl)− z
∗
hl+1
‖2L2 ≤ C2(hl)

r, ∀l = 1, 2, · · · , L− 1,219

where r > 0 depends on the smoothness of the solution z∗hl , the interpolation method220

we choose and the properties of ρ0
hl

and ρ1
hl

on each of the levels.221

Assumption 2 requires the solution sets between two consecutive levels are close222
to each other. We are not able to show (4.2) holds theoretically, because different223
density ρ = ρ0 − ρ1 lead to different r. However, Assumption 2 holds on commonly224
used examples. We numerically validated it in Section 5.2 with d = 2 and p = 1, 2,∞.225
Figure 3 gives a visualized example of the multiple solutions on different levels. Table226
4 quantifies ‖Interpolate(z∗hl)−z

∗
hl+1
‖2L2 and shows that r is approximately 1 ≤ r ≤ 2.227

In the following theorem, we consider only the case of r < d+1. Actually r < d+1228
is a worse case compared with r ≥ d+ 1. If r ≥ d+ 1 holds, our multilevel method is229
so efficient that the complexity of Algorithm 1M is even unrelated with h because the230
complexity is no longer dominated by the calculation on the finest level. Practically231
r ≥ d+ 1 rarely happens, and we ignore this case.232

Theorem 4.1. Given ρ0, ρ1, h, if Assumptions 1,2 hold and hl = 2L−lh, then it233
holds that:3234

1. Given 0 as the initialization, Algorithm 1 takes O( 1
ε

√
d
h ) iterations to stop.235

2. Given 0 as the initialization, the complexity of Algorithm 1 is O( 1
ε
d3/2

hd+1 ).236

3. Algorithm 1M takes O( 1
ε

√
d

h1−r ) iterations on the finest level if L ≥ 2.237
4. If r < d+ 1 and L large enough, calculation on the finest level L is the dom-238

inant term in Algorithm 1M, the complexity of the algorithm is O( 1
ε

d3/2

hd+1−r ).239

This theorem shows why and how much Algorithm 1M helps speed up Algorithm240
1. As long as the optimal solution on the coarse level is close to one of the optimal241
solutions on the finer level, the multilevel technique is able to reduce the number of242
iterations on the finer level. If the distance between the coarse solution and the fine243
solution is controlled by O(hr), the order of the complexity of Algorithm 1 can be244
reduced by hr. Table 7 demonstrates the number of iterations and calculation time245
are significantly reduced.246

Proof. Step 1: Analyzing how many iterations Algorithm 1 takes. Define247

Mh = hd
[
I/µ −(Ah)∗

−Ah I/τ

]
.248

The fixed point residual can be written as Rkh = ‖zk+1
h − zkh‖2Mh

. Then Chambolle-249
Pock is equivalent with proximal point algorithm (PPA) with Mh-metric (Theorem 1250

3In this article, O(·) denotes the asymptotic rate as ε→ 0 and h→ 0.
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in [29]). Since µτ‖Ah‖2 < 1 is satisfied, we have the following conclusions [26]:251

(4.3) Rkh ≤
1

k
‖z0
h − z∗h‖2Mh

, ∀z∗h ∈ Z∗h,252

FPR is monotone:253

(4.4) Rk+1
h ≤ Rkh, ∀k,254

and the global convergence holds in the sense:255

(4.5) zkh → z∗h, for some z∗h ∈ Z∗h, as k →∞.256

By Cauchy-Swartz, we obtain257

2〈φk+1
h − φkh, Ah(mk+1

h −mk
h)〉 ≤ ‖Ah‖ · ‖φk+1

h − φkh‖22 + ‖Ah‖ · ‖mk+1
h −mk

h‖22.258

The above inequality and the parameter choice µ = τ = 1/(2‖Ah‖) lead to259

‖z0
h − z∗h‖2Mh

≤ ‖Ah‖‖z0
h − z∗h‖2L2 .260

The norm ‖Ah‖ is the square root of the largest sigular-value of (Ah)∗Ah, which is261
the discrete Laplacian with grid step size h. By the Gershgorin circle theorem [22],262

σmax
(
(Ah)∗Ah

)
≤ 4 d

h2 and, thus, ‖Ah‖ ≤ 2
√
d
h , which imples263

‖z0
h − z∗h‖2Mh

≤ 2

√
d

h
‖z0
h − z∗h‖2L2 .264

Since we take zero as the initialization z0
h = 0, based on Assumption 1 and conclusion265

(4.3), as long as k > 2C1
1
ε

√
d
h , we have266

Rkh ≤
1

k
‖z0
h − z∗h‖2Mh

≤ 2
√
d

1

kh
‖z0
h − z∗h‖2L2 ≤ 2

√
d

1

kh
C1 < ε,267

That is, within (2C1
1
ε

√
d
h ) ≈ O( 1

ε

√
d
h ) iterations, the stopping condition of Algorithm268

1 is satisfied.269
Step 2: Analyzing how many iterations Algorithm 1M take.270
Level 1: Using the similar argument in Step 1, we conclude that Algorithm 1M271

takes O( 1
ε

√
d

h1
) iterations to stop on level l = 1.272

Level 2: The calculation of level 2 is initialized by the result of level 1. Conclusions273
(4.4) and (4.5) also hold for h1. By the global convergence of {zkh1

}k (4.5), there exists274

a K̄ such that ‖zkh1
− z∗h1

‖2L2 ≤ C2(h1)r for all k ≥ K̄. Now we set ε̄ = RK̄h1
. Then,275

by the monotonicity of FPR (4.4), we conclude that, as long as ε < ε̄, when Level 1276
stops, the final iteration K satisfies K ≥ K̄, ‖zKh1

− z∗h1
‖2L2 ≤ C2(h1)r is achieved.277

Lemma A.1 (Appendix A) implies ‖Interpolate (zKh1
− z∗h1

)‖2L2 ≤ ‖zKh1
− z∗h1

‖2L2 .278
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As long as k > 2r+3C2
1
ε

√
d

h1−r
2

, we have279

Rkh2
≤ 1

k
‖z0
h2
− z∗h2

‖2Mh2
≤ 2
√
d

1

kh2
‖z0
h2
− z∗h2

‖2L2

=2
√
d

1

kh2
‖Interpolate (zKh1

)− z∗h2
‖2L2

≤2
√
d

1

kh2

(
2‖Interpolate(zKh1

)− Interpolate(z∗h1
)‖2L2 + 2‖Interpolate(z∗h1

)− z∗h2
‖2L2

)
=2
√
d

1

kh2

(
2‖Interpolate (zKh1

− z∗h1
)‖2L2 + 2‖Interpolate (z∗h1

)− z∗h2
‖2L2

)
≤2
√
d

1

kh2

(
2‖zKh1

− z∗h1
‖2L2 + 2‖Interpolate (z∗h1

)− z∗h2
‖2L2

)
≤2
√
d

1

kh2

(
2C2(h1)r + 2C2(h1)r

)
=2
√
d

1

kh2

(
2C2(2h2)r + 2C2(2h2)r

)
=

2r+3C2

k

√
d

h1−r
2

< ε.

280

In the above arguments, K represents the final iteration of level 1, k means the kth281

iteration of level 2. Consequently, within (2r+3C2
1
ε

√
d

h1−r
2

) ≈ O( 1
ε

√
d

h1−r
2

) iterations, Level282

2 stops.283
With the same proof line, we have, for Levels 2, 3, · · · , L, the number of iterations284

are O( 1
ε

√
d

h1−r
2

), O( 1
ε

√
d

h1−r
3

), · · · O( 1
ε

√
d

h1−r ), respectively. Point 3 of Theorem 4.1 is proved.285

Step 3: Analyzing complexities of Algorithm 1 and 1M.286
First, we consider the case where p = 1 or p = 2.287
For Algorithm 1, the complexity is a product of the iterations, the complexity is288

asymptotically “iterations × single step complexity.” In each step of Algorithm 1, the289
dominant calculation is computing Ahmh or (Ah)∗φh [29], which has a complexity of290
O(d 1

hd
). Thus, the total complexity of Algorithm 1 is:291

O(
1

ε

√
d

h
)×O(d

1

hd
) = O(

1

ε

d3/2

hd+1
).292

For Algorithm 1M, the complexity is a product of two parts: iterations on all293
levels and the interpolations between the levels. Let us first consider the former part.294

Similar to Algorithm 1, the complexity of level 1 is O( 1
ε
d3/2

hd+1
1

). The complexity of295

Level l(2 ≤ l ≤ L) is O( 1
ε

d3/2

hd+1−r
l

). Since hL = h, hL−1 = 2h, hL−2 = 22h, · · · , we have296

L∑
l=2

O

(
1

ε

d3/2

hd+1−r
l

)
+O

(
1

ε

d3/2

hd+1
1

)

=O

(
1

ε

d3/2

hd+1−r

)( L−2∑
i=0

2−i(d+1−r) +
C1

C2
2−(d+1)(L−1)h−r

)
.

297

As L large enough, 2−(d+1)(L−1)h−r ≤ 1 holds. As r < d+ 1,
∑L−2
i=0 2−i(d+1−r) <∞298

holds. Thus, the above complexity is asymptotically O( 1
ε

d3/2

hd+1−r ) if r < d+ 1.299
Now let us consider the second part, the complexity of interpolations between the300

levels l and l + 1. Each node on level l + 1 is obtained by no more than 2d nodes,301
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totally we have O(d/hdl+1) nodes, so the complexity of interpolation between the levels302

l and l + 1 is O(d2d/hdl+1). The complexity of interpolations in Algorithm 1M is303

O(
d2d

hd
)(1 +

1

2d
+

1

22d
+ · · ·+ 1

2(L−1)d
) = O(

d2d

hd
).304

As long as ε is small enough, 1
ε

d3/2

hd+1−r � d2d

hd
, i.e. the calculation of Algorithm 1 on all305

the levels dominates the calculation in Algorithm 1M. The complexity of Algorithm306

1M is O( 1
ε

d3/2

hd+1−r ).307
For p = ∞, the dominant calculation in a single step includes two parts. One is308

computing Ahmh or (Ah)∗φh, which we analyze in the case of p = 1, 2. The other309
is calculating `∞ shrinkage operator. By the Moreau decomposition [34], computing310
an `∞ shrinkage operator is equivalent with computing a projection onto an `1 ball.311
By [16], the complexity of the latter is O(d). We need to project all the points312
x ∈ Ωh. In total, there are O(Nd) = O(1/hd) points, so the single step complexity313
is O( d

hd
). Following the above argument, we obtain the complexities of Algorithm 1314

and Algorithm 1M as p =∞ has the same asymptotic rate as p = 1, 2.315

4.2. Analysis of Algorithms 2 and 2M. Let yh = (mh, ϕh). Let Y ∗hl be the316

solution set of the lth level min-max problem:317

Y ∗hl =
{

(m∗hl , ϕ
∗
hl

)
∣∣∣(m∗hl , ϕ∗hl) is a saddle point of L̃(mhl , ϕhl)

}
,318

where L̃ is defined in (3.4).319

Assumption 3. The solution sets on all the levels are nonempty and bounded,320
i.e.,321

(4.6) ‖y∗hl‖
2
L2 ≤ C3, ∀y∗hl ∈ Y

∗
hl
, ∀l = 1, 2, · · · , L322

Assumption 3 is mild. By y∗hl = (m∗hl , ϕ
∗
hl

), we have ‖y∗hl‖
2
L2 = ‖m∗hl‖

2
L2 +‖ϕ∗hl‖

2
L2 .323

The dual optimal solution ϕ∗hl , by the definition in (3.4), has the property: ϕ∗hl =324

A∗hφ
∗
hl
. Since ‖A∗hφ∗hl(x)‖q ≤ 1,∀x ∈ Ωhl , we have ‖ϕ∗hl(x)‖q ≤ 1,∀x ∈ Ωhl , which325

implies all the dual solutions φ∗hl are uniformly bounded:4326

‖ϕ∗hl(x)‖2L2 =
∑
x∈Ωhl

‖ϕ∗hl(x)‖22hdl ≤
∑
x∈Ωhl

d‖ϕ∗hl(x)‖2qhdl ≤ d.327

The primal solution m∗hl in this assumption shares the same properties with that in328
Assumption 1. We validated Assumption 3 numerically in Table 5, we can see that329
C3 is independent of the grid size.330

Assumption 4. For any optimal solution y∗hl ∈ Y ∗hl on level l, there exists an331
optimal solution y∗hl+1

∈ Y ∗hl+1
on the finer level l + 1 such that332

(4.7) ‖Interpolate(y∗hl)− y
∗
hl+1
‖2L2 ≤ C4(hl)

ν , ∀l = 1, 2, · · · , L− 1.333

where ν > 0 depends on the smoothness of the solution y∗hl , the interpolation method334

we choose and the properties of ρ0
hl

and ρ1
hl

on each of the levels.335

4This bound is due to the fact that ‖a‖2 ≤
√
d‖a‖q for all a ∈ <d and 1 ≤ q ≤ ∞.
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Similar to Assumption 2, this assumption is numerically validated in Section 5.4336
with d = 2 and p = 1, 2,∞. Figures 5 provides a visualization and Table 6 quantifies337
‖Interpolate(y∗hl) − y

∗
hl+1
‖2L2 and shows that ν is approximately 1 on the commonly338

used examples.339
In the following theorem, we only consider the case of ν < d. Actually ν < d is340

a case worse to deal with than ν ≥ d. If ν ≥ d holds, our multilevel method is so341
efficient that the complexity of Algorithm 2M is not even related with h because the342
complexity is no longer dominated by the calculation on the finest level. Practically343
ν ≥ d rarely happens, so we ignore this case.344

Theorem 4.2. Given ρ0, ρ1, h, if Assumptions 3,4 hold and hl = 2L−lh, then it345
holds that346

1. Given 0 as initialization, Algorithm 2 takes O( 1
ε ) iterations to stop.347

2. Given 0 as initialization, the complexity of Algorithm 2 is O( 1
ε
d
hd

log( 1
h )).348

3. Algorithm 2M takes O( 1
εh

ν) iterations on the finest level if L ≥ 2.349
4. If ν < d and L is large enough, calculation on the finest level L is the dominant350

term in Algorithm 2M, the complexity of the algorithm is O( 1
ε

d
hd−ν

log( 1
h )).351

Similar to Theorem 4.1, this theorem shows Algorithm 2M helps speed up Algo-352
rithm 2 when the solution on the coarse level is a good estimate of that on a finer level.353
Table 9 numerically validates the theorem: the number of iterations and calculation354
time are largely reduced.355

Proof. Step 1: Analyzing number of iterations Algorithms 2 and 2M require.356
Let357

M̃ =

[
I/µ I
I I/τ

]
.358

Similar to Algorithm 1, Algorithm 2 is equivalent with PPA with M̃ -metric.359
Just follow the same proof line of step 1 in the proof of Theorem 4.1. Substituting360

−Ah with I, we obtain: Algorithm 2 takes O(1/ε) iterations to stop. The number361
of iterations is not related with grid step size h. This conclusion is consistent with362
the results in [28]. Moreover, Algorithm 2M takes O( 1

ε ) iterations for level l = 1 and363
O( 1

ε (hl)
ν) iterations for level l, 2 ≤ l ≤ L.364

Step 2: Analyzing complexities.365
First, we consider the case where p = 1 or p = 2.366
For Algorithm 2, the complexity can be estimated by “iterations × single step367

complexity.” In each step of Algorithm 2, the dominant calculation is conducting d368
dimensional FFT on ϕ̄kh [28], which have complexity of O(Nd log(Nd). Since N = 1/h,369
the complexity is O(d 1

hd
log( 1

h )) [17]. Then the complexity of Algorithm 1 is:370

O(
1

ε
)×O(d

1

hd
log(

1

h
)) = O(

1

ε

d

hd
log(

1

h
)).371

For Algorithm 2M, we first analyze the complexity of the calculation on each372
level.373

The complexity of level l = 1 is O( 1
ε
d
hd1

log( 1
h1

)). The complexity of level l(2 ≤374
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l ≤ L) is O( 1
ε

d

hd−νl

log( 1
hl

)). Since hL = h, hL−1 = 2h, hL−2 = 2h, · · · , we have375

L∑
l=2

O

(
1

ε

d

hd−νl

log(
1

hl
))

)
+O

(
1

ε

d

hd1
log(

1

h1
)

)

≤O
(

1

ε

d

hd−ν
log(

1

h
))

)( L−2∑
i=0

2−i(d−ν) + 2−d(L−1)h−ν
)
.

376

As L large enough, 2−d(L−1)h−ν ≤ 1 holds. As ν < d,
∑L−2
i=0 2−i(d−ν) < ∞ holds.377

Thus, the complexity of the calculation on all levels is asymptoticallyO( 1
ε

d
hd−ν

log( 1
h )).378

Using similar argument of that in Theorem 4.1, as ε small enough, the above379

complexity is much larger than that of interpolation, i.e., 1
ε

d
hd−ν

� d2d

hd
. The com-380

plexity of Algorithm 2M is O( 1
ε

d
hd−ν

log( 1
h )). Moreover, in the case of p = ∞, with381

the same argument in Step 3 of the proof of Theorem 4.1, we obtain the conclusions382
in Theorem 4.2.383

4.3. Summary of complexities. Tables 1 and 2 summarize the complexi-384
ties. Complexity results of Algorithms 1, 2, 1M and 2M are given in Table 1. Let385
N = 1/h, Table 1 can be directly obtained by Theorems 4.1 and 4.2. In the case of386
d = 2 (2D case), we compare Algorithms 1, 2, 1M and 2M with other EMD algo-387
rithms [30, 2] in Table 2. By [30], their algorithm has complexity of O((Nd)2). As388
d = 2, it is O(N4). The algorithm in [2] constructs a graph and solves the unca-389
pacitated minimum cost flow problem on the graph. The worst case complexity is390
O
(
|V | log(|V |)(|V | log(|V |) + |E|)

)
, where |V | is the number of nodes in the created391

graph and |E| is the number of edges. As p = 1 or p =∞, |V | = O(N2), |E| = O(N2),392
the complexity is O(N4 log2(N)); as p = 2, |V | = O(N2), |E| = O(N4), the complex-393
ity is O(N6 log(N)).394

Table 1
Complexities of Algorithms 1, 2, 1M and 2M. The parameters r, ν depend on the interpolation

accuracy (Assumptions 2, 4).

p = 1, 2,∞
Algorithm 1 [29] O( 1

εd
3/2Nd+1)

Algorithm 2 [28] O( 1
εdN

d log(N))

Algorithm 1M O( 1
εd

3/2Nd+1−r)
Algorithm 2M O( 1

εdN
d−ν log(N))

5. Numerical validation of the assumptions. We numerically validated As-395
sumptions 1, 2, 3 and 4 in the case of dimension d = 2 and p ∈ {1, 2,∞}. We396
implemented Algorithms 1M and 2M in MATLAB to validate our assumptions.397

5.1. Validation of Assumption 1. Since the EMD generally does not have398
a closed-form solution in the 2D case, we numerically estimate ‖z∗hl‖

2
L2 to validate399

Assumption 2. By Theorem 1 in [29], zkhl → z∗hl as k →∞ for all l. Consequently, as400

long as the stopping tolerance ε is small enough, we could use ‖zKhl‖
2
L2 obtained by401

Algorithm 1M to estimate ‖z∗hl‖
2
L2 . In this subsection, we set ε = 10−8.402

Table 3 reports the averaged quantity of ‖z∗hl‖
2
L2 on the DOTmark dataset [42].403

The results show that ‖z∗hl‖
2
L2 is clearly bounded by a constant independent of grid404
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Table 2
Complexity analysis of 2D case (d = 2): Tree-EMD and Min-cost flow are exact algorithms,

but they are computational expensive for large grid sizes. Algorithms 1 and 2 are inexact algorithms
with tolerance ε, they are more efficient for large-scale problems. With multilevel initialization,
Algorithms 1M and 2M enjoy cheaper complexities than Algorithms 1 and 2 respectively.

p = 1 p = 2 p =∞
Tree-EMD [30] O(N4) - -
Min-cost flow[2]5 O(N4 log2(N)) O(N6 log(N)) O(N4 log2(N))
Algorithm 1 [29] O( 1

εN
3) O( 1

εN
3) O( 1

εN
3)

Algorithm 2 [28] O( 1
εN

2 log(N)) O( 1
εN

2 log(N)) O( 1
εN

2 log(N))
Algorithm 1M O( 1

εN
3−r) O( 1

εN
3−r) O( 1

εN
3−r)

Algorithm 2M O( 1
εN

2−ν log(N)) O( 1
εN

2−ν log(N)) O( 1
εN

2−ν log(N))

Table 3
Validation of Assumption 1 on the DOTmark dataset, L = 6

Averaged ‖z∗hl‖
2
L2

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
hl = 1

16 hl = 1
32 hl = 1

64 hl = 1
128 hl = 1

256 hl = 1
512

p = 1 0.115 0.100 0.093 0.090 0.089 0.088
p = 2 0.068 0.060 0.057 0.056 0.055 0.055
p =∞ 0.060 0.055 0.053 0.051 0.051 0.051

step size hl. There may be multiple solutions in Z∗hl on each level l, while Table 3405
demonstrates that the solutions z∗hl obtained by Algorithm 1M satisfy Assumption 1.406

5.2. Validation of Assumption 2. Similar to the validation of Assumption 1407
in Section 5.1, we use ‖Interpolate(zKhl) − z

K
hl+1
‖2L2 get by Algorithm 1M to estimate408

‖Interpolate(z∗hl)− z
∗
hl+1
‖2L2 . In this subsection, we also set ε = 10−8.409

Visualization of z∗hl . The solution set Z∗hl may have multiple solutions on each410
level. What we want to show in this paragraph is that, for each coarse level solution411
z∗hl ∈ Z

∗
hl
, there is a finer level solution z∗hl+1

∈ Z∗hl+1
that is close to z∗hl . Here we set412

p = 1. Figures 3 and 4 illustrate this point. First, we the primal solution consider413
m∗hl . With different initializations, we obatin two different optimalm∗hls on level l = 1:414
Figures 3(a) and 3(d). With the results in Figures 3(a) and 3(d) as initializations, we415
obtain the solutions m∗hl on level 2: Figures 3(b) and 3(e). The flux in Figure 3(b) is416
close to that in Figure 3(a); Figure 3(e) is close to Figure 3(d). Thus, Assumption 2417
is meaningful when there are multiple solutions on each level: for a solution m∗hl on418
level l, there is a solution m∗hl+1

on level l + 1 similar to m∗hl . Secondly, we consider419
the dual solution φ∗hl . As p = 1, φ∗hl is unique upto a constant for each level l. The φ∗hl420
on level l is close to that on the finer level φ∗hl+1

. Figure 4 demonstrates this point.421

Quantitative validation of ‖Interpolate(z∗hl)−z
∗
hl+1
‖2L2 . In Table 4, We report the422

averaged ‖Interpolate(z∗hl)−z
∗
hl+1
‖2L2 on the “classic images” in DOTmark dataset [42]423

with different choices of p ∈ {1, 2,∞}. By the results in Table 4, ‖Interpolate(z∗hl)−424

z∗hl+1
‖2L2 ≤ O(hl)

r is numerically satisfied and, approximately, 1 ≤ r ≤ 2.425

5The complexity of solving the minimum cost flow problem is the upper bound for the worst
case. In practice, their algorithm has better performance than the theoretical bound. Numerical
results are reported in Table 11.
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(a) One m∗h1
, level 1,

8× 8 grid (b) One m∗h2
, level 2,

16× 16 grid (c) One m∗h3
, level 3,

32× 32 grid

(d) Another m∗h1
, level

1, 8× 8 grid (e) Another m∗h2
, level

2, 16× 16 grid (f) Another m∗h3
, level

3, 32× 32 grid

Figure 3. Visualization of Assumption 2: the black flux represents mhl : Ωhl → <2, the two
circles represent ρ0hl , ρ

1
hl

respectively. There are multiple solutions on each level. For every solution
m∗hl

on level l, there is a solution m∗hl+1
on the finer level l + 1 that is similar to m∗hl .

(a) φ
∗
h1

, level 1, 8 × 8
grid (b) φ

∗
h2

, level 2, 16× 16
grid (c) φ

∗
h3

, level 3, 32× 32
grid

Figure 4. Visualization of Assumption 2: dual solution (Kantorovich potential) φ∗hl : Ωhl → <
on each level. The dual solution φ∗hl+1

on level l + 1 is close to φ∗hl on the coarser level l.
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Table 4
Validation of Assumption 2 on the DOTmark dataset, L = 6

Averaged ‖Interpolate(z∗hl)− z
∗
hl+1
‖2L2

l = 1 l = 2 l = 3 l = 4 l = 5
hl = 1/16 hl = 1/32 hl = 1/64 hl = 1/128 hl = 1/256

p = 1 1.59× 10−3 5.45× 10−4 1.55× 10−4 2.43× 10−5 2.91× 10−6

p = 2 5.17× 10−4 1.53× 10−4 4.57× 10−5 1.16× 10−5 2.77× 10−6

p =∞ 8.40× 10−4 3.06× 10−4 6.65× 10−5 2.08× 10−5 6.41× 10−6

5.3. Validation of Assumption 3. Similar to the validation of Assumption426
1, we use ‖yKhl‖

2
L2 in Algorithm 2M to estimate ‖y∗hl‖

2
L2 . In this subsection, we set427

ε = 10−8.428
Table 5 reports the averaged quantity of ‖y∗hl‖

2
L2 on the DOTmark dataset [42].429

The results show that ‖y∗hl‖
2
L2 is clearly bounded by a constant independent of grid430

step size hl.431

Table 5
Validation of Assumption 3 on the DOTmark dataset, L = 6

Averaged ‖y∗hl‖
2
L2

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
hl = 1

16 hl = 1
32 hl = 1

64 hl = 1
128 hl = 1

256 hl = 1
512

p = 1 2.072 2.018 1.984 1.972 1.967 1.965
p = 2 1.044 1.016 1.003 0.997 0.995 0.993
p =∞ 0.984 0.966 0.960 0.963 0.968 0.972

5.4. Validation of Assumption 4. Similar to the validation of Assumption432
3 in Section 5.3, we use ‖Interpolate(yKhl) − yKhl+1

‖2L2 in Algorithm 2M to estimate433

‖Interpolate(y∗hl)− y
∗
hl+1
‖2L2 . In this subsection, we also set ε = 10−8.434

Visualization of y∗hl . Similar to the validation of Assumption 2, we set p = 1435
and get the results in Figures 5 and 6. Figure 5 shows that: for a solution m∗hl on436
level l, there is a solution m∗hl+1

on level l + 1, which is similar to m∗hl . On this437
specific numerical example, the dual variable ϕ∗hl is unique for each level l. Figure 6438
demonstrates that ϕ∗hl on level l is close to ϕ∗hl+1

on level l + 1.439

Quantitative validation of ‖Interpolate(y∗hl)−y
∗
hl+1
‖2L2 . In Table 6, We report the440

averaged ‖Interpolate(y∗hl)−y
∗
hl+1
‖2L2 on the “classic images” in DOTmark dataset [42]441

with different choices of p ∈ {1, 2,∞}. By the results in Table 6, ‖Interpolate(y∗hl)−442

y∗hl+1
‖2L2 ≤ O(hl)

ν is numerically satisfied and, approximately, ν ≈ 1.443

6. Numerical results. In this section, we numerically study why and how much444
our Algorithms 1M and 2M speed up Algorithms 1 and 2. The conclusions in The-445
orems 4.1 and 4.2 are validated. Moreover, we compare our algorithms with other446
EMD solvers [30, 2, 29, 28]. We implemented Algorithms 1M and 2M as d = 2 in447
MATLAB. All the experiments were conducted on a single CPU (Intel i7-2600 CPU448
@ 3.40GHz).449

6.1. The effect of multilevel initialization. In this subsection, we study450
why multilevel initialization helps speed up Algorithms 1 and 2. All the results are451
obtained on the “cat” example which is also used as a benchmark in [29, 28].452
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(a) One m∗h1
, level 1,

8× 8 grid (b) One m∗h2
, level 2,

16× 16 grid (c) One m∗h3
, level 3,

32× 32 grid

(d) Anotherm∗h1
, level 1, 8×

8 grid (e) Another m∗h2
, level

2, 16× 16 grid (f) Another m∗h3
, level

3, 32× 32 grid

Figure 5. Visualization of Assumption 4: the black flux represents mhl : Ωhl → <2, the the
two circles represent ρ0hl , ρ

1
hl

respectively. There are multiple solutions on each level. For every
solution m∗hl on level l, there is a solution m∗hl+1

on level l + 1 that is close to m∗hl .

(a) ϕ
∗
h1

, level 1, 8 × 8
grid (b) ϕ

∗
h2

, level 2, 16× 16
grid (c) ϕ

∗
h3

, level 3, 32× 32
grid

Figure 6. Visualization of Assumption 4: dual solution ϕ∗hl
: Ωhl → <2 on each level. The

dual solution ϕ∗hl+1
on level l is close to ϕ∗hl on level l + 1.
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Table 6
Validation of Assumption 4 on DOTmark, L = 6

Averaged ‖Interpolate(y∗hl)− y
∗
hl+1
‖2L2

l = 1 l = 2 l = 3 l = 4 l = 5
hl = 1/16 hl = 1/32 hl = 1/64 hl = 1/128 hl = 1/256

p = 1 2.53× 10−1 1.32× 10−1 4.38× 10−2 1.02× 10−2 3.36× 10−3

p = 2 6.10× 10−2 2.91× 10−2 1.30× 10−2 4.67× 10−3 1.13× 10−3

p =∞ 8.49× 10−2 4.71× 10−2 2.14× 10−2 8.86× 10−3 3.45× 10−3

Algorithm 1M. We report the results of Algorithms 1 and 1M in Tables 7 and453
8. If L = 1, Algorithm 1M reduces to Algorithm 1, which takes 5264 iterations to454
stop as Table 7 shows. If L = 2, we first conduct 2790 iterations on a coarse grid455
256 × 256. The obtained result is used to initialize the algorithm on the fine grid456
512× 512. With this initialization, Algorithm 1M only takes 49 iterations to stop on457
the fine grid. Although extra calculations on 256× 256 grid are required, the merit of458
fewer iterations on the fine grid overcomes the extra calculation cost. Thus, the total459
calculation time is reduced from 95.25 seconds to 10.64 seconds. When the number460
of levels L get even larger, the computing time could be further reduced. As L = 4,461
the computing time is reduced to 2.924 seconds. The results support Theorem 4.1:462
as ε small enough and L large enough, the calculation on the finest level 512× 512 is463
dominant. Since the multilevel algorithm is able to dramatically reduce the calculation464
expense on the finest level, it consumes much less computing time.465

Table 7
The effect of level number L in Algorithm 1M: 512× 512, p = 1, tolerance ε = 10−6. “Iters” is

the number of iterations, and “Time” is in second. The results support Theorem 4.1.

Number Calculation cost on each level Total
64× 64 128× 128 256× 256 512× 512

of levels Iters Time Iters Time Iters Time Iters Time time
L=1 5264 95.25 95.25
L=2 2790 9.691 49 0.953 10.64
L=3 2906 3.138 138 0.491 43 0.841 4.470
L=4 2454 1.153 291 0.340 148 0.537 44 0.894 2.924

In practice, L = 6 is usually large enough to enjoy the advantage of multilevel466
initialization. In Table 8, we fix L = 6 and compare the effect of multilevel initializa-467
tion on different problems sizes. The results illustrates that Algorithm 1M is much468
faster than Algorithm 1, the advantage is significant on large-scale problems.469

Algorithm 2M. We report the results of Algorithms 2 and 2M in Tables 9 and470
10. Table 9 shows that multilevel initialization could speed up Algorithm 2. With471
the multilevel initialization, the number of iterations on the finest grid 512× 512 can472
be reduced from 100 to 2. This result validates the conclusions in Theorem 4.2. In473
Table 10, we compare the effect of the multilevel initialization on different grid sizes.474
The results illustrate that Algorithm 2M speeds up Algorithm 2 by 2 ∼ 20 times. For475
large-scale problems, the speedup effect is considerable.476

Visualization of solutions. We visualize the solutions obtained by Algorithms 1M477
and 2M in Appendix C.478
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Table 8
Comparison of Algorithm 1 and Algorithm 1M (L = 6, ε = 10−6). The term

“211+337+328+346+334+261” means the algorithm takes 211, 337, 328, 346, 334, 261 iterations
for level l = 1, 2, 3, 4, 5, 6 respectively. The term “Speedup” measures how many times Algorithm 1M
speeds up Algorithm 1.

Grid size Algorithm 1 Algorithm 1M (L = 6) SpeedupIters Time Iters Time
p = 1

128× 128 1743 1.867 211+337+328+346+334+261 0.621 3.0
256× 256 3034 10.63 657+482+501+383+287+110 1.110 9.6
512× 512 5264 95.25 1661+479+351+268+153+49 2.228 42.7

1024× 1024 8843 954.9 2889+380+310+182+58+14 4.838 197.4
p = 2

128× 128 1102 2.348 416+400+330+311+235+178 0.734 3.2
256× 256 1960 13.06 901+615+361+282+239+118 1.761 7.4
512× 512 3319 107.9 1617+520+328+268+150+60 4.032 26.8

1024× 1024 5892 985.2 2856+417+314+189+71+15 8.100 121.6
p =∞

128× 128 1311 3.171 356+472+288+336+440+436 1.845 1.7
256× 256 2331 18.29 558+496+312+396+439+468 5.354 3.4
512× 512 4068 138.4 1041+461+467+461+504+186 12.26 11.3

1024× 1024 7150 1165 2147+466+524+514+275+65 26.96 43.2

Table 9
The effect of level number L in Algorithm 2M: 512× 512, p = 1 tolerance ε = 10−5. “Iters” is

the number of iterations, and “time” is in second. The results support Theorem 4.2.

Number Calculation cost on each level Total
64× 64 128× 128 256× 256 512× 512

of levels Iters Time Iters Time Iters Time Iters Time time
L=1 100 2.375 2.375
L=2 99 1.224 2 0.113 1.336
L=3 99 0.157 4 0.080 2 0.112 0.349
L=4 100 0.024 8 0.016 4 0.089 2 0.111 0.240

6.2. Comparison with other methods. In this subsection, we compare our479
method with other EMD algorithms [30, 2, 29, 28]. There are some other 2D EMD480
solvers [36, 31, 43, 6, 14, 24] we do not compare with. [36] solves EMD with a481
thresholded metric; [31, 24] are designed for Wasserstein-p (p > 1) distance; [14, 43, 6]482
solve EMD with the entropy regularizer, the objective function of which is not the483
same with us. Thus, we are not able to compare these algorithms with ours fairly in484
our settings.485

All the results are obtained on on the DOTmark [42] dataset and reported in486
Table 11. We used 10 images provided in the “classic images” of DOTmark. Totally we487
calculated 45 Wasserstein distances for all the 45 image pairs. The time consumptions488
are averages taken on these image pairs. Figure 9 in Appendix D visualizes two489
such images and the optimal transport between them. Tree-EMD [30] and Min-490
cost flow [2] are exact algorithms stopping within finite steps. Other algorithms are491
iterative algorithms stopping by a tolerance. For Algorithms 1 and 1M, we take492
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Table 10
Comparison of Algorithm 2 and Algorithm 2M (L = 6). “77+69+69+24+16+11” means the al-

gorithm takes 77,69,69,24,16,11 iterations for level l = 1, 2, 3, 4, 5, 6 respectively. The term “Speedup”
measures how many times Algorithm 2M speeds up Algorithm 2.

Grid size Algorithm 2 Algorithm 2M (L = 6) SpeedupIterations Time Iterations Time
p = 1

128× 128 99 0.148 77+69+69+24+16+11 0.037 4.0
256× 256 99 1.217 93+74+22+18+11+5 0.135 9.0
512× 512 100 2.375 106+26+20+9+4+2 0.233 10.2

1024× 1024 99 11.47 93+22+9+5+2+1 0.634 18.1
p = 2

128× 128 51 0.085 55+60+40+24+15+9 0.035 2.4
256× 256 50 0.675 58+31+23+15+9+4 0.116 5.8
512× 512 50 1.368 53+22+16+9+4+2 0.252 5.4

1024× 1024 50 6.530 53+20+9+5+2+1 0.792 8.2
p =∞

128× 128 53 0.088 49+68+53+30+15+10 0.035 2.5
256× 256 54 0.714 59+41+27+14+10+6 0.147 4.9
512× 512 55 1.460 67+30+14+10+6+5 0.354 4.1

1024× 1024 52 6.651 65+18+11+7+6+2 1.070 6.2

ε = 10−6; for Algorithms 2 and 2M, we take ε = 10−5. Practically, these fixed-point-493
residual tolerances are small enough to guarantee the relative error of the distance494
value no larger than 5%.495

In most of the cases, Algorithm 2M is the best. Algorithm 1M and Algorithm 2496
are also competitive for large-size problems. All the first-order methods (Algorithms497
1, 2, 1M, 2M) are robust to the parameter p in the ground metric ‖·‖p. Tree-EMD [30]498
only works for p = 1; the algorithm in [2] works well when p = 1,∞ and the grid size499
is not very large. As p = 2, the algorithm in [2] requires large amount of memory and500
calculation time.501

7. Conclusion. In this paper, we have proposed two multilevel algorithms for502
the computation of the Wasserstein-1 metric. The algorithms leverage the L1 type503
primal-dual structure in minimal flux formulation of optimal transport. The multilevel504
setting provides very good initializations for the minimization problems on the fine505
grids. So it can significantly reduce the number of iterations on the finest grid. This506
consideration allows us to compute the metric between two 1024 × 1024 images in507
about one second on a single CPU. It is worth mentioning that the proposed algorithm508
also provides the Kantorovich potential and the optimal flux function between two509
densities. They are useful for the related Wasserstein variation problems [33].510

In future work, we will apply the multilevel method to optimal transport related511
minimization in mean field games and machine learning.512
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Table 11
Time consumption (seconds) on DOTmark [42]. Tree-EMD and Min-cost flow stop with finite

steps and give exact solutions, first-order algorithms (Algorithms 1, 2, 1M and 2M) are iterative
and give estimated solutions (5% relative error)

Grid size 32× 32 64× 64 128× 128 256× 256 512× 512

p = 1
Tree-EMD [30] 0.006 0.127 2.433 121.2 N/A
Min-cost flow [2] 0.002 0.024 0.342 7.164 157.7
Algorithm 1 [29] 0.134 0.780 3.018 18.23 162.7
Algorithm 2 [28] 0.008 0.029 0.171 1.433 2.710
Algorithm 1M 0.117 0.265 0.537 0.962 1.877
Algorithm 2M 0.008 0.013 0.030 0.104 0.201

p = 2
Tree-EMD [30] N/A N/A N/A N/A N/A
Min-cost flow [2] 0.082 1.863 N/A N/A N/A
Algorithm 1 [29] 0.078 0.429 2.131 13.55 106.3
Algorithm 2 [28] 0.007 0.021 0.116 0.908 1.807
Algorithm 1M 0.066 0.149 0.335 0.838 1.996
Algorithm 2M 0.007 0.015 0.046 0.148 0.285

p =∞
Tree-EMD [30] N/A N/A N/A N/A N/A
Min-cost flow [2] 0.002 0.025 0.300 5.380 118.1
Algorithm 1 [29] 0.270 1.202 5.487 29.28 197.9
Algorithm 2 [28] 0.006 0.023 0.130 1.026 2.034
Algorithm 1M 0.255 0.511 1.124 2.471 5.124
Algorithm 2M 0.007 0.015 0.051 0.217 0.411

Appendix A. A lemma for interpolation operators.513

Lemma A.1. If hl−1 = 2hl, then we have514

(A.1)

‖Interpolate(φhl−1
)‖2L2 ≤‖φhl−1

‖2L2 , ∀φhl−1
: Ωhl−1 → <

‖Interpolate(mhl−1
)‖2L2 ≤‖mhl−1

‖2L2 , ∀mhl−1
: Ωhl−1 → <d

‖Interpolate(ϕhl−1
)‖2L2 ≤‖ϕhl−1

‖2L2 , ∀ϕhl−1
: Ωhl−1 → <d

515

Proof. First, we consider the interpolation of potential φhl−1
. With φhl = Inter-516

polate (φhl−1
), we have517

‖φhl‖2L2 =
∑
x∈Ωhl

φ2
hl

(x)(hl)
d

=
∑
x∈Ωhl

(
1

2|J̄|

∑
|yj1−xj1 |≤hl

· · ·
∑

|yj|J̄|−xj|J̄| |≤hl

φhl−1
(yJ , yj1 , yj2 , · · · , yj|J̄|)

)2

(hl)
d

≤
∑
x∈Ωhl

(
1

2|J̄|

∑
|yj1−xj1 |≤hl

· · ·
∑

|yj|J̄|−xj|J̄| |≤hl

φ2
hl−1

(yJ , yj1 , yj2 , · · · , yj|J̄|)
)

(hl)
d

=
∑

y∈Ωhl−1

c(y)φ2
hl−1

(y)(hl)
d.

518
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The inequality in the third line above follows from Jensen’s Inequality [8], and c(y) is519
a constant which can be bounded in the following way.520

φhl−1
(y) contributes to the nodes within a d dimensional hypercube H(y) = {x ∈521

Ω : maxj |xj − yj | ≤ hl}. First, we consider y as an interior point in Ω. There are522
2d vertices in H(y), for each vertice, the weight is 1/(2d). There are 2d−1d edges in523
H(y), each edge contains a single point x ∈ Ωhl , φhl−1

(y) contributes to φhl(x) with524

weight 1/(2d−1). Generally speaking, there are 2d−n
(
d
n

)
n-dimensional hypercubes525

on the boundary of H(y) [13], each m-dimensional hypercube contains a single point526
x ∈ Ωhl , φhl−1

(y) contributes to φhl(x) with weight 1/(2d−n). Moreover, the center527
of H(y) is y, which is also in Ωhl , φhl−1

(y) contributes to φhl(y) with weight 1. Thus,528
for interior point y, we have529

c(y) =
1

2d
× 2d +

1

2d−1
× d2d−1 + · · ·+ 1

2d−1
× 2d−1

(
d

n

)
+ · · ·+ 1× 1

=

d∑
n=0

(
d

n

)
= (1 + 1)d = 2d.

530

For y on the boundary of Ω, there are less points in H(y) ∩ Ωhl , and the weight for531
each node is the same as above, thus, c(y) < 2d. In one word, c(y) ≤ 2d for all532
y ∈ Ωhl−1 . Then, we obtain533

‖φhl‖2L2 ≤
∑

y∈Ωhl−1

c(y)φ2
hl−1

(y)(hl)
d ≤

∑
y∈Ωhl−1

φ2
hl−1

(y)(2hl)
d

=
∑

y∈Ωhl−1

φ2
hl−1

(y)(hl−1)d = ‖φhl−1
‖2L2 .

534

With the same proof line, the interpolation of mhl−1
and ϕhl−1

can also be proved.535
Inequalities (A.1) are proved.536

Appendix B. Kantorovich potential.537
The Kantorovich potential can be obtained directly from the dual solution of538

(3.1). Thus, Algorithm 1 directly gives the potential φ∗h : Ωh → <. While Algorithm539
2 solves (3.4) and gives ϕ∗h : Ωh → <d, the gradient of φ∗h: ϕ

∗
h = A∗hφ

∗
h. We obtain φ∗h540

given ϕ∗h by solving541
AhA

∗
hφh = Ahϕ

∗
h.542

The boundary condition is given. Thus, the Laplacian operator AhA∗h is invertible,543
where the solution is unique up to a constant shrift. And φ∗h is given by544

(B.1) φ∗h = (AhA
∗
h)−1Ahϕ

∗
h.545

The invert Laplacian operator can be calculated efficiently by the FFT [28].546

Appendix C. Visualization of the cat example.547
The cat example is used in Section 6.1. We visualize the two distributions ρ0, ρ1548

and the optimal transport between them in this section. Figure 7 visualizes the549
primal-dual pair (m∗, φ∗) obtained by Algorithm 1M, Figure 8 visualizes the primal-550
dual pair (m∗, ϕ∗) obtained by Algorithm 2M. For both the two algorithms, we take551
h = 1/256, L = 6 and ε = 10−6.552

Appendix D. Visualization of DOTmark.553
The DOTmark dataset is used in Section 6.2. We visualize two of the distributions554

ρ0, ρ1 and the optimal transport between them in Figure 9.555

This manuscript is for review purposes only.



MULTILEVEL OPTIMAL TRANSPORT 25

(a) ρ0 (b) ρ1

(c) m∗(p = 1) (d) m∗(p = 2) (e) m∗(p =∞)

(f) φ∗(p = 1) (g) φ∗(p = 2) (h) φ∗(p =∞)

Figure 7. Visualization of (m∗, φ∗) obtained by Algorithm 1M. m∗ is the optimal flux; φ∗ is
the Kantorovich potential. The backgrounds of Fig. 7(c), 7(d) and 7(e) are all ρ0 − ρ1.
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Figure 8. Visualization of (m∗, ϕ∗) and the potential φ∗ obtained by Algorithm 2M. ρ0, ρ1 are
the same with those in Figure 7. m∗ is the optimal flux; φ∗ is the Kantorovich potential, that is
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