39

40

MULTILEVEL OPTIMAL TRANSPORT: A FAST APPROXIMATION
OF WASSERSTEIN-1 DISTANCES*

JIALIN LIUT, WOTAO YINT, WUCHEN LIf, AND YAT TIN CHOW?

Abstract. We propose a fast algorithm for the calculation of the Wasserstein-1 distance, which
is a particular type of optimal transport distance with homogeneous of degree one ground metric. Our
algorithm is built on multilevel primal-dual algorithms. Several numerical examples and complexity
analysis are provided to demonstrate its computational speed. On some commonly used image
examples of size 512 x 512, the proposed algorithm gives solutions within 0.5 seconds on a single
CPU, which is much faster than the state-of-the-art algorithms.

Key words. Multilevel algorithms; Optimal transport; Wasserstein-1 distance; Primal-dual
algorithm.

AMS subject classifications. 49M25; 49M30; 90C90

1. Introduction. Optimal transport (OT) plays crucial roles in many areas,
including fluid dynamics [45], image processing [39, 40], machine learning [1, 20] and
control [11, 12]. It is a well-posed distance measuring two probability distributions
over a given domain. The distance is often named Earth Mover’s distance (EMD) or
the Wasserstein distance. Plenty of theories on OT have been introduced [3, 4, 21, 32,
45]. Despite the theoretical development, computing the distance is still challenging
since the OT problems usually do not have closed-form solutions. Fast numerical
algorithms are essential for the related applications.

Recently, a particular class of OT, named the Wasserstein-1 distance, has been
widely used in machine learning problems [1, 23, 37]. It gains rising interests in the
computational mathematics community [25, 29, 2, 44|. The Wasserstein-1 distance is
named as its ground metric is homogeneous of degree one. In this paper, we focus on
numerically computing Wasserstein-1 distances.

In literature, many numerical schemes have been proposed for the OT problem.
[27, 39, 30, 36, 35, 31, 2] modeled the OT problem as a linear programming (LP)
with specific structures. They utilized these structures to develop efficient solvers.
[33, 38, 5, 24, 29, 28, 41] modeled OT as a nonsmooth convex optimization problem
and introduced iterative algorithms to solve it. [14, 6, 43, 18, 9, 19, 15] studied the
OT problems with regularizers and proposed efficient algorithms to solve them. In
particular, some algorithms have been developed for calculating the Wasserstein-1
distance and its variants. Ling and Okada [30] exploited the structure of the problem
to improve the transportation simplex algorithm [27] and proposed Tree-EMD. Pele
and Werman [35, 36| proposed and solved EMD with a thresholded ground metric.
Li et al. [29] studied a primal-dual algorithm for calculating Wasserstein-1 distances
that is friendly to parallel programming and has an implementation on CUDA. Jacobs
et al. [28] introduced the proximal PDHG method, whose number of iterations is
independent of the grid size. Bassetti et al. [2] studied the connections between the
Wasserstein-1 distance and the uncapacitated minimum cost flow problem and applied

*The codes will be released to: https://github.com/liujl11git /multilevelOT.
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the network simplex algorithm to solve it.

Motivations and our contributions. Although many numerical algorithms [30, 2,
29, 28] have been proposed to calculate the Wasserstein-1 distance, there is still some
room to speed them up, especially for large-scale problems, for example, a grid of 512 x
512. Motivated by the success of multigrid methods [46] for calculating Wasserstein-
p (p > 1) distance [31, 24], we apply the cascadic multilevel method [7] to calculate
Wasserstein-1 distances. We compute the distances on different grid levels and use the
solutions on the coarse grids to initialize the calculation of solutions on the finer grids.
We use this method to speed up the state-of-the-art algorithms [29, 28], dramatically
reducing the computational expense on the finest grids and lessening the total time
consumption by 2 ~ 200 times. The speedup effect depends on the size of the problem.
It is significant for large-scale problems.

The rest of this paper is organized as follows. In Section 2, we briefly review the
Wasserstein-1 distance. In Section 3, we demonstrate our multilevel algorithms and
provide a complexity analysis in Section 4. In Section 5, we numerically validate the
assumptions used in Section 4. Finally, in Section 6, we present several numerical
examples.

2. Problem description. Given a domain Q C ¢, the EMD, or the Wasser-
stein distance, is a commonly-used metric to measure the distance between two prob-
ability distributions defined on €: p% p! : © — R. In the 1D case (d = 1), the
Wasserstein Distance has a closed-form solution [45]. With two or higher dimensions
(d > 2), the distance is no longer given in a closed form, and it is obtained via iterative
algorithms. In this paper, we consider the following Wasserstein—1 distance:

. o
wipimize [ o=l ey

subject to / m(x,y)dy = p°(x), VrecQ
(2.1) yeQ

/ (z,y)de = p'(y), VyeQ,
€N
7T(.I7y) 207 anyega
where |- ||, 1 < p < 00, is the “ground metric” of the Wasserstein distance. The mini-

mization variable 7 is a joint distribution 7 : Q x @ — R whose marginal distributions
are p°, p'. The dual problem of (2.1), also named the Kantorovich dual problem, is:

maximize & (2)p° (x)dx — &' (y)p* (y)dy
s mosimise [ S @p@ar— [ 600 w)

subject to qbo(:v) — (bl(y) <|lz—=yllp, VYz,ye€Q,

where ¢0, ¢! are (Kantorovich) dual variables.

2.1. Problem settings. In this paper, we focus on an equivalent and simpler
form of (2.2). Since || -||, is homogeneous of degree one, by [45], there is an equivalent
form of (2.2), where ¢° = ¢! = ¢. In other words,

imi 0 — pNx))dz
23) maximize | o(z)(p" () — p (2))d

subject to ||Vo(z)|q <1, Ve Q,
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MULTILEVEL OPTIMAL TRANSPORT 3

where 1/p+1/g =1 and 1 < g < co. The following minimization problem, which is
the dual problem of (2.3), is also considered in this paper:

minimize/ [lm(z)]|,dx
e

m:Q—Rd

(2:4) subject to div(m(z)) = p°(z) — p'(z), Vz e,

m(z)-n(z) =0, Vze o

where “div” denotes the divergence operator div(m(z)) = Zle %Zf; (z) and n(zx) is
normal to 0N2. Here m is a d dimensional field satisfying the zero flux boundary

condition [3], the solution of (2.4) m* is called “the optimal flux”.

2.2. Discretization. We set Q = [0,1]%. Let Q" be a grid on Q with step size
h > 0:
" =1{0,h,2h,3h,---,1}%

Let N = 1/h be the grid size. Any x € Q" is a d dimensional tensor, of which the value
of the i*® component z; is chosen from: z; € {0, h,2h,3h,--- ,1}. The discretized
distributions p, p} are (N +1)? tensors, and the discretized flux my, is a (N +1)% x d
tensor, which represents a map Q" — R%: p% = {p%(2)},cqn, pb = {p*(2) }2eqr, and
mp, = {m(x)},ecqnr. The discretized version of (2.4) can be written as

minimize mp ()|, h?
minimize > [ (z)],

(2.5) zeQh
subject to  div™(my(z)) = pY (z) — ph(z), Yz e QP

where the discrete divergence operator is:

d
d1v Zthm
i=1
(mp,i(z_i, x;))/h, z; =0
Dy, ;m(z (mpi(z_iy ;) —mpi(x—s, 2, — h))/h, 0<az; <1
(—mpi(x—i,z; — h))/h, x; > 1
In the definition of div", ) € R means the flow at point =, my, ;(z) € R is the

i*h component of my, (). The notlon —14” refers to all the components excluding i:

x_i:{xj 5j6{1727"' 7d}a.77éz}

To simplify our notation, we rewrite the above problem (2.5) as:
minimize f(m
(2.6) T
subject to  Apmyp = pp.

where f(-) denotes a norm of my,, A;, denotes the divergence operator, which is linear,
and p, = pj — pj,-
The dual problem of (2.6), which is also the discrete version of (2.3), is
e hd
minimize > on(@)pn(x)
(27) zeNh
subject to || Afén ()|, < 1, YV € Q"
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4 J. LIU, W. YIN, W. LI AND Y.T. CHOW

where ¢, : Q" — R is the Kantorovich potential: ¢, = {¢(z)}yecqr. The adjoint
operator of Ay, A}, denotes the gradient operator.

In this paper, we solve (2.6) and (2.7) jointly by primal-dual algorithms.

Define some norms on "

lmal3 = Y llm(@)l3,  llmalg= = ) Im(@)|3n%,

zeQh zeQh

I¢nlls =D ¢*(@), llenllz= = > ¢°(x)h
zeQh zeQh

lenls = > @3 lenliz = Y lle@)l3h%
zeQh zeQh

Define inner products on Q":

(Dn, 1) = > onlx

zeQh

(Dns Shon =D on(x)dh(x)he,
zEQh
3. Algorithm description. In this section, we review two recent primal-dual
algorithms designed for (2.6) and (2.7). We apply a multilevel framework (Section
3.2) to further accelerate these algorithms.

3.1. Two recent algorithms for (2.6) and (2.7).
Algorithm 1 (Li et al. [29]). Problems (2.6) and (2.7) can be jointly solved by the
following min-max problem:

(3.1) minmax L(mp, ¢n) = f(mn) + (dn, Anmn — pp)n.

My Pp

Inspired by the Chambolle-Pock Algorithm [10], the authors of [29] proposed the
following algorithm to solve (3.1):

1
mZ‘H = argmlnL(mh, (bh) + *Hmh - thL?’
Mh
(3.2) my = 2m - my,

1
" = argmax L(m) ™, ép) — Z”Qﬁh — o572

h

Parameters g, 7 > 0 need to be tuned. If ur||An||*> < 1, then we have the iteration
(my, ¢%) — (m}, ¢;), which is the solution of (3.1). In this paper, we use! p =7 =
1/(2||An). The iteration stops when the following fixed point residual (FPR) R” falls
below a threshold:

(3.3) R} := Mllm’““ h||L2+f||¢’““ Ohl7: —2(op ! —of, div' (mE T —mf)),.

The algorithm is summarized in Algorithm 1.

!The parameter choice u = 7 = 1/(2||44||) is convenient for complexity analysis. Practically,
uw=7=1/||An|| is better although it does not guarantee convergence theoretically.
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MULTILEVEL OPTIMAL TRANSPORT 5

Algorithm 1: A primal-dual algorithm for EMD [29]

Input: Distributions p°, p!, grid step size h, initial point m°, ¢°, tolerance ¢.
while lei < ¢ is not satisfied do

| Execute (3.2).
end

Output: m”, ¢¥

Algorithm 2 (Jacobs et al. [28]). Problem (2.6) can be written as:

min max f(un) + 04, my,=p, (Mn) + (Phs M — Un)p,
Mh,Uh Ph

which is equivalent with

(3.4) minmaxi(mh, ©n) = 0 Anmn=pn (Mmn) — f*(¢n) + (©n, mu)n.

Mmp  Ph

In the above formula, ¢y : Q" — R? is the dual variable, that is the gradient of the
Kantorovich potential: ¢;, = A7 ¢5,. Function d4,m,=p, is the indicator function of
Apmp, = pp:

0, if Apmy, = pn,

6 _ =
Ahmh—ph(mh) {+OO, i Ahmh?éph-

Function f* is the convex conjugate of f:
I (on) = sup(pn, un)n — f(un)
Up

The authors of [28] solve (3.4) in the following way:

.
my Tt = argmin L(mp, @5) + — [mp — mk||2.
mp 2/”’
- 1
(3.5) oyt = argmax L(m[ ™, pp,) — Z”WL — ¢z

Ph

—k k
“Pthl = 2<Ph+1 - ‘Pﬁa

where the first subproblem solving mZ“ requires computing a projection onto the

affine space {my|A,my = pp}. Since the discrete Laplacian inverse ((A;)*Ap)~! can
be easily computed by FFT, the projection could be efficiently calculated [28].

Parameters p, 7 > 0 need to be tuned. As long as ur < 1, we have the iteration
(mF,o%) — (mj, ;), which is the solution of (3.4). In this paper, we choose® y =
7 = 1/2. The stopping condition is to have the following fixed point residual G* small
enough:

1 1

k k E k k

36) Gj= ﬁllthrl —mpll7e + ;Hwh“ = enll7e +2(ep ™ — ok, mp Tt —mp),.
With ¢} in hand, the Kantorovich potential ¢; can be easily solved by the method

given in Appendix B.
The algorithm is listed in Algorithm 2.

2The parameter choice 4 = 7 = 1/2 is convenient for complexity analysis. Practically, p =7 =1
is better.
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6 J. LIU, W. YIN, W. LI AND Y.T. CHOW

Algorithm 2: Prox-PDHG for EMD [28]

Input: Distributions p°, p', grid step size h, initial point m°, ¢, tolerance ¢.
while GfL < £ is not satisfied do

| Execute (3.5).
end

Output: m”,

K

3.2. A framework: multilevel initialization. In this subsection, we describe
a framework, inspired by the cascadic multilevel method [7], to substantially speed
up Algorithms 1 and 2. With the multilevel framework, Algorithms 1 and 2 lead to
Algorithms 1M and 2M respectively.

Suppose we have L levels of grids with step sizes hq, hs,- - , by, respectively. The
step sizes satisfy

hi1>ho>--->hp_1>hr =h.

The finest step size hy, = h. On each level, the space € is respectively discretized as
QM Qe Qb
If h is the power of 1/2, we take h; = 2L~'h. Then we have
QM c ot c. Qher c QM
On the [*! level, the optimal flux problem (2.6) is

minimize f(mp,)
(37) mp,:Q 1 —Rd
subject to Ap,mp, = pp,

We apply the cascadic multilevel technique [7] to the OT problem. We use 0
initial solution on the level [ = 1 and solve a sequence of minimization problem (3.7)
with one pass from the coarsest level [ = 1 to the finest level [ = L. On each level,
we use Algorithm 1 or Algorithm 2 that is stopped as the iterate is accurate enough
(R}, < e for Algorithm 1, G} < ¢ for Algorithm 2). The obtained solution is denoted
by (mps, ok ) or (mf oK ). After that, we interpolate the obtained solutions to the
next level [ = 2 and treat them as the initial solutions of level [ = 2. The process
is repeated for [ = 3,--- , L. Algorithms 1M and 2M are the multilevel versions of
Algorithms 1 and 2 respectively.

Practically, the solution on a coarse level is a good estimate of that on a finer
level. Thus, the cascadic multilevel method works well.

3.3. Cross-level interpolation. In this subsection, we describe the cross-level
interpolations in Algorithms 1M and 2M in detail.

Interpolation of potentials ¢y,. For any x € Q™ on level I, we partition the set of
the components x; into two subsets, depending on whether they also belong to the
grid on the coarser level | — 1:

(3.8) J={j:x; €{0,h_1,2h4_q,--- ,1}}
. J={j:a;€{0,h,2hy, - 1}, 2 ¢ {0, hy_1,2hi_1,- -, 1}}

This manuscript is for review purposes only.
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Algorithm 1M Multilevel version of Algorithm 1

Input : Distributions p°, p!, grid step size h, tolerance ¢.
Initialization: Let m}lfo =0, ¢}IL<O =0.

for!=1,2,---,L do

Initialize the current level:

mj = Interpolate(mhKl_1)7 ¢}, = Interpolate ((thl_l)

Call Algorithm 1:

(m}IL(” (b}IL{l) = AlgOI‘lthm 1(p07 pl’ hl, m(iJLl , ¢2l , 5)

end
Output: mhKL , ¢hK,

Algorithm 2M Multilevel version of Algorithm 2
Input : Distributions p°, p!, grid step size h, tolerance ¢.
Initialization: Let m& = 0,05 =0.
0 0
for(=1,2,---,L do
Initialize the current level:

m%l = Interpolate (mfflil), go?” = Interpolate (901[1(,,1)

Call Algorithm 2:

(mf ., of ) = Algorithm 2(p°, p*, hy,mf),, ¢ ,€)

end
Output: mﬁ , ¢ffl (Obtain (/)hKL from @th’ see Appendix B)

Let the elements in J be denoted as j;, ja, - - - »J|7|- The mapping ¢5, = Interpolate

(én,_,) is defined pointwisely as the average value of a neighborhood. For z € Q|
(3.9)

d)hz(x) = ﬁ Z Z Z ¢hzf1(xJayj17yj2>' o ’yjm)'

‘yh_whlghl |y12_w12‘§hl |yj|j‘_l'j|j“§hl

For example, if d = 2 (2D case) and h; = hj—1/2, (3.9) can be written as:

On,_, (21, 72), if @1 /hy, x2/h; are even
Ony_, (1,22 — hy) + b, (1,22 + hy) ) /2, if x1/hy is even
On, (x1,29) = Ony_y (1 — hyyx2) + o, (X1 + i, 22) ) /2, if x9/h; is even

Ghyy (X1 = hiy o — hy) + ony_ (1 — hyy oo + hy)..
+on, ,(x1 + hyyxo — hy) + by, (1 + hyyxe + hl)>/4, otherwise

Figure 1 gives an illustration of this 2D interpolation.
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$1(0,0) #1(0,1)  #1(0,0) #0.5(0,0.5) ¢1(0,1)
® ® ® @ ®
$0.5(0[5,0) $0.5(05,1)
®

@ @ @ L 4 @
$1(1,0) #1(1,1)  ¢1(1,0)  ¢0.5(1,0.5)  ¢1(1,1)
o1, h=1 ¢0.5 = Interpolate(¢y),h = 0.5

$0.5(0.5,1) = AQIHALD g (9 0.5) = 2OIHEOD

90.5(1,0.5) = CEATELD 4 5(0.5,0) = LOATELD

é (05’05) _ ¢1(010)+¢1(0»1)‘Z¢1(110)+¢1(1»1)

0.5

Ficure 1. An dlustration of (3.9) (2D case): from 1 X 1 grid to 2 X 2 grid

Interpolation of flur my,. Due to the zero-flux boundary condition for (2.4), in-
terpolating m is different from ¢. The flow m can be viewed as “edge weights” on the
grid [29, 2], as in Figure 2. With the definition of J (3.8), m;, = Interpolate (mp,_,)
is pointwisely defined in (3.10). For z € Q™ i =1,2,--- ,d,

2171 Elyjl 71j1‘§hl Z‘yj‘jl 7wj‘(7llghl
mhlfl,’i(xJayjlvyjzv"' 7yj‘j|)) 1edJ
1
2171 Zlyh —zj |<hi Z‘yj‘ﬂ T 7

mhlfl,i(xJ7yi7yj17yj27 e ayj|j‘)a } ¢ J7

(3.10) my, i(z) =
[<hy

where y; is an element in {0, h;_1,2h;_1,--- ,1} which is the nearest to ;.
For example, if d = 2 (2D case) and h; = hj—1/2, (3.10) can be written as:

mp,_,.1(x1, T2), if x1/hy, x9/h; are even

mp,_,.1(x1 — hy, x2), if 29/hy is even

M, 1 (71, T9) = mp,_, 1(z1, 22 — hy) + mp,_, 1(x1, 22 + hl)) /2, if x1/h; is even
mp,_y,1(x1 = hy, 2 — hy) +mp,_ 1 (21 — by, o2 + hl)) /2,

otherwise

mp,_, 2(T1,2), if 1/hy,x2/h; are even

M, 2(x1, 2 — hy), if 21/h; is even
mn, 2(21,22) = mp, ,.2(x1 — hy, x2) +mp, , 2(z1 + hl,x2)> /2, if xo/hy is even
mp,_2(x1 — hyy @ — hy) +mp,_, o(T1 + hy, 22 — hl)) /2,

otherwise

This manuscript is for review purposes only.
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@ *—0
o L0 —
s S g
= S =
Ny — 8
< & <
g S g
¢ —@ —@
— 2 —
S) S i
0 10 o
S S =
— — N
& & < mh2,1(0.5,0.5) =
oo

mp, 1 = Interpolate(mp, 1), he = 0.5

® L 4 L
nhz,g(O, 0) mhz,z(o, 0. )

Sl d
=

h2,2(0~570

L]
7nh272(1, 05)

mp, 2 = Interpolate(mp, 2), he = 0.5

Mh,,2(0.5,0) =

1n,,2(1,0) Mhy.2(0.5,0.5) =
[ @ ’

Mh,,1(0.5,0) = my, 1(0,0)

mh2,1(0.5, 1) = mhl,l(O, 1)

7,nh2’1(07 05) — mh1.1<0a0);mh1‘1(071)

mpq,1(0,0)+mp, 1(0,1)
2

Mhy 2 (0, 05) = Wlhl’Q(O, 0)

h2.2(0.5,0) My .2(1,0.5) = mp, 2(1,0)

mpy 2(0,0)+mp, 2(1,0)
2

mpy,2(0,0)+mp, 2(1,0)
2

FIGURE 2. An illustration of (3.10) (2D case): from 1 x 1 grid to 2 X 2 grid

Figure 2 illustrates the above formula.
Interpolation of pp. Since @y, has the same dimension with my,, the interpolation
of ¢y, is the same with interpolation of flux my, (3.10).

4. Analysis of computational costs. In this section, we provide complexity
analysis of Algorithms 1, 2, 1M and 2M.

4.1. Analysis of Algorithms 1 and 1M. Let z;, = (ma, ¢n) and Z; be the
solution set of the I*" level min-max problem:

Zi, = {(mi, 63,

where L is defined in (3.1).

ASSUMPTION 1. The solution sets on all the levels are monempty and bounded,

i.e.,

(4.1) 25,22 < Ch, V2p, € 25, WI=1,2,--

(m;‘”,¢,’:l) is a saddle point of L(mh“gbhl)},

L

)

Assumption 1 is mild. Since z;;, = (mj,, ¢}, ), the norm of 2} can be decomposed
as ||z 172 = llmj, 172 + |95, ]|72- The dual solution ¢ , by the definition in (2.7),
has the property: [|4}¢} (z)ll; < 1,Vx € QM. where A} is the gradient operator

defined on Q. It implies that all the dual solutions ¢}, are Lipschitz continuous
uniformly on the compact domain Q = [0,1]¢. Thus, all the dual solutions ¢y, are
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10 J. LIU, W. YIN, W. LI AND Y.T. CHOW

uniformly bounded as long as they are kept zero-meaned. Actually keeping ¢}, to be
zero-meaned is not difficult, see [45]. The primal solution my, , by definition, is the
solution of minimization problem (3.7). Thus, f(m;} ) must be uniformly bounded.
Although the L? norm may not be controlled by f(mj, ) = > cqm mj, (2)llph, on
commonly used examples, we numerically validated Assumption 1 in Table 3 and
observed that C7 exists and is independent of grid size.

ASSUMPTION 2. For any optimal solution z; € Zj on level I, there exists an
optimal solution zy, € Zj,  on the finer level | +1 such that

(4.2) [Interpolate(zy, ) — 23, | 2. < Co(hy)", VI=1,2,---,L—1,

where v > 0 depends on the smoothness of the solution zj, , the interpolation method
we choose and the properties of p?” and p,lll on each of the levels.

Assumption 2 requires the solution sets between two consecutive levels are close
to each other. We are not able to show (4.2) holds theoretically, because different
density p = p° — p! lead to different r. However, Assumption 2 holds on commonly
used examples. We numerically validated it in Section 5.2 with d = 2 and p = 1, 2, cc.
Figure 3 gives a visualized example of the multiple solutions on different levels. Table
4 quantifies |[Interpolate(z}, ) — 2}, | 2. and shows that r is approximately 1 < r < 2.

In the following theorem, we consider only the case of r < d+1. Actually r < d+1
is a worse case compared with » > d+ 1. If » > d + 1 holds, our multilevel method is
so efficient that the complexity of Algorithm 1M is even unrelated with h because the
complexity is no longer dominated by the calculation on the finest level. Practically
r > d + 1 rarely happens, and we ignore this case.

THEOREM 4.1. Given p°, p*, h, if Assumptions 1,2 hold and h; = 2V~'h, then it
holds that:?
1. Given 0 as the initialization, Algorithm 1 takes O(%%) iterations to stop.

. Given 0 as the initialization, the complezity of Algorithm 1 is O(%gj—ﬁ)

2
3. Algorithm 1M takes O(% Vd ) iterations on the finest level if L > 2.
4

hlf'r
. Ifr<d+1and L largeE enough, calculation on the finest level L is the dom-

inant term in Algorithm 1M, the complexity of the algorithm is O(é%)

This theorem shows why and how much Algorithm 1M helps speed up Algorithm
1. As long as the optimal solution on the coarse level is close to one of the optimal
solutions on the finer level, the multilevel technique is able to reduce the number of
iterations on the finer level. If the distance between the coarse solution and the fine
solution is controlled by O(h"), the order of the complexity of Algorithm 1 can be
reduced by h". Table 7 demonstrates the number of iterations and calculation time
are significantly reduced.

Proof. Step 1: Analyzing how many iterations Algorithm 1 takes. Define

M, = b [f% _Sf/li)*} .

The fixed point residual can be written as Rf = ||zp T — zf 131, - Then Chambolle-
Pock is equivalent with proximal point algorithm (PPA) with Mj-metric (Theorem 1

31n this article, O(-) denotes the asymptotic rate as € — 0 and h — 0.
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in [29]). Since ut||A]|? < 1 is satisfied, we have the following conclusions [26]:

—_

FPR is monotone:
(4.4) RyTY < RF, VE,

and the global convergence holds in the sense:
(4.5) 2F — 25, for some z} € Z;, as k — oo.
By Cauchy-Swartz, we obtain
2005 = on, An(mi ™ —mp)) < || Anl| - l9n " = dhlI3 + [|Anll - [Imi = mi 13-
The above inequality and the parameter choice up = 7 = 1/(2||A||) lead to
Iz — 233z, < ARl — 2572

The norm ||Ay|| is the square root of the largest sigular-value of (Aj)* Ay, which is
the discrete Laplacian with grid step size h. By the Gershgorin circle theorem [22],

Omax ((An)*Ap) < 47% and, thus, ||Ap|| < Z‘f which imples

2 \/a 0

M, S 27”% - Z}|I3..

Iz = 23l

Since we take zero as the initialization z) = 0, based on Assumption 1 and conclusion
(4.3), as long as k > 2C; 1 h , we have

—_

Rf < Zl=h — zh\|th2fkh|\zh zh\|L2<2f ~C1 <e,

ol

That is, within (2015%) O(éi) iterations, the stopping condition of Algorithm
1 is satisfied.

Step 2: Analyzing how many iterations Algorithm 1M take.

Level 1: Using the similar argument in Step 1, we conclude that Algorithm 1M
takes O(f—l) iterations to stop on level [ = 1.

Level 2: The calculation of level 2 is initialized by the result of level 1. Conclusions
(4.4) and (4.5) also hold for hy. By the global convergence of {2z} }x (4.5), there exists
a K such that ||z — z; |32 < Ca(h1)" for all k > K. Now we set £ = Ry . Then,
by the monotonicity of FPR (4.4), we conclude that, as long as € < &, when Level 1
stops, the final iteration K satisfies K > K, |25 — 2 [|7. < Ca(hy)" is achieved.

Lemma A.1 (Appendix A) implies |[Interpolate (z — z; 7. < [lzf — 2 |7
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As long as k > 27t3C, 2 we have

hl 7‘7
k<lZO_Z*2 2\/772, Z*Q
, S
Ry, < 2 llzn, = 2, g, < 12, = Zh, 172
1
:2\/gk—hQHInterpolate (zF) = 21,1132
1
§2\/gm (2||Interpolate(z,€(l) — Interpolate(z;; )||7 > + 2|[Interpolate(z}; ) — 2}, ||%2)
2
1
:2\/gl§—h2 (2||Interp01ate (2 — 21 )72 + 2||Interpolate (2, ) — =, ||%2>
1
§2\/gk—h2 (2||Z,If1 — z; |32 + 2||Interpolate () — 222”%2)

<2V/d— ! (202(h1) +2C'2(h1)r)

2r+302 \/&
ko hy "

202(2}12)T + 202(2h2)r) = <E.

khg (

In the above arguments, K represents the final iteration of level 1, k means the k"
iteration of level 2. Consequently, within (27+3Cy2 Vd )~ 0L Vd ) iterations, Level

£ hl £ hl ™
2 stops.
With the same proof line, we have, for Levels 2,3, --- | L, the number of iterations
are O(é h\@T ), O(% h"@,. J R O(% h\@r ), respectively. Point 3 of Theorem 4.1 is proved.

Step 3: Analyzing complexities of Algorithm 1 and 1M.

First, we consider the case where p =1 or p = 2.

For Algorithm 1, the complexity is a product of the iterations, the complexity is
asymptotically “iterations x single step complexity.” In each step of Algorithm 1, the
dominant calculation is computing Apmy, or (Ap)*¢n [29], which has a complexity of
O(d75). Thus, the total complexity of Algorithm 1 is:

1vd 1 1 .d3/?

For Algorithm 1M, the complexity is a product of two parts: iterations on all
levels and the interpolations between the levels. Let us first consider the former part.

1d3/2)

Similar to Algorithm 1, the complexity of level 1 is O( i The complexity of

Level (2 <1< L) 1sO( W) Since hy, = h,hp—1 = 2h, hp—o = 22h, - - -, we have

1 d3/2 1 d3/2
O\ig) T O\enm
d3/2 L—2

1 C
_ i(d+1— T) Ml y—(d+1)(L—1)p—r
O( >(202 + 52 h )

M=

l

||
N

As L large enough, 2-(@+DE-Dp=" < 1 holds. Asr < d+1, ZL_Z —idH1-n) < oo

holds. Thus, the above complexity is asymptotically O(Z 1 th) ifr<d+1.
Now let us consider the second part, the complexity of interpolations between the
levels [ and [ + 1. Each node on level { + 1 is obtained by no more than 2% nodes,
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totally we have O(d/h +1) nodes, so the complexity of interpolation between the levels
[ and [+ 1 is O(d2¢/h; +1). The complexity of interpolations in Algorithm 1M is

a2 1 1 1 a2?

As long as ¢ is small enough, hﬁliiz = > hd , 1.e. the calculation of Algorithm 1 on all

the levels dominates the calculatlon in Algorithm 1M. The complexity of Algorithm
IM is O(2 875,

For p = oo, the dominant calculation in a single step includes two parts. One is
computing Ahmh or (Ap)*¢n, which we analyze in the case of p = 1,2. The other
is calculating /., shrinkage operator. By the Moreau decomposition [34], computing
an {., shrinkage operator is equivalent with computing a projection onto an ¢; ball.
By [16], the complexity of the latter is O(d). We need to project all the points
x € Q" In total, there are O(N?) = O(1/h?) points, so the single step complexity
is O(h%). Following the above argument, we obtain the complexities of Algorithm 1
and Algorithm 1M as p = oo has the same asymptotic rate as p = 1, 2. ]

4.2. Analysis of Algorithms 2 and 2M. Let y, = (mp,¢n). Let Y;' be the
solution set of the I*" level min-max problem:

Vi, = {(mi, i) |(mi 0,) s @ saddle point of L(ma,n,)},

where L is defined in (3.4).
ASSUMPTION 3. The solution sets on all the levels are nonempty and bounded,
i.e.,

(4.6) Iy lI72 < Cs, Vyp, €Yy, VI=1,2,--- L

Assumption 3 is mild. By yhl (mj,,, ¢F,), we have ||y}, 2. = [m;, ||%2—|—||<p;‘” 12,
The dual optimal solution ¢} , by the definition in (3.4), has the property: Oh, =
Ay . Since [|A; ¢ (z)]lg < 1,V2z € QM we have |}, (2)]lq < 1,Va € Q™ which
implies all the dual solutions ¢j, are uniformly bounded:*

ler, @72 = > llgn, @R < > dllgh, (@)]I2f < d.
xeQM zeQM

The primal solution mj, in this assumption shares the same properties with that in
Assumption 1. We validated Assumption 3 numerically in Table 5, we can see that
Cs is independent of the grid size.

ASSUMPTION 4. For any optimal solution y; € Y, on level I, there exists an
optimal solution yh“r1 € th+1 on the finer level [ + 1 such that

(4.7 |Interpolate(yy, ) — vy, ., 7. < Cy(hy)”, ¥I=1,2,---,L—1.

where v > 0 depends on the smoothness of the solution yj, , the interpolation method
we choose and the properties of p?” and p}” on each of the levels.

4This bound is due to the fact that |ja||2 < V/d|a||q for all @ € R and 1 < ¢ < oo.
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Similar to Assumption 2, this assumption is numerically validated in Section 5.4
with d = 2 and p = 1,2, 00. Figures 5 provides a visualization and Table 6 quantifies
[Interpolate(y}, ) — Yoo |2, and shows that v is approximately 1 on the commonly
used examples.

In the following theorem, we only consider the case of v < d. Actually v < d is
a case worse to deal with than v > d. If v > d holds, our multilevel method is so
efficient that the complexity of Algorithm 2M is not even related with A because the
complexity is no longer dominated by the calculation on the finest level. Practically
v > d rarely happens, so we ignore this case.

THEOREM 4.2. Given p°, p', h, if Assumptions 3,4 hold and h; = 2¥~'h, then it
holds that
1. Given 0 as initialization, Algorithm 2 takes O(L) iterations to stop.
2. Given 0 as initialization, the complexity of Algorithm 2 is O(1.% log(+)).
3. Algorithm 2M takes O(%h”) iterations on the finest level if L > 2.
4. Ifv < d and L is large enough, calculation on the finest level L is the dominant
term, in Algorithm 2M, the complezity of the algorithm is O(* & log(%)).

e hd—v

Similar to Theorem 4.1, this theorem shows Algorithm 2M helps speed up Algo-
rithm 2 when the solution on the coarse level is a good estimate of that on a finer level.
Table 9 numerically validates the theorem: the number of iterations and calculation
time are largely reduced.

Proof. Step 1: Analyzing number of iterations Algorithms 2 and 2M require.
Let

M= Hﬂ IH '

Similar to Algorithm 1, Algorithm 2 is equivalent with PPA with M-metric.

Just follow the same proof line of step 1 in the proof of Theorem 4.1. Substituting
—Ay, with I, we obtain: Algorithm 2 takes O(1/¢) iterations to stop. The number
of iterations is not related with grid step size h. This conclusion is consistent with
the results in [28]. Moreover, Algorithm 2M takes O(2) iterations for level [ =1 and
O(%(hl)”) iterations for level [,2 < < L.

Step 2: Analyzing complexities.

First, we consider the case where p =1 or p = 2.

For Algorithm 2, the complexity can be estimated by “iterations x single step
complexity.” In each step of Algorithm 2, the dominant calculation is conducting d
dimensional FFT on @F [28], which have complexity of O(N%log(N¢). Since N = 1/h,
the complexity is O(d77 log(+)) [17]. Then the complexity of Algorithm 1 is:

1 1 1d 1

log(7)) = O(= 3 1log(7))-

1
O(=) x O(d Y ~hd Y

€ hd

For Algorithm 2M, we first analyze the complexity of the calculation on each
level.
The complexity of level I = 1 is O(L-% log(h%)). The complexity of level I(2 <

d
€ h{
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1< L)is O(%

log(h%)). Since hy, = h,hy,_1 = 2h,h;_o = 2h,---, we have

Z:; (G Ulog<,§>>)+0(1,fdlog<1>)
<0G

Ehdu

L—-2

)) ( Z g—i(d—v) | 27d(L71)h7u).

=0

As L large enough, 2=4E=Dp=* < 1 holds. As v < d, ZL_2 —ild=v) < oo holds.
Thus, the complexity of the calculation on all levels is asymptotically O(L £ log(+)).

Using similar argument of that in Theorem 4.1, as € small enough the above
complexity is much larger than that of interpolation, i.e., %hdd,,/ > dh—%j. The com-
plexity of Algorithm 2M is O(%hdd,,, log(%)). Moreover, in the case of p = oo, with
the same argument in Step 3 of the proof of Theorem 4.1, we obtain the conclusions
in Theorem 4.2. 0

4.3. Summary of complexities. Tables 1 and 2 summarize the complexi-
ties. Complexity results of Algorithms 1, 2, 1M and 2M are given in Table 1. Let
N = 1/h, Table 1 can be directly obtained by Theorems 4.1 and 4.2. In the case of
d = 2 (2D case), we compare Algorithms 1, 2, 1M and 2M with other EMD algo-
rithms [30, 2| in Table 2. By [30], their algorithm has complexity of O((N9)?). As
d = 2, it is O(N*). The algorithm in [2] constructs a graph and solves the unca-
pacitated minimum cost flow problem on the graph. The worst case complexity is
O(|V]1og(IV])(IV]log(|V|) + | E|)), where |V] is the number of nodes in the created
graph and | E| is the number of edges. Asp = 1or p = oo, |V| = O(N?),|E| = O(N?),
the complexity is O(N*log?(N)); as p = 2, |V| = O(N?),|E| = O(N*), the complex-
ity is O(N%log(N)).

TABLE 1
Complexities of Algorithms 1, 2, 1M and 2M. The parameters r,v depend on the interpolation
accuracy (Assumptions 2, 4).

p=1200

Algorithm 1 [29] | O(Ld3/2 N4+
oz
o(:
o(z

Algorithm 2 [28] LdN?1og(N))
Algorithm 1M d3/2 NI+
Algorithm 2M dNT"log(N))

5. Numerical validation of the assumptions. We numerically validated As-
sumptions 1, 2, 3 and 4 in the case of dimension d = 2 and p € {1,2,00}. We
implemented Algorithms 1M and 2M in MATLAB to validate our assumptions.

5.1. Validation of Assumption 1. Since the EMD generally does not have
a closed-form solution in the 2D case, we numerically estimate ||zj [|7. to validate
Assumption 2. By Theorem 1 in [29], Z]}«fl — 25, as k — oo for all I. Consequently, as
long as the stopping tolerance ¢ is small enough, we could use ||z{fl ||2L2 obtained by
Algorithm 1M to estimate ||zj [|7.. In this subsection, we set ¢ = 107%

Table 3 reports the averaged quantity of ||z}; [|7. on the DOTmark dataset [42].
The results show that ||z}; ||7. is clearly bounded by a constant independent of grid
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TABLE 2
Complexity analysis of 2D case (d = 2): Tree-EMD and Min-cost flow are exact algorithms,
but they are computational expensive for large grid sizes. Algorithms 1 and 2 are inexact algorithms
with tolerance €, they are more efficient for large-scale problems. With multilevel initialization,
Algorithms 1M and 2M enjoy cheaper complezities than Algorithms 1 and 2 respectively.

p=1 p=2 p=00
Tree-EMD [30] O(N?%) - -
Min-cost flow[2]” | O(N*log*(N)) O(NS1og(N)) O(N*log®(N))
Algorithm 1 [29] | O(LN?3) O(LIN?) O(LIN?)
Algorithm 2 [28] | O(zN?log(N)) O(=NZ%log(N)) O(=N?%log(N))
Algorithm 1M O(IN3—7) O(IN3T) O(IN*T)
Algorithm 2M O(=N?7"1og(N)) | O(2N?7log(N)) | O(:N?>~"1og(N))

TABLE 3
Validation of Assumption 1 on the DOTmark dataset, L = 6

Averaged |z, [17-
=1 (=2 =3 l—4 l—5 =6
b=t =X (=& | b= | =

128 256

1 0.115 0.100 0.093 0.090 0.089 0.088
2 0.068 0.060 0.057 0.056 0.055 0.055
oo | 0.060 0.055 0.053 0.051 0.051 0.051

p
p
p

step size hy. There may be multiple solutions in Z; on each level [, while Table 3
demonstrates that the solutions zj obtained by Algorithm 1M satisfy Assumption 1.

5.2. Validation of Assumption 2. Similar to the validation of Assumption 1
in Section 5.1, we use [Interpolate(zy ) — 2. get by Algorithm 1M to estimate
[Interpolate(z}, ) — 25, , | 2.. In this subsection, we also set £ = 1075.

Visualization of zj, . The solution set Z; may have multiple solutions on each
level. What we want to show in this paragraph is that, for each coarse level solution
zp, € Zy,,, there is a finer level solution z;lﬂ S Z;‘”+1 that is close to z;, . Here we set
p = 1. Figures 3 and 4 illustrate this point. First, we the primal solution consider

my,, . With different initializations, we obatin two different optimal mj, s on level [ = 1:
Flgures 3(a) and 3(d). With the results in Figures 3(a) and 3(d) as 1n1t1ahzat10ns we
obtain the solutions mj on level 2: Figures 3(b) and 3(e). The flux in Figure 3(b)
close to that in Figure 3( ); Figure 3(e) is close to Figure 3(d). Thus, Assumption 2
is meaningful when there are multiple solutions on each level: for a solution mj}, on
level [, there is a solution m’,*”+1 on level [ + 1 similar to mj, . Secondly, we consider
the dual solution ¢ . Asp =1, ¢; is unique upto a constant for each level I. The ¢}
on level [ is close to that on the finer level ¢;‘”+1. Figure 4 demonstrates this point.

Quantitative validation of ||Interp01ate(z,’;l) -z, ||%2 In Table 4, We report the
+1
averaged [|Interpolate(z;;,) — 2, [|7- on the “classic images” in DOTmark dataset [42]
with different choices of p € {1,2,00}. By the results in Table 4, |[Interpolate(z;; ) —
z;';Hl |22 < O(hy)" is numerically satisfied and, approximately, 1 <r < 2.

th+1

5The complexity of solving the minimum cost flow problem is the upper bound for the worst
case. In practice, their algorithm has better performance than the theoretical bound. Numerical
results are reported in Table 11.
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0 0.2 0.4 0.6 0.8 1
One mj level 1 One mj_, level 2 One mj level 3
hy’ ’ ho? ) ha? )
@) g 8 gri () 16 x 16'ghid (©) 32 x 32'hid

1
0.9
08
0.7
0.6
0.5
0.4
03
0.2
01

1)
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

(@) Another m;‘”, level (© Another mj , level (f) Another mj , level
1, 8 x 8 grid 2,16 x 16 grid 3, 32 x 32 grid

Ficure 3. Visualization of Assumption 2: the black flux represents mp, : QM — R2 the two
circles represent p?” , p,lll respectively. There are multiple solutions on each level. For every solution
m;‘” on level I, there is a solution m;;H_l on the finer level l 4+ 1 that is similar to m;‘”.

0 0.2 0.4 0.6 0.8 1
o5, level 1, 8 x 8 o5, level 2, 16 x 16 o5, level 3, 32 x 32
(a) "h1 (b) Tha (c) Ths
grid grid grid

Ficure 4. Visualization of Assumption 2: dual solution (Kantorovich potential) ¢Zl Q5 R
on each level. The dual solution d)ZHl on level l + 1 1is close to d)}"” on the coarser level .
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TABLE 4
Validation of Assumption 2 on the DOTmark dataset, L = 6

Averaged [[Interpolate(z;, ) — 2, [I7

=1 1=2 1=3 =4 1=5
hy=1/16 | hy=1/32 | hy=1/64 | hy=1/128 | h; =1/256
p=1 [ 1.59x107% [ 545 x 10~ % [ 1.55 x 107F [ 243 x 1077 [ 2.91 x 10~
p=2 | 517x107F [ 1.53x107% [ 457 x 107" | 1.16 x 107° | 2.77 x 10~
p=o0 | 840x107* | 3.06 x 10~% | 6.65 x 107> | 2.08 x 10~° | 6.41 x 10~©

5.3. Validation of Assumption 3. Similar to the validation of Assumption
1, we use [jyf||7. in Algorithm 2M to estimate [y}, [|7.. In this subsection, we set
e=1078.

Table 5 reports the averaged quantity of ||y [|7. on the DOTmark dataset [42].
The results show that ||y}, 2. is clearly bounded by a constant independent of grid
step size h;.

TABLE 5
Validation of Assumption 3 on the DOTmark dataset, L = 6

Averaged ||y;';l ||%2

I=1 =2 [ =3 1=4 =5 =6

=1 |hi=%% =g | =0z | M=55 | =155
p=11] 2072 | 2018 [ 1.984 1.972 1.967 1.965
p=2 | 1044 | 1.016 | 1.003 0.997 0.995 0.993
p=oc [ 0984 [ 0.966 | 0.960 0.963 0.968 0.972

5.4. Validation of Assumption 4. Similar to the validation of Assumption
3 in Section 5.3, we use |[Interpolate(y) — y,lle 2. in Algorithm 2M to estimate
[Interpolate(y;,) — vp,, | [2.. In this subsection, we also set ¢ = 1075.

Visualization of yj, . Similar to the validation of Assumption 2, we set p = 1
and get the results in Figures 5 and 6. Figure 5 shows that: for a solution mj, on
level [, there is a solution mj,  on level [ + 1, which is similar to mj . On this
specific numerical example, the dual variable ¢} is unique for each level [. Figure 6
demonstrates that ¢} on level [ is close to @ZHI on level [ + 1.

Quantitative validation of ||Interpolate(y;, ) — v}, ., |2,. In Table 6, We report the
averaged ||Interpolate(y}, ) —j, |22 on the “classic images” in DOTmark dataset [42]
with different choices of p € {1,2,00}. By the results in Table 6, ||Interpolate(y;; ) —
y,*;Hl 2. < O(h)" is numerically satisfied and, approximately, v ~ 1.

6. Numerical results. In this section, we numerically study why and how much
our Algorithms 1M and 2M speed up Algorithms 1 and 2. The conclusions in The-
orems 4.1 and 4.2 are validated. Moreover, we compare our algorithms with other
EMD solvers [30, 2, 29, 28]. We implemented Algorithms 1M and 2M as d = 2 in
MATLAB. All the experiments were conducted on a single CPU (Intel i7-2600 CPU
@ 3.40GHz).

6.1. The effect of multilevel initialization. In this subsection, we study
why multilevel initialization helps speed up Algorithms 1 and 2. All the results are
obtained on the “cat” example which is also used as a benchmark in [29, 28].
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0 0.2 0.4 0.6 0.8 1

One mj level 2 One mi} level 3
ho? ’ ha? )
() 16 x 16 grid (©) 32 x 32" 6hid

1
0.9
08
0.7
0.6
0.5
0.4
03

0.2
0.1
0
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
* * *
(d) Ano.ther mp level 1, 8 x (© Another mj , level (f) Another mj , level
8 grid 2,16 x 16 grid 3, 32 x 32 grid

FiGure 5. Visualization of Assumption 4: the black flux represents my, : QM — R2 | the the
two circles represent pgl,p}” respectively. There are multiple solutions on each level. For every
solution m;*” on level I, there is a solution m;‘LH_l on level | + 1 that is close to m;‘”.

0 0.2 0.4 0.6 0.8

(a)

goz , level 1, 8 X 8 (b) cp;; , level 2, 16 x 16 © 9023’ level 3, 32 x 32
gri gri grid

FiGure 6. Visualization of Assumption 4: dual solution 90;‘” : QM — R2 on each level. The
dual solution apZHl on level l is close to (‘OZZ on level I + 1.
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Validation of Assumption 4 on DOTmark, L =6

Averaged [[Interpolate(y;; ) — uj ., 12,

I=1 =2 1=3 =4 =5
hy =1/16 hy =1/32 hy=1/64 | hy=1/128 | h; = 1/256
p=1 [253x1071 [ 1.32x107" [ 438 x1072 | 1.02 x 1072 | 3.36 x 1073
p=2 [610x1072 [ 291 x1072 [ 1.30 x 1072 | 4.67 x 1073 | 1.13 x 1073
p=oo | 8.49x 1072 | 471 x1072 | 214 x 1072 | 886 x 103 | 3.45 x 103

Algorithm 1M. We report the results of Algorithms 1 and 1M in Tables 7 and
8. If L =1, Algorithm 1M reduces to Algorithm 1, which takes 5264 iterations to
stop as Table 7 shows. If L = 2, we first conduct 2790 iterations on a coarse grid
256 x 256. The obtained result is used to initialize the algorithm on the fine grid
512 x 512. With this initialization, Algorithm 1M only takes 49 iterations to stop on
the fine grid. Although extra calculations on 256 x 256 grid are required, the merit of
fewer iterations on the fine grid overcomes the extra calculation cost. Thus, the total
calculation time is reduced from 95.25 seconds to 10.64 seconds. When the number
of levels L get even larger, the computing time could be further reduced. As L = 4,
the computing time is reduced to 2.924 seconds. The results support Theorem 4.1:
as € small enough and L large enough, the calculation on the finest level 512 x 512 is
dominant. Since the multilevel algorithm is able to dramatically reduce the calculation
expense on the finest level, it consumes much less computing time.

TABLE 7
The effect of level number L in Algorithm 1M: 512 x 512, p = 1, tolerance ¢ = 106, “Iters” is
the number of iterations, and “Time” is in second. The results support Theorem 4.1.

Number Calculation cost on each level Total
64 x 64 128 x 128 256 x 256 512 x 512

of levels | Tters | Time [ Tters | Time | Tters | Time | Iters | Time | time

L=1 5264 | 95.25 | 95.25

L=2 2790 | 9.691 49 0.953 | 10.64

L=3 2906 | 3.138 | 138 | 0.491 | 43 | 0.841 | 4.470

L=4 2454 | 1.153 | 291 | 0.340 | 148 | 0.537 44 0.894 | 2.924

In practice, L = 6 is usually large enough to enjoy the advantage of multilevel
initialization. In Table 8, we fix L = 6 and compare the effect of multilevel initializa-
tion on different problems sizes. The results illustrates that Algorithm 1M is much
faster than Algorithm 1, the advantage is significant on large-scale problems.

Algorithm 2M. We report the results of Algorithms 2 and 2M in Tables 9 and
10. Table 9 shows that multilevel initialization could speed up Algorithm 2. With
the multilevel initialization, the number of iterations on the finest grid 512 x 512 can
be reduced from 100 to 2. This result validates the conclusions in Theorem 4.2. In
Table 10, we compare the effect of the multilevel initialization on different grid sizes.
The results illustrate that Algorithm 2M speeds up Algorithm 2 by 2 ~ 20 times. For
large-scale problems, the speedup effect is considerable.

Visualization of solutions. We visualize the solutions obtained by Algorithms 1M
and 2M in Appendix C.
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TABLE 8
Comparison of Algorithm 1 and Algorithm 1M (L = 6, ¢ = 1076). The term
“11+337+328+346+334+261" means the algorithm takes 211, 337, 328, 346, 334, 261 iterations
for level | =1,2,3,4,5,6 respectively. The term “Speedup” measures how many times Algorithm 1M
speeds up Algorithm 1.

Algorithm 1 Algorithm 1M (L = 6)
Iters \ Time Tters \ Time
p=1
128 x 128 1743 | 1.867 | 211+337+328+346+334+261 | 0.621 3.0
256 x 256 | 3034 | 10.63 | 657+482+501+383+287+110 | 1.110 9.6
512 x 512 5264 | 95.25 | 1661+479+351+268-+153+49 | 2.228 42.7
1024 x 1024 | 8843 | 954.9 | 2889+380-+310+182+4-58+14 | 4.838 197.4
p=2
128 x 128 1102 | 2.348 | 416+400+4-330+311+235+178 | 0.734 3.2
256 x 256 1960 | 13.06 | 901+615+361+282+239+118 | 1.761 7.4
512 x 512 3319 | 107.9 | 1617+520+328+4-268+150+60 | 4.032 26.8
1024 x 1024 | 5892 | 985.2 2856+417+314+189-+71+15 | 8.100 121.6
p =00
128 x 128 1311 | 3.171 | 356+472+4288+336+440+436 | 1.845 1.7
256 x 256 | 2331 | 18.29 | 558+4496+312+396+439+468 | 5.354 3.4
512 x 512 | 4068 | 138.4 | 1041+461+4467+461+504+186 | 12.26 11.3
1024 x 1024 | 7150 | 1165 | 2147+466-+524+514+275+65 | 26.96 43.2

Grid size Speedup

TABLE 9
The effect of level number L in Algorithm 2M: 512 x 512, p = 1 tolerance € = 10~5. “Iters” is
the number of iterations, and “time” is in second. The results support Theorem 4.2.

Number Calculation cost on each level Total
64 x 64 128 x 128 256 x 256 512 x 512

of levels | Tters | Time | Iters [ Time [ Tters | Time [ Tters | Time | time

L=1 100 | 2.375 | 2.375

L=2 99 1.224 2 0.113 | 1.336

L=3 99 0.157 4 0.080 2 0.112 | 0.349

L=4 100 | 0.024 8 0.016 4 0.089 2 0.111 | 0.240

6.2. Comparison with other methods. In this subsection, we compare our
method with other EMD algorithms [30, 2, 29, 28]. There are some other 2D EMD
solvers [36, 31, 43, 6, 14, 24] we do not compare with. [36] solves EMD with a
thresholded metric; [31, 24] are designed for Wasserstein-p (p > 1) distance; [14, 43, 6]
solve EMD with the entropy regularizer, the objective function of which is not the
same with us. Thus, we are not able to compare these algorithms with ours fairly in
our settings.

All the results are obtained on on the DOTmark [42] dataset and reported in
Table 11. We used 10 images provided in the “classic images” of DOTmark. Totally we
calculated 45 Wasserstein distances for all the 45 image pairs. The time consumptions
are averages taken on these image pairs. Figure 9 in Appendix D visualizes two
such images and the optimal transport between them. Tree-EMD [30] and Min-
cost flow [2] are exact algorithms stopping within finite steps. Other algorithms are
iterative algorithms stopping by a tolerance. For Algorithms 1 and 1M, we take
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TABLE 10
Comparison of Algorithm 2 and Algorithm 2M (L = 6). “77+69+469+24+16+11" means the al-
gorithm takes 77,69,69,24,16,11 iterations for levell = 1,2,3,4,5,6 respectively. The term “Speedup”
measures how many times Algorithm 2M speeds up Algorithm 2.

S Algorithm 2 Algorithm 2M (L = 6
Grid size Itera‘fions | Time %terations ( \ F_)Fime Speedup
p=1
128 x 128 99 0.148 | 774+694+69424+16+11 | 0.037 4.0
256 x 256 99 1.217 | 93-+74+22+18+11+5 | 0.135 9.0
512 x 512 100 2.375 106+26+20+9+4+2 0.233 10.2
1024 x 1024 99 11.47 93+224+9+5+2+1 0.634 18.1
p=2
128 x 128 51 0.085 | 554+60+40+24+15+9 | 0.035 2.4
256 x 256 50 0.675 58+31+23+15+9+4 0.116 5.8
512 x 512 50 1.368 53+22+16+9+4-+2 0.252 5.4
1024 x 1024 50 6.530 53+20+9+5+2+1 0.792 8.2
P = 00
128 x 128 53 0.088 | 49-+68+53430+15+10 | 0.035 2.5
256 x 256 54 0.714 | 59+4+41-+27+14+10+6 | 0.147 4.9
512 x 512 55 1.460 67+30+14+10+6+5 0.354 4.1
1024 x 1024 52 6.651 65+18+11+4+7+6+2 1.070 6.2

e = 1075; for Algorithms 2 and 2M, we take ¢ = 107°. Practically, these fixed-point-
residual tolerances are small enough to guarantee the relative error of the distance
value no larger than 5%.

In most of the cases, Algorithm 2M is the best. Algorithm 1M and Algorithm 2
are also competitive for large-size problems. All the first-order methods (Algorithms
1,2, 1M, 2M) are robust to the parameter p in the ground metric ||-||,. Tree-EMD [30]
only works for p = 1; the algorithm in [2] works well when p = 1, co and the grid size
is not very large. As p = 2, the algorithm in [2]| requires large amount of memory and
calculation time.

7. Conclusion. In this paper, we have proposed two multilevel algorithms for
the computation of the Wasserstein-1 metric. The algorithms leverage the L; type
primal-dual structure in minimal flux formulation of optimal transport. The multilevel
setting provides very good initializations for the minimization problems on the fine
grids. So it can significantly reduce the number of iterations on the finest grid. This
consideration allows us to compute the metric between two 1024 x 1024 images in
about one second on a single CPU. It is worth mentioning that the proposed algorithm
also provides the Kantorovich potential and the optimal flux function between two
densities. They are useful for the related Wasserstein variation problems [33].

In future work, we will apply the multilevel method to optimal transport related
minimization in mean field games and machine learning.
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TaBLE 11
Time consumption (seconds) on DOTmark [42]. Tree-EMD and Min-cost flow stop with finite
steps and giwe exact solutions, first-order algorithms (Algorithms 1, 2, 1M and 2M) are iterative
and give estimated solutions (5% relative error)

Grid size [ 32 x32 ] 64 x 64 [ 128 x 128 | 256 x 256 | 512 x 512
p=1
Tree-EMD [30] 0.006 | 0.127 2.433 121.2 N/A
Min-cost flow [2] [ 0.002 | 0.024 0.342 7.164 157.7
Algorithm 1 [29] [ 0.134 [ 0.780 3.018 18.23 162.7
Algorithm 2 [28] [ 0.008 | 0.029 0.171 1.433 2.710
Algorithm 1M 0.117 | 0.265 0.537 0.962 1.877
Algorithm 2M 0.008 | 0.013 [ 0.030 0.104 0.201
p=2
Tree-EMD [30] N/A [ N/A N/A N/A N/A
Min-cost flow [2] | 0.082 1.863 N/A N/A N/A
Algorithm 1 [29] [ 0.078 | 0.429 2.131 13.55 106.3
Algorithm 2 [28] [ 0.007 [ 0.021 0.116 0.908 1.807
Algorithm 1M 0.066 [ 0.149 0.335 0.838 1.996
Algorithm 2M 0.007 | 0.015 | 0.046 0.148 0.285
p =00
Tree-EMD [30] N/A T N/A N/A N/A N/A
Min-cost flow [2] | 0.002 0.025 0.300 5.380 118.1
Algorithm 1 [29] [ 0.270 | 1.202 5.487 29.28 197.9
Algorithm 2 [28] [ 0.006 | 0.023 0.130 1.026 2.034
Algorithm 1M 0.255 | 0.511 1.124 2471 5.124
Algorithm 2M 0.007 | 0.015 | 0.051 0.217 0.411

Appendix A. A lemma for interpolation operators.

LemMA A.1. If hy_1 = 2h;, then we have

IInterpolate(dn, )12 <lién_,[Bz, Von_, : 21 > R
(A1) |Interpolate(mn, )12z <||mn,_, 132, Vmn,_, Sty R

”InterpOIa‘te(Qth—l)”%Q SH@hH HQLQﬂ v@hl_l c QR

Proof. First, we consider the interpolation of potential ¢, ,. With ¢, = Inter-
polate (¢, ,), we have

oIz = D oh, (x)(h0)?

xEth
2
-y (1 S Y v Y y‘)) (ho)?
2|J| -1 1 JdJ1r JJ20 v JI| T
zEQM lyiy—ziy [She lyj) 7 =2 7 1<he
1 2 d
S Z (2”' Z Z ¢hl_l(yJ>yj1ayj27"' 7yj;)>(hl)
zEQM lyjn =51 [<he yg, 5 =235 5 1<k

> cwer, W) (h)t

yeQh-1
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519 The inequality in the third line above follows from Jensen’s Inequality [8], and ¢(y) is
520 a constant which can be bounded in the following way.

521 ®n,_, (y) contributes to the nodes within a d dimensional hypercube H(y) = {x €
522 € : max; |z; — y;| < by} First, we consider y as an interior point in €. There are
523 24 vertices in H(y), for each vertice, the weight is 1/(2¢). There are 2¢71d edges in
524 H(y), each edge contains a single point = € Q" ¢, (y) contributes to ¢y, () with
525 weight 1/(2971). Generally speaking, there are 29—" (g) n-dimensional hypercubes
526 on the boundary of H(y) [13], each m-dimensional hypercube contains a single point
527 @ € QM. ¢y, (y) contributes to ¢p, (z) with weight 1/(2¢-™). Moreover, the center
528 of H(y) is y, which is also in Q" ¢;,  (y) contributes to ¢y, (y) with weight 1. Thus,
529 for interior point y, we have

L od
c(y) =od x 2%+

:i(i) =(14+1)*=2%

531 For y on the boundary of €2, there are less points in H(y) N Q" and the weight for
532 each node is the same as above, thus, c(y) < 2¢. In one word, c(y) < 2¢ for all
533y € QM-1. Then, we obtain

Ion iz < D> cw)dh, @) < Y dh,, (y)(2w)!

1
xd2d‘1+---+x2d‘1<d)+---+1x1
n

2d71 2d71

534 yeah-1 yeQM-1
e
= 3 G @) = on |3
ythFl

535 With the same proof line, the interpolation of my, , and ¢, , can also be proved.

536 Inequalities (A.1) are proved. |
537 Appendix B. Kantorovich potential.

538 The Kantorovich potential can be obtained directly from the dual solution of
539 (3.1). Thus, Algorithm 1 directly gives the potential ¢} : Q" — R. While Algorithm
510 2 solves (3.4) and gives ¢} : Q" — R4, the gradient of ¢} : ¢ = A% ¢;. We obtain ¢}
541 given ¢j by solving

542

ApALdn = Ay,
543  The boundary condition is given. Thus, the Laplacian operator A, A} is invertible,
544 where the solution is unique up to a constant shrift. And ¢; is given by

515 (B.1) 5 = (ARA;) L Aper.
546  The invert Laplacian operator can be calculated efficiently by the FFT [28].

547 Appendix C. Visualization of the cat example.

548 The cat example is used in Section 6.1. We visualize the two distributions p°, p!
549 and the optimal transport between them in this section. Figure 7 visualizes the
0 primal-dual pair (m*, ¢*) obtained by Algorithm 1M, Figure 8 visualizes the primal-
I dual pair (m*, ¢*) obtained by Algorithm 2M. For both the two algorithms, we take
2 h=1/256, L =6 and ¢ = 107.

553 Appendix D. Visualization of DOTmark.
554 The DOTmark dataset is used in Section 6.2. We visualize two of the distributions
555 p0, pt and the optimal transport between them in Figure 9.
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(e) m*(p = o0)

(f) o*(p=1) () o*(p=2) (h) ¢*(p = o0)

FIGURE 7. Visualization of (m*, ¢*) obtained by Algorithm 1M. m* is the optimal fluz; ¢* is
the Kantorovich potential. The backgrounds of Fig. 7(c), 7(d) and 7(e) are all p® — pt.
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F1GURE 9. Visualization of the optimal transport m* between the two images p° and p'. The
background is the difference between p®, pt: p = p® — pt.
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