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Abstract. Computing surface folding maps has numerous applications ranging from computer
graphics to material design. In this work we propose a novel way of computing surface folding maps
via solving a linear PDE. This framework is a generalization to the existing computational quasicon-
formal geometry and allows precise control of the geometry of folding. This property comes from a
crucial quantity that occurs as the coefficient of the equation, namely the alternating Beltrami coef-
ficient. This approach also enables us to solve an inverse problem of parametrizing the folded surface
given only partial data with known folding topology. Various interesting applications such as fold
sculpting on 3D models, study of Miura-ori patterns, and self-occlusion reasoning are demonstrated
to show the effectiveness of our method.
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1. Introduction. Modeling the folding phenomena of surfaces, as well as the
study of its regular patterns such as mathematical origami, has attracted lots of
interests in computer graphics, material design as well as mathematics. Recent ex-
amples include origamizing surfaces [8], material design with mathematical origami
[10], a FoldSketch system manipulating the folding of clothes [17], modeling curved
folding surface used in fabrication and architectural design [26, 13], and so on. In
this paper we propose a new framework to model and study such phenomena from
geometric partial differential equations (PDEs) point of view. Under this framework,
applications such as generating new flat-foldable material prototypes, fold and cusp
sculpting on surfaces, reasoning the flat-folded surface with only partial data, become
possible.

The key equation is the so-called alternating Beltrami equation

∂f

∂z̄
(z) = µ(z)

∂f

∂z
(z), z ∈ Ω

where Ω is a bounded domain with regular boundary. The difference to the classical
counterpart is that here the Beltrami coefficient µ is allowed to take values in the
Riemann sphere except near the equator, in contrast to the ordinary Beltrami equation
which requires the Beltrami coefficient to be strictly inside the unit disk.

There are many advantages to model and study the surface folding with alter-
nating Beltrami equation. One of the most prominent reason is its simplicity. The
introduction of conformal geometry makes the problem linear, while the Beltrami co-
efficient can be used to encode all possible conformal distortion of the mapping. In
particular, it can be used to control the folding and unfolding of the mapping. But it
must be noted that, depart from conventions but crucial to our approach, the solution
of the alternating Beltrami equation is not orientation-preserving in general, and so
various mathematical notions need to be adapted to this setting. This is done in
Section 2 below.
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1.1. Problem description.

1.1.1. Solving alternating Beltrami equations. Solving Beltrami equations
has been a central component in computational quasiconformal geometry, which has
many successful applications to medical imaging etc [15, 18]. The reason for a special-
ized treatment for alternating Beltrami equation is that |µ| > 1 and |µ| < 1 introduce
genuinely different properties of the equation. In fact the equation is no longer glob-
ally elliptic, in contrast to the classical case. One can observe from our Theorem
2.10 that the analogous “energy norm” of the corresponding second order equation
can well be negative. This demonstrates the non-trivial task of numerically solving
alternating Beltrami equation. Nevertheless the problem can be resolved elegantly.

1.1.2. The problem of incomplete data. In applications involving folded
surface, one of the fundamental problems is that when only one perspective of the
surface is given, it is often self-occluded. This corresponds to the situation where the
data needed to solve for the desired solution of the alternating Beltrami equation is
often incomplete by a large portion. In other words, we have an inverse problem of
inferring the geometric missing data due to self-occlusion or other reasons. We make
two assumptions about what kind of data are available to us:

1. The domain’s general shape, and the topological type of the singular set
configuration is assumed to be known. The precise definition of singular set
configuration is given in Section 2.

2. The visible portion of the folded surface is assumed to be known.
Precise definitions and notations will be provided when we discuss the problem in
details.

1.2. Contributions of this paper. Our work can be considered as the first
application of quasiconformal methods to the problem of modeling and studying the
folding phenomena. The main contributions include our methods to attack the two
problems described above, which we describe in more details below.

1.2.1. Numerically solving alternating Beltrami equation. We analyze
the effect of |µ| > 1 and introduce the generalized quasiconformal energy that
is analogous to the energy norm in the classical case. It is no longer convex but the
saddle point characterizes the solution to the alternating Beltrami equation. The
numerical method is derived from the proposed energy, works for bounded domains
with arbitrary topology and amounts to simply solving a sparse linear system.

1.2.2. Parametrizing flat-foldable surfaces with incomplete data. To
tackle the challenge of incomplete data, we exploit the structure of the problem and
design suitable optimization algorithms thereof. We mainly focus on the problem
for flat-foldable surfaces, informally known as planar origamis. This is due to the
following two reasons:

1. Finding a desirable parametrization can be formulated as an optimization
problem of minimizing the conformal distortion of the proposal mapping for
parametrization.

2. It is where our framework of using alternating Beltrami equation is most
effective, since other, especially three dimensional geometric features of the
folded surface, such as mean curvature, do not belong to our framework but
can be tackled by pre- or post-processing.

To solve this ill-posed inverse problem, we propose the “Reinforcement Itera-
tion” algorithm. The algorithm starts with an initial domain with the singular set
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configuration of the same topological type with the target surface, and then iteratively
find the domain that will result in smaller conformal distortion. So alternatively, one
can view the problem as finding some desirable Beltrami coefficients of the mapping
from the initial domain and the desired target surface, that is a coefficient problem
for the alternating Beltrami equation. Empirically our algorithm converges at about
the rate O(1/N), see Figure 7. We shall layout more details in Section 3.2.

It is also interesting that the reinforcement iteration proposed is useful in other
applications such as generating new Miura-ori type patterns. See Section 5.1 for
details.

1.3. Related work. Here we briefly list some important related works in this
area, while they are by no means an exhaustive survey.

Computational quasiconformal geometry. Computational technique of con-
formal mapping [16, 9] turned out to be very useful in computer graphics. Since
the seminal work of Gu and Yau [11], the conformal geometry framework in surface
registration tasks has advanced significantly. Earlier work generalizing these ideas
is already implicit in the work of Seidel [25]. The quasiconformal extension of this
framework was proposed by Lui and his coauthors [19, 18, 5], with successful appli-
cations to medical image registration and surface registration. The quasiconformal
method is able to handle large deformations, where conformal methods typically fail.
Our work is an extension along this line, allowing the manipulation of folding, which
opens up a new area to be explored.

Modeling surface folding and mathematical origamis. In computer graph-
ics there has been a notable amount of work on modeling the folding phenomena of
surfaces. Many interesting works focus on 3D interactive design. These include the
method of thin plate form with explicit user control of folding angles for interactive
3D graphics design in [26], which can also achieve the sharp folding edges as we do
here. Our framework and techniques are completely different, especially here we are
taking advantage of the fact that alternating Beltrami equation can be solved ef-
fectively in 2D. On the other hand, there are studies of developable surface design
with curved folding [13], taking the advantage of the special quad meshes, while we
don’t have this restriction, but the focus and techniques are rather different. We
must also mention the work of Demaine and Tachi [8], who developed algorithms to
fold a planar paper into arbitrary 3D shapes. The study of the folding phenomena
also has industrial applications in such as the 4D printing of [14] and material de-
sign in [10]. We expect to discover interesting connections to them in the future work.

2. Computing quasiconformal folds.

2.1. Definitions of folding homeomorphism, singular set configuration
and derivation of alternating Beltrami equation. The notion of folding used
in this paper departs from those of three dimensional nature, as in [13]. Instead,
we model it via the the continuous mapping from the domain surface to the target
surface with designated change of orientation. This is made precise in the following
definition.

Definition 2.1 (Folding homeomorphism and its singular set configuration).
Let X and Y be oriented surfaces. A continuous, bijective and discrete mapping
f : X → Y (discrete means f−1(y) are isolated in X for all y ∈ Y ) is called a folding
homeomorphism if there is a subset Σ ⊂ X, of Hausdorff dimension 1, with (X,Σ)
forming a locally finite two color map, say white and black, such that when restrict-
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X+

X−

Σ

(a) The singular configuration
contains only folding points: the
folding line separates X− and
X+.

X+

X−
X+

X−

Σ

(b) The singular configuration
contains both folding points and
a single cusp point: the cusp
point joins the folding lines.

Fig. 1: Illustration of Definition 2.2

ing to the connected components of the white (or black) region, f is an orientation-
preserving (or -reversing) homeomorphism. The two color map (X,Σ) is called the
singular set configuration of f , and is sometimes simply referred to as Σ if it is clear
from the context. The white and black regions are denoted usually by X+, X− respec-
tively.

Note that we have required the mapping to be a bijection in order to avoid the
case of degeneracy. Sometimes we would also like to give names to the points in the
singular set according to the properties of f . The definition below will classify the
usually encountered situation and suffices for our purposes in this paper. Readers can
also refer to Gutlyanskii et al. [12] for related materials.

Definition 2.2 (Folding point and cusp point). Let f : X → Y be a folding
homeomorphism with singular set configuration Σ.

• A point p ∈ Σ is called a folding point if there is an open neighborhood U of p
such that U \ Σ is disconnected into exactly 2 simply connected components,
and the restriction f

∣∣
U

is topologically equivalent to (x, y) 7→ (x, |y|), where
U ∩ Σ plays the role of x-axis.

• A point p ∈ Σ is called a cusp point if there is an open neighborhood U of p
such that U \Σ is disconnected into exactly 2n simply connected components,
n > 1, and the remaining points p′ ∈ (Σ ∩ U) \ {p} are all folding points.

• The collection of paths in Σ consisting of all folding points is called folding
lines.

We illustrate these concepts in Figure 1. A more famous example is the paper
crane origami, in Figure 2, where for better visualization we use yellow and purple
instead of white and black. The paper crane origami is in fact flat-foldable, which we
will define in Definition 2.3.

So far the above definitions have been topological. We can equip the surfaces
with Riemannian metrics and thus talk about the intrinsic geometry of the folding
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(a) Singular set configuration of the
paper crane.

(b) The paper crane obtained by
solving an alternating Beltrami
equation.

Fig. 2: The paper crane origami

homeomorphism f : (X, g1)→ (Y, g2) between Riemannian surfaces. To measure the
distortion of f is to compare the pullback metric f∗g2 with the original metric g1.
In the other direction, the knowledge of the distortion will give rise to a PDE that
characterizes the mapping. We shall describe these points in details below.

For our purpose, let us take a neighborhood Ω ⊂ R2 ∼= C of X and put g2 to be
the Euclidean metric. If we consider the pull back metric as given data in the form
of a matrix field H : Ω → S++, where S++ denotes the space of symmetric positive
definite 2 × 2 matrices, and assume f is differentiable, it then satisfies the nonlinear
system [1].

Df(z)TDf(z) = H(z), ∀z ∈ Ω,

where f = (u, v)T , z = (x, y)T , Df(z) =

[
ux uy
vx vy

]
. Surprisingly enough, it is possible

to reduce the above to a linear equation if the data is given up to multiplying a
everywhere positive function. This is the essential advantage for us to introduce
conformal geometry in dimension two in our problem. To do this, denote

S(2) = {M ∈ S++ : detM = 1}.

And let G : U → S(2) be given. The above equation can be expressed as

Df(z)TDf(z) = φ(z)G(z), φ(z) > 0.

By taking determinants on both sides, we get

φ(z) = |Jf (z)|

where Jf (z) = detDf(z). Note that the absolute value is necessary since f may be
orientation reversing. As a result, we get

Df(z)TDf(z) = |Jf (z)|Q(z).

Multiplying Df(x)−1 on the left of both sides, and write f = (u, v)T , Q =

[
q11 q12

q12 q22

]
,

we obtain the system[
ux uy
vx vy

]T
= sgn(Jf (x)) ·

[
q11 q12

q12 q22

] [
vy −uy
−vx ux

]
.
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It is a straightforward matter to rewrite the above system in complex derivatives,
obtaining

∂f

∂z̄
(z) = µ(z)

∂f

∂z
(z),

where µ = q11−q22+2iq12

q11+q22+2·sgn(Jf (x) ,
∂f
∂z̄ = (ux−vy)+i(uy+vx) and ∂f

∂z = (ux+vy)+i(−uy+

vx). This is sometimes called the alternating Beltrami equation, coined by Uri Srebro
[23]. The name refers to the fact that{

|µ| < 1 if sgn(Jf (x)) > 0

|µ| > 1 if sgn(Jf (x)) < 0
.

This motivates a more analytic definition for the folding homeomorphism, which
is the principal mathematical subject of this paper.

Definition 2.3 (Quasiconformal mapping with folds). A folding homeomor-
phism f : Ω ⊂ C → C, K ≥ 1 is called a generalized K-quasiconformal mapping
with singular configuration Σ if it is a solution of a alternating Beltrami equation
∂f
∂z̄ (z) = µ(z)∂f∂z (z), such that in Ω+ and Ω− it holds that |µ(z)| < 1 and |µ(z)| > 1,
respectively, and moreover satisfies the bound

∣∣1 + |µ(z)|
1− |µ(z)|

∣∣ ≤ K
for all z ∈ Ω except for a set of Lebesgue measure zero. In particular, the case of
K = 1 will be called flat-foldable.

The quotient inside the bound has the interpretation of linear distortion of the map-
ping, see [1]. The above definition of flat-foldability is adapted to our problem, in
particular in a discrete, computational setting. It includes the case where a surface
is rigidly flat-folded, whose folding lines of the singular set configuration are all Eu-
clidean geodesics.

Remark 2.4. The rigidity associated to flat-foldability is also manifested via a
well-known condition about how folding lines join each other at a cusp point, known
as the Kowasaki’s condition. In details, let n > 1 be an integer and suppose there
are 2n Euclidean geodesics emanating from a cusp point p ∈ U ⊂ C. Then the
neighborhood U is flat-foldable if the alternating sum of the angles (αi)

2n
i=1 formed by

every two neighboring Euclidean geodesics satisfy the condition

2n∑
i=1

(−1)iαi = 0.

This condition is utilized in [10] for constrained optimization. However, this formal-
ism will not play a significant role in the algorithms we propose in this paper.

To get a better picture of the alternating Beltrami equations, we illustrate it with
the effect of the Beltrami coefficients on a single triangle (i.e. the linearized effect
at the tangent space level). This should provide one with geometric intuition for the
solutions on a triangulated mesh.

Let us rewrite the Beltrami equation as a system of first-order PDEs in the usual
Cartesian coordinate. Suppose f : (x, y) 7→ (u, v) satisfies the equation ∂f

∂z̄ (z) =

µ(z)∂f∂z (z). If we write µ = ρ+ iτ , then it’s not hard to see that
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(1)

[
uy
vy

]
=

1

(1 + ρ)2 + τ2

[
2τ |µ|2 − 1

1− |µ|2 2τ

] [
ux
vx

]
,

here we have assumed ρ 6= −1 and τ 6= 0.
Hence for a single triangle, on which we assume f is linear, the mapping is de-

termined up to a similarity transform (uniform scaling and rotation) in the target
domain. Now suppose f maps a domain triangle [v1, v2, v3] = [(0, 0), (1, 0), (x, y)] to
the target triangle [w1, w2, w3] = [(0, 0), (1, 0), (u(x, y), v(x, y))]. Then

(2)

[
u(x, y)
v(x, y)

]
=

[
1 2τ

(1+ρ)2+τ2

0 1−|µ|2
(1+ρ)2+τ2

] [
x
y

]
.

One can check that the set of points for the family of µ with each fixed modulus
|µ| 6= 1 form a circle, whereas in the case |µ| = 1 the circle degenerates to the x-axis.
An illustration of this fact is shown in Figure 3.

As one goes beyond to the case |µ| > 1, where the anti-diagonal terms experience
a change of sign, this leads to a “flipping” of the triangle. In fact, for a single triangle,
everything remains the same after a mirror reflection about the x-axis, and the case
µ = ∞ corresponds to the anti-conformality of the mapping. Here ∞ should be
understood as the infinity point in the Riemann sphere. What is more, for each fixed
argument arg(µ) and let the modulus |µ| vary, the set of solution points form an arc
of a circle, passing through the points (x, y) and (x,−y). Altogether, we see that the
Beltrami coefficients in effect form a bipolar coordinate in the plane containing the
target triangle. Therefore, it describes all possible angular distortion at the tangent
space level, including those having a change of orientation.

2.2. Energy formulation. In this section we turn to the computational meth-
ods to solve the Beltrami equation. Previously proposed methods include the Beltrami
holomorphic flow method as in [19], or the decoupling method as in [18]. Both require
entire boundary information for solving the Beltrami equation and it can be unreal-
istic in applications. Fortunately, it turns out to be also unnecessary once we realize
the coupling of the two coordinate functions of the mapping. This coupling arises
naturally in an energy functional of least squares type. For completeness, we analyze
this problem below since we did not find it in the literature.

2.3. A formulation of least squares quasiconformal energy. The formula-
tion here takes inspiration from the well-known least square conformal energy, studied
in [16, 9], which take into account the coupling of u and v. Its continuous formulation
is ∫

Ω

‖∇u+

[
0 −1
1 0

]
∇v‖2dxdy.

The corresponding matrix associated to its discretization is the well-known cotangent
weight matrix minus a certain “area matrix” [20, 9]. This area matrix in fact plays
the role of certain Neumann boundary condition. One would expect analogous results
to hold in the quasiconformal setting.

But in the quasiconformal case, it is not an entirely trivial matter to formulate
the correct analog. One could formulate arbitrary quadratic energies in such a way
that

∫
Ω
F (∂f∂z̄ , µ,

∂f
∂z )dxdy where F is a quadratic cost functional such that F (·) = 0
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Fig. 3: The trajectory of the third vertex under different values
of Beltrami coefficients. Circles represent the situation when |µ| =
1/5, 7/20, 9/20, 3/5, 5/3, 20/9, 20/7, 5 respectively.

if ∂f
∂z̄ = µ∂f∂z . This formulation includes for example

∫
Ω
‖∇u +

[
0 −1
1 0

]
A∇v‖2dxdy,

where A is the same matrix in (3).
However, one problem with these energies is that it is not always balanced with

respect to the two coordinates. There is essentially only one energy that will give rise
to this necessary condition which we detail below.

2.3.1. The decoupling method and the necessary condition. Perhaps the
most straightforward way to solve the Beltrami equation is to decouple the corre-
sponding first order system into two independent second order equations, namely,

Proposition 2.5 (Necessary condition). Suppose for z ∈ Ω \ Σ, f(z) = u(z) +
iv(z) satisfies the equation ∂f

∂z̄ (z) = µ(z)∂f∂z (z). Assume the domain Ω is given the
usual Euclidean geometry, and |µ| 6= 1, then we have

(3)

{
−∇ · (A∇u(z)) = 0

−∇ · (A∇v(z)) = 0

where A = 1
1−|µ|2

[
(ρ− 1)2 + τ2 −2τ
−2τ (1 + ρ)2 + τ2

]
, and µ = ρ+ iτ .
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Proof. Observe that ∂f
∂z̄ (z) = µ(z)∂f∂z (z) can be transformed into[

ux
uy

]
=

[
0 1
−1 0

]
A

[
vx
vy

]
.

Then making use of the commutativity of second order partial derivatives uxy = uyx
under the Euclidean coordinate, we obtain

∇ · (A∇u(z)) = 0.

The other equation is obtained in a similar way.

Remark 2.6. Note that the coefficient matrix A is positive (or negative) definite
if |µ| < 1 (or |µ| > 1, respectively). If U is any open neighborhood, on which A is
either positive or negative but not both, then it is not hard to see that they are the
Euler-Lagrange equations of the Dirichlet type energies

(4) EÃ(u;U) =
1

2

∫
U

‖Ã1/2∇u‖2dxdy, EÃ(v;U) =
1

2

∫
U

‖Ã1/2∇v‖2dxdy,

where Ã denotes A if it is positive definite, or −A if negative definite. Therefore,
we see that in general the global variational problem must be separated according to
whether |µ| < 1 or |µ| > 1 in the domain Ω. We shall often denote Ω+ (or Ω−) to be
the largest open subset such that |µ| < 1 (or |µ| > 1, respectively), which is consistent
with the previous notation.

The derived system (3) is a necessary condition that in principle should be
satisfied by any other method which solves the equation in the Euclidean domain Ω.
This motivates the following.

Definition 2.7. The least squares quasiconformal energy of the mapping
z = (x, y) 7→ (u, v) against Beltrami coefficient µ = ρ+ iτ is defined to be

ELSQC(u, v;µ) =
1

2

∫
Ω

‖P∇u+

[
0 −1
1 0

]
P∇v‖2 dxdy

where

P =
1√

1− |µ|2

[
1− ρ −τ
−τ 1 + ρ

]
so that PTP = A.

Consequently, we have the following identity

ELSQC(u, v;µ) = (EÃ(u; Ω) + EÃ(v; Ω))−A(u, v),

where Ã = PTP is the same matrix described previously in (4), and

A(u, v) :=

∫
Ω

(uyvx − uxvy) dxdy

is the (signed) area of the target surface.
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Remark 2.8. Observe that we have obtained the analog of the classical lower
bound of the Dirichlet energy

(5) EÃ(u) + EÃ(v) ≥ A(u, v).

This simply follows from the fact that ELSQC(u, v;µ) ≥ 0. The vanishing of this
energy is equivalent to the existence of f = u+iv as a solution of the Beltrami equation
with coefficient µ. The existence is guaranteed for measurable Beltrami coefficients
µ with ‖µ‖L∞(Ω) < 1, known as the measurable Riemann mapping theorem. Note
also that the solution of the Beltrami equation is unique up to post-composition of
conformal mappings [1].

If we assume the domain ∂Ω has Lipschitz boundary, then the quantity A(u, v) is
equal to the following integral on the boundary

1

2

∫
∂Ω

(v∇u− u∇v)× ν dΓ,

where ν(z) is the outer unit normal vector, and dΓ is the standard measure of ∂Ω.
Actually, the coupling between u and v is realized as certain boundary condition
applied to solving (3). The following derivation of the second order equations with
boundary condition is standard.

Theorem 2.9. Suppose µ is uniformly bounded away from 1, Ω is connected with
Lipschitz boundary, and suppose there exists one pair (u, v), u, v ∈W 2,2(Ω), such that

ELSQC(u, v;µ) = arg inf
ũ,ṽ∈W 1,2

ELSQC(ũ, ṽ;µ),

then they satisfy the following Neumann boundary problem

(6)


−∇ · (A∇u) = 0 in Ω

−∇ · (A∇v) = 0 in Ω

∂Aνu+∇v × ν = 0 on ∂Ω

∂Aνv −∇u× ν = 0 on ∂Ω

,

where as before ν(z) is the outer unit normal vector.

2.4. Generalized quasiconformal energy. Because of the change of orienta-
tion, the energy formulation and the associated system of equations has to be ac-
cordingly modified. It is then crucial to study the interaction between regions of the
domain that corresponds to different orientations of f .

First of all, it follows from arguments in Remark 2.6 and Remark 2.8 that the
alternating Beltrami equation, when restricted to regions of constant orientation, is
equivalent to vanishing of the energies

E+
LSQC(u, v;µ) :=

1

2

∫
Ω+

‖P∇u+

[
0 −1
1 0

]
P∇v‖2 dxdy = 0

E−LSQC(u, v;µ) :=
1

2

∫
Ω−
‖P∇u+

[
0 −1
1 0

]
P∇v‖2 dxdy = 0

where Ω+ = int {z ∈ Ω : |µ(z)| < 1}, Ω− = int {z ∈ Ω : |µ(z)| > 1}. To obtain
the global solution, one could solve the equation individually in Ω+ and Ω− and glue

This manuscript is for review purposes only.



COMPUTING QUASICONFORMAL FOLDS 11

the solution along the singular set configuration. It turns out that this can be done
implicitly. The problem now is how to combine the quasiconformal energies on regions
with different orientations into a single “energy”, so that we can solve the alternating
Beltrami equation on the entire domain in one shot.

Theorem 2.10 (Generalized quasiconformal energy). Assume there are only
finitely many cusp points. Define the generalized quasiconformal energy with Beltrami
coefficient µ of the mapping z = (x, y) 7→ (u, v) in W 2,2 to be

EGQC(u, v;µ) = E+
LSQC(u, v;µ)− E−LSQC(u, v;µ).

Then the alternating Beltrami equation with Beltrami coefficient µ is a critical point
of the above energy.

Proof. By taking a test function in the interior of constant orientation or near
the boundary ∂Ω, the critical point property in these regions is verified no different
from the classical case. It now suffices to check the critical point property for the
region near the singular set configuration. Since the number of cusp points is finite,
it will not contribute to the integration on the singular set. Hence it suffices to work
locally in a small neighborhood U that contains only folding points, like the situation
in Figure 1a. Take any smooth test function φ compactly supported in U . Then by
setting

d

dε

∣∣
ε=0

EGQC(u+ εφ, v) = 0

we obtain (∫
Ω+

−
∫

Ω−

)
〈P∇φ, P∇u〉+ 〈P∇φ,

[
0 −1
1 0

]
P∇v〉 dxdy = 0.

Integrating by parts, and repeating the same steps for v, we can derive the following
Euler-Lagrange system

(7)


−∇ · (A∇u) = 0 in Ω+ ∪ Ω−

−∇ · (A∇v) = 0 in Ω+ ∪ Ω−

∂Aνu+∇v × ν = 0 on ∂Ω ∪ Σ

∂Aνv −∇u× ν = 0 on ∂Ω ∪ Σ

,

where

A =
1

1− |µ|2

[
(ρ− 1)2 + τ2 −2τ
−2τ (1 + ρ)2 + τ2

]
,

and ν = ν(z) is the outer unit normal vector when z ∈ ∂Ω+, or equivalently the inner
unit normal if we regard z ∈ ∂Ω−. Note that the second order equation outside of
the singular set and boundary has the same form, and corresponds to the alternating
Beltrami equation with coefficient µ. This finishes the proof.

Remark 2.11. Note that the above Neumann boundary problem is somewhat dif-
ferent from convention since the singular set lies in the interior but is treated like
boundary. But this very condition can be seen as the way to glue two pieces of solu-
tions on Ω+ and Ω− together along the singular set configuration.

Remark 2.12. It should be noted that an unfolding mapping can be computed in
essentially the same way if the folded surface is positioned in the plane, as is the case
shown in Figure 2b. The computation of unfolding mapping will be important in the
reinforcement iteration introduced later.
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2.4.1. Discretization and implementation details. First we discuss the case
of least squares quasiconformal energy and later extend it to the generalized case. We
discretize the the equation (6) on a linear triangular mesh T , which is encoded as a
list of vertices V and a list of triangles T (by a mild abuse of notation) taking indices
into V . We denote the number of vertices by |V | and number of triangles by |T |.
The second order operator ∇ · (A∇) is a variant of the Laplacian. Its discretization
amounts to expressing the following sum∑

T∈T
〈P∇ϕ(T ), P∇φ(T )〉T

for any test functions ϕ, φ defined on the vertices V into a quadratic form ϕTLµφ.
Here, 〈·, ·〉T is the 2D Euclidean inner product scaled by the area of the triangle T .
On an oriented triangle T = [v0, v1, v2], since the functions being considered are linear
on triangles, the gradient of a function ϕ = (ϕ0, ϕ1, ϕ2) on this triangle is given by

∇ϕ =
1

2Area(T )

[
0 −1
1 0

] ∑
i=0,1,2

ϕi(v2+i − v1+i).

where indexing modulo 3 as appropriate. Observe that[
1− ρ −τ
−τ 1 + ρ

] [
0 −1
1 0

]
=

[
0 −1
1 0

] [
1 + ρ τ
τ 1− ρ

]
Hence, denoting

v′i = P−1vi,

we have

P∇ϕ =
1

2Area(T ′)

[
0 −1
1 0

] ∑
i=0,1,2

ϕi(v
′
2+i − v′1+i).

Therefore, denoting the triangle T ′ = [v′0, v
′
1, v
′
2],

〈P∇ϕ(T ), P∇φ(T )〉T = − 1
4Area(T ′)

∑
i,j ϕiφj(v

′
2+i − v′1+i)

T (v′2+j − v′1+j)

= −
∑
i,j ωij(T )ϕiφj

where

ωij(T ) =

{
− 1

2 cot θ′k, k 6= i, j if i 6= j
1
2 (cot θ′i+1 + cot θ′i+2) if i = j

where θ′k is the angle of at the vertex v′k. This is noting but the cotangent weight but
with angles changed by the effect of µ.

The expression for the area integral A(u, v) is unchanged from the least square
conformal case [16], and hence we have:

Corollary 2.13. The quadratic form (up to a nonzero constant scaling) associ-
ated to the triangular mesh discretization of the least squares quasiconformal energy
is given by the following 2|V | × 2|V | matrix

M := diag(Lµ,Lµ)− 2A,

which is applied to the 2|V |-coordinate vector x = (u, v). The discrete version of
Equation (6) is then Mx = 0. Here Lµ is the cotangent matrix associated to the
operator ∇ ·A∇, and A is the (signed) area matrix of the target triangular mesh.
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Proof. It follows from the discussion above that the |V | × |V | matrix Lµ corre-
sponds to the discretization of the differential operator ∇ · (A∇). The area matrix
matrix has non-zero entries only corresponding to the boundary vertices. It is then
immediate to check, by examining the corresponding rows of the linear system, that
for interior vertices, the solution (u, v) satisfies −∇ · (A∇u) = 0 and −∇ · (A∇v) = 0,
while on the boundary, it satisfies ∂Aνu + ∇v × ν = 0 and ∂Aνv − ∇u × ν = 0
respectively.

In order to obtain a nontrivial solution to the system Mx = 0, it turns out one
need only pin at least two vertices. The precise statement is contained in the following
proposition.

Proposition 2.14. Suppose |µ| is uniformly bounded away from 1, and the tri-
angular mesh is connected and has no dangling triangles (i.e. there are no triangles
which share a common vertex but no common edge). Let Ipin be the indices of the
points to be pinned, with number |Ipin| ≥ 2, Ifree be the indices for the free points, and
M be the matrix defined as in Corollary 2.13. Then the 2|Ifree| × 2|Ifree| sub-matrix
Mfree of M indexed by the free points has full rank.

Proof. The idea is essentially identical to the proof in [16] and we only sketch the
main argument and the modification needed here. The key observation is that the
(topological) triangular mesh satisfying our assumption can be constructed incremen-
tally using two operations:

• Glue: adding a new vertex and connecting it to two neighboring vertices;
• Join: joining two existing vertices.

The proof is based on this observation. To wit, we express ELSQC as ‖Bx−b‖2 where
B is of size 2|T |×2|Ifree|. It then suffices to prove B has full rank. One then proceeds
by proving the incremental construction preserves the full rank property. Since the
modulus of the Beltrami coefficient associated to the new triangle is bounded away
from 1, the associated matrix coefficients are nonzero real numbers. And therefore
the same argument in [16] applies.

Remark 2.15. We now have a geometric understanding in the discrete case. In
fact, it can be regarded as a conformal mapping with the domain given a different
conformal structure. This viewpoint in fact has been already demonstrated previously
when we derive the Beltrami equation. In the case of a triangular mesh, this struc-
ture can be thought of the assignment the angle triples (α1, α2, α3) to each triangular
face of the mesh, or equivalently the associated Beltrami coefficient. Under this view-
point we can relate many algorithms from conformal geometric processing to their
quasiconformal counterparts.

Remark 2.16. It is usually a preferred practice to choose these two points far
apart from each other to reduce excessive local scale change, as is the case in the
conformal flattening task [16]. This is because the triangle angles associated to the
Beltrami coefficients as given may not be realizable as a planar mesh, and the associ-
ated least square quasiconformal energy can never reach zero.

The implementation for the generalized quasiconformal energy is essentially iden-
tical to the previous case, except that the signed area matrix is replaced by the
unsigned area matrix. This amounts to reversing the sign of the entries in the cor-
responding rows indexed by vertices of the mesh triangles T whose |µT | > 1 when
constructing A. In the sequel, solving (alternating) Beltrami equations using the
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described method will be denoted as

T ′ = LSQC(T , (µT )T∈T , C),

where T ′, T are the computed target triangular mesh and the domain mesh, respec-
tively; (µT )T∈T is the set of Beltrami coefficients on each face, and C is the set of
constraints.

3. The reinforcement iteration algorithm. In this section we give our pro-
posed solution to the problem of incomplete boundary and singular set data, where
alternating Beltrami equation will be central to our approach. The iteration consists
of two key steps, which find improved folding and unfolding mappings given the cur-
rent unfolded and folded surfaces in an alternating fashion. Intuitively, each unfolding
step tries to find a better singular set configuration, while each folding step tries to
conform with the given data.

3.1. The idea of the reinforcement iteration. Let us now consider the case
where the entire boundary and singular set of the folded surface S is given. In order
to parametrize S, one needs to start with some initial singular set configuration. We
can easily construct a mapping g : ΩΣ0

→ S by enforcing all the constraints.
In general, g will not be a conformal mapping, as the initial singular set config-

uration may not coincide with the reality. So instead, there exists a quasiconformal
mapping

ϕ : ΩΣ0
→ ΩΣ

that maps the initial configuration to the correct one. Its relation with the desired
generalized conformal mapping f can be observed as a commutative diagram below

(8)

ΩΣ0
ΩΣ

S

ϕ

g
f

In this case, once we obtain the folded surface S from the mapping g, since the
entire boundary and singular set data is given, the generalized conformal “unfolding”
homeomorphism f−1 can be constructed by solving the alternating Beltrami equation
with

(9) µ =

{
0 in S+

∞ in S−

And in this way the mapping ϕ is obtained by the composition h ◦ g.

However, when only partial data of S is provided, it is no longer possible to
obtain the folded surface S by constructing g in the above manner. We need to find
the folded surface and its parametrization simultaneously. We shall be looking for a
folded surface that satisfies the following properties.

Definition 3.1. Let Svis be a set of partial boundary and singular set data, and
ΩΣ0

be the domain with an initial singular set configuration. A folded surface S is
called admissible if

0The source code is available at https://github.com/sylqiu/Least-square-beltrami-solver, and it
supports the alternating Beltrami equation.
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1. Topological equivalence: The singular set configuration of S is of the same
topological type with the target surface.

2. Data correspondence: There is a subset C ⊂ S such that there is a isometry
from C to Svis.

3. Cycle consistency: There exist mappings g, ϕ, f such that f is flat-foldable,
and the diagram (8) commutes.

We now proceed to describe a fixed-point-like algorithm of finding some admissible
folded surface S and its parametrization simultaneously. Let gn : ΩΣn → Sn be a
generalized quasiconformal folding homeomorphism that satisfies the constraints

gn
∣∣
Ωvis

: Ωvis → Svis,

where Ωvis ⊂ ΩΣn is the corresponding subset corresponding to the partial boundary
and singular set data Svis. This step promotes data fidelity. Let hn : Sn → ΩΣn

be “unfolding homeomorphism”, which is obtained by trying to solve the alternating
Beltrami equation with

µ =

{
0 in S+

n

∞ in S−n

with enforcing the shape constraints of ΩΣn
. This step minimize the generalized con-

formal distortion based on fitted surface Sn. We observe that both the Svis and shape
constraints are essential for convergence of the algorithm, in particular implicitly de-
creasing the area distortion of the mapping. The next mapping gn+1 is constructed
based on the updated domain with its singular set configuration

Σn = hn ◦ gn(Σn−1).

As n → ∞, we want gn to converge to a generalized conformal mapping f : Ω → S,
and the composition

hn ◦ gn := ψn

converges to idΩ, while

ψn ◦ · · · ◦ ψ2 ◦ ψ1 := ϕn

converges to a quasiconformal mapping that transforms the initial singular set con-
figuration to a desirable one. This is shown schematically in the following diagram

(10)

ΩΣ0 ΩΣ1 ΩΣ2 · · ·ΩΣn−1 ΩΣn · · ·

S1 S2 S3 Sn

ψ1

g1

ψ2

g2

ψ3

g3

ψn

gn
h1 h2 h3 hn

In each step we keep enforcing the available data Svis by the mapping gn, and by
hn we keep enforcing the known boundary shape of Ω, hence the name reinforcement
iteration.

3.2. The formal optimization problem and the algorithm. Following the
notations as above, let Ω+

Σ , Ω−Σ be the two disjoint open sets in Ω specified by some
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singular set configuration Σ as the orientation-preserving part and the reversing part,
respectively. The original objective is to find a folding homeomorphism f such that

arg min
f,Σ

∫
Ω+

Σ

‖∂f
∂z̄
‖2 +

∫
Ω−Σ

‖∂f
∂z
‖2,

subject to the constraint
f
∣∣
Ωvis

: Ωvis → Svis.

Note that Σ is a variable in the minimization problem. This formulation as it stands
seems very hard to implement. The discussion in the last section leads to the following
relaxation, which depends on the initial singular set configuration Σ0:

(11) arg min
f,ϕ

(
E(f, ϕ) :=

∫
Ω+

Σ0

‖∂f
∂z̄
◦ ϕ‖2 +

∫
Ω−Σ0

‖∂f
∂z
◦ ϕ‖2

)

subject to the constraints
f
∣∣
Ωvis

: Ωvis → Svis,

where the argument f , defined on Ω, ranges in the set “folded homeomorphisms”,
and ϕ : Ω → Ω ranges in the set of quasiconformal homeomorphisms. Sometimes it
is also convenient to express the quantities such as

∫
Ω+

Σ0

‖∂f∂z̄ ◦ ϕ‖
2 to be

∫
Ω+

Σϕ

‖∂f∂z̄ ‖
2,

where ΩΣϕ
= ϕ(ΩΣ0

). Note that if ϕ gives the “correct” singular set configuration,
then the above energy vanishes for f that is generalized conformal.

Our iteration algorithm in the last section is then to find such mappings ϕ and
f . The overall algorithm is summarized as in Algorithm 1.

Algorithm 1 Reinforcement Iteration

Initialize Σ0, ε > 0, itermax > 0,
Construct g1, h1; compute ϕ1 = u1 ◦ f1.
Evaluate E(g1, ϕ1), E(g0, ϕ0) = 0, n = 1.
while |E(gn, ϕn)− E(gn−1, ϕn−1)| > ε and n < itermax. do

Provided ϕn−1, construct gn, hn.
Compute ϕn = hn ◦ gn ◦ ϕn−1.
Evaluate E(gn, ϕn).

end while

The basic steps are constructions of the mappings gn and hn, whose implemen-
tations we now turn to.

3.3. Implementation details.

3.3.1. Construction of gn. Given the updated domain ΩΣϕn−1
= ϕn−1(ΩΣ0

),
we obtain the Svis-enforced mapping g by solving a alternating Beltrami equations
subject to the constraints

g
∣∣
Ωvis

: Ωvis → Svis.

Since we mainly care about the partial boundary and singular data enforcement here,
the values of the Beltrami coefficients does not matter so much. But unless there is
some good reason, it’s better in practice not to introduce artificial distortion, hence

This manuscript is for review purposes only.



COMPUTING QUASICONFORMAL FOLDS 17

we often set the Beltrami coefficients to be 0 or ∞, corresponding the orientation-
preserving or -reversing regions, respectively.

In terms of triangular meshes, suppose the domain triangular mesh is Dn−1, with
D+
n−1, D−n−1 corresponds to Ω+

n−1 and Ω−n−1, respectively; Svis is realized as certain
constraint Cvis. Then the folded surfaced is obtained by

Sgn = LSQC(Dn−1, {µT }Dϕn−1
, Cvis)

where

µT =

{
0 if T ∈ D+

n−1

∞ if T ∈ D−n−1

.

3.3.2. Construction of hn. Given the folded surface constructed from the last
step Sn = gn(Ωn−1), recall that the unfolding map hn : Sn → ΩΣn

is found by solving
the minimization problem

arg min
h

(∫
S+
n

‖∂h
∂z̄
‖2 +

∫
S−n

‖∂h
∂z
‖2
)

subject to the shape constraints

h
∣∣
∂Sn

: ∂Sn → ∂Ω.

ϕn is then updated by ϕn = hn ◦ gn. In terms of triangular meshes, suppose the
folded surface mesh is Sn, with S+

n , S−n corresponds to S+
n and S−n , respectively; ∂Ω

is realized as certain constraint C∂Ω. Then the above minimization can be solved by

DΣn
= LSQC(Sn, {µT }Sn , C∂Ω)

where

µT =

{
0 if T ∈ S+

n

∞ if T ∈ S−n
.

4. Further discussion and experimental results. Several remarks are in or-
der. First, finding the critical point for the generalized quasiconformal energy is an
easy saddle point problem by solving linear equations. We can reconcile it with the
minimization problem in the construction hn by noting that the two are equivalent
provided the folded and unfolded part of hn matched up, which is of course part of
the continuity assumption about hn.

Second, we notice that the desirable domain x∗ and its folded counterpart y∗ are
fixed points of our iteration algorithm, which can be written as x∗ = F(x∗), where F
is the iteration mapping in operator form. Note that F depends on its argument x in
a very non-linear way because of the auxiliary variable y we introduced, whose com-
putation requires the cotangent matrix associated to x. But approximately, in each
iteration the folding and unfolding operations are inverse to each other and therefore
F is close to the identity. The convergence of fixed-point iteration is well studied in
the literature, see [6] and references therein. For example, the convergence will be
implied by the α-averaged property of F . As we can notice in Figure 4, as well as
in many other experiments, the distortion of many of the interior mesh triangles can
barely be noticed in the later phase of the iteration, while the meshes remain also
well conditioned. As other fixed-point iterations, it is reasonable to expect that the
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(a) Folded surface with oc-
clusion. (b) True unfolded surface.

(c) Initialised domain
with partial data.

(d) Iter = 1: Frontside of
registered fold.

(e) Iter = 1: Backside of
registered fold.

(f) Iter = 1: Unfolded sur-
face.

(g) Iter = 50: Frontside of
registered fold.

(h) Iter = 50: Backside of
registered fold.

(i) Iter = 50: Unfolded
surface.

(j) Iter = 200: Frontside
of registered fold.

(k) Iter = 200: Backside
of registered fold.

(l) Iter = 200: Unfolded
surface.

Fig. 4: Iteration results for the doubly folded surface: note that the folding lines
gradually straighten out.
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(a) Iter = 1: unfolded do-
main.

(b) Iter = 50: unfolded do-
main.

(c) Iter = 200: unfolded do-
main.

(d) Iter = 1: initially reg-
istered 1-fold.

(e) Iter = 200: finally reg-
istered 1-fold.

Fig. 5: Iteration results for a once-folded surface: note the curved boundary in occlu-
sion from the initial map is gradually straightened out and the folded domain becomes
wider.

iteration mapping under good conditioning of the mesh triangles and a good initial
guess to have convergence.

We implemented the described reinforcement iteration algorithm and demonstrate
it for a doubly folded surface, as illustrated in Figure 4. The folded surface and its
unfolded counterpart, as shown in Figure 4a and 4b, are generated according to a real
folded paper and its unfolded counterpart. In Figure 4c it is our initialized domain
ΩΣ0

. In 4a and 4c, the red circles mark the corresponding constraint points to the
visible partial singular set and boundary data. Our algorithm works similarly well
with other examples as well. This shows the robustness of our algorithm.

In the next three rows of Figure 4 we show the iteration results at the first it-
eration, 50-th iteration and 200-th iteration. We can observe the curly folding lines
in the first iteration in Figure 4e and 4f. This is due to the incomplete data and
the incompatible initialized domain. In the subsequent iterations we saw significant
improvement over the rigidity of the folding. In practice we also found that if we
explicitly regularize the singular lines by, for example, projecting them onto a Eu-
clidean geodesic, and then restart the iteration, the convergence will be improved in
particular for the multiply-folded cases.

Observe also that in the limit, as in Figure 4l, the singular set configuration is
in not exactly the same as that of the true unfolded surface. This can be explained
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(a) Iter = 1: unfolded do-
main.

(b) Iter = 50: unfolded
domain.

(c) Iter = 200: unfolded
domain.

(d) Iter = 1: initially reg-
istered cusp.

(e) Iter = 200: finally reg-
istered cusp.

Fig. 6: Iteration results for a cusped surface: note that the curved boundary and
folding lines in occlusion from the initial map is gradually straightened out.

by the existence multiple admissible solutions to this problem. For example, another
admissible solution may be obtained by some different initialization. This is of course
expected.

In Figure 5 and 6 we illustrate the effect of reinforcement iteration algorithm
applied to a once-folded surface and a cusped surface. The straightening effect can be
easily seen from the comparison between the initial folding map and the final folding
map. In Figure 7, we plot a log-log diagram for the energy E(gk, ϕk) that we aim to
minimize for the above three examples. We can observe that the convergence rate ap-
proaches O(1/N) in the mid-stage of the iteration. That the energy decreases slightly
slower in the later phase can be explained by our observation from the iterations that
only a few points are adjusted while the singular set configuration is still away from
flat-foldability. These adjusted points are mainly near the cusp points. This fact can
be observed from Figure 4f and 4i. The convergence rate varies in the different phases
of the iteration, illustrating the non-linear nature of the iteration.

5. Applications.

5.1. Generating and editing generalized Miura-ori. The Miura-ori refers
to a special type of Origami tessellation of the plane, which can be used to design flat-
foldable materials aiming at achieving designed curvature properties [10]. Previous
approaches are based on analytic construction or constrained optimization, using the
Kowasaki condition. Here we explore another possibility of creating such Origami
models. Namely, we create more Miura-ori type domains and realize them via solving
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Fig. 7: Convergence plot: the loss is defined as
∑
T∈Ω+

|µ|2 +
∑
T∈Ω−

1/|µ|2 for scale
invariant comparison.

alternating Beltrami equations.
For simplicity, we consider the Miura-ori pattern in Figure 8. The yellow color on

a triangle T refers to the prescription of µ(T ) =∞, and purple ones µ(T ) = 0. After
solving the alternating Beltrami equation in 2D, we obtain the classical Miura-ori
strip, which is the flat-folded state of the surface. Suitable z-coordinates are added
for visualization in 3D.

To generate more Miura-ori type domains, ideally we can simply apply a conformal
map on the domain. Notice that, in the continuous case, the domain obtained by
compositing a flat-foldable configuration with a conformal map remains flat-foldable
(satisfying the alternating Beltrami equation with the same coefficients as before),
because of the angle preserving property. Such a composition can create triangles at
different scales.

However, because of the discreteness, the angles is preserved only if the mapping
is a uniform scaling plus rigid motion. Indeed, this follows from the our assertion
on rank of the system matrix. Fortunately, applying a conformal mapping usually
only yield a small and structured perturbation to the Beltrami equation, and the
new Miura-ori domains can still be created via several iteration of the foldings and
unfoldings, in light of the reinforcement iteration we proposed. For example, a new
Miura-ori pattern in Figure 9 is created via this method, with the choice of (in this
case we just made any convenient choice)

Φ(z) = 10 + 0.1z + 0.4z2.

Different from approach of Dudte et al. [10], the surface we obtain is flat-foldable
by design. Given the rich family of conformal mappings, it will be particularly inter-
esting to study the new family of Miura-ori patterns with the aid of our algorithm.
The study of different patterns’ curvature approximation capacities is also a exciting
future direction. We envisage a “conformal geometric processing” approach to the
modelling of Miura-ori. Under such an approach researchers can efficiently design
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(a) Classical Miura-ori pattern (b) Realization of the Miura-ori on the left

(c) Classical Miura-ori strip

Fig. 8: Classical Miura-ori and its realization in 3D

the pattern with a simple set of CAD tools. Mathematical understanding of this
problem will definitely benefit such a “bottom-up” approach to material design with
flat-foldable structures.

For a preliminary example, we can simulate and study the deformation of the
Miura-ori in 3D with our solutions. Starting from the flat-folded state of the surface,
one can apply the classical geometric editing methods such as as-rigid-as-possible [22].
An example of such a deformation with user-defined position constraints is shown in
Figure 10.

5.2. Almost rigid folding with application to fold-texture generation,
fold sculpting and fold in-painting. As one of the immediate applications, we
can consider a folding transformation on the texture space to create synthetic fold-
like textures, prior to applying the texture map. This can be cheap to do if high
quality physical simulation and rendering is not available. In Figure 11 we explore
such a possibility of user-designed fold-like texture generation.

One of the fundamental steps in texturing a 3D surface is to find the parameter-
ization (or the texture map) f : S → Ω ∈ R2. In particular, UV mapping is one of
the major types of parameterization techniques in various software packages, which
works well if the 3D model is created from polygon meshes. The above technique can
be very useful in the interactive user design, where the user directly operates on the
target mesh, and the input is transformed to the texture domain via the UV-map, to
create desirable fold-like texture on the target mesh. It is also possible to incorporate
proper shading effect on the transformed texture directly, making the texture look
more realistic. We have implemented such a fold-like texturing method using a 3D
T-shirt model, shown in Figure 11b. Note that the mesh is not deformed at all.

We can also apply the folding technique directly to the 3D meshes, as an applica-
tion we would like to call fold sculpting. To illustrate this, we select a patch from the
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(a) Naive composition with Φ

(b) A new Miura-ori pattern
after folding-unfolding itera-
tions (maximal distortion =
3 × 10−4 compared to the
folded state (c))

(c) Realization of the Miura-ori in (b)

(d) New Miura-ori strips: note that
there is a stack of strips of varing
sizes

Fig. 9: A new Miura-ori pattern by composition with Φ and its realization in 3D.
Here, maximal distortion is defined by max{max{|µT |}T∈Ω+ ,max{1/|µT |}T∈Ω−}

T-shirt model, as shown in Figure 12a. We applied the folding operation to a suitable
parametrization of the patch, which can obtained easily via, for example, projection
or a least square conformal parametrization [16], and then glue it back to the T-shirt
model. Note that our algorithm produces sharp edges. This can be mitigated by
some standard smoothing operation in various mesh editing software. Figure 13 and
14 show the results after appropriate smoothing, where we used the software Maya1to
the smoothing and rendering tasks. Note that such folding is not easily obtained by
pure handcraft, since one part of the cloth actually folds over and covers some other
part of the cloth.

The technique can also be applied after the acquisition of a folded surface using
laser scans, where the folded part introduces self-occlusions and the folding is usually
diminished or destroyed after applying the watertight operation. To preserve the
folding details from the scans directly, we can mark the folding part that we want to
preserve in the raw acquisition. By taking a patch like before and mapping it into
the plane, we can solve a proper alternating Beltrami equation to obtain the desired
folding effect. The folded patch can then be mapped back to the raw acquisition. To
illustrate this, we have done a synthetic experiment using the above approach. We

1A software of the Autodesk Inc. See https://www.autodesk.com.hk/products/maya/overview.
The results are generated under the student license obtained by the first author.
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Fig. 10: A rigid deformation of the Miura-ori in Figure 9

(a) Before fold-texturing (b) After fold-texturing

Fig. 11: Folding effect texturing on a 3D model. Note that the mesh model is not
deformed.

begin with an incomplete acquisition of a shirt model, such as the one on the left in
Figure 16. As demonstrated in Figure 15, the patch with holes is first map to the
plane and subsequently filled. A suitable folding operation is then applied to the patch
to produce a plausible fold geometry given the acquisition data. The reconstruction
is shown in Figure 16 on the right.

5.3. Self-occlusion reasoning of flat-foldable surfaces and its application
to restoration of folded images. Given a single perspective of a folded surface,
for example, shown in figure 17, we can use the proposed reinforcement iteration to
unfold the surface, thus enabling us to identify the self-occluded region in the unfolded
domains, shown in Figure 18.

Given a folded image, the task of restoring the image involves unfolding the image
and in-painting the missing parts beneath the folded region. The performance of the
final restoration results obviously depends on the realization of the texture synthesis.
However, it is worth noting that the unfolding result may also drastically affects the
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(a) The T-shirt model (b) The original patch (c) The deformed patch

Fig. 12: Patch-wise fold sculpting: the region inside the red contour is the patch
selected, appropriate alternating Beltrami equation is then solved in the patch domain
to obtain the desired folding effect.

Fig. 13: Results of fold sculpting on the T-shirt model after appropriate smoothing:
two short folds are sculpted on the right.

in-painting result since many in-painting methods such as the diffusion-based [4, 24],
exemplar-based [7, 2, 3] assume the full knowledge of the computational domain (i.e.,
the image domain). To alleviate the difficulty arose from the incomplete knowledge
of the image domain, we can employ the proposed unfolding algorithm to retrieve
the geometric information of the folded subdomain with the given partial geometric
information. Once we restore the intrinsic image domain consistent with the partial
geometric information, well-developed in-painting techniques can then be employed
correctly and provide satisfactory in-painting results.

Figure 19 shows the result for the 1-folded example. The unfolding is trivial in
a sense, but here we want to use it to illustrate the typical procedure of a folded-
image restoration. The same procedure applies to all kinds of folds alike. In any
case, we assume to have the partial boundary and singular set data (i.e., the folding
edges and the boundaries) available from the folded images. Our goal is to recover the
folded image 17a by using the proposed unfolding technique and some well-established
in-painting algorithms. At the beginning of our algorithm, an initialization Σ0 is
constructed by simply using the partial boundary and singular set data. By the
proposed Algorithm 1, we can successfully reconstruct the folding map based on the
reinforcement iterations, which are shown in 19b. With the folding map, we can
obtain the occluded region and carry out the in-painting procedure. Notice that the
unfolded mesh in 19b highly resembles to the ground truth (see 19a). With such
unfolded domain, we can acurately approximate the masked region and apply the
patch-matching based in-painting algorithm to recover the image. The corresponding
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Fig. 14: Results of fold sculpting on the T-shirt model: two long folds are sculpted
on the left and right.

Fig. 15: Patch-wise fold in-painting: from the raw acquisition of a self-occluded sur-
face, we map the occluded, holed surface to the plane and fill the hole; we then
apply a suitable folding operation to reproduce the fold that was not captured during
acquisition.

parametrized folding surfaces are show in figure 19c. The image can then be mapped
from the folded surface back to the domain complementary to the occluded region.
Here, as is common the case, due to the size of masked region generated from the fold
of the image, we choose the patch-matching based algorithm for image in-painting.
In particular, we employ the algorithm2proposed by Daisy et. al. [7] in this example.
The result is shown in 19d. For comparison, the original image together with the
overlapping mask (drawn as a half-transparent domain) is shown in Figure 18a.

To illustrate the adaptability of our proposed algorithm in some more complicated
folded surface, we now consider correspondingly, a 2-, 3-folded examples, as shown
in Figure 17. There is a 2-folded painting “The Sower” by Vincent van Gogh, and a
cusp-folded “building” image.

Similarly, to approximate the original images with the given folded data, we first
have to unfold these surfaces using the proposed algorithm. Unlike the trivial 1-fold
example illustrated above (which may be simply get unfolded even without the use
of Algorithm 1), the folding order also takes part in this unfolding problem since
different orders of folding produce different folded images. When the folding number
is large, obtaining the ordering of the folds from the given data is difficult. However,
using the Algorithm 1, this folding order can be obtained implicitly. In other words,
the unfolding procedure using Algorithm 1 is fully automatic. Figure 20 shows the
unfolding and the corresponding in-painting results. The leftmost column shows the

2The algorithm is available as a plugin for the open source GIMP2 software. The software is
available at https://www.gimp.org/.

This manuscript is for review purposes only.

https://www.gimp.org/


COMPUTING QUASICONFORMAL FOLDS 27

Fig. 16: Results of fold in-painting: the first row and second row are two examples
of the technique. For each row, the two on the left are the surface with holes from
acquisition due to self occlusion. The results of in-painting are the two on the right.
The corresponding holed and inpainted regions are highlighted inside the red boxes.

(a) ”Mountain” (b) ”The Sower” (c) ”Building”

Fig. 17: 1-fold, 2-fold and cusp-fold examples

folded meshes corresponding to some unidentified rectangular meshes. With only
partial boundary conditions and singular set data, unfolding these surfaces are highly
ill-posed. But using our proposed algorithm, we successfully obtained the unfolding
surfaces (the middle-left column). Notice that by regularizing the generalized Beltrami
coefficient, Algorithm 1 converges to unfolded regular meshes, where unnatural curvy
edges are not presented. With these unfolded meshes, we can recover the occluded
regions due to the foldings (See the middle-right column) and therefore in-painting
algorithms can be employed as usual. The overall recovered images are shown in the
rightmost column of Figure 20.

6. Discussion and Conclusion. We have proposed a novel way of studying and
modeling the folding phenomena of surfaces using alternating Beltrami equations. The
numerical scheme is proposed to overcome the known issues of the previous method,
by taking into account of the coupled nature of the two coordinate functions of the
solution. The resulting method works for fewer constraints, and has a nice geometric
interpretation. More importantly, it allows us to formulate and solve the inverse prob-
lem of inferring and parametrizing flat-foldable surfaces with observed partial data.
We have proposed to use the “reinforcement iteration” algorithm in order to solve the
associated optimization problem, which has shown empirical convergence over various
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(a) 1-fold

(b) 2-fold (c) cusp-fold

Fig. 18: Occluded regions of various folded paper examples

(a) Ground truth (b) Unfolded mesh (c) Parametrized (d) Restored result

Fig. 19: Unfolding and restoring result of a 1-folded image.

examples. Various applications are given, including fold sculpting, fold-like texture
generation, generating and editing generalized Miura-ori patterns, as well as self-
occlusion reasoning. Many more possible applications in manufacturing, animation
and modeling shall be explored in the future. At the same time, the understanding of
non-rigid folding is still largely incomplete and many more interesting examples and
applications are waiting to be discovered.
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Fig. 20: Unfolding and in-painting result for the 2-fold (first row) and cusp-fold
(second row) examples. Leftmost column shows the folded meshes representing the
domain of the images. The unfolded results are shown in the middle-left column and
the recovered occluded domains are shown in the middle-right columns. The overall
recovery results are shown in the rightmost column.
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