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ACCELERATION OF PRIMAL-DUAL METHODS BY
PRECONDITIONING AND FIXED NUMBER OF INNER LOOPS*

YANLI LIUT, YUNBEI XU, AND WOTAO YINT

Abstract. Primal-Dual Hybrid Gradient (PDHG) and Alternating Direction Method of Mul-
tipliers (ADMM) have been widely used due to their wide applicability and easy implementation.
However, they may suffer from slow tail convergence. In view of this, many techniques have been
proposed to accelerate them, including preconditioning and inexact solve of the subproblems. In this
paper, we integrate these two techniques to achieve a further acceleration. Specifically, we give a
criterion for choosing good preconditioners, and propose to solve one of the subproblems by only a
fixed number (usually very few) of inner loops of several common routines. Global convergence is
established for the proposed scheme. Since our method overcomes the previous restriction of choosing
only diagonal preconditioners, we obtain significant accelerations on several popular applications.

Key words. Primal-Dual Hybrid Gradient, Alternating Direction Method of Multipliers,
preconditioning, fixed number of inner loops, structured subproblem, suitable subproblem solver
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1. Introduction. In this paper, we consider the following optimization problem:
(1.1) minimize f(z) + g(Ax),
rER®

together with its dual problem:

(1.2) minimize f*(fATz) + 9" (2).

z€R™
Here f : R® —» RU{+o0} and g : R™ — RU{+o0} are closed proper convex, and
A € R™*" is a matrix, f* and g* are the convex conjugates of f and g, respectively.

Many practical problems can be formulated in the form of (1.1) or (1.2), for
example, image restoration [39], magnetic resonance imaging [35], network optimization
[15], computer vision [30], and earth mover’s distance [22].

Primal-Dual algorithms such as Primal-Dual Hybrid Gradient (PDHG) and Al-
ternating Direction Method of Multipliers (ADMM) can be applied to solve (1.1).
However, PDHG and ADMM suffer from slow (tail) convergence in practice. They may
take more than a few thousand iterations and still cannot reach four digits of accuracy.
In general, their performance is very sensitive to problem conditions. Therefore, efforts
have been made to accelerate them. In the next subsection, we review two common
acceleration techniques: preconditioning and inexact solve of subproblems.

1.1. Background. The convergence rate of PDHG depends on its step sizes,
which need an estimate of the operator norm of A. To accelerate PDHG and avoid
estimating the norm of A, diagonal preconditioning [29] was proposed and analyzed.
This technique improves the iteration complexity and adds only little computational
cost per iteration. However, non-diagonal preconditioners can further reduce the
iteration complexity significantly, but it remains open to apply such preconditioners
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2 Y. LIU, Y. XU, AND W. YIN

while still maintaining the computation cost per iteration. As another acceleration
technique, inerxact PDHG allows the PDHG subproblems to be solved approximately.
To ensure convergence, [31] uses three types of errors to control the solution errors of
the subproblems; all of them need to be summable over the iterations. Therefore, [31]
requires the subproblems to be solved with increasing accuracies.

Unlike PDHG, a subproblem of ADMM minimizers the sum of f(x) and a squared
term involving Azx. In general, it may not have a closed form solution. Several versions
of inexact ADMM have been studied. An absolute error criterion is introduced in
[11], where the subproblem errors are controlled by sequences of error tolerances that
are summable. To simplify the choice of the sequences, the relative error criterion
was adopted in several works, where the subproblem errors are controlled by a single
parameter and quantities generated naturally by the algorithm. In [26], the parameters
need to be square summable. In [21], the parameters are constants but both objectives
are required to be Lipschitz differentiable. In [12, 13|, two possible outcomes of the
algorithm are described: (i) infinite outer loops and finite inner loops, and (ii) finite
out loops and the last inner loop is infinite, both of them guaranteeing convergence to
a solution. On the other hand, it is unclear how to distinguish them, and since there
is no bound on the number of inner loops in case (i), one may recognize it as case (ii)
and stop the algorithm before it converges.

Certain types of preconditioning have been applied to accelerate ADMM. In [17],
diagonal preconditioning is used with ADMM. After that, non-diagonal precondition-
ing is also analyzed [5, 6], where appropriate preconditioners are given for specific
applications, and competitive numerical performances are observed. This work inverts
one of the preconditioners (not needed in our method). Recently, preconditioning for
strongly convex problems has also been discussed [18§].

1.2. Contributions. The contributions of this paper are three-fold.

First, we provide a criterion for choosing preconditioners based on an ergodic
convergence result. We also show that ADMM corresponds to a special choice of
preconditioners in Preconditioned PDHG (PPDHG).

Second, we show that PPDHG converges when its subproblem is solved inexactly
to a specified relative-error condition. Remarkably, this condition does not need to
be checked since it is naturally satisfied when one applies a fized number of inner
loops using any of several common subproblem solvers including proximal gradient
descent, FISTA with restart, proximal block coordinate descent, as well as even faster
block-coordinate-gradient-descent (BCGD) methods (e.g., [24, 1, 19]).

Third, the diverse choice of subproblem solution methods, especially the BCGD
methods, lets us deal with the difficult subproblems that arise when we apply precon-
ditioners. With appropriate preconditioners and subproblem solvers, both PDHG and
ADMM can be accelerated and their total running time significantly reduced. The
efficiency of our algorithm is demonstrated by numerical experiments.

It is worth mentioning that our fixed number of inner loops is different from the
“finite inner loops” claimed in [5, 6]. In their settings, one subproblem is essentially
applying a preconditioned proximal operator to a convex quadratic function at the
current iterate, which has a closed form solution. The same operator is applied n times
starting at the current iterate for any n > 1, and convergence can still be established,
they call these n operations finite inner loops.

1.3. Organization. The rest of this paper is organized as follows: Section 2
establishes notation and reviews some basic results. In Section 3, we first provide a
criterion for choosing preconditioners of PDHG, then introduce the bounded relative
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ACCELERATION OF PRIMAL-DUAL METHODS 3

error condition and show that it is satisfied by a fixed number of inner loops. We es-
tablish convergence of the inexact preconditioned PDHG. Section 4 provides numerical
examples on several popular applications. Finally, Section 5 concludes the paper.

2. Preliminaries. In this section, we review some basic concepts, introduce our
notation, and state some known results. For the sake of brevity, we omit proofs and
direct references. We refer the reader to the textbook [3].

We use || - || for the ¢o—norm, and (-,-) for the usual dot product. M > 0 denotes
a symmetric positive definite matrix M, and M > 0 denotes a symmetric positive
semidefinite matrix M.

Amin (M) and Apax (M) stand for the smallest eigenvalue and the largest eigenvalues
of M, respectively. k(M) = ?’L((MM)) is the condition number of M. For M > 0, let
I1las and (-, -) ar denote the (semi-)norm and inner product induced by M, respectively.

For a proper closed convex function ¢ : R® — R U {+o0}, its subdifferential at
x € domf is defined by

0o(x) ={v e R | ¢(2) > ¢(x) + (v, 2z — ) Vz € R"},
and its convex conjugate is

¢"(y) = sup {(y,z) — ¢(x)},
zER™

we have y € 0¢(x) if and only if z € 9¢*(y).
For any symmetric M > 0, we define the extended proximal operator of ¢ to be

, 1
(2.1) Proxy! (z) = argelﬂilln{cﬁ(y) + 5 lly ==l
e

When M = =1 where v > 0, it reduces to the classic proximal operator.
For the extended proximal operator (2.1) we also have the following generalization
of Moreau’s Identity:

LEMMA 2.1 ([10], Theorem 3.1(ii)). For any proper closed convex function ¢ and
M = 0, we have

(2.2) x = Proxgl(a:) + M1 Prox%71 (Mzx).

A proper closed function is said to be a Kurdyka-Lojasiewicz (KL) function, if
for each zg € domf, there exist n € (0, 00], a neighborhood U of zy and a continuous
concave function ¢ : [0,7) — R4 such that:

L. ¢(0) =0,

2. ¢ is C! on (0,7),

3. for all s € (0,7),¢'(s) >0,

4. for all z e UN{x| f(zo) < f(z) < f(z0) + n}, the KL inequality holds:

¢’ (f(x) = f(0))dist(0,0f (x)) > 1.

3. Acceleration of PDHG. Throughout this section, the following regularity
assumption is assumed:

ASSUMPTION 1.
1. f:R* 5 RU{+o0}, g: R™ - RU{+o0} are proper closed convex.
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4 Y. LIU, Y. XU, AND W. YIN
2. A primal-dual solution pair (x*,2z*) of (1.1) and (1.2) exists, i.e.,
0cof(z*)+AT2*, 0¢€dg(Az*) — 2~
The problem (1.1) also has the following convex-concave saddle-point formulation:

(3.1) min max (z, 2) := f(z) + (Az, 2) - g"(2)

A primal-dual solution pair (z*,z*) is a solution of (3.1) and vice versa.

3.1. Preconditioned PDHG. The method of Primal-Dual Hybrid Gradient
(PDHG) [39, 7] for solving (1.1) uses the iteration

2t = Prox, p(aF — 7AT2F),

3.2)
( L = Proxg g« (2% + 0 A(227T — 2b)).

Convergence of (3.2) to a primal-dual solution pair of (1.1) is established when
L > ||A||?> [7]. In order to achieve faster convergence by exploiting the structure of
subproblems, we can apply preconditioners M, M > 0 (their choices are discussed

below) to obtain Preconditioned PDHG (PPDHG):

htt = Plrox}w1 (z% — M AT R,

(3.3)
PR Proxé\{2 (2F + My AR — 2k,

where the extended proximal operators Proxﬁ\c/[ ! and Proxg/ir2 are defined in (2.1).

Note that there is no need to form M; ' and M, * since (3.3) is equivalent to
. 1
o = argmin{f(z) + (v — 2", AT2") + Do — 2*[y, ),
TER™

1
SRl — argmin{g*(2) — (z — 2, 14(2;10’“rl — ack)> + 5“2 — zk||?\42}
z€RmM

(3.4)

3.2. Choice of preconditioners by an ergodic convergence result. The
convergence of PPDHG is not new. In fact, PPDHG is a special case of a general primal-
dual algorithm considered in [8]. In this section, we discuss how to select appropriate
preconditioners M; and M, based on an ergodic convergence result from [8]. In
particular, we show that ADMM corresponds to the choice My = 1,,yp, My = TAAT,
which has faster convergence than PDHG in terms of outer iterations.

Let us start with the following lemma which characterizes primal-dual solution

pairs of (1.1) and (1.2).

LEMMA 3.1. Under Assumption 1, (X, Z) is a primal-dual solution pair of (1.1)
if and only if o(X,2) — p(z,Z) <0 for any (z,2) € R*™,

Proof. If (X, Z) is a primal-dual solution pair of (1.1), then
—ATZ c 0f(X), AX €dg*(2).
As a result, for any (z,z) € R"™™ we have
fla) 2 f(X)+(-ATZ, 2~ X), ¢"(2) 2 g"(Z) + (AX,z — Z),

adding them together gives ¢(X, z) — p(z,Z) <O0.
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ACCELERATION OF PRIMAL-DUAL METHODS 5

On the other hand, if ¢(X, 2) — ¢(z,Z) <0 for any (z,2) € R"™™, then
(AX,2) + f(X) — g"(2) — (Ax, Z) — f(z) + ¢"(Z) <0 for any (z,2) € R*T™.

Taking x = X yields (AX,z — Z) — ¢g*(2) + ¢g*(Z) <0, so AX € 0g*(Z); Similarly,
taking z = Z gives (AX — Az, Z) + f(X) — f(z) < 0,50 —ATZ € 9f(X). As a result,
(X, Z) is a primal-dual solution pair of (1.1). d

On the other hand, we have the following ergodic convergence result, which is
adapted from Theorem 1 of [§].

THEOREM 3.2. Let (zF,2%),n = 0,1,.... N be a sequence generated by PPDHG
(3.3). Under Assumption 1, if in addition

-~ (M —AT
(35) = (M) =

then, for any x € R* and z € R™, it holds that

1 M; —AT\ [z -2
N oy _ Ny .0 __ .0 1
B eV - pte 2 < g e - (M) (S050).
where XN = %Zf\; z; and ZVN = %Zf\; ;.

Proof. This follows from Theorem 1 and Remark 3 of [§], by setting L; = 0,
1Dy (z,m0) = llw — 2°3,,, 1D.(2,20) = 3|z — 2°[3,,, and K = A. d

In view of Lemma 3.1 and Theorem 3.2, in order to accelerate the ergodic conver-
gence, the preconditioners M; and M, should be chosen such that (3.5) is satisfied,
and the right hand side of (3.6) should be small. In view of this, we can obtain some
useful criteria for choosing M; and Ms.

First, by Schur complement lemma, the condition (3.5) is equivalent to My »=
AM; AT, Hence, for a given M, the optimal M, is AM; " AT.

Second, PDHG (3.2) corresponds to M; = %Inxn, My = %Imxm with % > ||A|%
On the other hand, one can show that ADMM applied to (1.1) corresponds to M; =
%Inm, My = 7AAT (see Appendix A, this is also implicitly shown in [7, Sec. 4.3]),
where M> is optimal for M; since AMl_lAT =7AAT = M, . In this regard, ADMM
corresponds to a better choice of preconditioners than PDHG, which explains why
ADMM uses fewer outer iterations than PDHG in practice. This is also verified in our
numerical experiments in Section 4.

Finally, there might be better choices of preconditioners than that of ADMM.
This can bring us faster algorithms and is left as future work.

3.3. PPDHG with fixed finite inner loops. Solving the subproblems in (3.3)
exactly or nearly so is wasteful. Choosing the number of inner loops based on a
condition requires checking the condition. It is convenient if we can simply fix the
number of inner loops.

In this subsection, we describe the “bounded relative error” of the z—subproblem
in (3.3) and then show that this can be satisfied by running a fixed number of inner
loops, uniformly for every outer loop.

DEFINITION 3.3. Given ¥, 2*T1 and 2*, the z—subproblem in PPDHG (3.3) is
said to be solved with bounded relative error if there is a constant ¢ > 0 such that

(3.7) 0 € Og* (2"MY) + My (2P — 28 — My A(22F T — o)) + R

(3.8) I+ < efl 2" = 2.

This manuscript is for review purposes only.
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Remarkably, this condition does not need to be checked at any iteration. For a
given ¢ > 0, it can be satisfied by a fixed number of inner loops using proximal gradient
descent (see Theorem 3.4). One can also use faster solvers for the z—subproblem,
e.g., FISTA with restart [27], and solvers that suit the subproblem structure, e.g.,
cyclic proximal BCD (see Theorem 3.6). Although the error in solving z—subproblems
appears to be neither summable nor square summable at first glance, convergence can
still be established. We summarize our algorithm in Algorithm 3.1.

Algorithm 3.1 Inexact preconditioned PDHG

Input: f:R* - R,g:R™ - R, A € R"™*" preconditioners M; and Ma,
initial (zo, 2¢), subproblem solver S for the z—subproblem in (3.3), fixed inner iterations
p, max outer iterations K.
Output: (€, 2K)
1: for k«+0,1,.... K —1do

2 gkt = Proxj‘fl (a:k — MflATzk);

3 z§+1 = zk;

4: fori+0,1,....,p—1do

5: 2EH = S(2FT gk 2k

6 end for

7 2Rt = L > approximate Proxg/fz (2% + My AQ22F! — 2F))
8: end for

THEOREM 3.4. Under Assumption 1, if p > 1 iterations of proximal gradient

descent with stepsize v € (0, %) are applied to solve the z—subproblem in (3.3),

and is initialized with the last iterate z*, then the subproblem is solved with bounded
relative error with the following constant for (3.8)

% + )\max(MZ)

— — p p—1
(39 e efp) = TR o ),
where 7 = /1 — (2 min(Mz2) — 722, (M2)) < 1.
Proof. The z—subproblem in (3.4) is of the form
(3.10) min hq(z) + ha(z),
zER™

where

hi(z) = g"(2),

1 —

ha(z) = gz — 2 — My A 2R,

In Algorithm 3.1, an inexact 2**! is given by
2o = 2k

Zfrll = PI'OX'th (Zf-‘rl - VVhQ(sz-i_l))? 1= 07 17 P 17

k+1 _ _k+1
zZ = Zp .

The optimality condition of the last iteration above reads

1

0e 6h1(2§+1) + Vh2(z§f11) + ;(ZIIerl — Z}’;tll),

This manuscript is for review purposes only.
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ACCELERATION OF PRIMAL-DUAL METHODS 7

k+1

compare this with (3.7) and use 2 k+1

= 2", we have

1
€k+1 _ g(ZSJrl k+1)_|_Vh2( k+1) Vh ( k+1)
we need to show that #+! satisfies (3.8).
Let 2%*1 be the solution of (3.10), & = Amin(M2), and 8 = Amax (M), then hy(2)

is convex and ho(z) is a-strongly convex and -Lipschitz differentiable. As a result, |3,
Prop. 26.16(ii)] gives

Hszrl — zf+1|| < 7'i||z,gc+1 — zf'HH, Vi=0,1,...,

where 7 = /1 — y(2a — v/?).

Let a; = ||2FT — 25|, then a; < 7%ag. Therefore,
(3.11) 541 < + b =)
(3.12) <+ B)ap +ap-1)
(3.13) < (% + B) (7P + 777 Hay.

On the other hand, we have

1251 = 2* > ap — ap
(3.14) > (1 —1P)ao.
Combining (3.11) and (3.14) gives
] < el 2" = 2],
where ¢ is given in (3.9). d

Remark 3.5. Similarly to proximal gradient descent, one can show that finite
iterations of FISTA with restart also satisfies the bounded relative error condition in
Def. 3.3. The proof is omitted due to space limitation.

THEOREM 3.6. Let Assumption 1 holds and g be block separable, i.e.,
z=(z1,22,...,21) and g(z) = 22:1 9i(z:). Let the stepsize of cyclic proximal BCD be
v, which is small enough such that

0 <~ < min { 2Amin(M2)) 1= /T = (2 min(M2) — 722, (Mo))
o )‘Iznax(MQ)) 4\/>’YlAmax(M2) '
1 2\ max (Mo) }
4l)‘max(M2) 17l}\max(M2) + 2( 1*\/1*7(2/\11;;1,('JYWZ)*'YA?nax(MQ)) )2

Then, if p > 1 epochs of cyclic proximal BCD are applied to solve the z—subproblem
n (3.3), and is initialized with the last iterate z*, then the subproblem is solved with
bounded relative error with

(lAmax(Mg) + %)(pl’ + ppfl)

1 _ _
(3.15) c=c(p) e ’
where p =1 — ( ~V1-7(Anin ;‘;I?) ’YAmax(MQ))) <1.

Proof. See Appendix B. 0
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8 Y. LIU, Y. XU, AND W. YIN

3.4. Convergence of inexact PPDHG. In this subsection, we proceed to
establish the convergence of Algorithm 3.1. First, we transform Algorithm 3.1 into
an ADMM-like algorithm in Proposition 3.8 below. Then, in Theorems 3.11 and 3.12
below, we prove the convergence of Algorithm 3.1 by using a generalized augmented
Lagrangian of this ADMM-like algorithm.

First, let us show that PPDHG (3.3) is equivalent to an ADMM-like algorithm
applied on the dual problem (1.2), this is similar to the equivalence of PDHG (3.2)
and Linearized ADMM applied to the dual problem (1.2) shown in [14]. Therefore, we
call this ADMM-like algorithm Preconditioned Linearized ADMM (PLADMM):

PR Proxé\ﬁ{z(zk + Mz_lAMl_l(fATzk — P k),
-1
(3.16) Y = Prox%1 (ub — AT+,
k+1 ko AT ht1 _ k1

U =u Y

Remark 3.7. When My = 11, M, = AI, PLADMM (3.16) is Linearized ADMM,
or Split Inexact Uzawa [38].

Furthermore, the Inexact PPDHG in Algorithm 3.1 is equivalent to Inexact
PLADMM, which is summarized in Algorithm 3.2.
Let us also define the following generalized augmented Lagrangian for PLADMM:

* * . 1
(3.17) L(z,y,u) = g*(2) + f*(y) + <—ATZ -y, M 1u> + §||ATZ + y||?\4;1.

Inspired by the framework of [36], this generalized augmented Lagrangian will serve
as a Lyapunov function to establish convergence of Algorithm 3.2 and 3.1.

Algorithm 3.2 Inexact preconditioned linearized ADMM
Input: f*:R* > R, ¢* : R™ - R, A € R™*" preconditioners M; and Mo,
initial vector (zo, yo, o), subproblem solver S for the z—subproblem in (3.16), number

of inner loops p, number of outer iterations K.
Output: (25 y& u¥)

1: for k+0,1,...., K —1do

R S

3: fori«+0,1,....,p—1do

4 2 = Sk ub);

5 end for

6 ZFHL = 2l b approximate Proxg/;[2 (2% 4+ My PAMTH (= AT 28 — yF k).
7 yktl = Proxj\c/il l(uk — AT ZE+1y,

8: Ukt = gk AT kL ke,

9: end for

PROPOSITION 3.8. Under Assumption 1 and the transforms u¥ = Mx*, y*+1 =
uf — ATk —y*+1 PPDHG (3.3) is equivalent to PLADMM (3.16), and the Inezact
PPDHG in Algorithm 3.1 is equivalent to the Inexact PLADMM in Algorithm 3.2.

Proof. First, let us transform PPDHG in (3.3) to PLADMM (3.16).
Set uk = Myzk yk+1l =k — ATk — k1 then (2.2) and (3.3) gives

M71
Yt = Mok — ATZF — Myttt = Prox;.! (uf — AT k),

This manuscript is for review purposes only.
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and we also have

uFHL = g ATk kL

PR Proxé\f{2 (2% 4 My PAMTH (= AT 2P — i),

If z-update is performed first, then we arrive at PLADMM (3.16).

Notice that for the inexact PPDHG in Algorithm 3.1, we are solving the
z—subproblem of PPDHG (3.3) with bounded relative error as in Definition 3.3,
therefore we are essentially doing the same to the z—subproblem of PLADMM (3.16),
which gives Algorithm 3.2. ]

In order to establish convergence of Algorithm 3.1, we also need the following
Assumption 2, in addition to Assumption 1.

ASSUMPTION 2.
1. f(x) is pg—strongly convez.
2. g*(2) + f*(—AT2) is coercive, i.e.,

lim g*(2) + f*(-AT2) = .

llz][—o00

3. g*(2) is a KL function.

THEOREM 3.9. Under Assumptions 1 and 2. Choose the preconditioners My, My
and the number of inner loops p in Algorithm 3.1 such that

1 M
Cp =Mt - MI - 0,
2 I

1
Cy =M, — 5AM;lAT —c(p)I = 0,

where c(p) is related to the z—subproblem solver S and My (see, e.g., (3.9) and (3.15)).
Define LF = L(2*,y*,u*), then the inexact PLADMM in Algorithm 5.2 satisfies the
following sufficient descent and lower boundedness properties:

(3.18) LF = DM > ly* — "G, + 112" = 251,

(3.19) LF > g*(2*) + f*(-AT2*) > —cc.

Proof. Since the z—subproblem of Algorithm 3.2 is solved with bounded relative
error in Def. 3.3, we have

(3.20) 0 € Ag* (") + Mo (2Pt — 28 — My YAMTH(—AT 28 — % b)) 4 P
where e**+1 satisfies (3.8):

(3.21) I+ < e(p)ll="+ — 2.

The y and u updates gives

(3.22)  0=Vf ")+ M7 —uh + AT = V) - M

(3.23)  wltl =k — AT AT kL

This manuscript is for review purposes only.
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330 In order to show (3.18), let us write

331 g*(zk) > g*(zkﬂ)

339 + <M2(Zk _ ZkJrl) + AMl_l(fATZk _ yk + uk) _ €k+1,2’k _ Zk+1>’
§§j f*(yk) Z f*(ykJrl) + <M1_1uk+1,yk . yk+1>’

335 Assembling these inequalities with (3.21) gives us

336 LP — LA > ||2F — zk+1||?\,,2_c(p)1

337 + (AMTH(=ATZF — gk k), 28 — 2P (Mt b — R
338 + (—ATZF — % M Ry — (AT R kLt (g — AT R kL)Y
. Lot ko k2 LT k1 k12

339 +§||A 2F 4y ||M51—§HA 25y | -

24 —_ k k

340 =z" -2 +1||?\42—c(p)1

341 (A) + (AMH (AT — Py 2P — 2Ry (MR gk R

312 (B) + (= M R) — (=gt M)

Loar ko k2 S AT k1 k12

345 where the terms in (A) and (B) simplify to
346 (3.24)  (AM7H(=ATZR —yf) 2 =20 4 (M (AT -yt i),
348  Now we will use the following cosine rule on the two inner products above:
. 1 2 1 9 1
349 (a—ba—c)y1 = §||a - bHMl,l + §||a - c||M1,1 - §||b = cllpr-
350 Set a = AT2F ¢ = AT2ZF+1 and b = —y* to obtain
1 1
351 (AM;Y(=ATZF — P 2k — 2F ) = —§||ATzk +yF)%, 0 — §|\ATzk — ATH2
1 1
1
2 (3.25) + §Ilyk + AT
354 Set a = y**t1 ¢ = y*, and b = — AT 2F*H! to obtain

_ 1 1
355 <M1 1(_ATZk+1 _ ykJrl)’yk _ yk+1> _ §||ATZk+1 + yk+1”?\/{1—1 + 5”ylc _ yk+1||M1_1

N LA k1 ky2

358  Combining (3.24), (3.25), and (3.26) yields

359 LF — LFFh > |28 — Zk-‘rl”?\h—%AMflAT—C(P)I +y" - yk+1”2%Mfl
g?(f (327) _ HATZk-i-l + yk+1||2 .

o0 1

362 Since f is up-strongly convex, we know that V f* is i—LipSChitZ continuous. Conse-
363 quently,
9 1

- T k+1 k412 |k ket L etk kL2

364 A2y = (lu® = < Amin(Mfl)HMl (u® —u™ )|
(3.22) || My

365 (3.28) < |N2|||yk—yk+1||2.

366
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Combining (3.27) and (3.28) gives (3.18).

Now, to show (3.19), we use (3.22) to get
JH(F) 2 AT + (M g 4 AT,
And, thus,
1
LY = g" (") + [ (") + (AT =%, My ) + §||ATZ’“ +yt13,
1

(3.29) > g*(*) + fr(=ATR) + §||ATZ’“ + o150
and finally (3.19). O

Remark 3.10. In order for Cy = 0, we can set My = AM; ' AT as suggested by
subsection 3.2, since ¢(p) xx a for some 0 < a < 1 in (3.9) and (3.15), we know that
there exists pg > 1 such that Cs > 0 for any p > pg. In our numerical experiments,
Algorithm 3.1 always converges for p > 1.

We conclude this section by showing the convergence of (z*, z*) in Algorithm 3.1
to a primal-dual solution pair of (1.1) and (1.2).

THEOREM 3.11. Let the assumptions in Theorem 5.9 hold. Then, (z*,z¥) in
Algorithm 3.1 is bounded, and any cluster point of {z*,2z*} is a primal-dual solution
pair of (1.1) and (1.2).

Proof. According to Theorem 3.8, We just need to show that {Mfluk,zk} is
bounded and its cluster points are primal-dual solution pairs of (1.1).
Since L* is noincreasing, (3.29) tells us that

1
g () + F1 (AT + ST 4 )2, < L0 < oo

Since g*(z) + f*(—ATz2) is coercive, we get that {z*} is bounded, and from the
boundedness of {AT 2% + y*}, the boundedness of {y*}. Furthermore, (3.22) gives us

1

— k k

1M (=) < —ly* =5l
%

Therefore, {M; *u*} is also bounded.
Suppose (z¢, 9, u°) is a cluster point of {z* y* u*}. Let us show that (2¢,y°, u°)
is saddle point of L(z,y,u), i.e.,

(3.30) 0 € OL(z¢,y°, u®),
or equivalently,
0 € dg*(2°) — AM[ 'ue,
0= Vf*(y) - My,
0=AT2° 4",
which ensures (M, 'u¢, 2¢) as a primal-dual solution pair of (1.1).
In order to show (3.30), we first notice that (3.17) gives
0y L(ZF 1, yF 1 uF 1) = 9 (5 H1) — AM VY AMT (AT Y g R,
V, L g+ k) = U (R ) — MY g ML AT L e,

vuL(zk+1’ yk+1’uk+1) _ Ml_l(fATZkJrl o ykJrl).
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12 Y. LIU, Y. XU, AND W. YIN

Compare these with the optimality conditions (3.20), (3.22), and (3.23), we have

dFFL — (d§+1’d5+17d5+1) € OL(FH, yh+1 k1),
where
dMTE = My(2F — 2R 2AMT (Wb — uF ) — AMT (WY — u) — R
dlchrl = MYk — Y,
d = M7 (R — k),

Since (3.18), and (3.19) implies 2% — zF+1 yk — yk+1 — 0, (3.22) gives u¥ — uF*+1 — 0.
Combine these with (3.8), we have d* — 0.

Finally, let us take a subsequence {z%s,y*s uFs} — (2¢,y¢, u¢), since d¥ — 0
as s — +oo, [33, Def. 8.3] and [33, Prop. 8.12] yield (3.30), which tells us that
(M *uc, 2¢) is a primal-dual solution pair of (1.1). |

k

Also, we can show that (2, 2¥) in Algorithm 3.1 actually converges. Since the
proof consists of a standard technique of using the KL property in Assumption 2,
which is not very relevant to the main idea of this subsection, we leave it to Appendix

C.

THEOREM 3.12. Let the assumptions in Theorem 3.9 hold, then the {z* zF} in
Algorithm 3.1 converges to a primal-dual solution pair of (1.1).

Proof. See Appendix C. 1]

4. Numerical experiments. In this section, we compare our inexact precondi-
tioned PDHG in algorithm 3.1 with PDHG (3.2) and PDHG with diagonal precon-
ditioning [29]. We consider three popular applications of PDHG: TV-L' denoising,
graph cuts, and estimation of earth mover’s distance. Although they do not satisfy all
the assumptions in our theory, we still observe significant speedup compared to other
algorithms.

When we write these examples in the form of (1.1), A is one of the following:

Case 1: The 2D discrete gradient operator D : RM*N _y RZM*N.
Let the images be of size M x N, and h be the length of discretization interval,
then

where

(Du)!; = i (i1, — ui ) lfl <M,
J 0 ifi =M,

(Dujz, = { i(tatr ~1eg) 17 <

7 0 if j=N.

Case 2: The weighted gradient operator D,, : RM*N — R2MxN.
D,, = diag(w)D,

where w € (RT)2M¥ is a weight vector.
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Case 3: The 2D discrete divergence operator div: R?M*N _, RMxN.

(4.1) div(p)i; = h(pi; — Pi1; + P} — Pij—1);
where p = (p',p?)T e R¥M*N
i=1,.,M,j=1,...N.

In view of the special structures of these operators, we choose cyclic proximal
Block Coordinate Descent (BCD) as the z-subproblem solver in Algorithm 3.1. In
particular, we split {1,2,...m} into 2 blocks (in case 3) or 4 blocks (in cases 1 and 2)
according to Claims 4.1 and 4.2, which are inspired by the popular red-black ordering
[34] for solving sparse linear system.

According to Theorem 3.6, finite inner loops of cyclic proximal BCD satisfy the
bounded relative error condition in Def.3.3, and we can expect that this solver brings
faster overall convergence. The intuition is that when ¢* is linear (or equivalently,
g is a ¢ function), the z—subproblem in Alg.3.1 reduces to a linear system with a
structured sparse matrix AA”. As a result, Gradient Descent amounts to Richardson
method [32, 34] and cyclic BCD becomes Gauss-Seidel method [16, 34]. In view of the
special structures of A, Gauss-Seidel is faster (see Chapter 4 of [34]). Therefore, we
can anticipate a faster convergence when cyclic proximal BCD is used.

Furthermore, the following two claims tell us that under special block designs
inspired by red-black ordering, the two subproblems have closed-form solutions, which
are easy to implement and compute. Furthermore, updates within each block can be
implemented in parallel.

, p(lJ,j = p}VLj = 0 and pf,o = pf’N = 0 for

\
\ // \11 - /I
\ ///'\ p=s \
/‘/ - \\-I ’/\/'\/
—o—o o o < I
P \ \ / ”» &
- \ &5 i A
- \ « »
— P & \
e e e e e »
N\ P
”»
Fic. 1. two-block ordering in Claim 4.1 Fic. 2. four-block ordering in Claim 4.2

CLAIM 4.1. When A =div (i.e. AT = —D) and My = TAAT, for 2 € RM*N e
separate z into two block zy, z,. where

zp = {2 |1+ ] is even}, z = {z;;|i+ ] is odd},
for 1 <i<M,1<j<N. Ifg(z) = %;9,(z,) and proxyg: . have closed-form
solutions for all 1 < i < M, 1< 35 < N and X\ > 0, then BCD subproblems on the

z—subproblem of Algorithm 3.1 have closed-form solutions, and updates within each
block can be implemented in parallel.
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14 Y. LIU, Y. XU, AND W. YIN

Proof. As illustrated in Fig. 1, on the z—subproblem, the update of every black
node depends only on its neighbor red nodes, thus all the black nodes can be updated
in parallel and with closed-form solutions. The same argument applies to the red
nodes. See Appendix D for a complete explanation. a0

CLAM 4.2. When A= D or A = D, (i.e. AT = —div or AT = —divdiag(w))
and My = TAAT, for z = (21, 22)T € R2M*N " we separate z into four blocks zy, 2,
zy and zg, where

2 = {zzlj | is odd}, 2z, = {zllj | is even},
zy = {zfj |j is odd}, zg= {222] |7 is even},

for1 <i< M, 1<j<N. Ifg(z) =5%,9i;2,;) and Prog: have closed-form
solutions for all 1 < i< M, 1< j < N and X\ > 0, then BCD subproblems on the
z—subproblem of Algorithm 3.1 have closed-form solutions, and updates within each
block can be implemented in parallel.

Proof. In Figure 2, the 4 blocks are in 4 different colors. Nodes with the same
color can be updated in parallel with closed-form solutions, as within one color nodes
are independent with each other during the updates. See Appendix D for details. 0O

In Table 1, Table 2 and Figure 7, PDHG denotes the PDHG in (3.2); DP-PDHG
denotes the diagonal preconditioned PDHG in [29], PPDHG denotes PPDHG in

(3.3) where the (k + 1)th z-subproblem is solved until % < 107° using
the TFOCS [4] implementation of FISTA with restart; Alg. 3.1, BCD denotes our
inexact preconditioned PDHG in Algorithm 3.1, where the inner loop solver S is cyclic
proximal BCD. Except for DP-PDHG, only the best runtime over certain choices of
parameters is presented.

Comparision of PDHG and DP-PDHG have already been presented for TV-L!
denoising and graph cuts in [29], and PDHG is proposed to estimate the earth mover’s
distance in [22]. In order to provide a direct comparision, we use their problem
formulations.

4.1. Total variation based image denoising. The (discrete) TV-L' model
for image denoising can be expressed as

minimize ®(u) = ||Dully + A|u — f]|1,

where D is the 2D diecrete gradient operator with h = 1, u € RM*N g the sought

solution, f € RM*N ig g noisy input image, and A is a regularization parameter. In
our experiment we input a 1024 x 1024 image with noise level 0.15 and set A = 1, see
Fig. 3. We run the algorithms until 6% := |¢r(;f*l < 107°, where ®* is the objective
value at kth iteration and ®* is the optimal objective value obtained by calling CVX.

Our Numerical results on TV-L! model are summarized in Table 1, where the best
results for 7 € {10,1,0.1,0.01,0.001} and p € {1,2,3} are presented. Our Algorithm
3.1 is significantly faster than the other three algorithms.

Remarkably, our algorithm’s number of outer iterations is less than that of PPDHG
with the stopping criterion % < 1072, as this kind of stopping criteria

k_  k+1
l[2 =2+

-5
y m < 10 Only
requires 1 inner iteration of FISTA when Outer Iter > 368, while as high as 228 inner
loops on average during the first 100 outer iterations. In comparison, our algorithm
achieves both less outer iterations and cheaper cost per outer iteration.

may become looser as z¥ is closer to z*. In this example

This manuscript is for review purposes only.
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519 In addition, the diagonal preconditioner designed in [29] has little effects when
520 A = D. In fact, My = diag(X;|A; ;|) will be 41,, and M, = diag(X;|A; ;|) will be 21,
521 if we ignore the Neumann boundary condition. With these fixed and almost the same
522 parameters, DP-PDHG performs even worse than PDHG.

Method Parameters Outer Iter | Runtime(s)
PDHG T=0.01, M =7 'I,,M> = 7||D|*I, 2990 114.2576
DP-PDHG M1 = diag(ZﬂDm ), Mg = diag(2j|Di7j|) 8856 329.7890
PPDHG (3.3) 1=01,M; =7 'I,,Ms = 7DD" 963 5.9777 x 10°
Alg. 3.1,BCD | 7=001,M, =7 'I,,M> =7DDT, p=1 541 26.2704
TABLE 1

TV-L' denoising.

Fic. 3. Noisy image Fic. 4. Denoised image (Alg. 3.1, BCD)

523 4.2. Graph cuts. The total-variation-based graph cut model is to minimize the
524 follow weighted TV energy:

minimize || Dyul1 + (u, w")
subject to 0<u <1,

MxN 2MN
R™* R

526  where w* € is a vector of unary weights, w® € is a vector of binary
527 weights, and D,, = diag(w?)D, where D is the 2D diecrete gradient operator with

528 h = 1. Specifically, wi'; = (|| L ; — pug | = | Iij — pl|?), w}} = exp(—BLiv1,; — L)

529 and wi’? = exp(—PB|I; j+1 — Ii j]). In our experiment the image is of the size 660 x 720,
530 and we set o = 1/2, = 10, g = [0;0; 1] (for the blue foreground) and g, = [0;1;0]
531 (for the green background). We run all algorithms until 6% = |¢Tq;q|)*‘ < 1078, where

532 ®F is the objective value at kth iteration and ®* is the optimal objective value obtained
533 by calling CVX.

534 The best results of 7 € {10,1,0.1,0.01,0.001} and p € {1,2,3} are summarized in
535 Table 2, where we can see that our algorithm yields the best performance on runtime.
536 Also, our algorithm’s number of outer iterations is close to that of PPDHG.
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16 Y. LIU, Y. XU, AND W. YIN

Method Parameters Outer Iter | Runtime(s)
PDHG T=1,M; =7 "Iy, Ms = 7|| Dy ||*Im 5529 140.5777
DP-PDHG My = diag(X;|Duw; |), M2 = diag(X;]|Dw. ;]) 3572 108.3573
PPDHG (3.3) T=10,M, =7 'I,,M: = 7D, D} 282 938.3787
Alg. 31,BCD | 7=10,M, =7 'I,,Ms =7DDI p=2 411 14.9663
TABLE 2
Graph cuts

Fic. 5. Input image Fic. 6. Graph cut (Alg. 3.1, BCD)

4.3. Estimation of earth mover’s distance. We consider the estimation of
earth mover’s distance, which is a popular model in image processing, computer vision
and statistics [20, 25, 28]. From [22] we know that the problem can be formulated as

(4.2) minimize  [|m| 1,2
’ subject to div(m) + p! — p° =0,

where m € R***¥ is the sought flux vector on the M x N grid, and p°, p! represents

two mass distributions on the M x N grid. The setting in our experiment here is the

same with that in [22], i.e. M = N =256, h = %, and for p° and p! see Fig. 8.

Since the iterates m* may not satisfy the linear constraint, the objective ®(m) =
Itmdiv(m)=po—p1} + |12 is not comparable. Instead, we compare [m*l1,2 and
the constraint violation until £ = 100000 outer iterations in Fig. 7, where we set
7=3x107% as in [22], and o = W. In Fig. 7, we can see that our algorithm
provides much lower constraint violation as well as much better estimation for the
earth mover’s distance ||m|1 2. Fig. 8 shows the solution obtained by Alg. 3.1, where
m is the flux that moves the standing cat p' into the crouching cat p°. DP-PDHG
and PPDHG are extremely slow in this example. Similar to 4.1, when A = div,
the diagonal preconditioners proposed in [29] are approximately equivalent to fixed
constant parameters T = ﬁ, o= ﬁ and they lead to extremely slow convergence. As
for PPDHG, it suffers from the expensive cost per outer iteration as in the previous
two experiments.

It is worth mentioning that unlike [22], the algorithms in our experiments are not
implemented in a parallel fashion. On the other hand, in our Algorithm 3.1 with cyclic
proximal BCD as the inner loop solver, coordinates in each block in the block designs
of Fig. 1 and 2 can be updated in parallel. Therefore, one can expect a further speed
up by a parallel implementation.
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1Flesults on EMD estimation and constraint violation during 100000 outer iterations
E T

T T I I I
_ [ o= el
POHS, T Tt - U 1 el
100 —Alg. 3.1,“5?[:; p1:2o’H W 4
R liv(m”)+p" —p
PDHG, ==, 1
_ iv(m*)+p! —p°|l,
o Alg. 3.1, BCD, p=2, (g =l ]
102 ¢ E
103 ¢ E
104 ¢ E
105 ¢ E
10-6 L 1 1 1 1 1 1
0 50 100 150 200 250 300 350
Runtime (s)

Fic. 7. For PDHG, 1=3x10"%, 0 = W For Alg 3.1, BCD, 7 =3x 1076, My =77 11,,,
My = 7divdivT, p = 2. ||m*|||1,2 = 0.6718 4s given by gurobi of CVX.

Fic. 8. p°, p! are the white standing cat, and the black crouching cat, respectively. The images
are of the size 256 x 256, and the earth mover’s distance between p° and p' is 0.6718.

5. Concluding Remarks. In this paper, We provide an algorithmic framework
for apply preconditioning and fast subproblem solvers on PDHG and ADMM with
convergence guarantees. Remarkably, we allow a fixed number of inner iterations for
one of the subproblems. Although the examples in our numerical experiments do
not satisfy all the assumptions, significant accelerations in both outer iteration and
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18 Y. LIU, Y. XU, AND W. YIN

runtime are observed when proper preconditioners and subproblem solvers are applied.

There are still some interesting questions, which need to addressed in the fu-
ture: (a) According to Theorem 3.2, there may be better preconditioners than
M, = %Ian,MQ = 7AAT, which lead to ADMM iterations. (b) It is possible
that convergence of Algorithm 3.1 can also be established for even faster acclerated
subproblem solvers like APCG [23], NU_ACDM [1], and A2BCD [19]. (c) It is possible
that a broad class of algorithms can be accelerated by integrating preconditioning,
fixed number of inner loops, and suitable subproblem solvers. We hope our framework
can be applied on more algorithms with faster convergence guarantees.

Appendix A. ADMM as a special case of PPDHG.

In this section we show that if we choose M; = % and My = 7AAT in PPDHG
(3.3), then it is equivalent to ADMM on the primal problem (1.1).

By Theorem 1 of [37], we know that ADMM is primal-dual equivalent, in the sense
that one can recover primal iterates from dual iterates and vice versa. Therefore, it
suffices to show that M; = 1 and My = TAAT in PPDHG (3.3) on the primal problem
is equivalent to ADMM on the dual problem (1.2).

In Theorem 3.8 we have shown that, under an appropriate change of variables,
PPDHG on the primal is equivalent to PLADMM in (3.16) on the dual. As a result,
we just need to demonstrate that PLADMM on the dual is exactly ADMM on the
dual when M; = %Inxn and My = 7AAT.

For the z—update in (3.16), we have

. % T
2 =argmin{g®(2) = 7(z — 2 A= AT =y 1)) + Sz = )
z€Rm™

. * T
= argmin{g”(z) — 7(z - A=yt + b)) + S lallhar)
zeR™

. % T
= argmin{g"(2) + 7{z AW —uh) + 1A}
z€Rm™m

. * T
= argmin{g"(z) + 7(A"z, —u*) + Z[| ATz + ¢}
z€RmM

(A1) =argmin{y’(2) + (=42 —y*ub) + ATz 4y %)
e

and for the y-update we have

—1
Yt = PI‘OX%I (ub — AT P+

.
= argmin{f*(y) + 5 [ly — u" + ATZH?}
& 2

(A2) = argmin{*(y) + 7(=AT —y,u) + TIAT 4 7).
yEeR»

Define v* = tu*, (A.1), (A.2), and the u—update in (3.16) become

. * T
SRl argmln{g (Z) + <—ATZ _ yk7’l}k> + §||ATZ+yk||2}a
zeRm™
. * T
Yy = argﬁlm{f (y) + (AT ZFHL g o) 4 §||ATZ]CJrl +yl?},
yeRr®

,UkJrl _ Uk o T(ATZkJrl + ykJrl)7

This manuscript is for review purposes only.



606

610

— =
DO

613
614
615
619

618
619

620

621
622

623

ACCELERATION OF PRIMAL-DUAL METHODS 19

which are ADMM iterations on the dual problem (1.2).

Appendix B. Proof of Theorem 3.6: Cyclic proximal BCD satisfies
bounded relative error condition.
The z—subproblem in (3.3) is of the form

min hq(z) + ha(z),

z€Rm

where

l
M=) =gz = Y 07 (z0),
i=1
ha(z) = glle = 2 = My AR — 2R,

And z**1 is given by
K+l _ Lk
gt = 2",

R+l _ k1 k1 _k .

zigp =8z 2" 2Y), i=0,1,..,p—1,
K+l _ _k+1

2" =

Here the inner loop solver S is cyclic proximal BCD.
Let us define

T(2) = Prox,g«(.y (2 — YVha(2))),
1
B(z) = ;(z —T(2)),

and the ith coordinate operator of B:

Then

2 = ST aF T 2 = (I = 4B)(I = yBa)..(I =Bz,
By [3, Prop. 26.16(ii)], we know that T'(z) is a contraction with coefficient 6 =
V1 =72 min (Mz) — v22,, (M3)). Together with [3, |, we know that for Vz1, 2o € R™

max
we have,

1 1
(B(21) — B(22),21 — 22) = ;Hzl — z|” — §<T(21) —T(22), 21 — 22)
> pllz1 — 2o,
where p = %.
Let 28! = argmin, cpm {h1(2) + h2(2)}. By [9, Thm 3.5], we know that

(B.1) = B < P = A V= 1,2,

where p = 17%.
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20 Y. LIU, Y. XU, AND W. YIN

Let y; = (I —vBy)...(I — fyBl)z;ffll for j =1,...,0 and yo = z;ff% Note that
(25t1); = (y;); for j = 1,2,...,1, and the blocks of y; satisfies

(;)e = {(Proxw* (yi-1— ’Yth(yj—Q))t, ift=j

(yj—1)t, otherwise.

On the other hand, we have

P 1
Prox,g (yj—1 — 7Vha(y;-1)) = arg min{g” (y) + 5y = yy-1 + YVha(y;-1)[1%}-
yeR™
Since g* and || - ||? are separable, we obtain
0 € 9g;((y;);) + ;((yj)j — (Y1) + ’7(Vh2(yj—1))j)a Vi=12..1

or equivalently,

0 € 9g; ((= k+l)])+%((%};+l)j — (Z5); + 7 (Vha(yj-1)) ) Vi=1,2,..1.

As a result,

1
0 ¢ dg*(= k+1) i ;(ZSH k-‘rl _1_751)) Vi=1,2,..,1,

where (&,); = (th(yj_l))j for j =1,2,...,1. Compare this with (3.7), we know that

1
=& — Vha(z, ™) + ;(zk“ —271).

p p

Notice that the first j — 1 blocks of y;_; are the same with those of y; = zk“ and
the rest of the blocks are the same with those of yy = zﬁfl, so we have

l
k+1|| Z max ]\42 ”yj 1 — Zk+1|| 4= H k+1 _ k+1||
1
< DM 4 = 2541+ 2l = 254
1
< (IAmax(Ma) + 7)(szﬂ 2 4 ”Zk—i-l )
Combine this with (B.1), we arrive at
1 —
(B.2) H5k+1|| < (IA\max (M2) + ;)(pp + pP 1)||Z§+1 _ Zf+1H~

We also have

1254 = 25 = [l — 2|
> ||zk+1 o k+1|| ||Zk+1 k+1H
> (1= p)llzg ™ — 2|
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Combine this with (B.2), we obtain

(l)\maX(MQ) + %)(Pp + pp—l)
1—pp

le*+H| < I — 2",

Appendix C. Proof of Theorem 3.12: KL property gives sequence con-
vergence.

According to Theorem 3.8, We just need to show that { M 'u¥, 2F} converges to
a primal-dual solution pair of (1.1).

By Theorem 3.11, we can take {z%s y*s ubs} — (2¢,9¢ u®). Note that
L(2"s,y"s uPs) is monotonic nonincreasing and lower bounded due to Theorem 3.9,
which implies the convergence of L(z*s,y*s u¥+). Since L is lower semicontinuous, we
have

(C.1) L(z% y%u®) < Slirrgo L(zFs P ube).
Since the only potentially discontinuous terms in L is g*, we have
(C.2) Jim Lyt uh) = L0 g7 uf) < limsup g™(2™) — g7(=%).
By (3.20), we know that
g (=) 2 " (")
(M (Rt — ko) 4 AMTH(— AT hel — yheml g yhaly _ ke e ke,
ke—1 _

By Theorem 3.9, we know that z 2P — 0. Since 2% — 2¢ and {z* y*, uF} is

bounded, we obtain

limsup g*(2") — ¢*(2°) < 0.
Ede el
Combine this with (C.1) and (C.2), we conclude that lim, ., L(z%s,y% uke) =

L(2¢,y°, u).
Since ¢g* is a KL function, L is also KF. As a result, similar to Theorem 2.9 of [2],
we can claim the convergence of {z¥, 4% u*} to {z¢,y¢, uc}.

Appendix D. Two-block ordering in Claim 4.1 and Four-block ordering
in Claim 4.2.
According to (3.4), when My = 7AAT | the z—subproblem of Algorithm 3.1 is

(D.1) 2P — argmin{g*(2) — (z — 2F, A(2zF 1 — 2¥)) + %HAT(Z — 2912},
zER™

Let us prove Claim 4.1 first.

In claim 4.1, A = div e RMY2MN and 2 € RMN | Following the definition of the
sets 2 and z, in Claim 4.1, we separate the M N columns of AT = —D into two blocks
Ly, L, associated with z, and z,, respectively. Therefore, we have ATz = Lyz, + L2,
for any z € RMN,

By the red-black ordering in Fig. 1, different columns of L; are orthogonal to each
other, therefore, LbTLb is diagonal. Similarly, LTTLT is also diagonal.

Let b be the set of black nodes and r the set of red nodes, then we can rewrite
(D.1) as

(D.2) A= argmin {g;(2) + g5 (2) + (2 + 2, cF)

2p,2, ERMN/2

-
ol = 25) + Loz = 27) 13},
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where g7 () = Z(i,j)eb 95i(zi5), gr(zr) = Z(i,j)er 9;;(%i,5), and k= —A(2M —

")

(D.3)

(D.4)

The cyclic proximal BCD applied on black and red blocks is then

k._._ﬂ T k_;,_i
P _ 7Ly Ly
2 = prox st (z, "),
9;(')+<',TLbTL7'(ZT pfzﬁ)‘i’Cf)
k5t L. TL k+g
zr 7 =prox v T 1 (zr 7).

k4
9:(')+<"TLTTLb(Zb r 721’5)4’55)

for t =0,1,...,p — 1, where p is the number of inner loops as in Algorithm 3.1.

These updates have closed-form solutions since LbTLb and LT L, are diagonal, and

all prox AgZ, have closed form solutions. Furthermore, updates within each block can
be implemented in parallel.

The proof of Claim 4.2 follows in a similar way. When A = D or A = D,,, we

separate the columns of AT into four blocks Ly, L., Ly, L4 associated with zp, 2,
zy ,zg, respectively. Therefore, we have ATz = Lyz, + Ly2, + Lyz, + Lyz, for all
z € R?MN - GSimilarly, by the block design in Fig. 2, we know that cyclic proximal
BCD iterations on the z—subproblem have closed-form solutions, and updates within
each block can be implemented in a parallel fashion.
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