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Abstract. Primal-Dual Hybrid Gradient (PDHG) and Alternating Direction Method of Mul-4
tipliers (ADMM) have been widely used due to their wide applicability and easy implementation.5
However, they may suffer from slow tail convergence. In view of this, many techniques have been6
proposed to accelerate them, including preconditioning and inexact solve of the subproblems. In this7
paper, we integrate these two techniques to achieve a further acceleration. Specifically, we give a8
criterion for choosing good preconditioners, and propose to solve one of the subproblems by only a9
fixed number (usually very few) of inner loops of several common routines. Global convergence is10
established for the proposed scheme. Since our method overcomes the previous restriction of choosing11
only diagonal preconditioners, we obtain significant accelerations on several popular applications.12
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1. Introduction. In this paper, we consider the following optimization problem:16

minimize
x∈Rn

f(x) + g(Ax),(1.1)17
18

together with its dual problem:19

minimize
z∈Rm

f∗(−AT z) + g∗(z).(1.2)20
21

Here f : Rn → R∪{+∞} and g : Rm → R∪{+∞} are closed proper convex, and22
A ∈ Rm×n is a matrix, f∗ and g∗ are the convex conjugates of f and g, respectively.23

Many practical problems can be formulated in the form of (1.1) or (1.2), for24
example, image restoration [39], magnetic resonance imaging [35], network optimization25
[15], computer vision [30], and earth mover’s distance [22].26

Primal-Dual algorithms such as Primal-Dual Hybrid Gradient (PDHG) and Al-27
ternating Direction Method of Multipliers (ADMM) can be applied to solve (1.1).28
However, PDHG and ADMM suffer from slow (tail) convergence in practice. They may29
take more than a few thousand iterations and still cannot reach four digits of accuracy.30
In general, their performance is very sensitive to problem conditions. Therefore, efforts31
have been made to accelerate them. In the next subsection, we review two common32
acceleration techniques: preconditioning and inexact solve of subproblems.33

1.1. Background. The convergence rate of PDHG depends on its step sizes,34
which need an estimate of the operator norm of A. To accelerate PDHG and avoid35
estimating the norm of A, diagonal preconditioning [29] was proposed and analyzed.36
This technique improves the iteration complexity and adds only little computational37
cost per iteration. However, non-diagonal preconditioners can further reduce the38
iteration complexity significantly, but it remains open to apply such preconditioners39
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2 Y. LIU, Y. XU, AND W. YIN

while still maintaining the computation cost per iteration. As another acceleration40
technique, inexact PDHG allows the PDHG subproblems to be solved approximately.41
To ensure convergence, [31] uses three types of errors to control the solution errors of42
the subproblems; all of them need to be summable over the iterations. Therefore, [31]43
requires the subproblems to be solved with increasing accuracies.44

Unlike PDHG, a subproblem of ADMM minimizers the sum of f(x) and a squared45
term involving Ax. In general, it may not have a closed form solution. Several versions46
of inexact ADMM have been studied. An absolute error criterion is introduced in47
[11], where the subproblem errors are controlled by sequences of error tolerances that48
are summable. To simplify the choice of the sequences, the relative error criterion49
was adopted in several works, where the subproblem errors are controlled by a single50
parameter and quantities generated naturally by the algorithm. In [26], the parameters51
need to be square summable. In [21], the parameters are constants but both objectives52
are required to be Lipschitz differentiable. In [12, 13], two possible outcomes of the53
algorithm are described: (i) infinite outer loops and finite inner loops, and (ii) finite54
out loops and the last inner loop is infinite, both of them guaranteeing convergence to55
a solution. On the other hand, it is unclear how to distinguish them, and since there56
is no bound on the number of inner loops in case (i), one may recognize it as case (ii)57
and stop the algorithm before it converges.58

Certain types of preconditioning have been applied to accelerate ADMM. In [17],59
diagonal preconditioning is used with ADMM. After that, non-diagonal precondition-60
ing is also analyzed [5, 6], where appropriate preconditioners are given for specific61
applications, and competitive numerical performances are observed. This work inverts62
one of the preconditioners (not needed in our method). Recently, preconditioning for63
strongly convex problems has also been discussed [18].64

1.2. Contributions. The contributions of this paper are three-fold.65
First, we provide a criterion for choosing preconditioners based on an ergodic66

convergence result. We also show that ADMM corresponds to a special choice of67
preconditioners in Preconditioned PDHG (PPDHG).68

Second, we show that PPDHG converges when its subproblem is solved inexactly69
to a specified relative-error condition. Remarkably, this condition does not need to70
be checked since it is naturally satisfied when one applies a fixed number of inner71
loops using any of several common subproblem solvers including proximal gradient72
descent, FISTA with restart, proximal block coordinate descent, as well as even faster73
block-coordinate-gradient-descent (BCGD) methods (e.g., [24, 1, 19]).74

Third, the diverse choice of subproblem solution methods, especially the BCGD75
methods, lets us deal with the difficult subproblems that arise when we apply precon-76
ditioners. With appropriate preconditioners and subproblem solvers, both PDHG and77
ADMM can be accelerated and their total running time significantly reduced. The78
efficiency of our algorithm is demonstrated by numerical experiments.79

It is worth mentioning that our fixed number of inner loops is different from the80
“finite inner loops” claimed in [5, 6]. In their settings, one subproblem is essentially81
applying a preconditioned proximal operator to a convex quadratic function at the82
current iterate, which has a closed form solution. The same operator is applied n times83
starting at the current iterate for any n ≥ 1, and convergence can still be established,84
they call these n operations finite inner loops.85

1.3. Organization. The rest of this paper is organized as follows: Section 286
establishes notation and reviews some basic results. In Section 3, we first provide a87
criterion for choosing preconditioners of PDHG, then introduce the bounded relative88
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ACCELERATION OF PRIMAL-DUAL METHODS 3

error condition and show that it is satisfied by a fixed number of inner loops. We es-89
tablish convergence of the inexact preconditioned PDHG. Section 4 provides numerical90
examples on several popular applications. Finally, Section 5 concludes the paper.91

2. Preliminaries. In this section, we review some basic concepts, introduce our92
notation, and state some known results. For the sake of brevity, we omit proofs and93
direct references. We refer the reader to the textbook [3].94

We use ‖ · ‖ for the `2−norm, and 〈·, ·〉 for the usual dot product. M � 0 denotes95
a symmetric positive definite matrix M , and M � 0 denotes a symmetric positive96
semidefinite matrix M .97

λmin(M) and λmax(M) stand for the smallest eigenvalue and the largest eigenvalues98

of M , respectively. κ(M) = λmax(M)
λmin(M) is the condition number of M . For M � 0, let99

‖·‖M and 〈·, ·〉M denote the (semi-)norm and inner product induced byM , respectively.100
For a proper closed convex function φ : Rn → R ∪ {+∞}, its subdifferential at

x ∈ domf is defined by

∂φ(x) = {v ∈ Rn |φ(z) ≥ φ(x) + 〈v, z − x〉 ∀z ∈ Rn},

and its convex conjugate is

φ∗(y) = sup
x∈Rn
{〈y, x〉 − φ(x)},

we have y ∈ ∂φ(x) if and only if x ∈ ∂φ∗(y).101
For any symmetric M � 0, we define the extended proximal operator of φ to be102

ProxMφ (x) := arg min
y∈Rn

{φ(y) +
1

2
‖y − x‖2M},(2.1)103

104

When M = γ−1I where γ > 0, it reduces to the classic proximal operator.105
For the extended proximal operator (2.1) we also have the following generalization106

of Moreau’s Identity:107

Lemma 2.1 ([10], Theorem 3.1(ii)). For any proper closed convex function φ and108
M � 0, we have109

(2.2) x = ProxMφ (x) +M−1 ProxM
−1

φ∗ (Mx).110

A proper closed function is said to be a Kurdyka-Łojasiewicz (KŁ) function, if111
for each x0 ∈ domf , there exist η ∈ (0,∞], a neighborhood U of x0 and a continuous112
concave function ϕ : [0, η)→ R+ such that:113

1. ϕ(0) = 0,114
2. ϕ is C1 on (0, η),115
3. for all s ∈ (0, η), ϕ′(s) > 0,116
4. for all x ∈ U ∩ {x | f(x0) < f(x) < f(x0) + η}, the KŁ inequality holds:117

ϕ′(f(x)− f(x0))dist(0, ∂f(x)) ≥ 1.118

3. Acceleration of PDHG. Throughout this section, the following regularity119
assumption is assumed:120

Assumption 1.121
1. f : Rn → R ∪ {+∞}, g : Rm → R ∪ {+∞} are proper closed convex.122
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4 Y. LIU, Y. XU, AND W. YIN

2. A primal-dual solution pair (x?, z?) of (1.1) and (1.2) exists, i.e.,123

0 ∈ ∂f(x?) +AT z?, 0 ∈ ∂g(Ax?)− z?.124

The problem (1.1) also has the following convex-concave saddle-point formulation:125

min
x∈Rn

max
z∈Rm

ϕ(x, z) := f(x) + 〈Ax, z〉 − g∗(z)(3.1)126
127

A primal-dual solution pair (x?, z?) is a solution of (3.1) and vice versa.128

3.1. Preconditioned PDHG. The method of Primal-Dual Hybrid Gradient129
(PDHG) [39, 7] for solving (1.1) uses the iteration130

xk+1 = Proxτf (xk − τAT zk),

zk+1 = Proxσg∗(zk + σA(2xk+1 − xk)).
(3.2)131

132

Convergence of (3.2) to a primal-dual solution pair of (1.1) is established when133
1
τσ ≥ ‖A‖

2 [7]. In order to achieve faster convergence by exploiting the structure of134
subproblems, we can apply preconditioners M1,M2 � 0 (their choices are discussed135
below) to obtain Preconditioned PDHG (PPDHG):136

xk+1 = ProxM1

f (xk −M−1
1 AT zk),

zk+1 = ProxM2
g∗ (zk +M−1

2 A(2xk+1 − xk)),
(3.3)137

138

where the extended proximal operators ProxM1

f and ProxM2
g∗ are defined in (2.1).139

Note that there is no need to form M−1
1 and M−1

2 since (3.3) is equivalent to140

xk+1 = arg min
x∈Rn

{f(x) + 〈x− xk, AT zk〉+
1

2
‖x− xk‖2M1

},

zk+1 = arg min
z∈Rm

{g∗(z)− 〈z − zk, A(2xk+1 − xk)〉+
1

2
‖z − zk‖2M2

}.
(3.4)141

142

3.2. Choice of preconditioners by an ergodic convergence result. The143
convergence of PPDHG is not new. In fact, PPDHG is a special case of a general primal-144
dual algorithm considered in [8]. In this section, we discuss how to select appropriate145
preconditioners M1 and M2 based on an ergodic convergence result from [8]. In146
particular, we show that ADMM corresponds to the choice M1 = 1

τ In×n,M2 = τAAT ,147
which has faster convergence than PDHG in terms of outer iterations.148

Let us start with the following lemma which characterizes primal-dual solution149
pairs of (1.1) and (1.2).150

Lemma 3.1. Under Assumption 1, (X,Z) is a primal-dual solution pair of (1.1)151
if and only if ϕ(X, z)− ϕ(x, Z) ≤ 0 for any (x, z) ∈ Rn+m.152

Proof. If (X,Z) is a primal-dual solution pair of (1.1), then153

−ATZ ∈ ∂f(X), AX ∈ ∂g∗(Z).154

As a result, for any (x, z) ∈ Rn+m we have155

f(x) ≥ f(X) + 〈−ATZ, x−X〉, g∗(z) ≥ g∗(Z) + 〈AX, z − Z〉,156

adding them together gives ϕ(X, z)− ϕ(x, Z) ≤ 0.157
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On the other hand, if ϕ(X, z)− ϕ(x, Z) ≤ 0 for any (x, z) ∈ Rn+m, then158

〈AX, z〉+ f(X)− g∗(z)− 〈Ax,Z〉 − f(x) + g∗(Z) ≤ 0 for any (x, z) ∈ Rn+m.159

Taking x = X yields 〈AX, z − Z〉 − g∗(z) + g∗(Z) ≤ 0, so AX ∈ ∂g∗(Z); Similarly,160
taking z = Z gives 〈AX −Ax,Z〉+ f(X)− f(x) ≤ 0, so −ATZ ∈ ∂f(X). As a result,161
(X,Z) is a primal-dual solution pair of (1.1).162

On the other hand, we have the following ergodic convergence result, which is163
adapted from Theorem 1 of [8].164

Theorem 3.2. Let (xk, zk), n = 0, 1, ..., N be a sequence generated by PPDHG165
(3.3). Under Assumption 1, if in addition166

(3.5) M̃ :=

(
M1 −AT
−A M2

)
� 0,167

then, for any x ∈ Rn and z ∈ Rm, it holds that168

(3.6) ϕ(XN , z)− ϕ(x, ZN ) ≤ 1

2N
(x− x0, z − z0)

(
M1 −AT
−A M2

)(
x− x0

z − z0

)
,169

where XN = 1
N

∑N
i=1 xi and Z

N = 1
N

∑N
i=1 zi.170

Proof. This follows from Theorem 1 and Remark 3 of [8], by setting Lf = 0,171
1
τDx(x, x0) = 1

2‖x− x
0‖2M1

, 1
σDz(z, z0) = 1

2‖z − z
0‖2M2

, and K = A.172

In view of Lemma 3.1 and Theorem 3.2, in order to accelerate the ergodic conver-173
gence, the preconditioners M1 and M2 should be chosen such that (3.5) is satisfied,174
and the right hand side of (3.6) should be small. In view of this, we can obtain some175
useful criteria for choosing M1 and M2.176

First, by Schur complement lemma, the condition (3.5) is equivalent to M2 �177
AM−1

1 AT . Hence, for a given M1, the optimal M2 is AM−1
1 AT .178

Second, PDHG (3.2) corresponds to M1 = 1
τ In×n, M2 = 1

σ Im×m with 1
τσ ≥ ‖A‖

2.179
On the other hand, one can show that ADMM applied to (1.1) corresponds to M1 =180
1
τ In×n,M2 = τAAT (see Appendix A, this is also implicitly shown in [7, Sec. 4.3]),181

where M2 is optimal for M1 since AM−1
1 AT = τAAT = M2 . In this regard, ADMM182

corresponds to a better choice of preconditioners than PDHG, which explains why183
ADMM uses fewer outer iterations than PDHG in practice. This is also verified in our184
numerical experiments in Section 4.185

Finally, there might be better choices of preconditioners than that of ADMM.186
This can bring us faster algorithms and is left as future work.187

3.3. PPDHG with fixed finite inner loops. Solving the subproblems in (3.3)188
exactly or nearly so is wasteful. Choosing the number of inner loops based on a189
condition requires checking the condition. It is convenient if we can simply fix the190
number of inner loops.191

In this subsection, we describe the “bounded relative error” of the z−subproblem192
in (3.3) and then show that this can be satisfied by running a fixed number of inner193
loops, uniformly for every outer loop.194

Definition 3.3. Given xk, xk+1 and zk, the z−subproblem in PPDHG (3.3) is195
said to be solved with bounded relative error if there is a constant c > 0 such that196

0 ∈ ∂g∗(zk+1) +M2

(
zk+1 − zk −M−1

2 A(2xk+1 − xk)
)

+ εk+1,(3.7)197

‖εk+1‖ ≤ c‖zk+1 − zk‖.(3.8)198199

This manuscript is for review purposes only.



6 Y. LIU, Y. XU, AND W. YIN

Remarkably, this condition does not need to be checked at any iteration. For a200
given c > 0, it can be satisfied by a fixed number of inner loops using proximal gradient201
descent (see Theorem 3.4). One can also use faster solvers for the z−subproblem,202
e.g., FISTA with restart [27], and solvers that suit the subproblem structure, e.g.,203
cyclic proximal BCD (see Theorem 3.6). Although the error in solving z−subproblems204
appears to be neither summable nor square summable at first glance, convergence can205
still be established. We summarize our algorithm in Algorithm 3.1.206

Algorithm 3.1 Inexact preconditioned PDHG
Input: f : Rn → R, g : Rm → R, A ∈ Rm×n, preconditioners M1 and M2,
initial (x0, z0), subproblem solver S for the z−subproblem in (3.3), fixed inner iterations
p, max outer iterations K.
Output: (xK , zK)

1: for k ← 0, 1, ...,K − 1 do
2: xk+1 = ProxM1

f (xk −M−1
1 AT zk);

3: zk+1
0 = zk;

4: for i← 0, 1, ..., p− 1 do
5: zk+1

i+1 = S(zk+1
i , xk+1, xk);

6: end for
7: zk+1 = zk+1

p ; . approximate ProxM2
g∗ (zk +M−1

2 A(2xk+1 − xk))
8: end for

Theorem 3.4. Under Assumption 1, if p ≥ 1 iterations of proximal gradient207

descent with stepsize γ ∈ (0, 2λmin(M2)
λ2
max(M2) ) are applied to solve the z−subproblem in (3.3),208

and is initialized with the last iterate zk, then the subproblem is solved with bounded209
relative error with the following constant for (3.8)210

c = c(p) =

1
γ + λmax(M2)

1− τp
(τp + τp−1),(3.9)211

212

where τ =
√

1− γ(2λmin(M2)− γλ2
max(M2)) < 1.213

Proof. The z−subproblem in (3.4) is of the form214

min
z∈Rm

h1(z) + h2(z),(3.10)215
216

where217

h1(z) = g∗(z),218

h2(z) =
1

2
‖z − zk −M−1

2 A(2xk+1 − xk)‖2M2
.219

220

In Algorithm 3.1, an inexact zk+1 is given by221

zk+1
0 = zk,222

zk+1
i+1 = Proxγh1(zk+1

i − γ∇h2(zk+1
i )), i = 0, 1, ..., p− 1,223

zk+1 = zk+1
p .224225

The optimality condition of the last iteration above reads226

0 ∈ ∂h1(zk+1
p ) +∇h2(zk+1

p−1) +
1

γ
(zk+1
p − zk+1

p−1),227
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compare this with (3.7) and use zk+1
p = zk+1, we have228

εk+1 =
1

γ
(zk+1
p − zk+1

p−1) +∇h2(zk+1
p−1)−∇h2(zk+1

p ),229

we need to show that εk+1 satisfies (3.8).230
Let zk+1

? be the solution of (3.10), α = λmin(M2), and β = λmax(M2), then h1(z)231
is convex and h2(z) is α-strongly convex and β-Lipschitz differentiable. As a result, [3,232
Prop. 26.16(ii)] gives233

‖zk+1
i − zk+1

? ‖ ≤ τ i‖zk+1
0 − zk+1

? ‖, ∀i = 0, 1, ..., p,234

where τ =
√

1− γ(2α− γβ2).235

Let ai = ‖zk+1
i − zk+1

? ‖, then ai ≤ τ ia0. Therefore,236

‖εk+1‖ ≤ (
1

γ
+ β)‖zk+1

p − zk+1
p−1‖(3.11)237

≤ (
1

γ
+ β)(ap + ap−1)(3.12)238

≤ (
1

γ
+ β)(τp + τp−1)a0.(3.13)239

240

On the other hand, we have241

‖zk+1 − zk‖ ≥ a0 − ap242

≥ (1− τp)a0.(3.14)243244

Combining (3.11) and (3.14) gives245

‖εk+1‖ ≤ c‖zk+1 − zk‖,246

where c is given in (3.9).247

Remark 3.5. Similarly to proximal gradient descent, one can show that finite248
iterations of FISTA with restart also satisfies the bounded relative error condition in249
Def. 3.3. The proof is omitted due to space limitation.250

Theorem 3.6. Let Assumption 1 holds and g be block separable, i.e.,251
z = (z1, z2, ..., zl) and g(z) =

∑l
i=1 gi(zi). Let the stepsize of cyclic proximal BCD be252

γ, which is small enough such that253

0 < γ ≤ min

{
2λmin(M2))

λ2
max(M2))

,
1−

√
1− γ(2λmin(M2)− γλ2

max(M2))

4
√

2γlλmax(M2)
,254

1

4lλmax(M2)
,

2lλmax(M2)

17lλmax(M2) + 2(
1−
√

1−γ(2λmin(M2)−γλ2
max(M2))

γ )2

}
.255

256

Then, if p ≥ 1 epochs of cyclic proximal BCD are applied to solve the z−subproblem257
in (3.3), and is initialized with the last iterate zk, then the subproblem is solved with258
bounded relative error with259

c = c(p) =
(lλmax(M2) + 1

γ )(ρp + ρp−1)

1− ρp
,(3.15)260

261

where ρ = 1−
(

1−
√

1−γ(2λmin(M2)−γλ2
max(M2))

)2
2γ < 1.262

Proof. See Appendix B.263
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3.4. Convergence of inexact PPDHG. In this subsection, we proceed to264
establish the convergence of Algorithm 3.1. First, we transform Algorithm 3.1 into265
an ADMM-like algorithm in Proposition 3.8 below. Then, in Theorems 3.11 and 3.12266
below, we prove the convergence of Algorithm 3.1 by using a generalized augmented267
Lagrangian of this ADMM-like algorithm.268

First, let us show that PPDHG (3.3) is equivalent to an ADMM-like algorithm269
applied on the dual problem (1.2), this is similar to the equivalence of PDHG (3.2)270
and Linearized ADMM applied to the dual problem (1.2) shown in [14]. Therefore, we271
call this ADMM-like algorithm Preconditioned Linearized ADMM (PLADMM):272

zk+1 = ProxM2
g∗ (zk +M−1

2 AM−1
1 (−AT zk − yk + uk)),

yk+1 = Prox
M−1

1

f∗ (uk −AT zk+1),

uk+1 = uk −AT zk+1 − yk+1.

(3.16)273

274
275

Remark 3.7. When M1 = 1
τ I,M2 = λI, PLADMM (3.16) is Linearized ADMM,276

or Split Inexact Uzawa [38].277

Furthermore, the Inexact PPDHG in Algorithm 3.1 is equivalent to Inexact278
PLADMM, which is summarized in Algorithm 3.2.279

Let us also define the following generalized augmented Lagrangian for PLADMM:280

L(z, y, u) = g∗(z) + f∗(y) + 〈−AT z − y,M−1
1 u〉+

1

2
‖AT z + y‖2

M−1
1
.(3.17)281

282

Inspired by the framework of [36], this generalized augmented Lagrangian will serve283
as a Lyapunov function to establish convergence of Algorithm 3.2 and 3.1.284

Algorithm 3.2 Inexact preconditioned linearized ADMM
Input: f∗ : Rn → R, g∗ : Rm → R, A ∈ Rm×n, preconditioners M1 and M2,
initial vector (z0, y0, u0), subproblem solver S for the z−subproblem in (3.16), number
of inner loops p, number of outer iterations K.
Output: (zK , yK , uK)

1: for k ← 0, 1, ...,K − 1 do
2: zk+1

0 = zk;
3: for i← 0, 1, ..., p− 1 do
4: zk+1

i+1 = S(zk+1
i , yk, uk);

5: end for
6: zk+1 = zk+1

p ; . approximate ProxM2
g∗ (zk +M−1

2 AM−1
1 (−AT zk − yk + uk)).

7: yk+1 = Prox
M−1

1

f∗ (uk −AT zk+1);
8: uk+1 = uk −AT zk+1 − yk+1;
9: end for

Proposition 3.8. Under Assumption 1 and the transforms uk = M1x
k, yk+1 =285

uk −AT zk − uk+1, PPDHG (3.3) is equivalent to PLADMM (3.16), and the Inexact286
PPDHG in Algorithm 3.1 is equivalent to the Inexact PLADMM in Algorithm 3.2.287

Proof. First, let us transform PPDHG in (3.3) to PLADMM (3.16).288
Set uk = M1x

k, yk+1 = uk −AT zk − uk+1, then (2.2) and (3.3) gives289

yk+1 = M1x
k −AT zk −M1x

k+1 = Prox
M−1

1

f∗ (uk −AT zk),290291
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and we also have292

uk+1 = uk −AT zk − yk+1,293

zk+1 = ProxM2
g∗ (zk +M−1

2 AM−1
1 (−AT zk − yk+1 + uk+1)).294295

If z-update is performed first, then we arrive at PLADMM (3.16).296
Notice that for the inexact PPDHG in Algorithm 3.1, we are solving the297

z−subproblem of PPDHG (3.3) with bounded relative error as in Definition 3.3,298
therefore we are essentially doing the same to the z−subproblem of PLADMM (3.16),299
which gives Algorithm 3.2.300

In order to establish convergence of Algorithm 3.1, we also need the following301
Assumption 2, in addition to Assumption 1.302

Assumption 2.303
1. f(x) is µf−strongly convex.304
2. g∗(z) + f∗(−AT z) is coercive, i.e.,305

lim
‖z‖→∞

g∗(z) + f∗(−AT z) =∞.306

3. g∗(z) is a KŁ function.307

Theorem 3.9. Under Assumptions 1 and 2. Choose the preconditioners M1,M2308
and the number of inner loops p in Algorithm 3.1 such that309

C1 =
1

2
M−1

1 − ‖M1‖
µ2
f

I � 0,310

C2 = M2 −
1

2
AM−1

1 AT − c(p)I � 0,311
312

where c(p) is related to the z−subproblem solver S and M2 (see, e.g., (3.9) and (3.15)).313
Define Lk := L(zk, yk, uk), then the inexact PLADMM in Algorithm 3.2 satisfies the314
following sufficient descent and lower boundedness properties:315

Lk − Lk+1 ≥ ‖yk − yk+1‖2C1
+ ‖zk − zk+1‖2C2

,(3.18)316

Lk ≥ g∗(z?) + f∗(−AT z?) > −∞.(3.19)317318

Proof. Since the z−subproblem of Algorithm 3.2 is solved with bounded relative319
error in Def. 3.3, we have320

0 ∈ ∂g∗(zk+1) +M2(zk+1 − zk −M−1
2 AM−1

1 (−AT zk − yk + uk)) + εk+1,(3.20)321322

where εk+1 satisfies (3.8):323

‖εk+1‖ ≤ c(p)‖zk+1 − zk‖.(3.21)324325

The y and u updates gives326

0 = ∇f∗(yk+1) +M−1
1 (yk+1 − uk +AT zk+1) = ∇f∗(yk+1)−M−1

1 uk+1,(3.22)327

uk+1 = uk −AT zk+1 − yk+1.(3.23)328329
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In order to show (3.18), let us write330

g∗(zk) ≥ g∗(zk+1)331

+ 〈M2(zk − zk+1) +AM−1
1 (−AT zk − yk + uk)− εk+1, zk − zk+1〉,332

f∗(yk) ≥ f∗(yk+1) + 〈M−1
1 uk+1, yk − yk+1〉,333334

Assembling these inequalities with (3.21) gives us335

Lk − Lk+1 ≥ ‖zk − zk+1‖2M2−c(p)I336

+ 〈AM−1
1 (−AT zk − yk + uk), zk − zk+1〉+ 〈M−1

1 uk+1, yk − yk+1〉337

+ 〈−AT zk − yk,M−1
1 uk〉 − 〈AT zk+1 − yk+1,M−1

1 (uk −AT zk+1 − yk+1)〉338

+
1

2
‖AT zk + yk‖2

M−1
1
− 1

2
‖AT zk+1 + yk+1‖2

M−1
1

339

= ‖zk − zk+1‖2M2−c(p)I340

+ 〈AM−1
1 (−AT zk − yk), zk − zk+1〉+ 〈M−1

1 uk+1, yk − yk+1〉(A)341

+ 〈−yk,M−1
1 uk〉 − 〈−yk+1,M−1

1 uk〉(B)342

+
1

2
‖AT zk + yk‖2

M−1
1
− 3

2
‖AT zk+1 + yk+1‖2

M−1
1
,343

344

where the terms in (A) and (B) simplify to345

〈AM−1
1 (−AT zk − yk), zk − zk+1〉+ 〈M−1

1 (−AT zk+1 − yk+1), yk − yk+1〉.(3.24)346347

Now we will use the following cosine rule on the two inner products above:348

〈a− b, a− c〉M−1
1

=
1

2
‖a− b‖2

M−1
1

+
1

2
‖a− c‖2

M−1
1
− 1

2
‖b− c‖M−1

1
.349

Set a = AT zk, c = AT zk+1, and b = −yk to obtain350

〈AM−1
1 (−AT zk − yk), zk − zk+1〉 = −1

2
‖AT zk + yk‖2

M−1
1
− 1

2
‖AT zk −AT zk+1‖2

M−1
1

351

+
1

2
‖yk +AT zk+1‖2

M−1
1
.(3.25)352

353

Set a = yk+1, c = yk, and b = −AT zk+1 to obtain354

〈M−1
1 (−AT zk+1 − yk+1), yk − yk+1〉 =

1

2
‖AT zk+1 + yk+1‖2

M−1
1

+
1

2
‖yk − yk+1‖M−1

1
355

− 1

2
‖AT zk+1 + yk‖2

M−1
1
.(3.26)356

357

Combining (3.24), (3.25), and (3.26) yields358

Lk − Lk+1 ≥ ‖zk − zk+1‖2
M2− 1

2AM
−1
1 AT−c(p)I + ‖yk − yk+1‖21

2M
−1
1

359

− ‖AT zk+1 + yk+1‖2
M−1

1
.(3.27)360

361

Since f is µf -strongly convex, we know that ∇f∗ is 1
µf
−Lipschitz continuous. Conse-362

quently,363

‖AT zk+1 + yk+1‖2
M−1

1
= ‖uk − uk+1‖2

M−1
1
≤ 1

λmin(M−1
1 )
‖M−1

1 (uk − uk+1)‖2364

(3.22)
≤ ‖M1‖

µ2
f

‖yk − yk+1‖2.(3.28)365
366

This manuscript is for review purposes only.



ACCELERATION OF PRIMAL-DUAL METHODS 11

Combining (3.27) and (3.28) gives (3.18).367
Now, to show (3.19), we use (3.22) to get368

f∗(yk) ≥ f∗(−AT zk) + 〈M−1
1 uk, yk +AT zk〉,369

And, thus,370

Lk = g∗(zk) + f∗(yk) + 〈−AT zk − yk,M−1
1 uk〉+

1

2
‖AT zk + yk‖2

M−1
1

371

≥ g∗(zk) + f∗(−AT zk) +
1

2
‖AT zk + yk‖2

M−1
1
,(3.29)372

373

and finally (3.19).374

Remark 3.10. In order for C2 � 0, we can set M2 = AM−1
1 AT as suggested by375

subsection 3.2, since c(p) ∝ αp for some 0 < α < 1 in (3.9) and (3.15), we know that376
there exists p0 ≥ 1 such that C2 � 0 for any p ≥ p0. In our numerical experiments,377
Algorithm 3.1 always converges for p ≥ 1.378

We conclude this section by showing the convergence of (xk, zk) in Algorithm 3.1379
to a primal-dual solution pair of (1.1) and (1.2).380

Theorem 3.11. Let the assumptions in Theorem 3.9 hold. Then, (xk, zk) in381
Algorithm 3.1 is bounded, and any cluster point of {xk, zk} is a primal-dual solution382
pair of (1.1) and (1.2).383

Proof. According to Theorem 3.8, We just need to show that {M−1
1 uk, zk} is384

bounded and its cluster points are primal-dual solution pairs of (1.1).385
Since Lk is noincreasing, (3.29) tells us that386

g∗(zk) + f∗(−AT zk) +
1

2
‖AT zk + yk‖2

M−1
1
≤ L0 < +∞.387

Since g∗(z) + f∗(−AT z) is coercive, we get that {zk} is bounded, and from the388
boundedness of {AT zk + yk}, the boundedness of {yk}. Furthermore, (3.22) gives us389

‖M−1
1 (uk − u0)‖ ≤ 1

µf
‖yk − y0‖.390

Therefore, {M−1
1 uk} is also bounded.391

Suppose (zc, yc, uc) is a cluster point of {zk, yk, uk}. Let us show that (zc, yc, uc)392
is saddle point of L(z, y, u), i.e.,393

0 ∈ ∂L(zc, yc, uc),(3.30)394395

or equivalently,396

0 ∈ ∂g∗(zc)−AM−1
1 uc,397

0 = ∇f∗(yc)−M−1
1 uc,398

0 = AT zc + yc,399400

which ensures (M−1
1 uc, zc) as a primal-dual solution pair of (1.1).401

In order to show (3.30), we first notice that (3.17) gives402

∂xL(zk+1, yk+1, uk+1) = ∂g∗(zk+1)−AM−1
1 uk+1 +AM−1

1 (AT zk+1 + yk+1),403

∇yL(zk+1, yk+1, uk+1) = ∇f∗(yk+1)−M−1
1 uk+1 +M−1

1 (AT zk+1 + yk+1),404

∇uL(zk+1, yk+1, uk+1) = M−1
1 (−AT zk+1 − yk+1).405406
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12 Y. LIU, Y. XU, AND W. YIN

Compare these with the optimality conditions (3.20), (3.22), and (3.23), we have407

dk+1 = (dk+1
z , dk+1

y , dk+1
u ) ∈ ∂L(zk+1, yk+1, uk+1),408

where409

dk+1
z = M2(zk − zk+1) + 2AM−1

1 (uk − uk+1)−AM−1
1 (uk−1 − uk)− εk+1,410

dk+1
y = M−1

1 (uk − uk+1),411

dk+1
u = M−1

1 (uk+1 − uk).412413

Since (3.18), and (3.19) implies zk − zk+1, yk − yk+1 → 0, (3.22) gives uk − uk+1 → 0.414
Combine these with (3.8), we have dk → 0.415

Finally, let us take a subsequence {zks , yks , uks} → (zc, yc, uc), since dks → 0416
as s → +∞, [33, Def. 8.3] and [33, Prop. 8.12] yield (3.30), which tells us that417
(M−1

1 uc, zc) is a primal-dual solution pair of (1.1).418

Also, we can show that (xk, zk) in Algorithm 3.1 actually converges. Since the419
proof consists of a standard technique of using the KŁ property in Assumption 2,420
which is not very relevant to the main idea of this subsection, we leave it to Appendix421
C.422

Theorem 3.12. Let the assumptions in Theorem 3.9 hold, then the {xk, zk} in423
Algorithm 3.1 converges to a primal-dual solution pair of (1.1).424

Proof. See Appendix C.425

4. Numerical experiments. In this section, we compare our inexact precondi-426
tioned PDHG in algorithm 3.1 with PDHG (3.2) and PDHG with diagonal precon-427
ditioning [29]. We consider three popular applications of PDHG: TV-L1 denoising,428
graph cuts, and estimation of earth mover’s distance. Although they do not satisfy all429
the assumptions in our theory, we still observe significant speedup compared to other430
algorithms.431

When we write these examples in the form of (1.1), A is one of the following:432
Case 1: The 2D discrete gradient operator D : RM×N → R2M×N :433

Let the images be of size M ×N , and h be the length of discretization interval,434
then435

(Du)i,j =

(
(Du)1

i,j

(Du)2
i,j

)
,436

437

where438

(Du)1
i,j =

{
1
h (ui+1,j − ui,j) if i < M,

0 if i = M,
439

(Du)2
i,j =

{
1
h (ui,j+1 − ui,j) if j < N,

0 if j = N.
440
441

Case 2: The weighted gradient operator Dw : RM×N → R2M×N :442

Dw = diag(w)D,443

where w ∈ (R+)2MN is a weight vector.444
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Case 3: The 2D discrete divergence operator div: R2M×N → RM×N :445

div(p)i,j = h(p1
i,j − p1

i−1,j + p2
i,j − p2

i,j−1),(4.1)446447

where p = (p1, p2)T ∈ R2M×N , p1
0,j = p1

M,j = 0 and p2
i,0 = p2

i,N = 0 for448
i = 1, ...,M , j = 1, ..., N .449

In view of the special structures of these operators, we choose cyclic proximal450
Block Coordinate Descent (BCD) as the z-subproblem solver in Algorithm 3.1. In451
particular, we split {1, 2, ...m} into 2 blocks (in case 3) or 4 blocks (in cases 1 and 2)452
according to Claims 4.1 and 4.2, which are inspired by the popular red-black ordering453
[34] for solving sparse linear system.454

According to Theorem 3.6, finite inner loops of cyclic proximal BCD satisfy the455
bounded relative error condition in Def.3.3, and we can expect that this solver brings456
faster overall convergence. The intuition is that when g∗ is linear (or equivalently,457
g is a δ function), the z−subproblem in Alg.3.1 reduces to a linear system with a458
structured sparse matrix AAT . As a result, Gradient Descent amounts to Richardson459
method [32, 34] and cyclic BCD becomes Gauss-Seidel method [16, 34]. In view of the460
special structures of A, Gauss-Seidel is faster (see Chapter 4 of [34]). Therefore, we461
can anticipate a faster convergence when cyclic proximal BCD is used.462

Furthermore, the following two claims tell us that under special block designs463
inspired by red-black ordering, the two subproblems have closed-form solutions, which464
are easy to implement and compute. Furthermore, updates within each block can be465
implemented in parallel.466

Fig. 1. two-block ordering in Claim 4.1 Fig. 2. four-block ordering in Claim 4.2

Claim 4.1. When A = div (i.e. AT = −D) and M2 = τAAT , for z ∈ RM×N , we467
separate z into two block zb, zr where468

zb := {zi,j | i+ j is even}, zr := {zi,j | i+ j is odd},469

for 1 ≤ i ≤ M , 1 ≤ j ≤ N . If g(z) = Σi,jgi,j(zi,j) and proxλg∗i,j have closed-form470
solutions for all 1 ≤ i ≤ M , 1 ≤ j ≤ N and λ > 0, then BCD subproblems on the471
z−subproblem of Algorithm 3.1 have closed-form solutions, and updates within each472
block can be implemented in parallel.473

This manuscript is for review purposes only.



14 Y. LIU, Y. XU, AND W. YIN

Proof. As illustrated in Fig. 1, on the z−subproblem, the update of every black474
node depends only on its neighbor red nodes, thus all the black nodes can be updated475
in parallel and with closed-form solutions. The same argument applies to the red476
nodes. See Appendix D for a complete explanation.477

Claim 4.2. When A = D or A = Dw (i.e. AT = −div or AT = −div diag(w))478
and M2 = τAAT , for z = (z1, z2)T ∈ R2M×N , we separate z into four blocks zb, zr,479
zy and zg, where480

zb = {z1
i,j | i is odd}, zr = {z1

i,j | i is even},481

zy = {z2
i,j | j is odd}, zg = {z2

i,j | j is even},482483

for 1 ≤ i ≤ M , 1 ≤ j ≤ N . If g(z) = Σi,jgi,j(zi,j) and proxλg∗i,j have closed-form484
solutions for all 1 ≤ i ≤ M , 1 ≤ j ≤ N and λ > 0, then BCD subproblems on the485
z−subproblem of Algorithm 3.1 have closed-form solutions, and updates within each486
block can be implemented in parallel.487

Proof. In Figure 2, the 4 blocks are in 4 different colors. Nodes with the same488
color can be updated in parallel with closed-form solutions, as within one color nodes489
are independent with each other during the updates. See Appendix D for details.490

In Table 1, Table 2 and Figure 7, PDHG denotes the PDHG in (3.2); DP-PDHG491
denotes the diagonal preconditioned PDHG in [29], PPDHG denotes PPDHG in492

(3.3) where the (k + 1)th z-subproblem is solved until ‖zk−zk+1‖2
max{1,‖zk+1‖2} < 10−5 using493

the TFOCS [4] implementation of FISTA with restart; Alg. 3.1, BCD denotes our494
inexact preconditioned PDHG in Algorithm 3.1, where the inner loop solver S is cyclic495
proximal BCD. Except for DP-PDHG, only the best runtime over certain choices of496
parameters is presented.497

Comparision of PDHG and DP-PDHG have already been presented for TV-L1498
denoising and graph cuts in [29], and PDHG is proposed to estimate the earth mover’s499
distance in [22]. In order to provide a direct comparision, we use their problem500
formulations.501

4.1. Total variation based image denoising. The (discrete) TV-L1 model502
for image denoising can be expressed as503

minimize Φ(u) = ‖Du‖1 + λ‖u− f‖1,504

where D is the 2D diecrete gradient operator with h = 1, u ∈ RM×N is the sought505
solution, f ∈ RM×N is a noisy input image, and λ is a regularization parameter. In506
our experiment we input a 1024× 1024 image with noise level 0.15 and set λ = 1, see507

Fig. 3. We run the algorithms until δk := |Φk−Φ?|
|Φ?| < 10−6, where Φk is the objective508

value at kth iteration and Φ∗ is the optimal objective value obtained by calling CVX.509
Our Numerical results on TV-L1 model are summarized in Table 1, where the best510

results for τ ∈ {10, 1, 0.1, 0.01, 0.001} and p ∈ {1, 2, 3} are presented. Our Algorithm511
3.1 is significantly faster than the other three algorithms.512

Remarkably, our algorithm’s number of outer iterations is less than that of PPDHG513

with the stopping criterion ‖zk−zk+1‖2
max{1,‖zk+1‖2} < 10−5, as this kind of stopping criteria514

may become looser as zk is closer to z?. In this example, ‖zk−zk+1‖2
max{1,‖zk+1‖2} < 10−5 only515

requires 1 inner iteration of FISTA when Outer Iter ≥ 368, while as high as 228 inner516
loops on average during the first 100 outer iterations. In comparison, our algorithm517
achieves both less outer iterations and cheaper cost per outer iteration.518
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In addition, the diagonal preconditioner designed in [29] has little effects when519
A = D. In fact, M1 = diag(Σi|Ai,j |) will be 4In and M2 = diag(Σj |Ai,j |) will be 2Im520
if we ignore the Neumann boundary condition. With these fixed and almost the same521
parameters, DP-PDHG performs even worse than PDHG.522

Method Parameters Outer Iter Runtime(s)
PDHG τ = 0.01,M1 = τ−1In,M2 = τ‖D‖2Im 2990 114.2576

DP-PDHG M1 = diag(Σi|Di,j |),M2 = diag(Σj |Di,j |) 8856 329.7890
PPDHG (3.3) τ = 0.1,M1 = τ−1In,M2 = τDDT 963 5.9777× 103

Alg. 3.1, BCD τ = 0.01,M1 = τ−1In,M2 = τDDT , p = 1 541 26.2704
Table 1

TV-L1 denoising.

Fig. 3. Noisy image Fig. 4. Denoised image (Alg. 3.1, BCD)

4.2. Graph cuts. The total-variation-based graph cut model is to minimize the523
follow weighted TV energy:524

minimize ‖Dwu‖1 + 〈u, ωu〉
subject to 0 ≤ u ≤ 1,

525

where wu ∈ RM×N is a vector of unary weights, wb ∈ R2MN is a vector of binary526
weights, and Dw = diag(wb)D, where D is the 2D diecrete gradient operator with527

h = 1. Specifically, wui,j = α(‖Ii,j − µf‖2 − ‖Ii,j − µb‖2), wb,1i,j = exp(−β|Ii+1,j − Ii,j |)528

and wb,2i,j = exp(−β|Ii,j+1− Ii,j |). In our experiment the image is of the size 660× 720,529
and we set α = 1/2, β = 10, µf = [0; 0; 1] (for the blue foreground) and µb = [0; 1; 0]530

(for the green background). We run all algorithms until δk := |Φk−Φ?|
|Φ?| < 10−8, where531

Φk is the objective value at kth iteration and Φ∗ is the optimal objective value obtained532
by calling CVX.533

The best results of τ ∈ {10, 1, 0.1, 0.01, 0.001} and p ∈ {1, 2, 3} are summarized in534
Table 2, where we can see that our algorithm yields the best performance on runtime.535
Also, our algorithm’s number of outer iterations is close to that of PPDHG.536
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Method Parameters Outer Iter Runtime(s)
PDHG τ = 1,M1 = τ−1In,M2 = τ‖Dw‖2Im 5529 140.5777

DP-PDHG M1 = diag(Σi|Dwi,j |),M2 = diag(Σj |Dwi,j |) 3572 108.3573
PPDHG (3.3) τ = 10,M1 = τ−1In,M2 = τDwD

T
w 282 938.3787

Alg. 3.1, BCD τ = 10,M1 = τ−1In,M2 = τDwD
T
w, p = 2 411 14.9663

Table 2
Graph cuts

Fig. 5. Input image Fig. 6. Graph cut (Alg. 3.1, BCD)

4.3. Estimation of earth mover’s distance. We consider the estimation of537
earth mover’s distance, which is a popular model in image processing, computer vision538
and statistics [20, 25, 28]. From [22] we know that the problem can be formulated as539

(4.2) minimize ‖m‖1,2
subject to div(m) + ρ1 − ρ0 = 0,

540

where m ∈ R2M×N is the sought flux vector on the M ×N grid, and ρ0, ρ1 represents541
two mass distributions on the M ×N grid. The setting in our experiment here is the542
same with that in [22], i.e. M = N = 256, h = N−1

4 , and for ρ0 and ρ1 see Fig. 8.543
Since the iterates mk may not satisfy the linear constraint, the objective Φ(m) =544

I{m|div(m)=ρ0−ρ1} + ‖m‖1,2 is not comparable. Instead, we compare ‖mk‖1,2 and545
the constraint violation until k = 100000 outer iterations in Fig. 7, where we set546
τ = 3 × 10−6 as in [22], and σ = 1

τ‖div‖2 . In Fig. 7, we can see that our algorithm547

provides much lower constraint violation as well as much better estimation for the548
earth mover’s distance ‖m‖1,2. Fig. 8 shows the solution obtained by Alg. 3.1, where549
m is the flux that moves the standing cat ρ1 into the crouching cat ρ0. DP-PDHG550
and PPDHG are extremely slow in this example. Similar to 4.1, when A = div,551
the diagonal preconditioners proposed in [29] are approximately equivalent to fixed552
constant parameters τ = 1

2h , σ = 1
4h and they lead to extremely slow convergence. As553

for PPDHG, it suffers from the expensive cost per outer iteration as in the previous554
two experiments.555

It is worth mentioning that unlike [22], the algorithms in our experiments are not556
implemented in a parallel fashion. On the other hand, in our Algorithm 3.1 with cyclic557
proximal BCD as the inner loop solver, coordinates in each block in the block designs558
of Fig. 1 and 2 can be updated in parallel. Therefore, one can expect a further speed559
up by a parallel implementation.560
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Results on EMD estimation and constraint violation during 100000 outer iterations

Fig. 7. For PDHG, τ = 3× 10−6, σ = 1
τ‖div‖2 ; For Alg 3.1, BCD, τ = 3× 10−6, M1 = τ−1In,

M2 = τdivdivT, p = 2. ‖m∗|‖1,2 = 0.6718 is given by gurobi of CVX.

Fig. 8. ρ0, ρ1 are the white standing cat, and the black crouching cat, respectively. The images
are of the size 256× 256, and the earth mover’s distance between ρ0 and ρ1 is 0.6718.

5. Concluding Remarks. In this paper, We provide an algorithmic framework561
for apply preconditioning and fast subproblem solvers on PDHG and ADMM with562
convergence guarantees. Remarkably, we allow a fixed number of inner iterations for563
one of the subproblems. Although the examples in our numerical experiments do564
not satisfy all the assumptions, significant accelerations in both outer iteration and565
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runtime are observed when proper preconditioners and subproblem solvers are applied.566
There are still some interesting questions, which need to addressed in the fu-567

ture: (a) According to Theorem 3.2, there may be better preconditioners than568
M1 = 1

τ In×n,M2 = τAAT , which lead to ADMM iterations. (b) It is possible569
that convergence of Algorithm 3.1 can also be established for even faster acclerated570
subproblem solvers like APCG [23], NU_ACDM [1], and A2BCD [19]. (c) It is possible571
that a broad class of algorithms can be accelerated by integrating preconditioning,572
fixed number of inner loops, and suitable subproblem solvers. We hope our framework573
can be applied on more algorithms with faster convergence guarantees.574

Appendix A. ADMM as a special case of PPDHG.575
576

In this section we show that if we choose M1 = 1
τ and M2 = τAAT in PPDHG577

(3.3), then it is equivalent to ADMM on the primal problem (1.1).578
By Theorem 1 of [37], we know that ADMM is primal-dual equivalent, in the sense579

that one can recover primal iterates from dual iterates and vice versa. Therefore, it580
suffices to show that M1 = 1

τ and M2 = τAAT in PPDHG (3.3) on the primal problem581
is equivalent to ADMM on the dual problem (1.2).582

In Theorem 3.8 we have shown that, under an appropriate change of variables,583
PPDHG on the primal is equivalent to PLADMM in (3.16) on the dual. As a result,584
we just need to demonstrate that PLADMM on the dual is exactly ADMM on the585
dual when M1 = 1

τ In×n and M2 = τAAT .586
For the z−update in (3.16), we have587

zk+1 = arg min
z∈Rm

{g∗(z)− τ〈z − zk, A(−AT zk − yk + uk)〉+
τ

2
‖z − zk‖2AAT }588

= arg min
z∈Rm

{g∗(z)− τ〈z − zk, A(−yk + uk)〉+
τ

2
‖z‖2AAT }589

= arg min
z∈Rm

{g∗(z) + τ〈z,A(yk − uk)〉+
τ

2
‖AT z‖2}590

= arg min
z∈Rm

{g∗(z) + τ〈AT z,−uk〉+
τ

2
‖AT z + yk‖2}591

= arg min
z∈Rm

{g∗(z) + τ〈−AT z − yk, uk〉+
τ

2
‖AT z + yk‖2}.(A.1)592

593

and for the y-update we have594

yk+1 = Prox
M−1

1

f∗ (uk −AT zk+1)595

= arg min
y∈Rn

{f∗(y) +
τ

2
‖y − uk +AT zk+1‖2}596

= arg min
y∈Rn

{f∗(y) + τ〈−AT zk+1 − y, uk〉+
τ

2
‖AT zk+1 + y‖2}.(A.2)597

598

Define vk = τuk, (A.1), (A.2), and the u−update in (3.16) become599

zk+1 = arg min
z∈Rm

{g∗(z) + 〈−AT z − yk, vk〉+
τ

2
‖AT z + yk‖2},600

yk+1 = arg min
y∈Rn

{f∗(y) + 〈−AT zk+1 − y, vk〉+
τ

2
‖AT zk+1 + y‖2},601

vk+1 = vk − τ(AT zk+1 + yk+1),602603
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which are ADMM iterations on the dual problem (1.2).604

Appendix B. Proof of Theorem 3.6: Cyclic proximal BCD satisfies605
bounded relative error condition.606

The z−subproblem in (3.3) is of the form607

min
z∈Rm

h1(z) + h2(z),608

where609

h1(z) = g∗(z) =

l∑
i=1

g∗i (zi),610

h2(z) =
1

2
‖z − zk −M−1

2 A(2xk+1 − xk)‖2M2
.611

612

And zk+1 is given by613

zk+1
0 = zk,614

zk+1
i+1 = S(zk+1

i , xk+1, xk), i = 0, 1, ..., p− 1,615

zk+1 = zk+1
p .616617

Here the inner loop solver S is cyclic proximal BCD.618
Let us define619

T (z) = Proxγg∗(z)(z − γ∇h2(z))),620

B(z) =
1

γ
(z − T (z)),621

622

and the ith coordinate operator of B:623

Bi(z) = (0, ..., (B(z))i, ..., 0).624

Then625

zk+1
i+1 = S(zk+1

i , xk+1, xk) = (I − γBl)(I − γB2)...(I − γB1)zk+1
i .626

By [3, Prop. 26.16(ii)], we know that T (z) is a contraction with coefficient θ =627 √
1− γ(2λmin(M2)− γλ2

max(M2)). Together with [3, ], we know that for ∀z1, z2 ∈ Rm628
we have,629

〈B(z1)−B(z2), z1 − z2〉 =
1

γ
‖z1 − z2‖2 −

1

γ
〈T (z1)− T (z2), z1 − z2〉630

≥ µ‖z1 − z2‖2,631632

where µ = 1−θ
γ .633

Let zk+1
? = arg minz∈Rm{h1(z) + h2(z)}. By [9, Thm 3.5], we know that634

‖zk+1
i − zk+1

? ‖ ≤ ρi‖zk+1
0 − zk+1

? ‖, ∀i = 1, 2, ..., p.(B.1)635636

where ρ = 1− γµ2

2 .637
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Let yj = (I − γBj)...(I − γB1)zk+1
p−1 for j = 1, ..., l and y0 = zk+1

p−1 . Note that638

(zk+1
p )j = (yj)j for j = 1, 2, ..., l, and the blocks of yj satisfies639

(yj)t =

{(
Proxγg∗

(
yj−1 − γ∇h2(yj−1)

))
t
, if t = j

(yj−1)t, otherwise.
640

641

On the other hand, we have642

Proxγg∗
(
yj−1 − γ∇h2(yj−1)

)
= arg min

y∈Rm

{g∗(y) +
1

2γ
‖y − yj−1 + γ∇h2(yj−1)‖2}.643

Since g∗ and ‖ · ‖2 are separable, we obtain644

0 ∈ ∂g∗j ((yj)j) +
1

γ

(
(yj)j − (yj−1)j + γ

(
∇h2(yj−1)

)
j

)
, ∀j = 1, 2, ..., l,645

or equivalently,646

0 ∈ ∂g∗j ((zk+1
p )j) +

1

γ

(
(zk+1
p )j − (zk+1

p−1)j + γ
(
∇h2(yj−1)

)
j

)
, ∀j = 1, 2, ..., l.647

As a result,648

0 ∈ ∂g∗(zk+1
p ) +

1

γ

(
zk+1
p − zk+1

p−1 + γξp

)
, ∀j = 1, 2, ..., l,649

where (ξp)j =
(
∇h2(yj−1)

)
j
for j = 1, 2, ..., l. Compare this with (3.7), we know that650

εk+1 = ξp −∇h2(zk+1
p ) +

1

γ
(zk+1
p − zk+1

p−1).651

Notice that the first j − 1 blocks of yj−1 are the same with those of yl = zk+1
p , and652

the rest of the blocks are the same with those of y0 = zk+1
p−1 , so we have653

‖εk+1‖ ≤
l∑

j=1

λmax(M2)‖yj−1 − zk+1
p ‖+

1

γ
‖zk+1
p − zk+1

p−1‖654

≤ lλmax(M2)‖zk+1
p−1 − zk+1

p ‖+
1

γ
‖zk+1
p − zk+1

p−1‖655

≤ (lλmax(M2) +
1

γ
)(‖zk+1

p − zk+1
? ‖+ ‖zk+1

p−1 − zk+1
? ‖)656

657

Combine this with (B.1), we arrive at658

‖εk+1‖ ≤ (lλmax(M2) +
1

γ
)(ρp + ρp−1)‖zk+1

0 − zk+1
? ‖.(B.2)659

660

We also have661

‖zk+1 − zk‖ = ‖zk+1
p − zk+1

0 ‖662

≥ ‖zk+1
0 − zk+1

? ‖ − ‖zk+1
p − zk+1

? ‖663

≥ (1− ρp)‖zk+1
0 − zk+1

? ‖664665
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Combine this with (B.2), we obtain666

‖εk+1‖ ≤
(lλmax(M2) + 1

γ )(ρp + ρp−1)

1− ρp
‖zk+1 − zk‖.667

Appendix C. Proof of Theorem 3.12: KŁ property gives sequence con-668
vergence.669

According to Theorem 3.8, We just need to show that {M−1
1 uk, zk} converges to670

a primal-dual solution pair of (1.1).671
By Theorem 3.11, we can take {zks , yks , uks} → (zc, yc, uc). Note that672

L(zks , yks , uks) is monotonic nonincreasing and lower bounded due to Theorem 3.9,673
which implies the convergence of L(zks , yks , uks). Since L is lower semicontinuous, we674
have675

L(zc, yc, uc) ≤ lim
s→∞

L(zks , yks , uks).(C.1)676
677

Since the only potentially discontinuous terms in L is g∗, we have678

lim
s→∞

L(zks , yks , uks)− L(zc, yc, uc) ≤ lim sup
s→∞

g∗(zks)− g∗(zc).(C.2)679
680

By (3.20), we know that681

g∗(zc) ≥ g∗(zks)682

+ 〈M2(zks−1 − zks) +AM−1
1 (−AT zks−1 − yks−1 + uks−1)− εks , zc − zks〉,683684

By Theorem 3.9, we know that zks−1 − zks → 0. Since zks → zc and {zk, yk, uk} is685
bounded, we obtain686

lim sup
s→∞

g∗(zks)− g∗(zc) ≤ 0.687

Combine this with (C.1) and (C.2), we conclude that lims→∞ L(zks , yks , uks) =688
L(zc, yc, uc).689

Since g∗ is a KŁ function, L is also KŁ. As a result, similar to Theorem 2.9 of [2],690
we can claim the convergence of {zk, yk, uk} to {zc, yc, uc}.691

Appendix D. Two-block ordering in Claim 4.1 and Four-block ordering692
in Claim 4.2.693

According to (3.4), when M2 = τAAT , the z−subproblem of Algorithm 3.1 is694

zk+1 = arg min
z∈Rm

{g∗(z)− 〈z − zk, A(2xk+1 − xk)〉+
τ

2
‖AT (z − zk)‖22}.(D.1)695

696

Let us prove Claim 4.1 first.697
In claim 4.1, A = div ∈ RMN×2MN and z ∈ RMN . Following the definition of the698

sets zb and zr in Claim 4.1, we separate the MN columns of AT = −D into two blocks699
Lb, Lr associated with zb and zr, respectively. Therefore, we have AT z = Lbzb + Lrzr700
for any z ∈ RMN .701

By the red-black ordering in Fig. 1, different columns of Lb are orthogonal to each702
other, therefore, LbTLb is diagonal. Similarly, LrTLr is also diagonal.703

Let b be the set of black nodes and r the set of red nodes, then we can rewrite704
(D.1) as705

zk+1 = arg min
zb,zr∈RMN/2

{g∗b (zb) + g∗r (zr) + 〈zb + zr, c
k〉(D.2)706

+
τ

2
‖Lb(zb − zkb ) + Lr(zr − zkr )‖22},707

708
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where g∗b (zb) =
∑

(i,j)∈b g
∗
i,j(zi,j), g∗r (zr) =

∑
(i,j)∈r g

∗
i,j(zi,j), and ck = −A(2xk+1 −709

xk).710
The cyclic proximal BCD applied on black and red blocks is then711

z
k+ t+1

p

b = proxτLb
TLb

g∗b (·)+〈·,τLb
TLr(z

k+ t
p

r −zkr )+ckb 〉
(z
k+ t

p

b ),(D.3)712

z
k+ t+1

p
r = proxτLr

TLr

g∗r (·)+〈·,τLr
TLb(z

k+ t+1
p

b −zkb )+ckr 〉
(z
k+ t

p
r ).(D.4)713

714

for t = 0, 1, ..., p− 1, where p is the number of inner loops as in Algorithm 3.1.715
These updates have closed-form solutions since LTb Lb and L

T
r Lr are diagonal, and716

all proxλg∗i,j have closed form solutions. Furthermore, updates within each block can717
be implemented in parallel.718

The proof of Claim 4.2 follows in a similar way. When A = D or A = Dw, we719
separate the columns of AT into four blocks Lb, Lr, Ly, Lg associated with zb, zr,720
zy ,zg, respectively. Therefore, we have AT z = Lbzb + Lrzr + Lyzy + Lgzg for all721
z ∈ R2MN . Similarly, by the block design in Fig. 2, we know that cyclic proximal722
BCD iterations on the z−subproblem have closed-form solutions, and updates within723
each block can be implemented in a parallel fashion.724
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