Mathematical Analysis of Adversarial Attacks*
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Abstract. In this paper, we analyze the efficacy of the fast gradient sign method (FGSM) and the Carlini-
Wagner’s Ly (CW-L2) attack. We prove that, within a specific regime, the untargeted FGSM can
fool any convolutional neural nets (CNN) with ReLU activation; the targeted FGSM can mislead any
CNN with ReLU activation to classify any given image into any prescribed class. For a particular
two-layer neural nets, a linear layer followed by the softmax output activation, we show that the
CW-L2 attack increases the ratio of the classification probability between the target and the ground
truth classes. Moreover, we provide numerical results to verify our theoretical results.
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1. Introduction. The adversarial vulnerability [19] of deep neural nets (DNN) threatens
their applicability in security critical tasks, e.g., autonomous cars [1], robotics [7], DNN-based
malware detection systems [15, 6]. Since the pioneering work by Szegedy et al. [19], many
advanced adversarial attack schemes have been devised to generate imperceptible perturba-
tions to sufficiently fool the DNN [5, 14, 4]. Not only are adversarial attacks successful in
white-box attacks, i.e., when the adversary has access to the DNN parameters, but they are
also successful in black-box attacks, i.e., it has no access to the parameters. Black-box at-
tacks are successful because one can perturb an image so it misclassifies on one DNN, and
the same perturbed image also has a significant chance to be misclassified by another DNN;
this is known as transferability of adversarial examples [17]. Due to this transferability, it
is very easy to attack neural nets in a black-box fashion [3]. In fact, there exist universal
perturbations that can imperceptibly perturb any image and cause misclassification for any
given network [13]. There is much recent research on designing advanced adversarial attacks
and defending against adversarial perturbation.

Defensive distillation was recently proposed to increase the stability of DNN [16], and a
related approach [20] cleverly modifies the training data to increase robustness against black-
box attacks, and adversarial attacks in general. To counter the adversarial perturbations, Guo
et al. [8], proposed to use image transformation, e.g., bit-depth reduction, JPEG compres-
sion, TVM, and image quilting. Adversarial training is another family of defense methods to
improve the stability of DNN [5]. In particular, the projected gradient descent (PGD) ad-
versarial training achieves state-of-the-art guaranteed resistance to the first order attack [12].
Generative adversarial nets (GANSs) are also employed for adversarial defense [18]. In [2], the
authors proposed an approximated gradient to attack the defenses that is based on the obfus-
cated gradient. Wang et al. [22, 21], introduce a data dependent activation to defend against
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adversarial attacks, joint with total variation minimization, training data augmentation, and
the PGD adversarial training, state-of-the-art adversarial defense results are achieved. More
recently, motivated by the Feynman-Kac formalism, Wang et al. [24], proposed a novel neural
nets ensemble algorithm which significantly improves the guaranteed robustness towards the
first order adversarial attack.

In this paper, we analyze the efficacy of the fast gradient sign method (FGSM) [5, 11]
and the Carlini-Wagner’s Ly (CW-L2) attack [4]. FGSM belongs to the fixed perturbation
attack, while CW-L2 attack belongs to the zero-confidence attack. For FGSM, we consider
both the targeted and the untargeted attacks. We prove that, within a specific regime, the
untargeted FGSM can fool any convolutional neural nets (CNN) with ReLLU activation; the
targeted FGSM can mislead any CNN with ReLU activation to classify any given image into
any prescribed class. For a two-layer neural nets, a linear layer followed by the softmax output
activation, we show that the CW-L2 attack increases the ratio of the classification probability
between the target and ground truth classes. Our theoretical results give guidance on applying
different attacks to attack neural nets, especially, the targeted ones.

This paper is structured in the following way: In section 2, we give a review of the well
known adversarial attack schemes and briefly discuss the mathematical principle behind them.
We analyze the untargeted FGSM, the targeted FGSM, and the CW-L2 attacks, respectively,
in sections 3, 4, 5. We verify our theoretical results numerically in section 6. The paper ends
up with concluding remarks.

2. Adversarial Attacks. We denote the classifier defined by the DNN with softmax output
activation as § = f(0, x) for a given image-label pair (z, y). FGSM finds the adversarial image
2’ by maximizing the loss L(2',y) = L(f(6,2'),y), subject to the I, perturbation constraint
l|l2" — x||oc < € with € be the attack strength. Under the first order approximation i.e.,
L(z',y) ~ L(x,y) + V.L(z,y)" - (2 — x), we have

(2.1) ' =x +esign- (V.L(x,y)).
IFGSM iterates FGSM to generate enhanced attacks, i.e.,

(2:2) 20 = 20" 4 e sign (VL™ y) ).

where m=1,--- , M, 29 = z and 2’ = ™) with M being the number of iterations.
In practice, we apply the following clipped IFGSM

(2.3) (M) = Clip, , {x(m_l) + € - sign (VQEL(m(m_l), y))} ,

where « is an additional parameter to be specified in the experiments.

Remark 2.1. The above FGSM or IFGSM attack fools DNN to mis-classify the image .
To mislead the classification result falls into any given class t, with one-hot label e;, we apply
the following targeted FGSM schemes
e Targted FGSM

(2.4) ' =z —esign - (V,L(z,e)).
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e Targted IFGSM
(2.5) 2™ = (M= _ ¢ sign (VxL(:c(m_l), et)> ,

where m =1, , M, 29 = 2 and 2’ = z™), with M being the number of iterations.
In Egs. (2.4, 2.5), L(z, e;) is the loss between predicted label of the adversarial image and the
targeted label e;.

Furthermore, we consider the following zero-confidence attack. For a given image-label
pair (z,y), and Vt # y, CW-L2 searches the adversarial image that will be classified to class
t by solving the optimization problem:

(2.6) min 16|13,  subject to f(z+0) =t, =+ €[0,1]",

where § is the adversarial perturbation (for simplicity, we ignore the dependence of 0 in f).
The equality constraint in Eq. (2.6) is hard to handle, so Carlini et al. consider the
surrogate

7) ole) = max (max(Z(a)) ~ Z(2).0).

K2
where Z(x) is the logit vector for an input z, i.e., output of the neural nets before the softmax
layer. Z(x); is the logit value corresponding to class i. It is easy to see that f(x 4+ ) =t is
equivalent to g(xz + ¢) < 0. Therefore, the problem in Eq. (2.6) can be reformulated as

(2.8) mainHéH%—i-c-g(x—i-é) subject to z + 0 € [0, 1]",

where ¢ > 0 is the Lagrangian multiplier.

By letting § = 3 (tanh(w) + 1) —z, Eq. (2.8) can be written as an unconstrained problem.
Moreover, Carlini et al. introduce the confidence parameter s into the above formulation.
Above all, CW-L2 attacks seek the adversarial image by solving the following problem

(2.9) min ||% (tanh(w) +1) — z|[3 + ¢
1 1
max {—/{, rgzxtx(Z(g(tanh(w)) +1);) — Z(i(tanh(w)) + 1)t} .

This unconstrained problem can be solved efficiently by the Adam optimizer [10].
In the case of CW-L2 attack, we introduce different levels of adversarial attack by setting
the adversarial image to

(2.10) =z +e(2* —1),

where 22V is the solution to Eq. (2.9).

Figure 1 depicts three randomly selected images (horse, automobile, airplane) from the
CIFARI10 dataset, their adversarials by using different attacks on ResNet56. All attacks fool
the classifiers completely on these images. Figure 1 (a) shows that the perturbations resulted
from FGSM and IFGSM with ¢ = 0.02, 10 iterations with « = 0.1 for IFGSM, is almost
imperceptible. For CW-L2, we set the parameters ¢ = 10 and x = 0, and run 10 iterations of
Adam optimizer with learning rate 0.01. Figure 1 (b) shows the corresponding images of (a)
with a stronger attack, e = 0.08. With a larger ¢, the adversarial images become more noisy.
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Original

Figure 1. Samples from CIFAR10. Panel (a): from the top to the last rows show the original, adversarial
images by attacking ResNet56 with FGSM, IFGSM, CW-L2 (e = 0.02). Panel (b) corresponding to those in
panel (a) with e = 0.08.

3. Analysis of the Untargeted FGSM.

3.1. Case 1. A linear layer followed by a softmax output layer. For an input image
x € R" and its corresponding one-hot label vector y € RF. We consider the simple neural nets

(3.1) y = softmax(Wx),

and consider the cross entropy loss
k
L(z,y) = crossentropy (9, y) = — Zyj ‘Ing; = —Ings,
j=1

where W € RF*™ s is the index of 1 in the one-hot vector y i.e., ys = 1 and y; =0 Vi # s.

Theorem 3.1. For the neural nets defined in Eq. (5.1) and any input-output pair (z,y).
Let 2’ be the adversarial image of x resulting from FGSM attack, i.e.,

¥ =z + e sign(VyL(z,y)).

Then, for ¥Ye > 0, we have:
L(z,y) < L(z',y).

Proof. For any given x, suppose it belongs to class s. The loss can be expressed as:
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L(z,y) = crossentropy (softmax(W ), y)
= —In(softmax(Wz)s)

= —In(

3.2
(32 exp(Wz)s

exp(Wa)1 + exp(Wa)s + - + exp(Wa)y

)

Here,
exp(Wz);
Z?:l exp(Wz);

It is easy to get the exact expression of 2/, in fact,

softmax(Wz); =

. = it e sign( - Lw.y)
=x; + €.
Here:
s = signl - L{z.y)
= sign(— Z§:1 exp(Wa:)j.
- exp(Wz)s
exp(Wac)SwSi(Z?:l exp(Wz);) —exp(Wx), Z?Zl exp(W:c)jwji)

(3.4) (X5 eXp(Wm) i)?

= —sign(ws; Zexp (Wz); Zexp Wx)jw;i)

J=1 J=1
k k
= sign(z exp(Wz)jwj; — (Z exp(Wz);)wgi).
j=1 j=1

In order to prove L(z,y) < L(2',y), we only need to show

exp(Wx)s - exp(Wa')s
Z?zl exp(Wzx); g Z?:l exp(Wa');
@exp(Wa:/) < exp(Wa'); + exp(Wa')a + - - + exp(Wa'),

exp(Wz)s Yk exp(Waz);
(35) / k /
exp(Wa: )5 exp(Wzx )]
softmax(Wx);
exp(Wx)s 32—31 (Wz); - exp(Wx);

<exp(eWa)s ZsoftmaX(W:c)] exp(eWa);.
j=1
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Here, a = (ay,as, - ,a4)7. Since softmax(W=x);,1 < i < k, are k non-negative real
numbers sum to 1. By the Jensen’s inequality, we can get the following lower bound for the
right hand side of Eq. (3.5)

softmax(Wz); - exp(eWa); + - - - + softmax(Wx)y - exp(eWa)y,

k
(3.6) >GXP(Z ¢ - softmax(Wz);(Wa);).

J=1

So far, in order to get Eq. (3.5) proved, we only have to prove the following inequality

k
(3.7) Zsoftmax(Wm)j(Woz)j > (Wa)s.
j=1

This is equivalent to :

k
(3.8) Z exp(Wz);(Wa); > (exp(Wx)1 + -+ - + exp(Wa),) (Wa)s.

J=1

In fact, we have

k
> exp(Wz)j(Wa); — (exp(Wa)1 + - - + exp(Wx);) (W),
Jj=1

k

k
= exp(Wa)j(wjion + -+ + wjnan) — (O exp(Wa);)(waar + -+ - + wenay)
(3.9) <

j=1
n k k
= Z at(z exp(Wa)jwj; — (Z exp(Wx)j)wst)
t=1

J=1 Jj=1
=0.

The last step uses Eq. (3.4) and the fact that, x-sign(z) > 0. Now the theorem is proved.H

3.2. Case 2. Two linear layers followed by softmax output layers, with ReLU Activation
in the middle.

(3.10) g = softmax(Vo(Wz)),

again, we consider the cross entropy loss:
k
L(z,y) = crossentropy (9, y) = — Zyj ‘Ing; = —Ing,,
j=1

where W € R V € RF¥! z € R™,y € R*. o is the ReLU activation.
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Theorem 3.2. For the neural nets defined in Eq. (3.10) and any input-output pair (x,y).
Let o' be the adversarial of x by applying FGSM attack to Eq. (3.10), i.e.,
o' =+ e sign(ViL(z,y)).

Suppose every element of Wx is non-zero, if € < |”mm,|ﬁ"’", then we have:
oo

L(z,y) < L(z', y).

Here, |Wx|min is the smallest element among the absolute values of Wz, |W ||« is the infinity
norm of matriz W, i.e.,

[Wlloo = max(fwir| + [wiz] + - + [win).
Proof. Let T = VoW, and gy = softmax(T'z). First, we introduce a simple lemma.

Lemma 3.3. For j =1,2,---,1, sign(Wx); = sign(Wa'),.

Proof. Let ' = x + §, every element of ¢ is one of €, —e¢, 0. Since

(W.%'/)j = (W.%')J + (W(S)j,

and :
((W6);] = 1Y wsdil <Y Jwyal - 6]
i=1 i=1
(3.11) n n
<Y elwyil = e+ Y |wyil
i=1 i=1
S elWleo < IWatlmin < [(W)jl.
Therefore: (Wx); and (Wz'); have the same sign. [ ]

We go back to proof the Theorem. (3.2). Let us define the following index set
A={i:(Wzx); >0} ={i: (Wz'); > 0}.
Then we can express the operator 1" as:

!
(Tx); =Y vjso(wnmy + wiads + -+ + W)
(3.12) t=1
= Z th<wt1$1 + WgpZo + -0 + wm:cn),
teA
So, the operator T is a linear operator.
The loss function can be rewritten as

L(z,y) = crossentropy (softmax(7T'z), y)

(3.13) = — In(softmax(7'z)s)

exp(Tz)s

=—1
" xp(T2); + exp(Ta)s + -+ exp(Ta)y

).
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Therefore, this case can be reduced to Case 1, where our model consists of a linear layer
followed by softmax output layer. Similar to the previous case, every element of the adversarial
image can be written as:

(3.14) T, =i+ € sign(aiiL(x, Y))

:.’Ei+€'ai,

Replacing wj; with ZaeA VjaWe; in Equation 3.4:

O L(w.))

(2

k k
= sign(z exp(Tw)j(Z VjaWai) — (Z exp(T'z);) Z VsqWai)-
=1 =1

acA a€A

a; = sign(

(3.15)

Completely similar to Case 1, after using Jensen’s Inequality, we can get this theorem proved.

Remark: The usage of the upper bound of € is to make the operator T' = VoW a locally
linear transformation. So that the Case 2 is reduced to Case 1 which is previously proved. H

3.3. Case 3. Multiple linear and softmax output layers, with all ReLU activations.
From Case 2, we note that when e is small enough, everything inside the ReLU activation
does not change the sign after the FGSM attack. Under this condition, the part before the
softmax output layer can be treated as a linear function. Therefore, according to our proof
in Case 1 where the neural nets consists of only a single linear layer before the softmax, the
theorem in Case 2 is undoubtedly correct. Therefore, we can generalize Case 2 to the neural
nets consists of multiple linear and a softmax output layers, with all activations between linear
layers set be ReLLU.

Denote our training neural network as:

(3.16) g = softmax(WrpoWp_q0---o(Wix))
and we denote:
Tmpy = Wiz, Tmpy = Waoc(Tmp1), -+, Tmpr =Wro(Tmpr—1)

Here, L is the layer number of our neural network. W; (1 <
stands for the ReLU activation function. Besides, Tmp; (1 < i <
results in the neural network.

< L) are matrices and o
L) are the intermediate

Therefore we give our general theorem.

Theorem 3.4. For the training neural network 3.16 and any input and output x,y. Let x’
is the attacking result of the original input x with FGSM:

¥ =z +e€-sign(VyL(z,y,W))
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Then, assume every element of Tmp; (1 < i < L) is non-zero and € is sufficiently small so
that every element in all T'mp; do not change their sign after the e-FGSM attack, then we
have:

L(z,y) < L(2',y)

In other words, as long as € is sufficiently small, after using FGSM attack to replace the
original input x with x', the loss function will surely increase, no matter what x,y, W; (1 <
i< L) are.

The proof of the theorem is similar to the one in Case 2. Since every element in all T'mp;
do not change their sign, therefore Wyo ---o(Wiz) can be seen as a linear function during
this attack. In this condition, this problem is equivalent to Case 1.

Finally, we give an upper bound of € to satisfy the condition of the theorem above.

€ < min 7|Tmpj i
1<<L [ Wloo

3.4. Remark on the convolutional layer. In all the cases above, there is an assumption
that all the layers are linear. We can also generalize this to convolutional layers. Note for a
convolutional layer h and an input matrix X, when we flatten X and the result hA(X) to a
column vector, A is also linear. Therefore the convolutional layers can be regarded as a linear
layer when we flatten all the input and intermediate matrices.

Overall, when the neural nets consists of linear or convolutional layers, with a softmax
output layer and ReLU activation, then the efficacy of FGSM attack can be guaranteed as
long as the ¢ is sufficiently small.

4. Targeted Fast Gradient Sign Method. In this section, we consider the efficacy of
the targeted adversarial attack with FGSM. Given any input x € R"™ and its corresponding
one-hot label vector y € R*, we want to attack it so that the new output falls into the t-th
category. Considering the following targeted FGSM

(4.1) ¥ =xz—¢ (VyL(x,e)),
where e; is the one-hot vector of class ¢.

4.1. Case 1. A linear layer followed by a softmax output layer. Again, we first consider
a very simple neural nets,

(4.2) y = softmax(Wz)

with cross-entropy loss
k
L(z,y) = crossentropy (g, e:) = — Zyj ‘In(er); = —Ingy
j=1

Theorem 4.1. For the neural nets define by Eq. (4.2), any input-output pair (z,y), and the
target label t. Let x’ be the adversarial of x resulting from the targeted FGSM attack, i.e.,

' =z —e-sign(ViL(z,ep)).
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Under the assumption that V,L(x,e;) has no zero elements, for any:

L s |8 exp(Wa)jwji — wei (S8 exp(Wa);)|
Sy Jwji — wial - exp(Wz);

€ < min

i Wl

we have:
L(J"? et) > L(mla et)‘

Proof. The loss associated with the target label ¢ for any given image-label pair (x,y) is

L(z,e;) = crossentropy (softmax(Wx), e;)
= — In(softmax(Wx);)

= —In(

4.3
43 exp(Wz)

exp(Wz)1 +exp(Wx)2 + - - -+ exp(Wz)

),

where, e; is the one hot vector for ¢-th class.

In fact,
rh = x; — € sign( 0 L(z,ep))
(44) 1 K3 g 8%‘% » €1
= T; — € Qy,
where,
o = sign(a -L(z,et))
= si n(—z§:1 exp(W); .
- exp(Wz),
eXp(Ww)twti(Z;?:l exp(Wz);) — exp(Wa), 25:1 exp(Wm)jwji)

(4.5) (X1 exp(W);)?

k k
= —sign(wti(z exp(Wz);) — Z exp(Wz);jwj;)

j=1 Jj=1
k k
= sign(z exp(Wx)jwj; — wti(z exp(Wz);)).
j=1 Jj=1

According to the assumption, the derivative above is nonzero. Therefore, if € is sufficiently
small, we have

k k

Sign(z exp(Wa)jwj; — wti(z exp(Wx);))
(4.6) ! o

k k
:sign(z exp(Wa')jw;; — wti(z exp(Wz');)).
j=1 J=1
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Then, under this condition:

k k
(4.7) o = sign(z exp(Wa')jw;; — wti(z exp(Wz');)).
j=1 j=1

We would like to give a upper bound of € such that Eq. (4.6) holds. Actually, since every
entry of z and 2’ has a difference at most ¢, then [(Wz); — (Wa');| < ||W||oce. Therefore:

| exp(Wz); — exp(Wa');| < exp(Wa);(exp(|W]loce) — 1)

Let
k k

A= Z exp(Wx)jwj; — wti(z exp(Wz);),

=1 =1

k k
B = Z exp(Wa')jw;; — wti(z exp(Wa');).
j=1 J=1

So after the attack, the difference

k
|A=B| <) |wji — wy| - | exp(Wa); — exp(Wa'),|
j=1
k
(4.8) <D lwji — w| - exp(Wa) j(exp([|W]|oce) — 1)
j=1
k
= (exp(||Wllooe) = 1) Y wyi — wyi| - exp(W);.
j=1
When e satisfies
A
€< In (14 — [l )
o) W lloo >j—1 lwji — wii] - exp(Wa);
. k k
_ 1 (14 | 21 exp(Wa)jwji — wi (X5 exp(Wa);)|
W]l oo Z?:l |wj; — wy| - exp(Wex);
In summary, when
k k
¢ < min (14 |21 exp(Wa)jwsi — wei(3_5—4 exp(Wx);)]
i [We SN wji — wy] - exp(We),

Equation 4.7 holds.
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Now, we show that L(z,e;) > L2, et)

exp(Wz), < exp(Wa'),
Y ep(Wa); S exp(Wa!);
o exp(Wz), o exp(Wz); + exp(Wx)a + - - - + exp(Wz)

exp(Wa')y Z?:l exp(Wa');
(4.10) k
exp(Wx); exp(Wzx);
&—— ft (W —
exp W:L'/)t ; softmax(Wz )j eXp(Wx’)j
k
< exp(eWa), Z softmax(Wz'); - exp(eWa);.
7j=1
This is exactly Equation 3.5, which has been previously proved. |

4.2. Case 2. Two linear and softmax output layers, with ReLU activation. In this part,
we consider the neural nets with two linear and softmax output layers, with ReLLU activation

(4.11) g = softmax(Vo(Wx)),

the loss is

M»

L(z,e;) = crossentropy (7, e;) ‘Ing; = —Ing,.

]:1
Here: W € RV € R**! z € R" y € R*. o is the ReLU activation function.

Theorem 4.2. For the neural net defined in Eq. (4.11) and any input-output pair (z,vy).
Let 2’ be the adversarial of x resulting from targeted FGSM attack

¥ =z —e€-sign(VyL(z,e)),

Suppose the derivative above has no zero elements, every element of Wx is non-zero, and € is
smaller than an upper bound which will be written at the end of the proof below, we have

L(x,e)) = L(2, ;).
Proof. Let T = VoW, and g = softmax(T'z). According to Lemma 3.3,if:

’Wer‘mm
Wlloo ~

€<

then sign(Wz); = sign(Wz');.
Denote the index set

A={i: Wzx); >0} = {i: (W2'); > 0}.
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Then we can express the operator T as:

l
(Tx); = Zvjta(wﬂwl + wTa + - + Wiy
(4.12) t=1
= Zvjt(wt1$1 + wpprs + -+ WinTn),
teA
so, similar to Case 3.2, the operator T' can be regarded as a locally linear operator. And we
only need to replace the wj;; in Case 4.1 with ZaeA VjqWqi- So once € is controlled by the
upper bound U = min(Uy, Uz), then the theorem is correct. Here:

W loo
k k
Uy — min 1 In (1 + | 221 exp(T'x)jtje — b (25— exp(Tx);)|
2 = ml
7T S Jti — tul - exp(Tw),

where:

tji = E VjaWai

a€A [ |

4.3. Case 3. Multiple linear and softmax output layers, with all ReLU activations.
From Case 2, we note that when € is small enough, we can guarantee that everything inside
the ReLU activation does not change their sign after the e-FGSM attack. Under this condition,
the part before the softmax can be treated as a linear function. Therefore, according to our
proof in Case 1 where the neural nets consists of only a single linear layer before the softmax,
the theorem in Case 2 remains correct. Therefore, we can generalize Case 2 to the neural nets
consists of multiple linear and softmax output layers, with all activation functions between
linear layers be ReLLU. Consider the neural nets

(4.13) y = softmax(WroWr_i0---oc(Wix))
and we denote:
Tmp, = Wiz, Tmpy = Wyo(Tmp,), -+, Tmp; = Wro(Tmp;_;)

Here, L is the number of layers. W; (1 < i < L) are matrices and o stands for the ReLU
activation. Moreover, Tmp,; (1 < i < L) are the intermediate results in the neural network.
For the neural nets defined in Eq. (4.13), we give the following theorem

Theorem 4.3. For the neural net defined by Eq. (4.13) and any input-output pair (z,y).
Let 2’ be the adversarial of x by the targeted FGSM, i.e.,

v =x— e sign(VyL(z,ep)).

Suppose the derivative above has no zero elements, and every element of Tmp, (1 < i < L)
is mon-zero and € is sufficiently small so that every element in all Tmp, do not change their
sign after the e-targeted FGSM attack, then we have

L(.’L’, Ct) = L(‘T/? et)
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The proof of the theorem is similar to the one in Case 2. Since every element in all Tmp;
does not change their sign, therefore Wyo - - - o(Wiz) can be seen as a linear function during
this attack. In this condition, this problem is equivalent to Case 1.

Remark: For the same reason as Section 3.4, this conclusion can be also generated to
convolutional layers.

To sum up, when our training neural network consists of linear or convolution layers,
with a softmax output layer and all acivations ReLU, then the efficacy of targeted FGSM
adversarial attack can be guaranteed theoretically as long as the € is sufficiently small.

5. CW-L2 Targeted Adversarial Attack.

5.1. Models and attack. In this section, we consider the simple neural nets which consists
of a linear and softmax output layers, i.e.,

(5.1) y = softmax(Wz).

We consider the simplified CW-L2 attack, in which we relax the constraint that pixel values
are between 0 and 1, in this case, the perturbation ¢ is the solution of the optimization problem

(5.2) arg min [ 3]3 + ¢ g(a + ),
1)

where,
g(r) = max (I?;ZX(Z(:U)Z) — Z(z)¢, O)
and Z(z) is the logit vector of the input x, which in our one-layer network, means that:
Z(x) = Wz € R,

¢ 2 0 is the Lagrangian multiplier.
5.2. Taskl. Increasing relative probability of the target label.
Theorem 5.1. For the CW-L2 attack, when the Lagrangian multiplier:

i (OV2), — (Wa),2
5 Wi = Wilg - (W), — (Wa)’

where, W; . is the i-th row vector of W & RF*m 1 < i <k, and y is the label of the original
input z, i.e., (Wx)y, is the largest among all the (Wz);, (1 <i<k). Then,

P(flx)=t) _ P(f(x+9)=1)
P(f(z)=y) = P(f(z+0)=y)

In other words, the attack increases the ratio between probability of the t-th and y-th labels.

Proof. Let ' = x + 0. We introduce a lemma first and then consider two different cases.

Lemma 5.2. If (Wa'), < (Wa');, then we have

l2” = 23 > ¢ (Wa)y — (Wa))
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Proof. In fact, if (Wz'), < (Wa');, then

(Wz)y + (Wo)y < (Wa); + (W);
(5.3) =Wy, — Wi,)T6 < —(Wa), — (Waz);)
=|(Wy: = Wi)"0] > (Wa)y — (Wa);

According to the Cauchy-Schwarz Inequality, we have
|(Wy,: = Wi) T8> < [Wy, = Wi ll3 - 116113

Therefore

s (Wa), — (Wa))?
(5.4 I912 > =, Wi

c- (Wz)y — (Wa),)

Till now, the lemma has been proved. |

Let us go back to the theorem, we consider the following two cases.
Case 1. (Wa'), is the largest among all the (Wa');, (1 <i < k).

L(z") = 18]35 + ¢ - g(")
= [13113 + ¢ - max(max(Wa'); - (Wa');, 0)

(5.5) = [|8]3 +c- ((Ww’) — (Wa'))

n
2,
=D 0+ wa wig) (x5 + 05)
j=1 =1

In order to minimize L(z'), it is easy to find that:

C .
0 = —5(wy; —wy), 1<j<n

On the other hand, if the equation above holds, then:

2 c? 2
1813 = 1wy, — We I3

¢ Wy, = W13
co(Wz)y — (Wz))

(5.6)

(The last line is because of the upper bound of c. Let j =t, we know that:

(Wz)y — (Wa),)?
Wy, = Wislls - (Wx)y — (Wa),)
_ (Wz)y — (W),
IWy,: = Wi I3

c <

(5.7)
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That makes the inequality above proved.)
Then, according to Lemma. 5.2, (Wa'), > (Wa'); holds for all i # y, which is exactly the
condition of Case 1. So under Case 1, the minimal value of L is:

n n

2
* C
L*=c ) (wy —wy)z; — 4 > (wy; —wyy)?

(5.8) = 21':;
= ¢+ (Wa)y = (Wa);) = T D (wy; = wiy)?
j=1

Case 2. (Wz'), is not the largest among all the (Wz'); (1 <i < k). Then, according to
the lemma, we know that:
1813 > e(Wa)y — (Waz)e)
Hence,
L(z') = [|8]13 > ¢ (Wz)y — (Wa);) > L*.
Therefore, in this Case 2. The 2’ is not the solution of our optimization problem.
To sum up, the accurate solution of the optimization problem is:
c
0j = —5 (wy; — wyj)
Then:
P(f(x)=t)  softmax(Wx);
P(f(z)=y) softmax(Wz),
and the same reason applies:
() = 1)
P(f(a') = y)

So, we only have to prove the following inequality:

(Wz), — (Wa)y, < (le)t - (Wx/>y

= exp((Wx)y — (Wx),y)

= exp((Wa'); — (Wa')y)

&Y (wy — wyy) (2 —x5) 2 0
Jj=1

(5.9)
n
&Y (wey —wy;)d; >0
j=1
Since §; = —5(w,; — wy;), the inequality above is obvious. [ ]

5.3. Task2. Analysis of irrelevant labels. In this part, we argue that for any third label
k # y,t, the relative probability may either increase or decrease. For ¢ satisfying the condition
in Theorem. 5.1, we can use the same way to prove that

P(f(x) =k) _ P(f(z)) = k)

P(f(z)=y)  P(f(') =y)
W), — (W), < (Wa'), — (Wa'),
Wi, —W,.) (' —2)>0

)

(5.10)
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Since #' —x = —§(W,,. — Wt,:)T, the inequality above is equivalent to:

(Wk,: - Wy ) : (Wy,; — th;) < 0.

Y

And it is obvious that the inequality may be either right or wrong. For example, consider
a 3D example, let W, . = (1,1,1), Wi. = (1,0,1). Then, if W}, = (0,2,0), the inequality is
wrong; if Wy, = (0,—1,0), it is right.

6. Numerical Results. We verify the above theoretical results by applying the aforemen-
tioned adversarial attacks to attack the ResNet56. We train ResNet56 on the CIFAR10 follow
the standard procedure used by [9].

6.1. Untargeted FGSM Attack. We first consider single and multiple iterations of the
untergated FGSM attack. In Section. 3, we proved that for small attack strength €, the attack
will fool the neural nets, this is validated by the numerical results shown in Fig. 2 (a), when
e < 0.1, as € increases, the classification accuracy decays monotonically. Moreover, Fig. 2 (b)
shows that for a fixed €, as the number of iteration increases, the success rate of adversarial
attack increases. This shows that IFGSM is a stronger attack than single step FGSM.

100 100
80
80
X X
> > 60
g 60 g
3 3 40
Q Q
< <
40
20
20 0
0 0.02 0.04 006 0.08 01 0 2 4 6 8 10
€ #lterations

(a) (b)

Figure 2. Testing accuracy under the untargted FGSM attack for ResNet56 on CIFAR10 benchmark. (a):
attack strength € v.s. accuracy with only one iteration. (b): number of iterations v.s. accuracy with e = 0.02.

6.2. Targeted FGSM Attack. In this part, we verify the efficacy of the targeted FGSM
attack numerically. We apply IFGSM to attack the cat (labeled 4 in CIFAR10) to dog (labeled
6 in CIFAR10). In all the experiments, we set & = 0.1. Theoretically, in Section. 4, we showed
that for any CNN with a softmax output activation and ReLLU activation, within the regime of
small e, targeted FGSM will fooled neural nets to classify cat to dog. Numerically, again, we
consider the ResNet56. Figure. 3 (a) shows that for 10 iterations attack, when € is sufficiently
small (< 0.015), as € increases, the success rate raises. Once € > 0.015, the success rate decays
as € increases. Furthermore, we consider impact of the number of iterations in the targeted
adversarial attack. As shown in Figure. 3 (b), the success rate increases monotonically as the
number of iterations increases.

6.3. CW-L2 Attack. We proved, in Theorem. 5.1, that when CW-L2 attack is applied
to fool the neural nets to classify an image to a target class. The rate of the classification
probability between the target and the ground-truth labels increases. We continue to attack
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[$] &)
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8 40 8 40
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0 ‘ : ‘ 0 ‘

0 0.05 0.1 0.15 0.2 0 5 10
€ #lterations

(a) (b)

Figure 3. Success rate on fooling ResNet56 to classify cat to dog under the targted FGSM attack for
CIFAR10 benchmark. (a): attack strength € v.s. success rate with 10 iteration. (b): number of iterations v.s.
accuracy with € = 0.02.

ResNet56 to mis-classify cat to dog. We apply 10 iterations of Adam optimizer with, ¢ = 10.
k = 0, and learning rate to be 0.01 to optimize the CW-L2 attack objective (Eq. (2.9)). In
Fig. 4, we depict the averaged probability of ResNeth6 to classify the cat images before and
after the adversarial attack over 1000 images. 750 images successfully attacked to the dog
class. From Fig. 4, we see that the CW-L2 attack shift the probability density peak from class
4 (cat) to class 6 (dog). It is also interesting to notice that the probability of the images been
classified to class 9 has a probability 0.0048 before attack, while it decreases to 0.004 after the
adversarial attack. This further validates the theoretical conclusion we achieved in Section. 5.

WProbability before Attack
08! [ |Probability after Attack
> _
= 0.6
®©
o
04+
o
0.2}
O = — mll -\ﬂ [1 . =
1 2 3 4 5 6 7 8 9 10
Label

Figure 4. The probability distribution of ResNet56 in classifying cat (labeled with 4) into each classes. Blue
bars: before attack. Yellow bars: after CW-L2 attack.

7. Concluding Remarks. In this paper we proved that the untargeted FGSM can fool
any convolutional neural nets (CNN) with ReLU activation for small attack strength; within
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a specific regime, the targeted FGSM can mislead any CNN with ReLU activation to classify
any given image into any prescribed class. For a two-layer neural nets, a linear layer followed
by the softmax output activation, we show that the CW-L2 attack increases the ratio of
the classification probability between the target and ground truth labels. A large amount of
numerical results conform our theoretical results. Quantifying the relation between the attack
strength e and the loss is under our further exploration. Analyzing the influence of the recently
proposed Laplacian smoothing gradient descent [23] on improving adversarial robustness is
also under our investigation.

8. Acknowledgments. This material is based on research sponsored by the Air Force
Research Laboratory: DARPA under agreement number FA8750-18-2-0066, MURI under the
grant number FA9550-18-1-0502, and FA9550-18-1-0167. And by the U.S. Department of
Energy, Office of Science, and by National Science Foundation, under grant numbers DOE-
SC0013838 and DMS-1554564, (STROBE). And by the NSF DMS-1737770 and the Simons
foundation. And Office of Naval Research: ONR:N00014-18-1-2527. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

REFERENCES

[1] N. AKHTAR AND A. MIAN, Threat of adversarial attacks on deep learning in computer vision: A survey,
arXiv preprint arXiv:1801.00553, (2018).

[2] A. ATHALYE, N. CARLINI, AND D. WAGNER, Obfuscated gradients give a false sense of security: Circum-
venting defenses to adversarial examples, International Conference on Machine Learning, (2018).

[3] W. BRENDEL, J. RAUBER, AND M. BETHGE, Decision-based adversarial attacks: Reliable attacks against
black-box machine learning models, arXiv preprint arXiv:1712.04248, (2017).

[4] N. CARLINI AND D. WAGNER, Towards evaluating the robustness of neural networks, IEEE European
Symposium on Security and Privacy, (2016), pp. 39-57.

[5] I. J. GOODFELLOW, J. SHLENS, AND C. SZEGEDY, Ezplaining and harnessing adversarial exzamples, arXiv
preprint arXiv:1412.6275, (2014).

[6] K. GROSSE, N. PAPERNOT, P. MANOHARAN, M. BACKES, AND P. MCDANIEL, Adversarial perturbations
against deep neural networks for malware classification, arXiv preprint arXiv:1606.04435, (2016).

[7] A. GuisTl, J. Guzzi, D. CIresaN, F. HE, J. RODRIGUEZ, F. FONTANA, M. FAESSLER, C. FORSTER,
J. SCHMIDHUBER, G. D. CARLO, AND ET AL, A machine learning approach to visual perception of
forecast trails for mobile robots, IEEE Robotics and Automation Letters, (2016), pp. 661-667.

[8] C. Guo, M. RANA, M. CISSE, AND L. VAN DER MAATEN, Countering adversarial images using input
transformations, in International Conference on Learning Representations, 2018, https://openreview.
net/forum?id=SyJ7CIWCb.

[9] K. HE, X. ZHANG, S. REN, AND J. SUN., Deep residual learning for image recognition, in CVPR, 2016,
pp. 770-778.

[10] D. KINGMA AND J. BA, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980,
(2014).

[11] A. KurakiIN, I. J. GOODFELLOW, AND S. BENGIO, Adversarial examples in the physical world, arXiv
preprint arXiv:1607.02533, (2016).

[12] A. MADRY, A. MAKELOV, L. SCHMIDT, D. TSIPRAS, AND A. VLADU, Towards deep learning models
resistant to adversarial attacks, in International Conference on Learning Representations, 2018, https:
/ /openreview.net/forum?id=rJzIBfZAb.

[13] S.-M. MoosavI-DEzrooLI, A. Fawzl, O. FAwzl, AND P. FROSSARD, Universal adversarial perturbations,
in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[14] N. PAPERNOT, P. MCDANIEL, S. JHA, M. FREDRIKSON, Z. CELIK, AND A. SwaMI, The limitations of


https://openreview.net/forum?id=SyJ7ClWCb
https://openreview.net/forum?id=SyJ7ClWCb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb

20

Z. DOU, AND S. OSHER, AND B. WANG

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]
23]

24]

deep learning in adversarial settings, IEEE European Symposium on Security and Privacy, (2016),
pp. 372-387.

. PAPERNOT, P. MCDANIEL, A. SINHA, AND M. WELLMAN, Sok: Towards the science of security and

privacy in machien learning, arXiv preprint arXiv:1611.03814, (2016).

. PapeErNOT, P. McDANIEL, X. WU, S. JHA, AND A. SwAMI, Distillation as a defense to adversarial

perturbations against deep neural networks, IEEE European Symposium on Security and Privacy,
(2016).

. PApErNOT, P. D. McDANIEL, AND 1. J. GOODFELLOW, Transferability in machine learning: from

phenomena to black-box attacks using adversarial samples, CoRR, abs/1605.07277 (2016), http://
arxiv.org/abs/1605.07277, https://arxiv.org/abs/1605.07277.

. SAMANGOUEI, M. KABKAB, AND R. CHELLAPPA, Defense-GAN: Protecting classifiers against adver-

sarial attacks using generative models, in International Conference on Learning Representations, 2018,
https://openreview.net/forum?id=BkJ3ibb0-.

. SZEGEDY, W. ZAREMBA, I. SUTSKEVER, J. BRUNA, D. ERHAN, AND I. GOODFELLOW, Intriguing

properties of neural networks, arXiv preprint arXiv:1312.6199, (2013).

. TRAMR, A. KURAKIN, N. PAPERNOT, I. GOODFELLOW, D. BONEH, AND P. MCDANIEL, Ensemble

adversarial training: Attacks and defenses, in International Conference on Learning Representations,
2018, https://openreview.net/forum?id=rkZvSe-RZ.

. Wang, A. T. LiN, Z. Sai, W. Zuu, P. YIN, A. L. BERrT0ozzI, AND S. J. OSHER, Adversarial

defense via data dependent activation function and total variation minimization., arXiv preprint
arXiv:1809.08516, (2018).

. WANG, X. Luo, Z. L1, W. ZHu, Z. SHI, AND S. OSHER, Deep neural nets with interpolating function

as output activation., arXiv preprint arXiv:1802.00168, (2018).

. OSHER, B. WanG, P. YN, X. Luo, M. PHAM AND A. LIN, Laplacian smoothing gradient descent.,

arXiv preprint arXiv:1806.06317, (2018).

. WANG, B. YUAN, S. OSHER, AND Z. SHI, EnResNet: ResNet ensemble via the Feynman-Kac formal-

ism., arXiv preprint arXiv:2480540, (2018).


http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1605.07277
https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=rkZvSe-RZ

	Introduction
	Adversarial Attacks
	Analysis of the Untargeted FGSM
	Case 1. A linear layer followed by a softmax output layer
	Case 2. Two linear layers followed by softmax output layers, with ReLU Activation in the middle
	Case 3. Multiple linear and softmax output layers, with all ReLU activations
	Remark on the convolutional layer

	Targeted Fast Gradient Sign Method
	Case 1. A linear layer followed by a softmax output layer
	Case 2. Two linear and softmax output layers, with ReLU activation
	Case 3. Multiple linear and softmax output layers, with all ReLU activations

	CW-L2 Targeted Adversarial Attack
	Models and attack
	Task1. Increasing relative probability of the target label
	Task2. Analysis of irrelevant labels

	Numerical Results
	Untargeted FGSM Attack
	Targeted FGSM Attack
	CW-L2 Attack

	Concluding Remarks
	Acknowledgments

