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Abstract

Empirical adversarial risk minimization (EARM) is a widely used mathematical framework to robustly
train deep neural nets (DNNs) that are resistant to adversarial attacks. However, both natural and robust
accuracies, in classifying clean and adversarial images, respectively, of the trained robust models are far
from satisfactory. In this work, we unify the theory of optimal control of transport equations with the
practice of training and testing of ResNets. Based on this unified viewpoint, we propose a simple yet
effective ResNets ensemble algorithm to boost the accuracy of the robustly trained model on both clean
and adversarial images. The proposed algorithm consists of two components: First, we modify the base
ResNets by injecting a variance specified Gaussian noise to the output of each residual mapping. Second,
we average over the production of multiple jointly trained modified ResNets to get the final prediction.
These two steps give an approximation to the Feynman-Kac formula for representing the solution of
a transport equation with viscosity, or a convection-diffusion equation. For the CIFAR10 benchmark,
this simple algorithm leads to a robust model with a natural accuracy of 85.62% on clean images and a
robust accuracy of 57.94% under the 20 iterations of the IFGSM attack, which outperforms the current
state-of-the-art in defending against IFGSM attack on the CIFAR10. Both natural and robust accuracies
of the proposed ResNets ensemble can be improved dynamically as the building block ResNet advances.
The code is available at: https://github.com/BaoWangMath/EnResNet.

1 Introduction
Deep learning (DL) achieves great success in image and speech perception [32]. Residual learning revolutionizes
the deep neural nets (DNNs) architecture design and makes training of the ultra-deep, up to more than one
thousand layers, DNNs practical [21]. The idea of residual learning motivates the development of a good
number of related powerful DNNs, e.g., Pre-activated ResNet [22], ResNeXt [56], DenseNet [23], and many
others. Neural nets ensemble is a learning paradigm where many DNNs are jointly used to improve the
performance of individual DNNs [20].

Despite the extraordinary success of DNNs in image and speech recognition, their vulnerability to
adversarial attacks raises concerns when applying them to security-critical tasks, e.g., autonomous cars [3, 1],
robotics [18], and DNN-based malware detection systems [42, 17]. Since the seminal work of Szegedy et
al. [51], recent research shows that DNNs are vulnerable to many kinds of adversarial attacks including
physical, poisoning, and inference attacks [11, 9, 41, 16, 24, 6, 5]. The physical attacks occur during the data
acquisition, the poisoning and inference attacks happen during the training and testing phases of machine
learning (ML), respectively.

1

https://github.com/BaoWangMath/EnResNet


The adversarial attacks have been successful in both white-box and black-box scenarios. In white-box
attacks, the adversarial attacks have access to the architecture and weights of the DNNs. In black-box attacks,
the attacks have no access to the details of the underlying model. Black-box attacks are successful because
one can perturb an image to cause its misclassification on one DNN, and the same perturbed image also
has a significant chance to be misclassified by another DNN; this is known as transferability of adversarial
examples [43]. Due to this transferability, it is straightforward to attack DNNs in a black-box fashion [36, 7].
There exist universal perturbations that can imperceptibly perturb any image and cause misclassification for
any given network [39]. Dou et al. [13], analyzed the efficiency of many adversarial attacks for a large variety
of DNNs. Recently, there has been much work on defending against these universal perturbations [4].

The empirical adversarial risk minimization (EARM) is one of the most successful mathematical frameworks
for certified adversarial defense. Under the EARM framework, adversarial defense for `∞ norm based inference
attacks can be formulated as solving the following EARM [38, 57]

min
f∈H

1

n

n∑
i=1

max
‖x′

i−xi‖∞≤ε
L(f(x′i,w), yi), (1)

where f(·,w) is a function in the hypothesis class H, e.g., ResNets, parameterized by w. Here, {(xi, yi)}ni=1

are n i.i.d. data-label pairs drawn from some high dimensional unknown distribution D, L(f(xi,w), yi) is
the loss associated with f on the data-label pair (xi, yi). For classification, L is typically selected to be the
cross-entropy loss; for regression, the root mean square error is commonly used. The adversarial defense
for other measure based attacks can be formulated similarly. As a comparison, empirical risk minimization
(ERM) is used to train models in a natural fashion that generalize well on the clean data, where ERM is to
solve the following optimization problem

min
f∈H

1

n

n∑
i=1

L(f(xi,w), yi). (2)

Many of the existing works try to defend against the inference attacks by finding a good approximation to
the loss function in EARM. Project gradient descent (PGD) adversarial training is a representative work along
this side that approximate EARM by replacing x′i with the adversarial data that obtained by applying the
PGD attack to the clean data [16, 38, 40]. Zhang et al. [59] replace the empirical adversarial risk by a linear
combination of empirical and empirical adversarial risks. Besides finding a good surrogate to approximate the
empirical adversarial risk, under the EARM framework, we can also improve the hypothesis class to improve
the adversarial robustness of the trained robust models.

1.1 Our Contribution
The robustly trained DNNs usually more resistant to adversarial attacks, however, they are much less accurate
on clean images than the naturally trained models. A natural question is

Can we improve both natural and robust accuracies of the robustly trained DNNs?

In this work, we unify the training and testing of ResNets with the theory of transport equations (TEs).
This unified viewpoint enables us to interpret the adversarial vulnerability of ResNets as the irregularity, which
will be defined later, of the TE’s solution. Based on this observation, we propose a new ResNets ensemble
algorithm based on the Feynman-Kac formula. In a nutshell, the proposed algorithm consists of two essential
components. First, for each l = 1, 2, · · · ,M with M being the number of residual mappings in the ResNet,
we modify the l-th residual mapping from xl+1 = xl + F(xl) (Fig. 1 (a)) to xl+1 = xl + F(xl) +N(0, σ2I)
(Fig. 1 (b)), where xl is the input, F is the residual mapping and N(0, σ2I) is Gaussian noise with a specially
designed variance σ2. Second, we average over multiple jointly and robustly trained modified ResNets’ outputs
to get the final prediction (Fig. 2). This ensemble algorithm improves the base model’s accuracy on both
clean and adversarial data. The advantages of the proposed algorithm are summarized as follows:

• It outperforms the current state-of-the-art in defending against inference attacks.
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• It improves the natural accuracy of the adversarially trained models.

• Its defense capability can be improved dynamically as the base ResNet advances.

• It enables to train and integrate an ultra-large DNN for adversarial defense with a limited GPU memory.

• It is motivated from partial differential equation (PDE) theory, which introduces a new way to defend
against adversarial attacks, and it is a complement to many other existing adversarial defenses.

(a) (b)

Figure 1: (a) Residual mapping of the ResNet. (b) Gaussian noise injected residual mapping with σ being
the variance.

1.2 Related Work
There is a massive volume of research over the last several years on defending against adversarial attacks for
DNNs. Randomized smoothing transforms an arbitrary classifier f into a "smoothed" surrogate classifier
g and is certifiably robust in `2 norm based adversarial attacks [34, 33, 12, 54, 8]. Among the randomized
smoothing, one of the most popular ideas is to inject Gaussian noise to the input image and the classification
result is based on the probability of the noisy image in the decision region. Our adversarial defense algorithm
injects noise into each residual mapping instead of the input image, which is different from randomized
smoothing.

Robust optimization for solving EARM achieves great success in defending against inference attacks
[38, 44, 45, 55, 47]. Regularization in EARM can further boost the robustness of the adversarially trained
models [57, 30, 46, 60]. The adversarial defense algorithms should learn a classifier with high test accuracy
on both clean and adversarial data. To achieve this goal, Zhang et al. [59] developed a new loss function,
TRADES, that explicitly trades off between natural and robust generalization. To the best our of knowledge,
TRADES is the current state-of-the-art in defending against inference attacks on the CIFAR10. Throughout
this paper, we regard TRADES as the benchmark.

Modeling DNNs as ordinary differential equations (ODEs) has drawn lots of attention recently. Chen et
al. proposed neural ODEs for DL [10]. E [14] modeled training ResNets as solving an ODE optimal control
problem. Haber and Ruthotto [19] constructed stable DNN architectures based on the properties of numerical
ODEs. Lu, Zhu and et al. [37, 61] constructed novel architectures for DNNs, which were motivated from
the numerical discretization schemes for ODEs. Sun et al. [50] modeled training of ResNets as solving a
stochastic differential equation.
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Figure 2: Architecture of the EnResNet.

Model averaging with multiple stochastically trained identical DNNs is the most straightforward ensemble
technique to improve the predictive power of base DNNs. This simple averaging method has been a success
in image classification for ILSVRC competitions. Different groups of researchers use model averaging for
different base DNNs and won different ILSVRC competitions [29, 48, 21]. This widely used unweighted
averaging ensemble, however, is not data-adaptive and is sensitive to the presence of excessively biased base
learners. Ju et al., recently investigated ensemble of DNNs by many different ensemble methods, including
unweighted averaging, majority voting, the Bayes Optimal Classifier, and the (discrete) Super Learner, for
image recognition tasks. They concluded that the Super Learner achieves the best performance among all
the studied ensemble algorithms [25].

Our work distinguishes from the existing work on DNN ensemble and feature and input smoothing from
two major points: First, we inject Gaussian noise to each residual mapping in the ResNet. Second, we jointly
train each component of the ensemble instead of using a sequential training.

1.3 Organization
We organize this paper in the following way: In section 2, we model the ResNet as a TE and give an
explanation for ResNet’s adversarial vulnerability. In section 3, we present a new ResNet ensemble algorithm
that motivated from the Feynman-Kac formula for adversarial defense. In section 4, we present the natural
accuracy of the EnResNets and their robust accuracy under both white-box and blind PGD and C&W
attacks, and compare with the current state-of-the-art. In section 5, we generalize the algorithm to ensemble
of different neural nets and numerically verify its efficacy. Our paper ends up with some concluding remarks.

2 Theoretical Motivation and Guarantees

2.1 Transport Equation Modeling of ResNets
The connection between training ResNet and solving optimal control problems of the TE is investigated in
[52, 53, 35]. In this section, we derive the TE model for ResNet and explain its adversarial vulnerability
from a PDE viewpoint. The TE model enables us to understand the data flow of the entire training and
testing data in both forward and backward propagation in training and testing of ResNets; whereas, the ODE
models focus on the dynamics of individual data points [10].
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Figure 3: (a) A detailed structure of the residual mapping in the pre-activated ResNet. (b) Demonstration of
characteristic curves of the transport equation.

As shown in Fig. 1 (a), residual mapping adds a skip connection to connect the input and output of the
original mapping (F), and the l-th residual mapping can be written as

xl+1 = F(xl,wl) + xl,

with x0 = x̂ ∈ T ⊂ Rd being a data point in the set T , xl and xl+1 are the input and output tensors of the
residual mapping. The parameters wl can be learned by back-propagating the training error. For ∀ x̂ ∈ T
with label y, the forward propagation of ResNet can be written as{

xl+1 = xl + F(xl,wl), l = 0, 1, . . . , L− 1, with x0 = x̂,

ŷ
.
= f(xL),

(3)

where ŷ is the predicted label, L is the number of layers, and f(x) = softmax(w0 ·x) be the output activation
with w0 being the trainable parameters. For the widely used residual mapping in the pre-activated ResNet
[22], as shown in Fig. 3 (a), we have

F(xl,wl) = wC2
l ⊗ σ(wB2

l �wC1
l ⊗ σ(wB1

l � xl)), (4)

where wC1
l (wB1

l ) and wC2
l (wB2

l ) are the first and second convolutional (batch normalization) layers of the
l-th residual mapping, respectively, from top to bottom order. ⊗ and � are the convolutional and batch
normalization operators, respectively.

Next, we introduce a temporal partition: let tl = l/L, for l = 0, 1, · · · , L, with the time interval ∆t = 1/L.
Without considering dimensional consistency, we regard xl in Eq. (3) as the value of x(t) at the time slot tl,
so Eq. (3) can be rewritten as{

x(tl+1) = x(tl) + ∆t · F (x(tl),w(tl)), l = 0, 1, . . . , L− 1, with x(0) = x̂

ŷ
.
= f(x(1)),

(5)

where F .
= 1

∆tF . Eq. (5) is the forward Euler discretization of the following ODE

dx(t)

dt
= F (x(t),w(t)), x(0) = x̂. (6)
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Let u(x, t) be a function that is constant along the trajectory defined by Eq. (6), as demonstrated in Fig. 3
(b), then u(x, t) satisfies the following TE

d

dt
(u(x(t), t)) =

∂u

∂t
(x, t) + F (x,w(t)) · ∇u(x, t) = 0, x ∈ Rd, (7)

the first equality is because of the chain rule and the second equality dues to the fact that u is constant along
the curve defined by Eq. (6).

If we enforce the terminal condition at t = 1 for Eq. (7) to be

u(x, 1) = softmax(w0 · x) := f(x),

then according to the fact that u(x, t) is constant along the curve defined by Eq. (6) (which is called the
characteristic curve for the TE defined in Eq. (7)), we have u(x̂, 0) = u(x(1), 1) = f(x(1)); therefore, the
forward propagation of ResNet for x̂ can be modeled as computing u(x̂, 0) along the characteristic curve of
the following TE {

∂u
∂t (x, t) + F (x,w(t)) · ∇u(x, t) = 0, x ∈ Rd,
u(x, 1) = f(x).

(8)

Meanwhile, the backpropagation in training ResNets can be modeled as finding the velocity field,
F (x(t),w(t)), for the following control problem

∂u
∂t (x, t) + F (x,w(t)) · ∇u(x, t) = 0, x ∈ Rd,
u(x, 1) = f(x), x ∈ Rd,
u(xi, 0) = yi, xi ∈ T, with T,

(9)

where T is the training set that enforces the initial condition on the training data for the TE. Note that in
the above TE formulation of ResNet, u(x, 0) serves as the classifier and the velocity field F (x,w(t)) encodes
ResNet’s architecture and weights. When F is very complex, u(x, 0) might be highly irregular i.e. a small
change in the input x can lead to a massive change in the value of u(x, 0). This irregular function may have
a good generalizability on clean images, but it is not robust to adversarial attacks. Fig. 4 (a) shows a 2D
illustration of u(x, 0) with the terminal condition u(x, 1) shown in Fig. 4 (d); we will discuss this in detail
later in this section.

2.2 Improving Robustness via Diffusion
Using a specific level set of u(x, 0) in Fig. 4 (a) for classification suffers from adversarial vulnerability: A tiny
perturbation in x will lead the output to go across the level set, thus leading to misclassification. To mitigate
this issue, we introduce a diffusion term 1

2σ
2∆u to Eq. (8), with σ being the diffusion coefficient and

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
d

,

is the Laplace operator in Rd. The newly introduced diffusion term makes the level sets of the TE more regular.
This improves adversarial robustness of the classifier. Hence, we arrive at the following convection-diffusion
equation {

∂u
∂t (x, t) + F (x,w(t)) · ∇u(x, t) + 1

2σ
2∆u(x, t) = 0, x ∈ Rd, t ∈ [0, 1),

u(x, 1) = f(x).
(10)

The solution of Eq. (10) is much more regular when σ 6= 0 than when σ = 0. We consider the solution of
Eq. (10) in a 2D unit square with periodic boundary conditions, and on each grid point of the mesh the
velocity field F (x,w(t)) is a random number sampled uniformly from −1 to 1. The terminal condition is
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(a) σ = 0 (b) σ = 0.01

(c) σ = 0.1 (d) u(x, 1)

Figure 4: (d): terminal condition for Eq. (10); (a), (b), and (c): solutions of the convection-diffusion equation,
Eq. (10), at t = 0 with different diffusion coefficients σ.

also randomly generated, as shown in Fig. 4 (d). This 2D convection-diffusion equation is solved by the
pseudo-spectral method with spatial and temporal step sizes being 1/128 and 1× 10−3, respectively. Figure 4
(a), (b), and (c) illustrate the solutions when σ = 0, 0.01, and 0.1, respectively. These show that as σ increases,
the solution becomes more regular, which makes the classifier more robust, but might be less accurate on
clean data. The σ should be selected to have a good trade-off between accuracy and robustness. According
to the above observation, instead of using u(x, 0) of the TE’s solution for classification, we use that of the
convection-diffusion equation.

2.3 Theoretical Guarantees for the Surrogate Model
We have the following theoretical guarantee for robustness of the solution of the convection-diffusion equation
mentioned above.

Theorem 1. [31] Let F (x, t) be a Lipschitz function in both x and t, and f(x) be a bounded function.
Consider the following initial value problem of the convection-diffusion equation (σ 6= 0){

∂u
∂t (x, t) + F (x,w(t)) · ∇u(x, t) + 1

2σ
2∆u(x, t) = 0, x ∈ Rd, t ∈ [0, 1),

u(x, 1) = f(x).
(11)
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Then, for any small perturbation δ, we have |u(x + δ, 0)− u(x, 0)| ≤ C
(
‖δ‖2
σ

)α
for some constant α > 0 if

σ ≤ 1. Here, ‖δ‖2 is the `2 norm of δ, and C is a constant that depends on d, ‖f‖∞, and ‖F‖L∞
x,t
. The

meaning of notations ‖f‖∞ and ‖F‖L∞
x,t

can be found in [31].

Furthermore, we have the following bound for the gradient of the solution of the convection-diffusion
equation.

Theorem 2. Let u0(x) be a compactly supported function and F ∈ C1(Rd × [0, 1]). For the following initial
value problem of the convection-diffusion equation{

∂u
∂t (x, t) + F (x,w(t)) · ∇u(x, t) = 1

2σ
2∆u(x, t), x ∈ Rd, t ∈ [0, 1),

u(x, 0) = u0(x),
(12)

we have
‖∇u(x, 1)‖∞ ≤ e−σ

2

eγ (‖u0‖∞ + ‖∇u0‖∞) , (13)

where γ is a constant depends on ∇F .

Proof. Let w(x, t) =
(
µu2(x, t) + ‖∇u(x, t)‖2

)
e−2λt, where µ and λ are constants which will be defined later.

Note that u2(x, t) satisfies

∂(u2)

∂t
+ F (x, t) · ∇(u2) = σ2∆(u2)− 2σ2‖∇u‖2,

and ‖∇u‖2 satisfies

∂‖∇u‖2

∂t
+ F (x, t) · ∇‖∇u‖2 = −2∇u · ∇F · ∇u+ σ2∆‖∇u‖2 − 2σ2‖∇∇u‖2F ,

therefore,

∂w

∂t
+ F · ∇w − σ2∇w = e−2λt [−2λ(µu2 + ‖∇u‖2)− 2µσ2‖∇u‖2 − 2∇u · ∇F · ∇u− 2σ2‖∇∇u‖2F

]
.

Next, let γ(x, t) = min‖ξ‖=1 ξ · ∇F · ξ and γ = −minx,t γ(x, t), then we have

Lw :=
∂w

∂t
+ F · ∇w − σ2∇w ≤ −2e−2λt

[
λµu2 + (λ+ µσ2 − γ)‖∇u‖2

]
.

If we choose λ and µ large enough, such that λ+ µσ − γ ≥ 0, then

Lw ≤ 0.

From the maximum principle, we know maxx w(x, 1) ≤ maxx w(x, 0), i.e.,

max
x

e−2λ
(
µu2(x, 1) + ‖∇u(x, 1)‖2

)
≤ max

x

(
µu2(x, 0) + ‖∇u(x, 0)‖2

)
.

Hence,
‖∇u(x, 1)‖2∞ ≤ e2λ

(
µ‖u0‖2∞ + ‖∇u0‖2∞

)
.

Let µ = 1 and λ = γ − σ2, we have

‖∇u(x, 1)‖∞ ≤ e−σ
2

(eγ‖u0‖∞ + eγ‖∇u0‖∞) .

Remark 1. Similar estimate in Theorem 2 can be established on u(x, 0) for the terminal value problem of
the convection diffusion equation in Eq. (11) by reverse time.
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3 Algorithms

3.1 ResNets Ensemble via the Feynman-Kac Formula
Based on the above discussion, if we use the solution of the convection-diffusion equation, Eq. (10), for
classification. The resulted classifier will be more resistant to adversarial attacks. In this part, we will present
an ensemble of ResNets to approximate the solution of Eq. (10). In the Section. 4, we will verify that the
robustly trained special ensemble of ResNets is more accurate on both clean and adversarial images than
standard ResNets.

The convection-diffusion equation, Eq. (10), can be solved using the Feynman-Kac formula [26] in high
dimensional space, which gives u(x̂, 0) as

u(x̂, 0) = E [f(x(1))|x(0) = x̂] , (14)

where x(t) is an Itô process,
dx(t) = F (x(t),w(t))dt+ σdBt,

and u(x̂, 0) is the conditional expectation of f(x(1)).

Next, we approximate the Feynman-Kac formula by an ensemble of modified ResNets in the following way:
Accoding to the Euler-Maruyama method [2], the term σdBt in the Itô process that can be approximated by
adding a specially designed Gaussian noise, σN (0, I), where σ = a

√
Var(xl + F(xl)) with a being a tunable

parameter, to each original residual mapping xl+1 = xl + F(xl) in the ResNet. This gives the modified
residual mapping xl+1 = xl +F(xl) + σN (0, I), as illustrated in Fig. 1 (b). Let ResNet’ denote the modified
ResNet where we inject noise to each residual mapping of the original ResNet. In a nutshell, ResNet’s
approximation to the Feynman-Kac formula is an ensemble of jointly trained ResNet’ as illustrated in Fig. 1
(c). 1 We call this ensemble of ResNets as EnResNet. For instance, if the base ResNet is ResNet20, an
ensemble of n ResNet20 is denoted as EnnResNet20.

3.2 Adversarial Attacks
In this subsection, we review a few widely used adversarial attacks. These attacks will be used to train
robust EnResNets and attack the trained models. We attack the trained model, f(x,w), by `∞ norm based
(the other norm based attacks can be formulated similarly) untargeted fast gradient sign method (FGSM),
iterative FGSM (IFGSM) [16], and Carlini-Wagner (C&W) [9] attacks in both white-box and blind fashions.
In blind attacks, we use the target model to classify the adversarial images crafted by attacking the oracle
model in a white-box approach. For a given instance (x, y):

• FGSM searches the adversarial image x′ by maximizing the loss function L(x′, y)
.
= L(f(x′,w), y),

subject to the constraint ||x′ − x||∞ ≤ ε with ε being the maximum perturbation. For the linearized
loss function, L(x′, y) ≈ L(x, y) +∇xL(x, y)T · (x′ − x), the optimal adversarial is

x′ = x + ε · sign (∇xL(x, y)) . (15)

• IFGSM, Eq. (16), iterates FGSM with step size α and clips the perturbed image to generate the
enhanced adversarial attack,

x(m) = Clipx,ε{x(m−1) + α · sign(∇xL(x(m−1), y))}, (16)

where m = 1, · · · ,M , x(0) = x, and let the adversarial image be x′ = x(M) with M being the total
number of iterations.

• C&W attack searches the targeted adversarial image by solving

min
δ
||δ||∞, subject to f(w,x + δ) = t, x + δ ∈ [0, 1]d, (17)

1To ease the notation, in what follows, we use ResNet in place of ResNet’ when there is no ambiguity.
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where δ is the adversarial perturbation and t is the target label. Carlini et al. [9] proposed the following
approximation to Eq. (17),

min
u
||1

2
(tanh(u) + 1)− x||∞ + (18)

c ·max

{
−κ,max

i 6=t
(Z(

1

2
(tanh(u)) + 1)i)− Z(

1

2
(tanh(u)) + 1)t

}
,

where Z(·) is the logit vector for the input, i.e., the output of the DNN before the softmax layer. This
unconstrained optimization problem can be solved efficiently by using the Adam optimizer [27]. Dou et
al. [13], prove that, under a certain regime, C&W can shift the DNNs’ predicted probability distribution
to the desired one.

All three attacks clip the pixel values of the adversarial image to between 0 and 1. In the following
experiments, we set ε = 8/255 in both FGSM and IFGSM attacks. Additionally, in IFGSM we set m = 20
and α = 2/255, and denote it as IFGSM20. For C&W attack, we run 50 iterations of Adam with learning
rate 6× 10−4 and set c = 10 and κ = 0.

3.3 Robust Training of EnResNets
We use the PGD adversarial training [38], i.e., solving EARM Eq. (1) by replacing x′ with the PGD adversarial
one, to robustly train EnResNets with σ = 0.1 on both CIFAR10 and CIFAR100 [28] benchmarks with
standard data augmentation [21]. The attack in the PGD adversarial training is merely IFGSM with an
initial random perturbation on the clean data. We summarize the PGD based robust training for EnResNets
in Algorithm 1. Other methods to solve EARM can also be used to train EnResNets, e.g., approximation
to the adversarial risk function and regularization. EnResNet enriches the hypothesis class H, to make the
classifiers from H more adversarially robust. All computations are carried out on a machine with a single
Nvidia Titan Xp graphics card.

Algorithm 1 Training of the EnResNet by PGD Adversarial Training
Input: Training set: (Xi,Yi)

NB
i=1, NB = #minibatches, perturbation ε, and step size α.

Output: A robustly trained EnNResNet, i.e., an ensemble of N modified ResNets.
for i = 1, . . . , NE (where NE is the number of epochs.) do

for j = 1,. . . , NB do
//PGD attack
Add uniform noise in the range [−ε, ε] to Xi, denote the resulted images as X̃i.
Attack X̃i by 10 iterations IFGSM attacks with maximum perturbation ε and step size α. And

denote the adversarial images as X′i.
//Forward-propagation
Generate prediction Ỹi = EnNResNet(X′i) for X′i by the current model EnNResNet.
//Back-propagation
Back-Propagate the cross-entropy loss between Yi and Ỹi to update the model EnResNetN .

4 Numerical Results
In this section, we numerically verify that the robustly trained EnResNets are more accurate, on both clean
and adversarial data of the CIFAR10 and CIFAR100, than robustly trained ResNets and ensemble of ResNets
without noise injection. To avoid the gradient mask issue of EnResNets due to the noise injection in each
residual mapping, we use the Expectation over Transformation (EOT) strategy [6] to compute the gradient
which is averaged over five independent runs.
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Table 1: Natural accuracies of naturally trained ResNet20 and different ensemble of noise injected
ResNet20 on the CIFAR10 dataset. Unit: %.

Model dataset Anat

ResNet20 CIFAR10 92.10
En1ResNet20 CIFAR10 92.59
En2ResNet20 CIFAR10 92.60
En5ResNet20 CIFAR10 92.74
ResNet44 CIFAR10 93.22

En1ResNet44 CIFAR10 93.37
En2ResNet44 CIFAR10 93.54
ResNet110 CIFAR10 94.30

En2ResNet110 CIFAR10 93.49

4.1 Natural and Robust Accuracies of Robustly Trained EnResNets
In robust training, we run 200 epochs of the PGD adversarial training (10 iterations of IFGSM with α = 2/255
and ε = 8/255, and an initial random perturbation of magnitude ε) with initial learning rate 0.1, which
decays by a factor of 10 at the 80th, 120th, and 160th epochs. The training data is split into 45K/5K for
training and validation, the model with the best validation accuracy is used for testing. Similar settings are
used for natural training, i.e., solving the ERM problem Eq. (2). En1ResNet20 denotes the ensemble of only
one ResNet20 which is merely adding noise to each residual mapping, and similar notations apply to other
DNNs.

First, we show that the ensemble of noise injected ResNets can improve the natural generalization of
the naturally trained models. As shown in Table 1, the naturally trained ensemble of multiple ResNets are
always generalize better on the clean images than the base ResNets. This conclusion is verified by ResNet20,
ResNet44, and ResNet110. However, the natural accuracy of the robustly trained models are much less
than that of the naturally trained models. For instance, the natural accuracies of the robustly trained and
naturally trained ResNet20 are, respectively, 75.11% and 92.10%. The degradation of natural accuracies in
robust training are also confirmed by experiments on ResNet44 (78.89% v.s. 93.22%) and ResNet110 (82.19%
v.s. 94.30%). Improving natural accuracy of the robustly trained models is another important issue during
adversarial defense.

Second, consider natural (Anat) and robust (Arob) accuracies of the PGD adversarially trained models on
the CIFAR10, where Anat and Arob are measured on clean and adversarial images, respectively. All results
are listed in Table 2. The robustly trained ResNet20 has accuracies 50.89%, 46.03% (close to that reported in
[38]), and 58.73%, respectively, under the FGSM, IFGSM20, and C&W attacks. Moreover, it has a natural
accuracy of 75.11%. En5ResNet20 boosts natural accuracy to 82.52%, and improves the corresponding robust
accuracies to 58.92%, 51.48%, and 67.73%, respectively. Simply injecting noise to each residual mapping
of ResNet20 can increase Anat by ∼ 2% and Arob by ∼ 3% under the IFGSM20 attack. The advantages of
EnResNets are also verified by experiments on ResNet44, ResNet110, and their ensembles. Note that ensemble
of high capacity ResNet is more robust than low capacity model: as shown in Table 2, En2ResNet110 is
more accurate than En2ResNet44 which in turn is more accurate than En2ResNet20 in classifying both clean
and adversarial images. The robustly trained En1WideResNet34-10 has 86.19% and 56.60%, respectively,
natural and robust accuracies under the IFGSM20 attack. Compared with the current state-of-the-art [59],
En1WideResNet34-10 has almost the same robust accuracy (56.60% v.s. 56.61%) under the IFGSM20 attack
but better natural accuracy (86.19% v.s. 84.92%). Figure 5 plots the evolution of training and validation
accuracies of ResNet20 and ResNet44 and their different ensembles.

Third, consider accuracy of the robustly trained models under blind attacks. In this scenario, we use the
target model to classify the adversarial images crafted by applying FGSM, IFGSM20, and C&W attacks to
the oracle model. As listed in Table 3, EnResNets are always more robust than the base ResNets under
different blind attacks. For instance, when En5ResNet20 is used to classify adversarial images crafted by
attacking ResNet20 with FGSM, IFGSM20, and C&W attacks, the accuracies are 64.07%, 62.99%, and 76.57%,
respectively. Conversely, the accuracies of ResNet20 are only 61.69%, 58.74%, and 73.77%, respectively, in
classifying adversarial images obtained by using the above three attacks to attack En5ResNet20.

11



Table 2: Natural and robust accuracies of different base and noise injected ensembles of robustly trained
ResNets on the CIFAR10. Unit: %.

Model dataset Anat Arob (FGSM) Arob (IFGSM20) Arob (C&W)

ResNet20 CIFAR10 75.11 50.89 46.03 58.73
En1ResNet20 CIFAR10 77.21 55.35 49.06 65.69
En2ResNet20 CIFAR10 80.34 57.23 50.06 66.47
En5ResNet20 CIFAR10 82.52 58.92 51.48 67.73
ResNet44 CIFAR10 78.89 54.54 48.85 61.33

En1ResNet44 CIFAR10 82.03 57.80 51.83 66.00
En2ResNet44 CIFAR10 82.91 58.29 51.86 66.89
ResNet110 CIFAR10 82.19 57.61 52.02 62.92

En2ResNet110 CIFAR10 82.43 59.24 53.03 68.67
En1WideResNet34-10 CIFAR10 86.19 61.82 56.60 69.32

(a) (b)

Figure 5: Evolution of training and validation accuracy. (a): ResNet20 and different ensembles of noise
injected ResNet20. (b): ResNet44 and different ensembles of noise injected ResNet44.

Table 3: Accuracies of robustly trained models on adversarial images of CIFAR10 crafted by attacking the
oracle model with different attacks. Unit: %.

Model dataset Oracle Arob (FGSM) Arob (IFGSM20) Arob (C&W)

ResNet20 CIFAR10 En5ResNet20 61.69 58.74 73.77
En5ResNet20 CIFAR10 ResNet20 64.07 62.99 76.57
ResNet44 CIFAR10 En2ResNet44 63.87 60.66 75.83

En2ResNet44 CIFAR10 ResNet44 64.52 61.23 76.99
ResNet110 CIFAR10 En2ResNet110 64.19 61.80 75.19

En2ResNet110 CIFAR10 ResNet110 66.26 62.89 77.71

Fourth, we perform experiments on the CIFAR100 to further verify the efficiency of EnResNets in defending
against adversarial attacks. Table 4 lists the naturally accuracies of the naturally trained ResNets and their
ensembles, again, the ensemble can improve natural accuracies. Table 5 lists natural and robust accuracies of
robustly trained ResNet20, ResNet44, and their ensembles under white-box attacks. The robust accuracy
under the blind attacks is listed in Table 6. The natural accuracy of the PGD adversarially trained baseline
ResNet20 is 46.02%, and it has robust accuracies 24.77%, 23.23%, and 32.42% under FGSM, IFGSM20, and
C&W attacks, respectively. En5ResNet20 increases them to 51.72%, 31.64%, 27.80%, and 40.44%, respectively.
The ensemble of ResNets is more effective in defending against adversarial attacks than making the ResNets
deeper. For instance, En2ResNet20 that has ∼ 0.27M × 2 parameters is much more robust to adversarial
attacks, FGSM (30.20% v.s. 28.40%), IFGSM20 (26.25% v.s. 25.81%), and C&W (40.06% v.s. 36.06%), than
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Table 4: Natural accuracies of naturally trained ResNet20 and different ensemble of noise injected
ResNet20 on the CIFAR100 dataset. Unit: %.

Model dataset Anat

ResNet20 CIFAR100 68.53
ResNet44 CIFAR100 71.48

En2ResNet20 CIFAR100 69.57
En5ResNet20 CIFAR100 70.22

ResNet44 with ∼ 0.66M parameters. Under blind attacks, En2ResNet20 is also significantly more robust to
different attacks where the opponent model is used to generate adversarial images. Under the same model
and computation complexity, EnResNets is more robust to adversarial images and more accurate on clean
images than deeper nets.

Table 5: Natural and robust accuracies of robustly trained ResNet20 and different ensemble of noise injected
ResNet20 on the CIFAR100. Unit: %.

Model dataset Anat Arob (FGSM) Arob (IFGSM20) Arob (C&W)

ResNet20 CIFAR100 46.02 24.77 23.23 32.42
En2ResNet20 CIFAR100 50.68 30.20 26.25 40.06
En5ResNet20 CIFAR100 51.72 31.64 27.80 40.44
ResNet44 CIFAR100 50.38 28.40 25.81 36.06

Table 6: Accuracies of robustly trained models on the adversarial images of CIFAR100 crafted by
attacking the oracle model with different attacks. Unit: %.

Model dataset Oracle Arob (FGSM) Arob (IFGSM20) Arob (C&W)

ResNet20 CIFAR100 En2ResNet20 33.08 30.79 41.52
En2ResNet20 CIFAR100 ResNet20 34.15 33.34 48.21

Figure 6 depicts a few selected images from the CIFAR10 and their adversarial ones crafted by applying
either IFGSM20 or C&W attack to attack both ResNet20 and En5ResNet20. Both adversarially trained
ResNet20 and En5ResNet20 fail to correctly classify any of the adversarial versions of these four images. For
the deer image, it might also be difficult for human to distinguish it from a horse.

4.2 Integration of Separately Trained EnResNets
In the previous subsection, we verified the adversarial defense capability of EnResNet, which is an approxi-
mation to the Feynman-Kac formula to solve the convection-diffusion equation. As we showed, when more
ResNets and larger models are involved in the ensemble, both natural and robust accuracies are improved.
However, EnResNet proposed above requires to train the ensemble jointly, which poses memory challenges for
training ultra-large ensembles. To overcome this issue, we consider training each component of the ensemble
individually and integrating them together for prediction. The major benefit of this strategy is that with the
same amount of GPU memory, we can train a much larger model for inference since the batch size used in
inference can be one.

Table 7 lists natural and robust accuracies of the integration of separately trained EnResNets on the
CIFAR10. The integration of separately trained EnResNets have better robust accuracy than each component.
For instance, the integration of En2ResNet110 and En1WideResNet34-10 gives a robust accuracy 57.94% under
the IFGSM20 attack, which is remarkably better than both En2ResNet110 (53.05%) and En1WideResNet34-10
(56.60%). To the best of our knowledge, 57.94% outperforms the current state-of-the-art [59] by 1.33%. The
effectiveness of the integration of separately trained EnResNets sheds light on the development of ultra-large
models to improve efficiency for adversarial defense.
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Figure 6: Column 1: original images and labels; column 2-3 (4-5): adversarial images crafted by using
IFGSM20 and C&W to attack ResNet20 (En5ResNet20) and corresponding predicted labels.

Table 7: Natural and robust accuracies of different integration of different robustly trained EnResNets on
the CIFAR10. Unit: %.

Model dataset Anat Arob (FGSM) Arob (IFGSM20) Arob (C&W)

En2ResNet20&En5ResNet20 CIFAR10 82.82 59.14 53.15 68.00
En2ResNet44&En5ResNet20 CIFAR10 82.99 59.64 53.86 69.36
En2ResNet110&En5ResNet20 CIFAR10 83.57 60.63 54.87 70.02

En2ResNet110&En1WideResNet34-10 CIFAR10 85.62 62.48 57.94 70.20

4.3 Comparison with the Wide ResNet
In this subsection, we show that with the same number of parameters, EnResNets is more adversarially robust
that the Wide ResNets. We compare EnResNet220 with the wide-ResNet: WRN-14-2 [58]. WRN-14-2 has
∼ 0.69M parameters which is more than that of EnResNet220. We list natural and robust accuracies of the
robustly trained models on the CIFAR10 benchmark in Table. 8. En2ResNet20 has higher natural accuracy
than WRN-14-2 (80.34% v.s. 78.37%). Moreover, En2ResNet20 is more robust to both IFGSM20 and C&W
attacks.
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Table 8: Natural and robust accuracies of robustly trained En2esNet20 and WRN-14-2
on the CIFAR10 dataset. Unit: %.

Model dataset Anat Arob (FGSM) Arob (IFGSM20) Arob (C&W)
En2ResNet20 CIFAR10 80.34 57.23 50.06 66.47
WRN-14-2 CIFAR10 78.37 52.93 48.85 60.30

4.4 Gradient Mask and Comparison with Simple Ensembles
Besides applying EOT gradient, we further verify that our defense is not due to obfuscated gradient. We
use IFGSM20 to attack naturally trained (using the same approach as that used in [21]) En1ResNet20,
En2ResNet20, and En5ResNet20, and the corresponding accuracies are: 0%, 0.02%, and 0.03%, respectively.
All naturally trained EnResNets are easily fooled by IFGSM20, thus gradient mask does not play an important
role in EnResNets for adversarial defense [5].

Ensemble of models for adversarial defense has been studied in [49]. Here, we show that ensembles of
robustly trained ResNets without noise injection cannot boost natural and robust accuracy much. The natural
accuracy of jointly (separately) adversarially trained ensemble of two ResNet20 without noise injection is
75.75% (74.96%), which does not substantially outperform ResNet20 with a natural accuracy 75.11%. The
corresponding robust accuracies are 51.11% (51.68%), 47.28% (47.86%), and 59.73% (59.80%), respectively,
under the FGSM, IFGSM20, and C&W attacks. These robust accuracies are much inferior to that of
En2ResNet20. Furthermore, the ensemble of separately trained robust ResNet20 and robust ResNet44 gives a
natural accuracy of 77.92%, and robust accuracies are 54.73%, 51.47%, 61.77% under the above three attacks.
These results reveal that ensemble adversarially trained ResNets via the Feynman-Kac formalism is much
more accurate than standard ensemble in both natural and robust generalizations.

5 Ensemble of Different ResNets
In previous sections, we proposed and numerically verifies the efficiency of the EnResNet, which can be
regarded as an Monte Carlo (MC) approximation to the Feynman-Kac formula that used to solve the
convection-diffusion equation. A straightforward extension is to solve the convection-diffusion equation by
the multi-level MC [15], which in turn can be simulated by an ensemble of ResNets with different depths.
In previous ensembles, we used the same weight for each individual ResNet. However, in the ensemble of
different ResNets, we learn the optimal weight for each component. Here, we derive the formula to learn the
optimal weights in the cross-entropy loss setting.

Suppose we have an ensemble of two ResNets for n-class classification with training data {xi, yi}Ni=1

where yi is the label of xi and N is the number of training data. Let the tensors before the softmax output
activation of two ResNet, respectively, be
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2
i , . . . , ŷ
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n
i + w2ŷ
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Table 9: Natural and robust accuracies of the robustly trained En2ResNet32 and
En1ResNet20&En1ResNet32 on the CIFAR10 dataset. Unit: %.

Model dataset Anat Arob (IFGSM20) Arob (C&W)
En2ResNet32 CIFAR10 81.46 52.06 68.41

En1ResNet20&En1ResNet32 CIFAR10 81.56 51.99 68.62

Table 10: Natural and robust accuracies of the robustly trained En2ResNet32 and
En1ResNet20&En1ResNet32 on the CIFAR100 dataset. Unit: %.

Model dataset Anat Arob (IFGSM20) Arob (C&W)
En2ResNet32 CIFAR100 53.14 27.27 41.50

En1ResNet20&En1ResNet32 CIFAR100 53.07 27.01 42.23

where w1 and w2 are the weights of the two ResNets, where we enforce w1 +w2 = 1. Hence, the corresponding
log-softmax for the i-th instance is 

log

(
exp (w1ỹ
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Let L be the total cross-entropy loss on these N training data, then we have
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In implementation, we update these weights once per epoch during the training and normalize the updated
weights.

To show performance of ensembles of jointly trained different ResNets, we robustly train an ensemble of
noise injected ResNet20 and ResNet32 on both CIFAR10 and CIFAR100 benchmarks. As shown in Tables 9
and 10, on CIFAR10 the ensemble of jointly trained noise injected ResNet20 and ResNet32 outperforms
En2ResNet32 in classifying both clean (81.46% v.s. 81.56%) and adversarial images of C&W attack (68.41%
v.s. 68.62%). On CIFAR100, performances of the ensemble of jointly trained noise injected ResNet20 and
ResNet32 and En2ResNet32 are comparable.

6 Concluding Remarks
Motivated by the transport equation modeling of the ResNet and the Feynman-Kac formula, we proposed a
novel ensemble algorithm for ResNets. The proposed ensemble algorithm consists of two components: injecting
Gaussian noise to each residual mapping of ResNet, and averaging over multiple jointly and robustly trained
baseline ResNets. Numerical results on the CIFAR10 and CIFAR100 show that our ensemble algorithm
improves both natural and robust generalization of the robustly trained models. Our approach is a complement
to many existing adversarial defenses, e.g., regularization based approaches for adversarial training [59]. It is
of interesting to explore the regularization effects in EnResNet.

The memory consumption is one of the major bottlenecks in training ultra-large DNNs. Another advantage
of our framework is that we can train small models and integrate them during testing.
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