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Abstract

Approximate message passing (AMP) methods have gained recent traction in sparse
signal recovery. Additional information about the signal, or side information (SI), is
commonly available and can aid in efficient signal recovery. In this work, we present
an AMP-based framework that exploits SI and can be readily implemented in various
settings. To illustrate the simplicity and wide applicability of our approach, we apply
this framework to a Bernoulli-Gaussian (BG) model and a time-varying birth-death-
drift (BDD) signal model, motivated by applications in channel estimation. We develop
a suite of algorithms, called AMP-SI, and derive denoisers for the BDD and BG models.
We also present numerical evidence demonstrating the advantages of our approach, and
empirical evidence of the accuracy of a proposed state evolution.

1 Introduction

The core focus of research in many disciplines, including but not limited to communica-
tion [7], compressive imaging [2], matrix completion [8], quantizer design [21], large-scale
signal recovery [42], and sparse signal processing [9], is on accurately recovering a high-
dimensional, unknown signal from a limited number of noisy linear measurements by ex-
ploiting probabilistic characteristics and structure in the signal.

We consider the following model for this task. For an unknown signal x ∈ RN ,

y = Ax+ z, (1)

where y ∈ RM are noisy measurements, A ∈ RM×N is the measurement matrix, and z ∈ RM

is measurement noise. The objective of signal recovery is to recover or estimate x from
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knowledge of only y and A, and in some cases statistical knowledge about x and z. A
great deal of effort has gone into developing schemes for such signal recovery, for example
`1 minimization based approaches for sparse recovery [12, 38] and computationally efficient
iterative algorithms [6, 14, 30], and supporting theory to tackle these challenges as datasets
become larger and multidimensional. Approximate message passing (AMP) [14, 20] is an
algorithmic framework for recovering sparse signals in high-dimensional regression tasks that
is often used when prior information about the signal’s distribution is available.

1.1 AMP for Signal Recovery

Approximate message passing or AMP [14,20,29] is a low-complexity algorithmic framework
for efficiently solving high-dimensional regression tasks (1). AMP algorithms are derived as
Gaussian or quadratic approximations of loopy belief propagation algorithms (e.g., min-sum,
sum-product) on the dense factor graph corresponding to (1).

AMP has a few features that make it attractive for signal recovery. In certain prob-
lem settings, AMP offers convergence in linear time, and its performance can be tracked
accurately with a simple scalar iteration known as state evolution (SE), discussed below.
In addition, it is well-accepted the performance of AMP will be no worse than the best
polynomial-time algorithms available [24].

AMP algorithm: The standard AMP algorithm [14] iteratively updates estimates of
the unknown input signal, with xt ∈ RN being the estimate at iteration t. The algorithm is
given by the following set of updates. Assume that x0 is the all-zero vector and update for
t ≥ 0 with the following iterations:

rt = y − Axt +
rt−1

δ

〈
η′t−1(x

t−1 + AT rt−1)
〉
, (2)

xt+1 = ηt(x
t + AT rt). (3)

Note that ηt : R → R is an appropriately-chosen sequence of functions and δ = M
N

is the
measurement rate. The functions {ηt(·)}t≥0 act element-wise on their vector inputs and
have derivatives η′t(w) = ∂

∂w
ηt(w). Moreover, 〈w〉 = 1

N

∑N
i=1wi is the empirical mean, where

w ∈ RN . Here and throughout, we use capital letters to represent random variables (RVs)
and lower case letters to represent realizations. We also denote a Gaussian RV with mean µ
and variance σ2 by N (µ, σ2).

Assuming that the measurement matrix A has independent and identically distributed
(i.i.d.) N (0, 1/M) entries and the entries of the signal x are i.i.d. ∼ f(X), where f(X) is the
probability density function (pdf) of the signal, one useful feature of AMP is that the input
to the denoiser, xt + AT rt, which we refer to as the pseudo-data, is almost surely equal in
distribution to the true signal x plus i.i.d. Gaussian noise with variance λ2t , a constant value
given by the SE equations, introduced in (4) below, in the large system limit as N → ∞
with fixed δ. These favorable statistical properties of the pseudo-data are due to the presence
of the ‘Onsager’ term, rt−1

δ

〈
η′t−1(x

t−1 + AT rt−1)
〉
, used in the residual step (2) of the AMP

updates.
State evolution (SE): One of AMP’s attractive features is that under suitable condi-

tions on A and x, its performance can be tracked accurately with a simple scalar iteration
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referred to as state evolution (SE) [5, 33]. In particular, performance measures such as the
`2-error or the `1-error in the algorithm’s iterations concentrate to constants predicted by
SE. The SE equations follow: let λ0 = σ2

z + E[X2]/δ and for t ≥ 0, we have

λ2t = σ2
z +

1

δ
E
[
(ηt−1(X + λt−1Z)−X)2

]
, (4)

where X ∼ f(X) is independent of Z ∼ N (0, 1) and λ2t tracks the variance of the difference
between the pseudo-data and signal at iteration t.

The AMP updates (2) - (3) rely on appropriately-chosen denoisers {ηt}t≥0, which reduce
the noise in the optimization task at each iteration. Owing to the favorable properties of
the psuedo-data and the fact that one is often interested in evaluating the performance of
the algorithm using the mean squared error (MSE), ηt in iteration t is often chosen to be
the minimum mean squared error (MMSE) denoiser based on the pdf of x:

ηt(a) = E[X|X + λtZ = a], (5)

where Z ∼ N (0, 1), and X ∼ f(X) is a RV with the same pdf as that of x. See Section 2.3.1
for further insights of how SE behaves in our framework.

1.2 Side information

In information theory [13, 15], it is well known that when different communication systems
share side information (SI), overall communication can happen more efficiently. As an ex-
ample, when running a Bayesian signal recovery algorithm on an input x with an unknown
probability density, feedback about the estimated density leads to improved signal recovery
quality [19].

Signal recovery algorithms often have access to SI, denoted x̃, that, as we will soon see,
offers the potential to markedly improve recovery quality. For the noisy linear model of (1),
SI has been shown to aid signal recovery when considering various application settings [10,
17, 22, 25–28, 32, 39–41]. For example, three dimensional (3D) video acquisition could be
performed by acquiring each frame of video, which is a 2D image, independently of other
frames using a single pixel camera [35]. While recovering the current frame, it is likely that
one is simultaneously recovering the previous and next frames, which can be used as SI.

We will demonstrate that our approach is potentially useful in applications by studying a
channel estimation problem in wireless communication systems (Fig. 1). In typical channel
estimation scenarios, a wireless device transmits a pilot sequence and data payload in batches.
In batch b, the pilot sequence p is transmitted into the channel, where it is convolved with the
channel response xb, yielding noisy linear measurements (details in Section 4.1). Not only
is the channel response xb in batch b sparse, the slowly time varying nature of the channel
ensures that its differences relative to channel responses in previous batches are structured.
Therefore, we can use x̃ = x̂b−1, the channel response estimated in the previous batch, as
SI while estimating xb in the current batch. In Section 5, we demonstrate that SI in the
above-mentioned batched manner helps AMP achieve lower MSE for a model motivated by
channel estimation.

3
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Figure 1: In batch b, the wireless device transmits a pilot and data payload. The channel
filter xb is estimated using the channel’s response to the pilot along with SI x̃ = x̂b−1, the
channel filter estimated in the previous batch. The estimated x̂b is used to decode the data
and as SI in the next batch to estimate xb+1.

1.3 Contributions and Organization

In this work we develop a class of sparse signal recovery algorithms that integrate SI into
AMP. Our main contribution is a flexible and general framework that incorporates SI in
the denoiser of AMP in a Bayes-optimal manner and can be easily adapted to arbitrary
dependencies between the signal and the SI. Moreover, our framework’s conceptual simplicity
allows us to extend existing SE results to AMP-SI as in (4); these SE results for signal
recovery with SI are lacking in prior work [40], [43]. In the case where the SI is a Gaussian-
noise corrupted view of the true signal, we rigorously show Bayes-optimality properties
for AMP-SI. For more general cases, we demonstrate empirically that our proposed SE
formulation tracks the AMP performance.

We demonstrate our framework through its application to two types of signals. First, a
Bernoulli-Gaussian (BG) signal and second, motivated by the channel estimation problem
discussed in Section 1.2, a time-varying birth-death-drift (BDD) signal. Although we only
provide the details for these two models, it is conceptually intuitive to extend our proposed
framework to different signal-SI relationships. Our numerical experiments show that our
proposed framework achieves a lower MSE than other previously studied SI methods.

The remainder of the paper is organized as follows. In Section 2, we discuss the AMP
algorithm and prior work in AMP approaches that utilize SI. We then present our AMP
framework for SI. Next we discuss the BG model in Section 3, which is a simplified version
of the BDD model studied in Section 4. In Section 5, we include numerical simulations
demonstrating the good performance of AMP-SI. Section 6 concludes.

2 AMP with Side Information

2.1 Prior Work

While integrating SI (or prior information) into signal recovery algorithms is not new [11,
22, 26, 32, 40], our work is a unified framework within AMP that supports arbitrary de-

pendencies between the (Xn, X̃n)Nn=1 pairs. Prior work using SI has been either heuristic,
limited to specific applications, or outside the AMP framework. For example, Wang and
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Liang [40] proposed the Generalized Elastic Net Prior approach, which integrates SI into
AMP for a specific signal prior density, but the method lacks Bayes optimality properties
and is difficult to apply to other signal models. Our algorithmic framework overcomes these
limitations through a generalized, Bayes optimal framework. Ziniel and Schniter [43] de-
veloped an AMP-based signal recovery algorithm for a time-varying signal model based on
Markov processes for the support and amplitude. The Markov processes and corresponding
dependencies between variables are captured by factor graph models. While our BDD model
(details in Section 4) is closely related to their time-varying signal model, our emphasis is
to introduce the AMP-SI framework and demonstrate how SI can be incorporated in AMP
without needing to carefully craft factor graphs for every new signal model.

2.2 Our Approach: AMP-SI

In this paper we introduce a Bayes-optimal algorithmic framework that utilizes available SI.
Our SI takes the form of an estimate x̃ ∈ RN , which is statistically dependent on the signal
x through some joint pdf f(X, X̃). We propose a conditional denoiser,

ηt(a, b) = E[X|X + λtZ1 = a, X̃ = b], (6)

which provides an MMSE estimate of the signal while incorporating SI. We refer to our
framework using the proposed denoiser (6) within the standard AMP algorithm (2) - (3) as
the AMP-SI method. Namely, the AMP-SI algorithm is the following. Assume x0 is the
all-zero vector and update for t ≥ 0:

rt = y − Axt +
rt−1

δ

〈
η′t−1(x

t−1 + AT rt−1, x̃)
〉
, (7)

xt+1 = ηt(x
t + AT rt, x̃). (8)

Note that ηt(·, ·) is the denoising function proposed in (6), its derivative η′t(w, ·) = ∂
∂w
ηt(w, ·)

is with respect to the first input, and 〈w〉 = 1
N

∑N
i=1wi for w ∈ RN . The λt value in (6) is

given by SE equations for AMP-SI: let λ0 = σ2
z + E[X2]/δ and for t ≥ 0,

λ2t = σ2
z +

1

δ
E
[(
ηt−1(X + λt−1Z1, X̃)−X

)2]
, (9)

where (X, X̃) ∼ f(X, X̃) are independent of Z1, which is a standard Gaussian RV. In
comparison to standard AMP, the conditional denoiser function ηt(·, ·) uses SI to denoise the
pseudo-data in AMP-SI.

We note that while there are rigorous theoretical results [5, 33] proving that for large
N the pseudo-data is approximately equal (in distribution) to the true signal x plus i.i.d.
Gaussian noise with variance λ2t , a constant value given by the SE equations, in the case
of standard AMP (2) - (3) with the standard SE (4), we only conjecture that such a result
is true for AMP-SI (7) - (8) with the corresponding SE (9). However, empirical evidence
in Section 5 shows that the SE accurately tracks the MSE of the AMP-SI estimates, and
we leave the theoretical study of such properties as future work, some details of which are
discussed in Section 2.3.
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To show that AMP-SI is conceptually intuitive to apply, while having great potential to
improve signal estimation quality in applications where SI is available, we apply AMP-SI
to a preliminary channel estimation model (Section 4). While using more realistic channel
models is left for future work, our encouraging numerical results show that AMP-SI can be
used beyond toy models such as BG (Section 3).

2.3 AMP-SI Theory

2.3.1 State Evolution Analysis

As mentioned previously, the performance of AMP (2)-(3) at each step of the algorithm can
be rigorously characterized by the SE equations in (4). When the empirical density function
of the unknown signal x converges to some pdf f(X) on R and the denoisers {ηt(·)}t≥0 used in
the AMP updates are applied element-wise to their input, Bayati and Montanari [5] proved
that the SE accurately predicts AMP performance in the large system limit. For example,
their result implies that the MSE, 1

N
||xt − x||2, equals δ(λ2t − σ2

z) almost surely in the large
system limit, but moreover it characterizes the limiting constant values for a fairly general
class of loss functions. Rush and Venkataramanan [33] provide a concentration version of
the asymptotic result when the prior density of x is i.i.d. sub-Gaussian, showing that the
probability of ε-deviation between various performance measures and their limiting constant
values fall exponentially in N .

Considering AMP-SI, however, we cannot directly apply the theoretical results of Bayati
and Montanari [5] or Rush and Venkataramanan [33]. Each entry n of our signal is generated

according to the conditional density f(Xn|X̃n), where the conditioning is on the value of the
corresponding entry of the SI, meaning the signal x now has independent, but not identically
distributed, entries. Owing to x no longer being i.i.d., the conditional denoiser (6) depends
on the index n, meaning that different scalar denoisers will be used at different indices,
based on different SI at different indices. Both results [5] and [33] require that the same
denoiser function be applied to each element of the pseudo-data and our denoiser will change
element-wise based on the SI.

Sketch of Future SE Proof. We conjecture that the proofs in [5] and [33] can be
extended and sketch the steps of such a proof. Like the proofs in [5] and [33], we would
start by analyzing the conditional distribution of the measurement matrix A at any iteration
of the algorithm t, conditioned on the algorithm’s previous output. These distributional
properties of the measurement matrix would not change from the previous work. Using
this conditional distribution of A, we would need to show a corresponding result for the
conditional distribution of the difference between the pseudo-data and the true signal at
each iteration, namely that the conditional distribution (conditional on the past output of

the algorithm) has the form xt +AT rt−x d
= λtZ

t + ∆t where Zt ∼ N (0, I) is independent of
the conditioning sigma-algebra, ∆t is a deviation term, and λt is given by the AMP-SI SE
(9). The final step would be to show that the deviation term is negligible when considering
loss functions of interest, like the MSE, in the sense that the normalized `2 norm of ∆t

concentrates exponentially fast to 0. We note that the proof is inductive on the iteration
number t – showing that the norm of ∆t concentrates to 0 requires showing that the norms
of various other quantities from the AMP updates (7) - (8) concentrate on predicted values
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– making it technically involved. The full details are left for future work.

2.3.2 Bayes Optimality

When the conditional expectation denoiser (5) is used in AMP (2)-(3), the corresponding
SE (4) in its convergent states coincides with Tanaka’s fixed point equation [16,37], ensuring
that if AMP runs until it converges, in the large system limit the result provides the best
possible MSE achieved by any algorithm under certain problem conditions.

In the case that the SI available to the system is a Gaussian-noise corrupted view of the
true signal, i.e., X̃ = X + N (0, σ2

SI), it can be shown [4] that the fixed points of AMP-
SI SE (9) coincide with the fixed points of AMP SE (4) with ‘effective’ measurement rate
δeff = δ/µ and ‘effective’ measurement noise variance σ2

eff = µσ2 where 0 ≤ µ ≤ 1 and the
µ depends on the prior density of the signal and the SI noise variance σ2

SI . The effective
change in δ and σ2 implies that the incorporation of Gaussian-noise corrupted SI via the
AMP-SI algorithm gives us Bayes-optimal signal recovery for a standard (without SI) linear
regression problem (1) with more measurements and reduced measurement noise variance
than our own. The details of this argument are provided in Appendix C and first appeared
in [4].

We expect that AMP-SI will have similar Bayes-optimality properties to the standard
AMP, however proving this rigorously is theoretically difficult. The above analysis relies
heavily on the Gaussianity of the SI noise and it is not clear if it can be generalized. Providing
rigorous, theoretical guarantees for Bayes optimality is therefore left for future work.

3 Bernoulli-Gaussian Model

The BG model reflects the scenario in which one wants to recover a sparse signal and has
access to SI in the form of the signal with additive white Gaussian noise (AWGN). In other
words, at every iteration the algorithm has access to SI, x̃, and pseudo-data, vt, with

x̃ = x+N (0, σ̂2I), vt ≈ x+N (0, λ2t I),

where the additive noise in the SI and pseudo-data are independent. The entries of x follow
a BG pdf:

Xn ∼ ε
1√
2π

exp

(
−x2n

2

)
+ (1− ε)δ0, (10)

so that x is zero with probability 1 − ε and is standard Gaussian in nonzero entries. Here,
δ0 represents the Dirac delta function at 0.

3.1 The Conditional Denoiser with SI for BG

In this section we will derive the following result:

Result 1. The AMP-SI denoiser (6) has the following closed form for the BG model:

η(a, b) =
(
1 +R(a,b)

)−1 [ aσ̂2 + bλ2t
σ̂2 + λ2t + σ̂2λ2t

]
, (11)

7



where R(a,b) is a ratio between probabilities (computed in (14)), σ̂2 is the variance of the
AWGN of the side information, and λ2t is the variance of the AWGN of the pseudo-data at
iteration t.

In what follows, the notation ψτ2(x) refers to the zero-mean Gaussian density with vari-
ance τ 2 evaluated at x. We will use f(·) (or f(·, ·), f(·, ·, ·), and so on) to represent a
generic pdf (or joint pdf) on the input. Before we begin the derivation of (11), we intro-
duce a few lemmas relating to computations involving two RVs A = ρX + N (0, σ2

a) and
B = X +N (0, σ2

b ). Deriving the conditional denoiser for BG (and later BDD) requires the
joint pdf between A and B (Lemma 1), the product of two Gaussian pdfs (Lemma 2), and
the expectation of X conditional on instances of A and B (Lemma 3).

Lemma 1. Given instances a and b such that A = ρX + N (0, σ2
a) for some constant ρ,

B = X +N (0, σ2
b ), and X ∼ N (0, σ2

x), the joint pdf between A and B is:

f(a, b) =
1

ρ
ψσ2

x+σ
2
b
(b)ψ σ2xσ

2
b

σ2x+σ
2
b

+
σ2a
ρ2

(
σ2
xb

σ2
x + σ2

b

− a

ρ

)
,

assuming that the AWGN in A, AWGN in B, and X are independent.

Lemma 1 is proved in Appendix A. Below, we denote the N (µ, σ2) density evaluated at

x by ψ̃µ,σ2(x).
The next lemma provides a simplified expression for the product of two Gaussian densi-

ties.

Lemma 2. For two Gaussian densities, ψ̃µ1,σ2
1
(x)× ψ̃µ2,σ2

2
(x) equals

ψ̃(µ1σ22+µ2σ21
σ21+σ

2
2

,
σ21σ

2
2

σ21+σ
2
2

)(x)× ψ̃(µ1−µ2,σ2
1+σ

2
2)

(0).

The proof of Lemma 2 involves straightforward algebra and completing the square; the
lemma could also be formulated as a convolution of three Gaussian densities.

The final lemma generalizes the conditional expectation of a Gaussian random variable
X conditioned on the value of two noisy versions of X, particularly A ∼ ρX +N (0, σ2

a) and
B ∼ X +N (0, σ2

b ). We will use the shorthand notation E[X | a, b] to mean

E[X|a = ρX +N (0, σ2a), b = X +N (0, σ2b )].

Lemma 3. The conditional expectation of a Gaussian RV X ∼ N (0, σ2
x) given instances

a and b such that A ∼ ρX + N (0, σ2
a) for some constant ρ and B ∼ X + N (0, σ2

b ) can be
computed as:

E[X | a, b] =
ρσ2

x σ
2
ba+ σ2

xσ
2
ab

σ2
x (σ2

a + ρ2σ2
b ) + σ2

aσ
2
b

,

assuming that the AWGN in A, AWGN in B, and X are independent.

The proof of Lemma 3 can be found in Appendix B.

8



3.2 Derivation of the Denoiser with SI for BG

Using the aforementioned lemmas, we derive the conditional denoiser for the BG model.
Derivation of Result 1. To derive Result 1, note that

η(a, b) = E[X|a = X +N (0, λ2t ), b = X +N (0, σ̂2)],

and therefore,

η(a, b) = Pr(X 6= 0 | a, b)E[X | a, b,X 6= 0]. (12)

Simplifying the expression Pr(X 6= 0 | a, b),

Pr(X 6= 0 | a, b) =
f(X 6= 0, a, b)

f(X 6= 0, a, b) + f(X = 0, a, b)
(13)

=

[
1 +

Pr(X = 0)f(a, b |X = 0)

Pr(X 6= 0)f(a, b |X 6= 0)

]−1
.

Note that here we slightly abuse the notation of a pdf with an event (i.e., X 6= 0 or X = 0)
as an input to the density function. Considering the ratio in (13), define

R(a,b) =
Pr(X = 0)f(a, b |X = 0)

Pr(X 6= 0)f(a, b |X 6= 0)
.

Conditioned on X 6= 0, we can compute f(a, b |X 6= 0) using Lemma 1 with ρ = 1, σ2
x = 1,

σ2
a = λ2t , and σ2

b = σ̂2:

f(a, b|X 6= 0) = ψ1+σ̂2(b)ψ σ̂2

1+σ̂2
+λ2t

(
b

1 + σ̂2
− a
)
.

Also, when X = 0, A and B are independent so

f(a, b |X = 0) = f(a |X = 0)f(b |X = 0)

= ψλ2t (a)ψσ̂2(b).

With these elements, we can compute R(a,b):

R(a,b) =
(1− ε)ψλ2t (a)ψσ̂2(b)

εψ1+σ̂2(b)ψ σ̂2

1+σ̂2
+λ2t

(
1

1+σ̂2 b− a
) . (14)

The last term we must compute is the conditional expectation in (12). Using Lemma 3 with
ρ = 1, σ2

x = 1, σ2
a = λ2t , and σ2

b = σ̂2, we have that

E[X|a, b] =
σ̂2a+ λ2t b

λ2t + σ̂2 + λ2tσ
2
b

. (15)

Result 1 is obtained by combining the above computations. In particular, we have that

η(a, b) =
(
1 +R(a,b)

)−1 E[X|a, b],

where R(a,b) and E[X|a, b] are computed in (14) and (15), respectively.

9



3.3 State Evolution for BG

Using the denoiser in (11), we can compute the SE equations (9). Letting δ = M
N

, we have
λ20 = 1

δ
E[X2] + σ2

z and for t ≥ 0,

λ2t+1 = σ2
z +

1

δ
E
[
(ηt(X + λtZ2, X + σ̂Z1)−X)2

]
,

where ηt(·, ·) is defined in (11), Z1 and Z2 are independent, standard Gaussian RVS that are
independent of X ∼ f(X), and the expectation is with respect to Z1, Z2, and X.

4 Birth-Death-Drift Model

In this section, we investigate the application of AMP-SI on a stochastic signal model closely
resembling the channel estimation problem in wireless communications.

4.1 Connections to Channel Estimation

BDD Motivation: Our channel estimation scenario is illustrated in Fig. 1. Typical wireless
devices transmit a pilot sequence and data payload in batches. In batch b, the pilot sequence
p is transmitted into the channel, where it is convolved with the channel response xb, yielding
noisy linear measurements,

yb = conv(p, xb) + z.

This convolution, conv(·, ·), can be expressed as the product of a Toeplitz matrix with a
vector,

yb = Toeplitz(p)xb + z, (16)

where Toeplitz(p) is the Toeplitz matrix that corresponds to the pilot sequence p. To perform
channel estimation using AMP-SI, we will consider (16) as a linear inverse problem (1), where
Toeplitz(p) is the measurement matrix. Our goal will be to estimate the channel response xb

in batch b using the noisy measurements yb, matrix Toeplitz(p), and x̃ = x̂b−1, our estimate
of the channel response in the previous batch, b − 1 (Fig. 1). Our resulting estimate for
the channel response, x̂b, will then help us estimate the channel response in the next batch,
xb+1. To develop a conditional denoiser, we need a channel model that describes the channel
response xb, and especially its dependence on xb−1, the channel response in the previous
batch. We model the channel as an (unknown) finite impulse response (FIR) filter, whose
taps correspond to the amplitude of the channel response at different delays. Many filter
taps are close to zero, and this sparsity makes the channel estimation problem a sparse signal
recovery task.

Due to the slowly varying time dynamics of the channel, xb is not only sparse, but has
strong dependencies with the channel response in adjacent batches. A possible model for
changes from xb to xb+1 involves (i) birth of new nonzeros in xb+1 (corresponding to new
wireless paths); (ii) death of nonzeros in xb that become zero in xb+1 (existing paths are
obscured as the user moves); and (iii) slow drift of existing nonzeros. We call these time-
varying channel dynamics a birth-death-drift (BDD) model. To demonstrate the efficacy of
our BDD model, we looked at ray tracing simulations for a mobile user moving in an urban
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Figure 2: Ray tracing simulation results for a mobile user moving in an urban environ-
ment (top) show that the channel realizations at the beginning and end help (bottom) lend
credence to our BDD model.

environment. A photo of the urban environment (a suburb of Washington, DC) is shown in
the top panel of Fig. 2. The bottom panel shows two realizations of the channel filter. The
realization corresponding to the beginning of the mobile user’s motion is depicted by circles,
and the realization corresponding to the end of the user’s motion is marked by squares. It
can be seen that most nonzero taps of the channel filter drift slowly; birth and death events
are highlighted for the reader’s convenience. Not only is the channel filter in each batch
sparse, but its differences relative to filters in previous batches are highly structured.

The proposed BDD model resembles that of Saleh and Velanzuela [34], though their
model does not involve time variation, in contrast to the one studied here. Their model also
supports dependencies between filter taps within each batch; zeros and nonzeros tend to be
clustered together within the communication channel. To keep things simple, our paper uses
the BDD model for filter taps that are independent within each batch; possible inter-batch
dependencies and corresponding non-separable denoisers [23, 36] are left for future work.
For communication-minded readers, it should also be highlighted that AMP-SI is a flexible
framework for incorporating SI. By demonstrating the efficacy of AMP-SI on this channel
model, we believe the adaptation of AMP-SI to mmWave channel estimation is an exciting
and promising direction for future research.

Formal definition of BDD model: To formally introduce the BDD model, we start by
considering a single time batch. Between the previous and current batch, the signal elements
independently change according to a BDD process which defines the joint pdf f(Xp, Xc),
where ‘p’ denotes the previous signal, a noisy version that serves as side information, and
‘c’ the current signal.

The elements of the signal evolve following four cases in the BDD model: for any entry
n ∈ 1, 2, . . . , N , Case 1: Zero entry remains zero, i.e., [xp]n = 0 and [xc]n = 0.
Case 2: Death – nonzero entry becomes zero, i.e., [xp]n ∼ N (0, σ2

s) and [xc]n = 0.
Case 3: Drift – nonzero entry remains nonzero, i.e., [xp]n ∼ N (0, σ2

s) and [xc]n = ρ[xp]n +
N (0, σ2).
Case 4: Birth – zero entry becomes nonzero, i.e., [xp]n = 0 and [xc]n ∼ N (0, σ2

s).
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We define σ2 > 0 to be the variance in the zero-mean Gaussian drift and σ2
s > 0 to be the

steady-state variance, or the variance of the nonzero entries in the signal at every batch.
Indeed, an entry of the current signal is nonzero in Cases 3 and 4, and by choosing the
constant ρ > 0 such that ρ2σ2

s + σ2 = σ2
s , we ensure var(Xc) = σ2

s for both these cases.
Finally, Case j occurs with probability εj and

∑4
j=1 εj = 1.

Remark 1. The BG model is a simplified version of the BDD model. One can confirm that
setting ε2 = ε4 = 0, ε1 = 1 − ε, ε3 = ε, σ = 0, and σ2

s = 1 obtains the model discussed in
Section 3.

In the BDD model, the SI takes the form of the previous batch’s signal xp with AWGN.
The pseudo-data, which we label vt, is approximately the current batch’s signal xc with
AWGN. That is, at every iteration the algorithm has access to:

x̃ = xp +N (0, σ̂2I), vt ≈ xc +N (0, λ2t I),

where the additive noise in the SI and pseudo-data are independent. In the multiple batch
setting, the pseudo-data in the final iteration of AMP-SI for approximating the bth signal,
which is a noisy version of xp, becomes the SI for the approximation of the (b + 1)th signal
and the variance of this SI is available through λ2t given by the SE equations 9.

4.2 The Conditional Denoiser with SI for BDD

We now derive the conditional denoiser for the BDD model presented in Section 4.1. Recall
that the inputs a and b of the conditional denoiser η(a, b) are instances of the pseudo-data
vt and SI x̃, respectively.

Result 2. The AMP-SI denoiser (6) has the following closed form for the BDD model,

η(a, b) =
ε4 µ

4
(a,b)

S(a,b)

[
σ2
s a

σ2
s + λ2t

]
(17)

+
ε3 µ

3
(a,b)

S(a,b)

[
σ2
s (σ2 + σ̂2) a+ ρ σ2

s λ
2
t b

σ2
s (σ2 + λ2t + σ̂2) + λ2t σ̂

2

]
,

where εiµ
i
(a,b) is the the joint pdf evaluated for Case i and instances a and b. Additionally,

S(a,b) is the marginal pdf evaluated at instances a and b. The variables µ3
(a,b), µ

4
(a,b), and S(a,b)

are defined in (18) below.

In what follows, the notation ψτ2(x) refers to the zero-mean Gaussian density with vari-
ance τ 2 evaluated at x.

µ3
(a,b) = ψσ2s (σ̂2+σ2)

σ̂2+σ2s
+λ2t

(
ρ σ2

s b

σ̂2 + σ2
s

− a
)
ψσ̂2+σ2

s
(b),

µ4
(a,b) = ψσ2

s+λ
2
t
(a)ψσ̂2(b),

S(a,b) = ε1 ψλ2t (a)ψσ̂2(b) + ε2 ψλ2t (a)ψσ̂2+σ2
s
(b)

+ ε3 µ
3
(a,b) + ε4 µ

4
(a,b).

(18)
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4.3 Derivation of the Denoiser for BDD

Using the lemmas presented in Section 3, we derive the conditional denoiser for the BDD
model.

Derivation of Result 2. To derive Result 2, note that

η(a, b) = E[Xc|a = Xc +N (0, λ2t ), b = Xp +N (0, σ̂2)],

which we represent with shorthand E[Xc|a, b]. Then,

η(a, b) =
4∑
j=3

Pr(Case j | a, b)E[Xc|a, b,Case j], (19)

where we use the fact that xc = 0 in Cases 1 and 2, and so E[Xc | a, b,Case 1] =
E[Xc|a, b,Case 2] = 0.

Considering (19), let us simplify the expression Pr(Case j | a, b). In the following we use
f(·) (or f(·, ·), f(·, ·, ·), and so on) to represent a generic pdf (or joint pdf) on the input. By
Bayes’ Rule,

Pr(Case j | a, b) =
f(Case j, a, b)∑4
i=1 f(Case i, a, b)

. (20)

To derive the denoiser (17) from (19) and (20), we must compute, for j = {1, 2, 3, 4}:

f(Case j, a, b) = Pr(Case j)f(b|Case j)f(a|Case j, b), (21)

along with E[Xc | a, b,Case 3] and E[Xc | a, b,Case 4].
We first address Cases 1, 2, and 4 since a = Xc + N (0, λ2t ) and b = Xp + N (0, σ̂2) are

independent in these cases. In Case 3, these values are dependent and therefore that case is
handled carefully at the end.

Cases 1, 2, and 4: Here, we can simplify (21) by noting that f(a |Case j, b) =
f(a |Case j) due to the independence of a and b in these cases. For j ∈ {1, 2, 4},

f(Case j, a, b) = Pr(Case j)f(b |Case j)f(a |Case j)

= εj ψσ2
b,j

(b)ψσ2
a,j

(a), (22)

where σ2
a,j = E[a2 |Case j], and σ2

b,j = E[b2 |Case j]. We also compute E[Xc | a, b,Case 4].
This equals E[Xc | a,Case 4] since b = N (0, σ̂2) is independent ofXc. Since a = Xc+N (0, λ2t ),
the conditional expectation is computed using a Wiener filter,

E[Xc | a,Case 4] = E[Xc |Xc +N (0, λ2t )] =
σ2
sa

σ2
s + λ2t

. (23)

Case 3: Here, a = ρXp + N (0, σ2) + N (0, λ2t ) and b = Xp + N (0, σ̂2) which, in
contrast to the above cases, are now dependent through Xp ∼ N (0, σ2

s). To compute
f(Case 3, a, b) = P (Case 3)f(a, b|Case 3) note that conditional on Case 3, we may apply
Lemma 1 to f(a, b|Case 3) with X = Xp, σ

2
a = σ2 + λ2t , and σ2

b = σ̂2 to obtain:

f(Case 3, a, b) = Pr(Case 3) f(a, b|Case 3)

13



=
ε3
ρ
ψσ2

s+σ̂
2(b)ψσ2s (σ̂

2+σ2)

σ2s+σ̂
2 +

σ2+λ2t
ρ2

(
σ2
sb

σ2
s + σ̂2

− a

ρ

)
. (24)

We also need to compute E[Xc|a, b,Case 3]. By linearity of expectation we have

E[Xc | a, b,Case 3] = E[ρXp +N (0, σ2) | a, b,Case 3]

= ρE[Xp | a, b,Case 3] + E[N (0, σ2) | a, b,Case 3]. (25)

Conditional on Case 3, we can compute the first expectation in (25) using Lemma 3 with
X = Xp, σ

2
a = σ2 +λ2t since a = ρXp +N (0, σ2 +λ2t ), and σ2

b = σ̂2 since b = Xp +N (0, σ̂2):

E[Xp|a, b,Case 3] =
σ2s [ρ σ̂

2a+ (σ2 + λ2t )b]

σ2s(σ
2 + λ2t + ρ2σ̂2) + (σ2 + λ2t )σ̂

2

=
σ2s [ρ σ̂

2a+ (σ2 + λ2t )b]

σ2s(σ
2 + λ2t + σ̂2) + λ2t σ̂

2
, (26)

where we use the fact that ρ2σ2s + σ2 = σ2s to simplify. Letting Zc ∼ N (0, σ2) be such that
Xc = ρXp + Zc, one can use the same approach as in Lemma 3 to obtain:

E[Zc | a = Zc + ρXp +N (0, λ2), (27)

b = Xp +N (0, σ̂2),Case 3]

= [σ2 0]

[
ρ2σ2s + λ2 ρσ2s

ρσ2s σ2s + σ̂2

]−1 [
a
b

]
=

σ2[(σ2s + σ̂2)a− ρσ2sb]
σ2s(σ

2 + λ2t + σ̂2) + λ2t σ̂
2
. (28)

Combining (26) and (28):

E[Xc | a, b,Case 3]

= ρE[Xp | a, b,Case 3] + E[N (0, σ2) | a, b,Case 3]

=
ρσ2s [ρ σ̂

2a+ (σ2 + λ2t )b] + σ2[(σ2s + σ̂2)a− ρσ2sb]
σ2s(σ

2 + λ2t + σ̂2) + λ2t σ̂
2

=
σ2s(σ

2 + σ̂2)a+ ρσ2sλ
2
t b

σ2s(σ
2 + λ2t + σ̂2) + λ2t σ̂

2
. (29)

Result 2 is obtained by combining the above calculations. Considering (19) and (20),

η(a, b)=

∑4
j=3 f(Case j, a, b)E[Xc|a, b,Case j]∑4

i=1 f(Case i, a, b)
, (30)

which results in the denoiser presented in (17) - (18) with S(a,b) =
∑4

i=1 f(Case i, a, b), where the
probabilities are calculated in (22) and (24), ε3 µ

3
(a,b) = f(Case 3, a, b) and ε4 µ

4
(a,b) = f(Case 4, a, b),

and finally with E[Xc | a, b,Case 3] and E[Xc | a, b,Case 4] calculated in (32) and (23), respectively.
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Figure 3: Empirical performance of AMP-SI and performance predicted by SE across itera-
tions. (BG signal, N = 10000, M = 3000, σz = 0.1, ε = 0.3, σ̂ = 0.1.)

4.4 State Evolution for BDD

Using the results from the previous section, specifically the form of the denoiser in (17), we can
calculate the SE equations (9). Letting δ = M

N , we have λ20 = 1
δE[X2

c ] + σ2z and for t ≥ 0,

λ2t+1 = σ2z +
1

δ
E
[
(ηt(Xc + λtZ2, Xp + σ̂Z1)−Xc)

2
]
,

where ηt(·, ·) is defined in (17), and the RVs Z1 and Z2 are both zero mean unit norm Gaussian, and
are independent of the RVs Xp and Xc, which are distributed according to the prior distributions of
xp and xc. The expectation is with respect to Z1, Z2, Xp, and Xc, where Xp and Xc are dependent.
Because the form of the denoiser given in (17) is complicated, it seems infeasible to find a closed-
form value for the expectation in the SE equations, so we estimate these values numerically.

5 Numerical Results

Here, we present a comparison between the empirical performance of AMP-SI and AMP for the
BG and BDD signal models. All numerical results were generated using MATLAB.

BG signal: Fig. 3 presents the empirical performance of AMP-SI on a BG signal and the SE
prediction of its performance. For this experiment, the signal has dimension N = 10000, the SI
has standard deviation σ̂ = 0.10, the number of measurements is M = 3000, and the measurement
noise standard deviation is σz = 0.10. We set ε = 0.30 so that approximately 30% of the entries in
the signal are nonzero. The measurement matrix A ∈ RM×N has i.i.d. standard Gaussian entries.
The empirical normalized MSE for AMP-SI is averaged over 20 trials of a BG recovery problem. We
are also plotting MSE results predicted by SE, and it can be seen that the SE prediction accurately
tracks the empiricial performance of AMP-SI.

BDD signal: Fig. 4 presents experimental results for recovering a signal xc over 10 time batches
following the BDD model of Section 4. In each time batch, the SI is the pseudo-data output from
AMP-SI in the previous batch, except for the first batch where no SI is available and we default
to standard AMP. The signal is of dimension N = 10000, the steady-state standard deviation is
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Figure 4: Empirical performance of AMP-SI and AMP across (left) iteration and (right)
time batches. (BDD signal, N = 10000, M = 3000, σs = 1, ρ = 0.95, σz = 0.01, ε1 = 0.80,
ε2 = ε4 = 0.01, ε3 = 0.18.)

σs = 1, the decay rate of nonzeros is ρ = 0.95, and the measurement noise has standard deviation
σz = 0.01. The empirical MSE is averaged over 20 trials. For each batch, AMP-SI (or AMP in the
first iteration) runs for 10 iterations. We set ε1 = 0.80, ε2 = ε4 = 0.01, and ε3 = 0.18 so that there
are approximately K = N(ε3 + ε4) = 1900 nonzero entries per signal. The measurement matrix has
i.i.d. standard Gaussian entries in each batch, and the number of measurements is M = 3000. It
can be seen that AMP-SI outperforms AMP in every batch (expect Batch 1 where they are both
AMP since no SI is available).

SE for BDD: To highlight the advantages of SI, Fig. 5 shows the recovery quality predicted
by SE. Here, all parameters are set as in the experiments used for Fig. 4, except for the number
of measurements M (to show different δ = M/N) and ε1 and ε3 (to show different percentages of
nonzeros, γ = K/N). To vary γ, we keep ε2 = ε4 = 0.01 while modifying the probability of the
drift case, ε3, accordingly. In each panel, the horizontal axis corresponds to δ, the vertical axis to
γ, and shades of gray to the SE prediction of mean squared error (MSE). Batch 1 corresponds to
the first time the signal is recovered without SI, Batch 3 uses recovered signals from the second
batch as SI, and Batch 10 uses the recovered signal from Batch 9 as SI. The high-quality dark gray
region in the upper right portion of each panel is expanding, while the low-quality light gray region
is shrinking, showing improved signal recovery due to the SI. It can be seen that the same MSE
quality is obtained from a measurement rate δ lower than without SI.

Figure 5: AMP-SI for BDD signals. The MSEs predicted by SE are plotted as shades of
gray; they are functions of measurement rate δ = M

N
and sparsity rate γ = k

N
. From left to

right: Batch 1 (without SI), Batch 3 (SI=Batch 2), and Batch 10 (SI=Batch 9). The ‘good’
dark gray region (upper right corners) expands with more SI.

Channel estimation with Topelitz matrices: So far we used i.i.d. Gaussian matrices, and
we now transition to Toeplitz matrices in order to demonstrate that AMP-SI is suitable for channel
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estimation (details in Section 4). Based on (16), the channel estimation problem deviates from the
BDD model in two aspects. First, as mentioned, A is Toeplitz rather than i.i.d. Gaussian. It is well
known that for non-i.i.d. sensing matrices, the standard AMP prescribed by (2) and (3) often suffers
from divergence over iterations. A common approach to improve convergence of iterative algorithms
is damping; in AMP, the standard iteration (3) is replaced by xt+1 = λxt + (1 − λ)ηt(x

t + AT rt).
Rangan et al. [31] demonstrate that damping is effective in aiding the convergence of AMP for some
non-i.i.d. sensing matrices. Second, for a pilot sequence p, the number of rows of the measurement
matrix, M , equals length(p) + N − 1, which typically exceeds N , the number of columns. This
inverse problem is expansive (M > N) instead of compressive (M < N), where we remind the
reader that AMP and SE theory support arbitrary δ > 0 where δ = M

N .
Our experiment had 5 time batches. We set the length of the channel response N to 4000, the

length of the pilot sequence length(p) = 1001, the standard deviation of the steady signal σs = 1, the
decay rate of nonzeros ρ = 0.95, and the measurement noise standard deviation σz ∈ {0.01, 0.1, 1}.
This setting corresponds to SNR= 0dB, 20dB and 40dB, and δ = 1.25. For BDD model parameters,
we set ε1 = 0.78, ε2 = ε4 = 0.01. Thus at each time batch, 21% of the entries of the channel
response are nonzero. The individual entries of the pilot p are ±1/

√
length(p) = ±0.0316, each

with probability 0.5. We performed damping using parameter λ = 0.9. Table 1 demonstrates the
empirical channel estimation performance of AMP-SI averaged over 50 realizations. Compared to
standard AMP (batch 1 in Table 1), AMP-SI consistently achieves lower MSE levels starting from
batch 2. One striking observation from Fig. 6 is the similar performance of AMP-SI for Toeplitz
(channel estimation) and i.i.d. matrices. This similarity leads us to conjecture that for the given
BDD signal model, SE prediction tracks the performance of AMP/AMP-SI with Toeplitz matrices
as well as the i.i.d. Gaussian case. The conjecture is further evident from Table 2. Observations
from other BDD time batches resemble batch 5 (Table 2) and not included.

Figure 6: Empirical AMP-SI performance with i.i.d. and Toeplitz sensing matrices. (BDD
signal, SNR=0dB, averaged over 100 realizations.)

6 Challenges and Future Work

In this work, we presented AMP-SI, a suite of Approximate Message Passing (AMP) based algo-
rithms that utilize side information (SI) to aid in signal recovery using conditional denoisers. We
derive conditional denoisers for a Bernoulli-Gaussian (BG) signal model and a more complicated
time-varying birth-death-drift (BDD) signal model, motivated by channel estimation, to show the
wide-applicability of our work. We also conjectured state evolution (SE) properties. Numerical
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Channel Estimation MSE(dB)
SNR Batch 1 Batch 2 Batch 5
0dB -7.70 -8.58 -8.63
20dB -23.48 -24.78 -24.79
40dB -45.34 -45.76 -45.80

Table 1: Empirical AMP-SI performance for channel estimation. (BDD signal, averaged over
50 realizations.)

AMP-SI Performance in MSE(dB) at Time Batch 5
SNR i.i.d. A SE Prediction Toeplitz A
0dB -8.63 -8.63 -8.63
20dB -24.79 -24.86 -24.79
40dB -45.72 -45.91 -45.80

Table 2: Empirical AMP-SI performance for i.i.d. matrices, SE predictions, and empirical
performance for Toeplitz matrices. (BDD signal, Batch 5, averaged over 50 realizations.)

experiments show that the proposed SE accurately tracks the performance of AMP-SI, and that
AMP-SI achieves the same MSE as AMP using a lower measurement rate.

To simulate the channel estimation task, we additionally consider a Toeplitz measurement
matrix as opposed to the standard Gaussian i.i.d. matrix. Our results show that AMP-SI is able
to obtain a lower MSE than AMP for such a setting. A challenge and future direction with this
line of work is that the current theoretical guarantees for AMP assume that A is an i.i.d. matrix.
Although AMP often diverges when non-i.i.d. matrices are used, there is empirical evidence that
AMP can successfully perform deconvolution and utilize other structures in various settings [3,18].
We leave these challenges and the rigorous proofs of our conjectures for future work.
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Appendix

A Proof of Lemma 1

Recall from the Lemma statement that A = ρX + N (0, σ2a) and B = X + N (0, σ2b ) where X ∼
N (0, σ2x).

Then from Bayes’ rule, f(a, b) = f(b)f(a | b) and computing f(a | b) we have:

f(a | b) =

∫
x
f(a, x | b) dx =

∫
x
f(x | b)f(a | b, x) dx
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(1)
=

∫
x

f(x)f(b |x)

f(b)
ψσ2

a
(a− ρx) dx

=

∫
x

ψσ2
x
(x)ψσ2

b
(b− x)

f(b)
ψσ2

a
(a− ρx) dx,

where equality (1) relies on Bayes’ rule applied to f(x | b). Therefore,

f(a, b) = f(b)f(a | b)

=

∫
x
ψσ2

x
(x)ψσ2

b
(b− x)ψσ2

a
(a− ρx) dx

(2)
=

1

ρ
ψσ2

x+σ
2
b
(b)ψ σ2xσ

2
b

σ2x+σ
2
b

+
σ2a
ρ2

(
σ2x

σ2x + σ2b
b− 1

ρ
a

)
,

where equality (2) uses Lemma 2.

B Proof of Lemma 3

Recall from the Lemma statement that A = ρX + N (0, σ2a) and B = X + N (0, σ2b ) where X ∼
N (0, σ2x).

Because X, A, and B are jointly Gaussian RVs, the MMSE-optimal estimator for X conditioned
on a and b is linear,

x̂ = E[X | a, b] = αa+ βb+ γ, (31)

where α, β, and γ are constants. A well known result (see, e.g., Theorem 9.1 of [1]) states that

x̂ = W

[
a
b

]
+ U , where

W = CT1 (C2)
−1, U = E[X]−WE

[
A
B

]
,

C1 = Cov

(
X,

[
A
B

])
, C2 = Cov

([
A
B

]
,

[
A
B

])
.

We compute these terms one by one. First, X, A, and B all have zero mean, and so U = 0, which
implies that the constant γ in the linear form (31) is zero. Second,

C1 = Cov

(
X,

[
A
B

])
=

[
E[XA]
E[XB]

]
,

because the zero means ensure that only the cross terms E[XA] and E[XB] appear in the expression
for C1. The cross terms are computed as

E[XA] = E[X(ρX +N (0, σ2a))] = ρσ2x,

E[XB] = E[X(X +N (0, σ2b ))] = σ2x.

Therefore, C1 = σ2x

[
ρ
1

]
. Third,

C2 = Cov

([
A
B

]
,

[
A
B

])
= E

[[
A
B

]
[A B]

]
,
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where once again only the cross terms need be computed. These cross terms are (i) E[A2] =
ρ2σ2x + σ2a; (ii) E[B2] = σ2x + σ2b ; and (iii)

E[AB] = E[BA] = E[(ρX +N (0, σ2a))(X +N (0, σ2b ))]

= ρσ2x.

The MMSE-optimal estimator is

E[X | a, b] = W

[
a
b

]
= CT1 (C2)

−1
[
a
b

]
= [ρσ2x σ

2
x]

[
ρ2σ2x + σ2a ρσ2x

ρσ2x σ2x + σ2b

]−1 [
a
b

]
=

ρσ2x σ
2
ba+ σ2xσ

2
ab

σ2x (σ2a + ρ2σ2b ) + σ2aσ
2
b

.

(32)

C Fixed points of AMP-SI SE with Gaussian SI

This appendix will show that when the SI is a Gaussian-noise corrupted observation of the true
signal, i.e., X̃ = X +N (0, σ2SI), the fixed points of AMP-SI SE (9) coincide with the fixed points
of AMP SE (4) with ‘effective’ measurement rate δeff = δ/µ and ‘effective’ measurement noise
variance σ2eff = µσ2z where 0 ≤ µ ≤ 1 and µ depends on the pdf of the signal and the SI noise

variance σ2SI .
Before demonstrating the aforementioned Bayes-optimality property of AMP-SI, we use

matched filter arguments to provide a simplified representation of the conditional denoiser of (6)
when the SI is the signal viewed with AWGN. In calculating the AMP-SI denoiser (6), we want to
calculate the expectation of X conditioned on the pseudo data, X+λtZ1 = a, and SI, X+σSIZ2 = b,
where Z1 and Z2 are independent, standard Gaussian RVs. We define signal and noise vectors as
s = [1 1]T and v = [λtZ1 σSIZ2]

T , respectively, where [·]T is the transpose operator. The matched
filter estimates the unknown X by computing the inner product between[

a
b

]
=

[
X + λtZ1

X + σSIZ2

]
= sX + v,

and a matched filter h ∈ R2. An optimal h∗ that maximizes the signal to noise ratio while having
unit norm is computed by inverting Rv = E[vvT ], the autocovariance matrix of v,

h∗ = (Rv)
−1s/‖(Rv)−1s‖.

It can be shown that h∗ = [σ2SI λ
2
t ]
T /(σ2SI + λ2t ), and the inner product is defined as µt(a, b) :

µt(a, b) = 〈[a b]T , h∗〉 =
aσ2SI + bλ2t
σ2SI + λ2t

. (33)

Note that µt(X + λtZ1, X + σZ2) equals

(X + λtZ1)σ
2
SI + (X + σSIZ2)λ

2
t

σ2SI + λ2t

d
= X + σtZ,

where Z is standard Gaussian,
d
= denotes equality in distribution, and the variance term, (σt)

2, is

(σt)
2 =

(λtσ
2
SI)

2 + (σSIλ
2
t )

2

(σ2SI + λ2t )
2

=
λ2tσ

2
SI

σ2SI + λ2t
. (34)
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The above provides us with the following simplification of the AMP-SI denoiser (6) for SI with
AWGN,

ηt(a, b) = E[X|X + σtZ = µt(a, b)], (35)

where µt(a, b) and σt are defined in (33) and (34). We note that µt is a function of (a, b), but for
brevity we drop this dependence in the following. Considering (9) and (35),

ηt(X + λtZ1, X + σSIZ2) = E[X|X + σtZ]. (36)

We simplify the SE equations (9) using (36) and the definition of σt in (34). Let λ0 = σ2z +E[X2]/δ
and for t ≥ 0,

λ2t = σ2z +
1

δ
E

(E[X∣∣∣∣∣X+

√
λ2t−1σ

2
SI

σ2SI + λ2t−1
Z

]
−X

)2
. (37)

The results in (35) and (37) provide a simplified way to calculate the conditional denoiser of (6) and
the SE when the signal and the SI are related through Gaussian noise. Moreover, at the stationary
point of (37) we have

λ2 = σ2z +
1

δ
E

(E[X ∣∣∣∣∣X+

√
λ2σ2SI
σ2SI+λ2

Z

]
−X

)2
, (38)

where λ2 is the scalar channel variance. Comparing (4) (SE without SI) and (38), we denote the

variance in the conditional expectation by λ̃2 =
λ2σ2

SI

σ2
SI+λ

2 . Note that λ2 =
λ̃2σ2

SI

σ2
SI−λ̃2

≥ 0, because

λ̃2 ≤ σ2SI , and we can rewrite the above as

λ̃2=
(σ2SI − λ̃2)σ2z

σ2SI
+

1
δσ2
SI

σ2−λ̃2

E
[(
E[X|X + λ̃Z]−X

)2]
. (39)

We see that AMP-SI SE (9) has fixed points coinciding with the fixed points of standard AMP

SE (4) with ‘effective’ measurement rate δeff = δ
(
σ2
SI+λ

2

σ2
SI

)
and ‘effective’ measurement noise

variance σ2eff =
(

σ2
SI

σ2
SI+λ

2

)
σ2z where σ2SI is the noise in the SI and λ2 is the stationary point of

(37). This effective change in δ and σ2 implies that the incorporation of SI with AWGN via the
AMP-SI algorithm gives us signal recovery for a standard (without SI) linear regression problem
(1) with more measurements and/or reduced measurement noise variance than our own, and the
effect becomes more pronounced, as the noise variance in the SI, σ2SI , gets small.

The above analysis relies on the fact that for the conditional expectation denoiser in standard
(without SI) AMP (2)-(3), the corresponding SE equation (4) in its convergent states coincides with
Tanaka’s fixed point equation [37], ensuring that if AMP runs until it converges, the result provides
the best possible MSE achieved by any algorithm under certain conditions. (These conditions on
δ and ε, while outside the scope of this paper, ensure that there is a single solution to Tanaka’s
fixed point equation, since multiple solutions may create a disparity between the MSE of AMP and
the MMSE [20], implying that AMP-SI might be sub-optimal in such cases.) However, the above
analysis relies heavily on the Gaussianity of the SI noise and its generalization is left for future
work.
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compressed sensing: Algorithms, phase diagrams, and threshold achieving matrices. J. Stat.
Mech. - Theory E., 2012(08):P08009, Aug. 2012.

[21] S. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28(2):129–137, Mar.
1982.

[22] H. V. Luong, J. Seiler, A. Kaup, S. Forchhammer, and N. Deligiannis. Measurement bounds for
sparse signal reconstruction with multiple side information. Arxiv preprint arXiv:1605.03234,
Jan. 2017.

[23] Y. Ma, J. Zhu, and D. Baron. Approximate message passing algorithm with universal denoising
and Gaussian mixture learning. IEEE Trans. Signal Process., 65(21):5611–5622, Nov. 2016.

[24] A. Maleki. Approximate message passing algorithms for compressed sensing. Stanford Univer-
sity, Nov. 2010.

[25] H. Mansour and R. Saab. Recovery analysis for weighted `1-minimization using the null space
property. Appl. Comput. Harmon. Anal., 43(1):23–38, July 2017.

[26] J. Mota, N. Deligiannis, and M. Rodrigues. Compressed sensing with prior information: Strate-
gies, geometry, and bounds. IEEE Trans. Inf. Theory, 63(7):4472–4496, July 2017.

[27] J. Mota, N. Deligiannis, A. Sankaranaraynan, V. Cevher, and M. Rodrigues. Adaptive-rate
reconstruction of time-varying signals with application in compressive foreground extraction.
IEEE Trans. Signal Process., 64(14):3651–3666, Mar. 2016.

[28] D. Needell, R. Saab, and T. Woolf. Weighted-minimization for sparse recovery under arbitrary
prior information. Inst. Math. Inf. Infer., 6(3):284–309, Jan. 2017.

[29] S. Rangan. Generalized approximate message passing for estimation with random linear mix-
ing. In Proc. IEEE Int. Symp. Inf. Theory (ISIT), pages 2168–2172, July 2011.

[30] S. Rangan, A. Fletcher, P. Schniter, and U. Kamilov. Inference for generalized linear models
via alternating directions and Bethe free energy minimization. In Proc. Int. Symp. Inf. Theory
(ISIT), pages 1640–1644, June 2015.

[31] S. Rangan, P. Schniter, and A. Fletcher. On the convergence of approximate message passing
with arbitrary matrices. In Proc. IEEE Int. Symp. Inform. Theory (ISIT), pages 236–240,
Feb. 2014.

23



[32] F. Renna, L. Wang, X. Yuan, J. Yang, G. Reeves, A. Calderbank, L.Carin, and M. Rodrigues.
Classification and reconstruction of high-dimensional signals from low-dimensional features in
the presence of side information. IEEE Trans. Inf. Theory, 62(11):6459–6492, Sept. 2016.

[33] C. Rush and R. Venkataramanan. Finite sample analysis of approximate message pass-
ing. IEEE Trans. Inf. Theory, (forthcoming). Available: https://ieeexplore.ieee.org/

document/8318695/.

[34] A. Saleh and R. Valenzuela. A statistical model for indoor multipath propagation. IEEE J.
Select. Areas Commun., 5(2):128–137, Feb. 1987.

[35] D. Takhar, J. Laska, M. Wakin, M. Duarte, D. Baron, S. Sarvotham, K. Kelly, and R. Baraniuk.
A new compressive imaging camera architecture using optical-domain compression. Feb. 2006.

[36] J. Tan, Y. Ma, and D. Baron. Compressive imaging via approximate message passing with
image denoising. IEEE Trans. Signal Process., 63(8):2085–2092, Apr. 2015.

[37] T. Tanaka. A statistical-mechanics approach to large-system analysis of CDMA multiuser
detectors. IEEE Trans. Inf. Theory, 48(11):2888–2910, Nov. 2002.

[38] R. Tibshirani. Regression shrinkage and selection via the LASSO. J. Royal Stat. Soc. Series
B (Methodological), 58(1):267–288, Jan. 1996.

[39] N. Vaswani and W. Lu. Modified-CS: Modifying compressive sensing problems for partially
known support. IEEE Trans. Signal Process., 58(9):4595–4607, May 2010.

[40] X. Wang and J. Liang. Approximate message passing-based compressed sensing reconstruction
with generalized elastic net prior. Signal Process. Image, 37:19–33, Sept. 2015.

[41] L. Weizman, Y. Eldar, and D. Bashat. Compressed sensing for longitudinal MRI: An adaptive-
weighted approach. Medical Physics, 42(9):5195–5208, Nov. 2015.

[42] J. Zhu, D. Baron, and A. Beirami. Optimal trade-offs in multi-processor approximate message
passing. Arxiv preprint arXiv:1601.03790, Nov. 2016.

[43] J. Ziniel and P. Schniter. Dynamic compressive sensing of time-varying signals via approximate
message passing. IEEE Trans. Signal Process., 61(21):5270–5284, Nov. 2013.

24

https://ieeexplore.ieee.org/document/8318695/
https://ieeexplore.ieee.org/document/8318695/

	1 Introduction
	1.1 AMP for Signal Recovery
	1.2 Side information
	1.3 Contributions and Organization

	2 AMP with Side Information
	2.1 Prior Work
	2.2 Our Approach: AMP-SI
	2.3 AMP-SI Theory
	2.3.1 State Evolution Analysis
	2.3.2 Bayes Optimality


	3 Bernoulli-Gaussian Model
	3.1 The Conditional Denoiser with SI for BG
	3.2 Derivation of the Denoiser with SI for BG
	3.3 State Evolution for BG

	4 Birth-Death-Drift Model
	4.1 Connections to Channel Estimation
	4.2 The Conditional Denoiser with SI for BDD
	4.3 Derivation of the Denoiser for BDD
	4.4 State Evolution for BDD

	5 Numerical Results
	6 Challenges and Future Work
	Appendices
	A Proof of Lemma ??
	B Proof of Lemma ??
	C Fixed points of AMP-SI SE with Gaussian SI


