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Abstract

In today’s data driven world, storing, processing, and gleaning insights from large-scale data
are major challenges. Data compression is often required in order to store large amounts of
high-dimensional data, and thus, efficient inference methods for analyzing compressed data are
necessary. Building on a recently designed simple framework for classification using binary data,
we demonstrate that one can improve classification accuracy of this approach through iterative
applications whose output serves as input to the next application. As a side consequence, we
show that the original framework can be used as a data preprocessing step to improve the per-
formance of other methods, such as support vector machines. For several simple settings, we
showcase the ability to obtain theoretical guarantees for the accuracy of the iterative classifica-
tion method. The simplicity of the underlying classification framework makes it amenable to
theoretical analysis and studying this approach will hopefully serve as a step toward developing
theory for more sophisticated deep learning technologies.

1 Introduction

We consider the problem of performing classification when only binary measurements of data are
available. This situation may arise due to the need for extreme compression of data or in the interest
of hardware efficiency [11, 17, 18, 1]. Despite this extremely coarse quantization of the data, one can
still perform learning tasks, such as classification, with high accuracy. The authors of [23] recently
proposed a classification method for binary data, which they show to be reasonably accurate and
sufficiently simple to allow for theoretical analysis in certain settings. Additionally, the predicted
class can be approximately understood as the class whose binarized training data most closely and
frequently matches that of the test point. As this approach will be the foundation of the work
presented here, we discuss it in detail in the next section.

Interpretability of algorithms and the ability to explain predictions is of increasing importance
as machine learning algorithms are applied to an expanding range of problems in areas such as
medicine, criminal justice, and finance [3, 2, 24]. Decisions made based on algorithmic predictions
can have profound repercussions for both participating individuals as well as society at large. A
major drawback to complex models such as deep neural networks [20, 15, 8, 19] is that it is extremely
difficult to explain how or why such algorithms arrive at a specific prediction, see e.g. [27, 26, 25] and
references therein. Studying and advancing models for which model output can be understood will
help to both improve methods that are more readily interpretable and develop tools for understanding
more complex models. The aim of this paper is to continue developing a framework with these two
simultaneous goals in mind.

1.1 Contribution

We propose an extension of the simple classification method for binary data proposed in [23], which
we will henceforth refer to as SCB. We find that our extension often leads to improved performance
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over SCB. Additionally, we demonstrate that SCB can be used for dimension reduction or as a data
preprocessing step to improve the performance of other algorithms, such as support vector machines
(SVM). The proposed extension to SCB that we consider here utilizes iterative applications of the
original approach, reminiscent of the compositional nature of neural networks. Due to the simplicity
of the SCB framework, we can provide theoretical guarantees for the accuracy of the iterative
extension in simple settings. We believe that studying this kind of iterative classification framework
is interesting and practical in its own right, and will also serve as a step toward gaining a more
thorough understanding of more complex deep learning strategies.

1.2 Organization

The paper is organized as follows. Section 2 introduces the problem statement and classification
strategies of interest. Subsection 2.1 describes the SCB framework introduced in [23] and Subsec-
tion 2.2 our proposed iterative extension. In Section 3, we demonstrate the performance of the
proposed approach on real and synthetic datasets. Section 4 discusses variations and practical con-
siderations. We provide theoretical guarantees for the proposed iterative method in several simplified
settings and provide intuition as to why the iterative method generally outperforms the original ap-
proach in Section 5. Finally, Section 6 demonstrates how SCB can be adapted to serve as a data
preprocessing and dimension reduction strategy for other methods applied to binary data.

2 Classification using binary data

We first introduce the problem and notation that will be used throughout. Let A ∈ Rm×n be a
random measurement matrix (e.g. typically it will contain i.i.d. standard normal entries). Let
X = [x1 · · ·xp] ∈ Rn×p be the matrix of p data vectors xi ∈ Rn with labels b = (b1, · · · bp). Let
G be the number of groups or classes to which the data points belong, so that we may assume
bi ∈ {1, 2, . . . , G}. Suppose we have the binary measurements of the data

Q = sign(AX),

where sign(M)i,j = sign(Mi,j) and for a real number c the sign function simply assigns sign(c) = 1
if c ≥ 0 and −1 otherwise. For a matrix M , let M(j) denote the jth column of M .

The rows of the matrix A can be viewed as the normal vectors to randomly oriented hyperplanes,
in which case the (i, j)th entry of Q denotes on which side of the ith hyperplane the jth data point
xj lies. In practice, the binary data Q may be obtained during processing or be provided as direct
input from some other source. In the latter case, we may not have access to the data matrix X or the
measurement matrix A, but only the resulting binary data Q. We refer to the binary information
indicating the position of a data point relative to a set of hyperplanes as a sign pattern. In particular,
for a column Q(j) and any subset of its entries, the resulting vector indicates the sign pattern of the

jth data point relative to that subset of hyperplanes.
We aim to classify a data point x based only on the binary information contained in Q. As a

simple motivating example, consider the left plot of Figure 1. The training data points each belong
to one of three classes, red, blue, or green. Consider the test point indicated by the black x. Cycling
through the hyperplanes, the green hyperplane indicates that the test point likely belongs to the
blue or red class (since it lies on the same side as these clusters), the purple hyperplane indicates
that the test point likely belongs to the blue or green class, the blue hyperplane indicates that the
test point likely belongs to the blue class, and the black hyperplane indicates that the test point
likely belongs to the blue class. In aggregate, the test point matches the relative positions of the
blue class to the hyperplanes most often. This prediction matches what we might predict visually.

For the data in the right plot of Figure 1, there are both red and blue points on the same side as
x for each hyperplane. However, if we consider sign patterns with respect to pairs of hyperplanes
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Figure 1: A motivating example for using positions relative to hyperplanes for classification.

instead of only single hyperplanes, we can isolate data within cones or wedges as opposed to simply
half-spaces. Comparing the sign patterns of the training data with respect to pairs of hyperplanes
with that of the test point, we find that the test point x matches the sign patterns of the blue class
most often. Thus, it may not be enough to consider hyperplanes individually, but in tuples. SCB
uses this intuition as motivation.

2.1 Simple classification for binary data (SCB)

In SCB, sign patterns of the data with respect to tuples of hyperplanes of various lengths are
recorded and aggregated to arrive at a prediction. The length of the sign patterns, or the number of
hyperplanes considered, is referred to as the level. For each level ` = 1, · · · , L, we choose m random
combinations of ` hyperplanes. Each of the hyperplane-tuples provides a measurement of the data
points. Fixing the number of hyperplane combinations considered, as opposed to considering all
possible combinations, prevents the number of measurements from growing exponentially with the
level.

Let t be a sign pattern for the ith measurement at the `th level and Pg|t be the number of training
points in class g with sign pattern t. This sign pattern information is then aggregated for the training
data points in the membership function r(`, i, t, g), with

r(`, i, t, g) :=
Pg|t∑G
j=1 Pj|t

∑G
j=1 |Pg|t − Pj|t|∑G

j=1 Pj|t
, (1)

where ` = 1, · · · , L, i = 1, · · ·m, and g = 1, · · · , G. The first term in this formula gives the fraction
of points with sign pattern t that belong to class g, while the second acts as a balancing term
to account for differences in the relative sizes of different classes. Each value in this membership
function gives an indication of how likely a data point is to belong to class g based on the fact that
it has sign pattern t for the ith measurement at the `th level. Larger r(`, i, t, g) values indicate that
a data point is more likely to belong to the gth class. Training is detailed in Algorithm 1, which
simply computes all of these quantities.

Given a test point x, with binary data q = sign(Ax), for each level `, measurement i and
associated sign pattern t∗ we find the corresponding r(`, i, t∗, g) value and keep a running sum for
each group g, stored in the vector r̃ (note that the vector r̃ depends on the data point x, but we
notationally ignore this dependence for tidiness, and will write r̃(g) for a class g or data point y
when clarification is needed). If t∗ does not match any of the sign patterns observed in the training
data, then no update to r̃ is made. The testing procedure is detailed in Algorithm 2. In [23], the
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authors showed that this classification method works well on both artificial and real datasets (e.g.
MNIST [21], YaleB [7, 5, 6, 16]).

Algorithm 1 SCB Training from [23]

Input: binary training data Q, training labels b, number of classes G, number of levels L.
for ` from 1 to L, i from 1 to m do

Randomly select ` hyperplanes.
for all observed sign patterns t and classes g from 1 to G do

Compute r(`, i, t, g) as in Equation (1).
end for

end for

Algorithm 2 SCB Classification from [23]

Input: binary testing data q, number of classes G, number of levels L, learned parameters
r(`, i, t, g), and hyperplane tuples from Algorithm 1.
for ` from 1 to L, i from 1 to m do

Identify the sign pattern t∗ to which q corresponds for the ith `-tuple of hyperplanes.
for g from 1 to G do
r̃(g) = r̃(g) + r(`, i, t∗, g).

end for
end for
Set r̃(g) = r̃(g)

Lm for g = 1, · · · , G.

Classify b̂ = argmaxg∈{1,··· ,G} r̃(g).

2.2 Iterative classification for binary data (ISCB)

First, we motivate the iterative extension to SCB through an example. Consider Figure 2, which
plots the values of r̃ from Algorithm 2 for the task classifying the digits 0-4 of the MNIST dataset
(where we will use class labels 0, 1, . . . , 4). Note that test images of the digit 0 typically have lower
r̃(1) values than do other digits. Similarly, test images of the digit 1 typically have lower r̃(0) than
do test images of the digits 1-4. Indeed, it is not only likely that

b̂x = argmax
g∈{1,··· ,G}

r̃(g)

corresponds to the true digit label, but in addition the r̃ vectors for testing images from different
digits contain different patterns. Thus, we expect that using a method more advanced than simply
predicting the class corresponding to the maximum of the the r̃ vector may improve classification
accuracy, specifically a strategy that makes use of the distribution of the values contained in r̃.

One could make predictions based on the r̃ vectors in a variety of ways. We mention a few
such options here. Drawing intuition from simple neural network architectures such as multi-layer
perceptron [10] and boosting algorithms such as AdaBoost [13, 12], we first consider using iterative
applications of SCB, where r̃ values of the training data from previous iterations are used as input
training data for the following iteration. In particular, the method is reminiscent of the structure
of a single neuron in a neural network in which information only propagates forward as opposed to
throughout the whole network. In contrast to deep neural networks, the output at each iteration,
r̃, can be interpreted as a vector indicating to which class a data point x is likely to belong. This
iterative strategy also relates to boosting in that subsequent iterations train on the shortcomings of
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Figure 2: The r̃(g) values from SCB trained to classify digits 0-4 from the MNIST dataset are
plotted. Five digits are considered to ease visualization. One-hundred test points from each digit
are used with points 1-100 corresponding to 0s, 101-200 corresponding to 1s, etc. r̃(0) values are
plotted in red, r̃(1) in blue, r̃(2) in green, r̃(3) in magenta and r̃(4) in black.

previous iterations. Specifically, if points from a given class are misclassified, but produce similarly
structured r̃ vectors this pattern may be corrected in the next application of the algorithm.

The training and testing phases of the iterative version of SCB, which we refer to as ISCB, are
detailed in Algorithm 3 and Algorithm 4. To ease notation, let rk, r̃k, and A(k) be r, r̃, and A
from the kth application of SCB (Algorithm 1 and Algorithm 2). During training, the first iteration
in ISCB is executed as in Algorithm 1. We collect the data X = [r̃1(x1) · · · r̃1(xp)] ∈ RG×p, which
will be used as training data for the next iteration, where xi are training data points. In contrast to
SCB, the iterative algorithm calculates r̃ values for both the training and test data. Note that the
dimension of the data points is fixed at G after the first application of SCB. For high dimensional
data, we will typically have G� n. This reduction in dimension reduces the computational cost of
some of the required computations, such as Q = sign(AX). One could also make use of the same
measurement matrix A for all iterations after the first. Since the dimension is much smaller after
the first iteration of SCB, one may also need fewer levels for accurate classification. We leave an
exhaustive study of the many possible variations for future work, and focus here on establishing the
mathematical framework of this iterative approach.

After each application of Algorithm 1, we collect sign information of our data with respect to a
new set of random hyperplanes. Although the dimension of the data for the subsequent applications
lies in RG and thus we expect the size of this data to be manageable, there are several motivations
for taking binary measurements of the data at each application. First, we can still take advantage
of methods for efficient storage of and computation with binary data. Second, the binary mea-
surements roughly preserve angular information about the data. For the r̃ values, we are generally
interested in the relative sizes of the components, since these represent the likelihood that a point
belongs to a given class. The overall magnitude of the r̃ values is of less importance and, thus,
binary measurements retain the significant information pertaining to the data. Third, considering
binary measurements of the data at each application maintains consistency between the applications,
making the method more amenable to theoretical analysis, interpretability, and is more in line with
sophisticated deep neural net architectures.

Since the components of r̃ are always non-negative, we restrict the random hyperplanes to inter-
sect this space after the first application. For example, we can ensure the hyperplanes intersect this
region by requiring that the normal vectors have at least one positive and one negative coordinate.
We do not recenter the data after each application, as the structure of r̃ can lead to poor perfor-
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mance with recentering. For an example, consider Figure 3, in which the r̃ values follow a roughly
linear trend for later applications of the method. Finally, after the last application of SCB, for the
iterative algorithm, we make the prediction

b̂ = argmax
g∈{1,··· ,G}

r̃K(g).

Algorithm 3 ISCB Training.

Input: binary training data Q ∈ Rm×p, training labels b, number of classes G, number of levels
L, number of applications K.
for k from 1 to K, do

Train learned parameters rk(`, i, t, g) as in Algorithm 1, with input: Q, b, G and L.
Set X = 0 ∈ RG×p.
for j from 1 to p do

Apply Algorithm 2 to Q(j) using learned parameters rk(`, i, t, g) to calculate r̃k.
Set X(j) = r̃k.

end for
Form the random measurement matrix A(k) ∈ Rm×G.
Set Q = sign(A(k)X).

end for
Output: rk(`, i, t, g), and A(k) for k from 1 to K.

Algorithm 4 ISCB Testing.

Input: binary test data q ∈ Rm, number of classes G, levels L, and iterations K, learned
parameters rk(`, i, t, g), hyperplane tuples, and A(k) from Algorithm 3.
for k from 1 to K do

Set r̃k = 0.
for ` from 1 to L, i from 1 to m, do

Identify the pattern t∗ to which q corresponds for the ith `-tuple of hyperplanes.
for g from 1 to G do

Update r̃k(g) = r̃k(g) + rk(`, i, t∗, g).
end for

end for
Set q = sign(A(k)r̃k).

end for
Classify b = argmaxg∈{1,··· ,G} r̃K(g).

3 Experimental results

We test ISCB on synthetic and image datasets. The synthetic datasets demonstrate why the iterative
method is effective for certain simple settings and how the data transforms between iterations.
ISCB is also tested on the MNIST dataset of hand-written digits [21], the YaleB dataset for facial
recognition [7, 5, 6, 16] and the Norb dataset for classification of images of various toys [22].

3.1 Two-dimensional synthetic data

We further motivate ISCB through examples with two-dimensional synthetic data. For two-dimensional
data with two classes, the dimension of the input data for all applications of SCB is two-dimensional
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Figure 3: The r̃k vectors are plotted for ISCB with varying numbers of iterations k. The original
training and testing data are shown in the upper left plot. Circles indicate training data and crosses
indicate testing data. One level is used for each application of SCB and the subsequent plots give
the r̃k vectors for k = 1, 3, and 7 respectively. The classification rate after a single application of
SCB is 66%. After three iterations the classification rate is 92% and after seven application the
classification rate is 97%.

and so we can easily visualize the training and testing data at each iteration. Consider the data
given in the upper left plot of Figure 3. There are two times as many points from the red class
considered, both in the training and testing set. Half of the red points in testing and training lie on
either side of the blue data points. Thus, applying SCB using a single level leads to all of the blue
test points being misclassified as red. The abhorrent misclassification of the blue points is caused
by the fact that we are using only a single level (L = 1) and for any hyperplane at least as many red
points as blue lie on either side of it. The r̃1 values, plotted in the upper right plot of Figure 3, have
a much nicer distribution in terms of ease of classification; in fact, they are nearly linearly separable.
The separation in the r̃1 values between the blue and red points occurs since r̃1(red) is generally
larger for red points than for the misclassified blue points. That is, the points that truly belong to
the red class are more “confidently” classified as red than are the blue points. If we consider the r̃1
values as data, applying SCB now classifies the data with much higher accuracy (92% as compared
to 66% for the original training data), while still only using a single level. By the seventh iterative
application of SCB, the accuracy increases to 97%. If we perform the same experiment, but include
a higher density of blue points so that the total number of red and blue points are the same, we
achieve higher accuracy at the first application of SCB, but again see improved accuracy for later
iterations.

3.2 Image datasets

We test ISCB on the MNIST dataset of hand-written digits [21], the YaleB dataset for facial recog-
nition [7, 5, 6, 16], and the Norb dataset for classification of images of various toys [22]. Results
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Figure 4: Accuracies for classifying MNIST data among 10 classes (left plot), YaleB data among
eight classes (middle plot) and Norb data among five classes (right plot) are given in terms of the
number of applications of SCB used. For the MNIST dataset, the model is trained with p = 1000
images of each class and tested on 100 images from each class. The model for the YaleB dataset is
trained using p = 40 training images from each class and applied to 20 test images from each class.
For the Norb dataset, the model is trained on p = 1000 training images and is applied to 200 test
images for each class. In each model, m = 500 measurements are used. Results are averaged over
10 trials.

are shown in Figure 4. We generally find both that increasing the number of levels used in each
SCB application of ISCB and increasing the number of applications leads to improved performance.
The classification accuracies typically level off after only a few applications of SCB, with the largest
improvement typically occuring between the first and second application. These trends are less clear
in the YaleB dataset, but this may be in part due to the limited amount of training data available
for this dataset.

4 Alternative iterative method

We motivated ISCB by noting that the r̃ vectors from Algorithm 2 for test data from the same
classes share similar structures. We additionally find that the contributions to the r̃ values coming
from different levels admit different patterns as well. We could thus choose to use

r̂k(`, g) =

m∑
i=1

∑
t∗

rk(`, i, t∗, g)

as data for the kth application of SCB instead of r̃k(g) as is done in Algorithm 3. Here, t∗ ranges
over all observed sign patterns for the ith `-tuple of hyperplanes. We refer to this method as ISCB
with r̂. Note that we have the following relation between r̃k and r̂k,

r̃k(g) =

L∑
`=1

r̂k(`, g).

After the first application of SCB, the dimension of the data for ISCB with r̂ is now RLG.
In certain settings, ISCB with r̂ performs better than ISCB of Subsection 2.2. Typically, using

r̂k(`, g) as opposed to r̃k(g) as input to the subsequent applications of Algorithm 1 performs better
when the number of levels L used is small. Unfortunately, for higher numbers of levels L we see
drastic declines in performance for later applications when using r̂k(`, g), as this method is more
prone to overfit. These trends are illustrated in Figure 5 for the MNIST dataset. In the left plot of
Figure 5, ISCB with r̂ leads to improved performance over ISCB with r̃. As the number of levels L
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Figure 5: The performance of ISCB using r̃, presented in Subsection 2.2, (solid) is compared with
that of the alternative version of ISCB using r̂, presented in Section 4, (dashed) on the MNIST
dataset. p = 1000 training and 100 testing images are used for each digit. Each method uses
m = 500 binary measurements of the data at each application of Algorithm 1. The number of levels
L used with each method is indicated in the legend.

used increases from four to 10, however, this difference diminishes. For greater than 14 levels, using
ISCB with r̂k(`, g) leads to decreasing performance in the number of applications of SCB (seen in
the right plot of Figure 5). The same decrease in performance does not occur when using the r̃k(g)
values as data for the next iteration.

4.1 Overfitting

ISCB is relatively prone to overfitting, since the model output for training and testing data at
iteration k are used as input for the (k + 1)st iteration. Thus, any overfitting that occurs at earlier
iterations gets propagated to later iterations. In particular, if we overfit to the training data at
iteration k, then the training and testing data at the next iteration are no longer sampled from
similar distributions. ISCB with r̂ has a much greater propensity to overfit as compared to ISCB
with r̃, especially when the number of levels is large. This effect makes intuitive sense since for
longer `-tuples of hyperplanes the testing data is less likely to match the sign patterns of training
data and so the r̂k(`, g) values for training and testing data may diverge for longer `-tuples and later
iterations k. These observations suggest that choosing an appropriate number of levels is especially
critical for ISCB as compared to SCB. Fortunately, if a model is trained using too many levels, one
could simply use the model output from the first application to arrive at more accurate predictions.
In particular, there is no need to re-train the model.

5 Theoretical analysis

We next offer some theoretical analyses pertaining to why we expect performance to improve through
multiple applications of SCB for several simple scenarios. At a high level, the iterative framework
has the opportunity to train on its own output and correct misclassifications that occur in previous
iterations. Qualitatively, as the number of iterations increases, we find that the data points that are
more easily identifiable as belonging to a single class are pushed toward extreme points of the range
of outputs, while data points that are more difficult to classify fall in the interior of the range and
have the chance to be classified correctly at the next iteration.
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5.1 Binary classification of point masses of equal mass

As a first simple but illustrative example, consider a classification task between two classes. Assume
that the training and testing data for each class is concentrated at a single point, i.e. a point mass,
and that each class has the same number of training points or equivalently that each point mass has
the same density. Let j be the number of hyperplanes that separate the two point masses at the
first application of the classification method (j will clearly depend on the angle between the point
masses and can be easily bounded probabilistically). Consider the simplified setting in which we use
a single level; note that in this case, since L = 1, we have r̃k = r̂k and so ISCB and ISCB with r̂
are equivalent. With this setup, for testing data in class 1,

r̃1 =

(
m∑
i=1

r(`, i, t∗, 1),

m∑
i=1

r(`, i, t∗, 2)

)
= (j, 0).

For testing data in class 2,

r̃1 =

(
m∑
i=1

r(`, i, t∗, 1),
m∑
i=1

r(`, i, t∗, 2)

)
= (0, j).

Thus, if at least one hyperplane separates the two point masses initially, then at the next iteration,
the angle between data points of class 1 and 2 is π/2 (the best possible). Since the data are
two-dimensional and we restrict the hyperplanes to intersect the positive quadrant after the first
SCB application, then if the model classifies the point masses correctly at the first iteration, it will
correctly classify at all subsequent iterations as well.

5.2 Binary classification of point masses

We next consider the slightly more involved setting in which the data from each class is again
concentrated at a single point, however, the number of points in the two classes differ. We again
consider only a single level L and let j be the number of hyperplanes that separate the two point
masses in the first application of SCB. In expectation, j

m gives an indication of the angle separating
the two point masses, where m is the number of rows in the measurement matrix. Let A1 be the
number of points in class 1 and A2 be the number of points in class 2. For testing data in class 1,

r̃1(1) =

m∑
i=1

r(`, i, t∗, 1) = j + (m− j)A1|A1 −A2|
(A1 +A2)2

and

r̃2(2) =

m∑
i=1

r(`, i, t∗, 2) = (m− j)A2|A1 −A2|
(A1 +A2)2

.

For testing data in class 2,

r̃1(1) =

m∑
i=1

r(`, i, t∗, 1) = (m− j)A1|A1 −A2|
(A1 +A2)2

and

r̃2(2) =

m∑
i=1

r(`, i, t∗, 2) = j + (m− j)A2|A1 −A2|
(A1 +A2)2

.

Note that the data for the second application of the method are again two-dimensional. Let g̃1 be
the r̃1 vector for a data point in class 1 and g̃2 be the r̃1 vector for a data point in class 2. The
following formula gives the angle θ between the two point masses at the second application,

θ = cos−1
(

〈g̃1, g̃2〉
||g̃1||2 · ||g̃2||2

)
. (2)
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Figure 6: This plot shows the expected proportion of hyperplanes that separate data at the second
iteration of ISCB given the fraction of separating hyperplanes at the first application of SCB. The
relative sizes of the two classes, given by A1 and A2, are varied as well, as is indicated by the
parameter c = A1

A2
given in the legend.

Figure 6 shows the angle that separates the point masses of the training data at the second appli-
cation in terms of j

m for various ratios c = A1

A2
. We find that if A1 and A2 are similar in size, then

the expected angle separating the two point masses increases for the second application, making the
point masses “easier” to separate in later applications.

5.3 Symmetric data

We consider another simple, two-dimensional, two-class setting. Assume that the training data for
the two classes lie in the positive quadrant of the plane and are distributed symmetrically about the
line y = x, as are the m hyperplanes. If we assume that the hyperplanes are uniformly distributed,
this is a reasonable simplification. We could also alternatively enforce this condition when generat-
ing the random hyperplanes, although a generalization of this strategy to higher dimensions is not
immediate. We show that if we have at least one hyperplane that separates the two classes, then
the data will be classified correctly via SCB with a single level. Although this statement provides
a classification guarantee for SCB, the data structure is representative of r̃k values for binary clas-
sification in which the previous iteration of ISCB has classified all of the data points correctly. In
this sense, this result can be interpreted as providing a guarantee that if ISCB has performed well
at the previous iteration, we should expect it will perform well at the next iteration also. Let n be
the number of data points in each class. For simplicity, we will refer to the class that lies above the
line y = x as class 1 and the class that lies below the line y = x as class 2.

Consider a hyperplane that intersects the region above the line y = x, for example, the purple
dotted hyperplane in Figure 7. Let s be the number of points belonging to class 1 that lie below this
hyperplane. Each such hyperplane that lies above the line y = x has a corresponding hyperplane
below the line y = x by the assumed symmetry condition. Then s also gives the number of points in
class 2 that lie above this corresponding hyperplane. Contributions to the r̃ vector are summarized
in Table 1 for hyperplane pairs, i.e. hyperplanes that are symmetric about the line y = x.

Consider now a test point x from class 1. Suppose that j hyperplanes cut between the test point
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Figure 7: Illustration of data setup for Subsection 5.3. Red and blue points indicate data from class
1 and 2 respectively. The dashed purple lines provide an example pair of hyperplanes. We assume
the data are distributed symmetrically about the black line y = x as are the hyperplanes.

Hyperplane Class 1 Class 2

+ - + -

Lies above y = x 1 s
n+s

n−s
n+s 0 n

n+s
n−s
n+s

Lies below y = x n
n+s

n−s
n+s 0 s

n+s
n−s
n+s 1

Table 1: Contributions to the r̃ vector corresponding to a data point p and for a hyperplane pair,
which are symmetric about the line y = x. The symbols + and − indicate that the point p lies
above and below the hyperplane, respectively.

x and the line y = x. Let si be the s value for the ith hyperplane. Then at the next application,

r̃(1) = j +

m/2−j∑
i=1

si
n+ si

n− si
n+ si

+

m/2∑
i=1

n

n+ si

n− si
n+ si

and

r̃(2) =

m/2−j∑
i=1

n

n+ si

n− si
n+ si

+

m/2∑
i=1

si
n+ si

n− si
n+ si

.

The first summation in each equation gives the contribution to the r̃ vector from hyperplanes that
lie above the line y = x, but below the data point x. The second summation gives the contribution
from hyperplanes that lie below y = x. Each si in the first summation corresponds to an si in the
second summation.

Subtracting these values,

r̃(1)− r̃(2) = j −
m/2−j∑
i=1

n− si
n+ si

n− si
n+ si

+

m/2∑
i=1

n− si
n+ si

n− si
n+ si

= j +

j∑
i=1

(
n− si
n+ si

)2

≥ 0.

Thus, we find that the test point x will always be classified correctly, in fact, by at least a margin of j.
(If there are no training points from class 1 between the test point of class 1 and the training points

12



Figure 8: Illustration of data setup for Subsection 5.4.

Hyperplane case Number in event Class Value of r(1, i, t, g)

Separates x1 and x2 j 1 1

2 0

Does not separate x1 and x2 m− j − k1 − k2 1 A1|A1−A2|
(A1+A2)2

or intersect G1 or G2 2 A2|A1−A2|
(A1+A2)2

Intersects G2 k2 1 A1|A1−A2u
′|

(A1+A2u′)2

2 A2u
′|A1−A2u

′|
(A1+A2u′)2

Intersects G1 k1 1 A1u|A1u−A2|
(A1u+A2)2

2 A2|A1u−A2|
(A1u+A2)2

Table 2: Contributions to the membership index parameter r for the point x1 and for hyperplanes
of various types. The variables u and u′ are i.i.d. random variables uniformly distributed between
zero and one, indicating the angle at which random hyperplanes intersect the wedges G1 and G2.
A1, A2, G1, G2,x1 and x2 are as shown in Figure 8.

of class 2, the r̃ values for the two classes will be equal if j = 0.) Since the data is then perfectly
classified in this application of SCB and the resulting r̃ vectors will again be symmetric about the
line y = x, if we make the same symmetry assumptions about the hyperplanes, we can apply this
same result to future applications of SCB with a single level. Thus, for this simple symmetric data,
ISCB will classify the data perfectly using a single level (L = 1) and for any number of iterations
K.

5.4 Probabilistic bounds for an angular model

We next consider an analogue to Theorem 1 of [23], although the setting is modified slightly. Consider
two-dimensional data with two classes. Suppose that the data from each class is distributed within
the disjoint wedges, G1 and G2, with angles A1 and A2 respectively. This setup is illustrated in
Figure 8. Consider the data points x1 and x2, which lie on the inside edge of each wedge. Let A12

be the angle between these two points. We aim to find a lower bound on the angle between the r̃1
vectors for x1 and x2 after a single application of SCB with a single level L. Again, since we only
use a single level, r̂1 = r̃1 for all points x.
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Assume that the data is distributed uniformly in G1 and G2. Let k1 and k2 be the number
of hyperplanes that intersect G1 and G2 respectively and let j be the number of hyperplanes that
separate G1 and G2. Note that

Ek1 =
A1

π
, Ej =

A12

π
, and Ek2 =

A2

π
.

Assume that the hyperplanes are also distributed with uniformly random angles within these wedges.
We can then replace Pg|t with angular measures, specifically, Aiuh, where uh ∈ [0, 1] and depends on
the angle at which the hyperplane h intersects Gi. Since the hyperplanes are uniformly distributed
at random within each region, the uh are uniform random variables between zero and one.

The contribution to the membership index parameter r for SCB with a single level L and for each
possible type of hyperplane in this setup for the point x1 are summarized in Table 2. To simplify
calculations, assume that A1 = A2. With this assumption, the membership index parameters no
longer depend on A1 or A2. Summing over all hyperplanes, for x1 we have

r̃1(1) =

m∑
i=1

r(1, i, t∗i , 1) = j +

k1∑
h=1

uh(1− uh)

(uh + 1)2
+

k2∑
h=1

1− u′h
(1 + u′h)2

and

r̃1(2) =

m∑
i=1

r(1, i, t∗i , 2) =

k1∑
h=1

1− uh
(uh + 1)2

+

k2∑
h=1

u′h(1 + u′h)

(1 + u′h)2
.

The calculation for x2 is similar. Let g̃1 and g̃2 be the r̃1 vectors corresponding to x1 and x2

respectively. Then at the next application, we have

g̃1 =

(
j +

k1∑
h=1

uh(1− uh)

(uh + 1)2
+

k2∑
h=1

1− u′h
(1 + u′h)2

,

k1∑
h=1

1− uh
(uh + 1)2

+

k2∑
h=1

u′h(1− u′h)

(1 + u′h)2

)
(3)

and

g̃2 =

(
k1∑
h=1

uh(1− uh)

(uh + 1)2
+

k2∑
h=1

1− u′h
(1 + u′h)2

, j +

k1∑
h=1

1− uh
(uh + 1)2

+

k2∑
h=1

u′h(1− u′h)

(1 + u′h)2

)
. (4)

The angle between these two vectors is again given by Equation (2). The resulting angles from
simulations for various k1 = k2, and j are given in the left plot of Figure 9. We make the simplification
k1 = k2 to ease visualization. Unsurprisingly, as j increases so does the separation between g̃1 and
g̃2 at the second iteration. As k1 and k2 increase, for fixed j, the separation between the two points
at the next application decreases.

Ideally, we would like to find a lower bound on the angle θ between g̃1 and g̃2 that depends on
k1, k2, and j. Unfortunately, the explicit form of the resulting angle is relatively complicated. We
can simplify the denominator of Equation (2) by using the bounds ||g̃i||2 ≥ j. We expect this bound
to be quite loose, if not trivial, when j is small, but to provide a reasonable bound for larger j. With
this simplification,

cos(θ) ≤

(
j +

∑k1

h=1
uh(1−uh)
(uh+1)2 +

∑k2

h=1
1−u′h

(1+u′h)
2

)(∑k1

h=1
uh(1−uh)
(uh+1)2 +

∑k2

h=1
1−u′h

(1+u′h)
2

)
j2

+

(∑k1

h=1
1−uh

(uh+1)2 +
∑k2

h=1
u′h(1−u

′
h)

(1+u′h)
2

)(
j +

∑k1

h=1
1−uh

(uh+1)2 +
∑k2

h=1
u′h(1−u

′
h)

(1+u′h)
2

)
j2

.

(5)
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Figure 9: For various values of k1 = k2 (the number of hyperplanes intersecting the wedges G1 and
G2 respectively) and j (the number of hyperplanes separating the wedges G1 and G2), the left plot
indicates the true angle (in radians) between g̃1 and g̃2 as given in Equations (3) and (4). The right
plot indicates the angle using the upper bound for cos(θ) given in Equation (5).

For this simplified bound, taking an expectation is a straightforward calculation. See Appendix A
for details. We eventually arrive at the bound

E(cos(θ)) ≤ (k1 + k2)(2 log 2− 1)

j
+

(k21 + k22)(10(log 2)2 − 14 log 2 + 5)

j2

+
4k1k2(1− log 2)(3 log 2− 2) + (k1 + k2)(−2/3 + 8 log 2− 10(log 2)2)

j2

(6)

Using Markov’s inequality, for a ∈ (0, π/2),

P(θ ≤ a) = P [cos(θ) ≥ cos(a)] ≤ E(cos(θ))

cos(a)
. (7)

Although this bound is relatively loose, for sufficiently small a and large j, the probability that
θ ≤ a is small. We summarize this result in Theorem 1. More visually appealing, Figure 10
gives the probabilities that result from combining Equation (6) and Equation (7) for a variety of
hyperplane combinations and angles a.

Theorem 1. Suppose data is distributed as in Figure 8, where points from classes 1 and 2 are
uniformly distributed within the wedges G1 and G2 respectively. Suppose that the angles A1 and A2

are equal. Let k1 and k2 be the number of hyperplanes that intersect G1 and G2 respectively. Let j
be the number of hyperplanes that separate G1 and G2. Consider the points x1 in class 1 and x2

in class 2 as shown in Figure 8. The angle θ between the r̃ vectors for x1 and x2 after a single
iteration of SCB with one level L satisfies the following inequality,

P(θ ≤ a) ≤ C1j(k1 + k2) + C2(k21 + k22) + C3k1k2 + C4(k1 + k2)

j2 cos(a)
,

where

C1 = 2(log 2)− 1, C2 = 10(log 2)2 − 14 log 2 + 5,

C3 = 4(1− log 2)(3 log 2− 2), C4 = −10(log 2)2 + 8 log 2− 2/3.
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Figure 10: For various values of k1 = k2 (the number of hyperplanes intersecting the wedges G1 and
G2 respectively), j (the number of hyperplanes separating the wedges G1 and G2), and angles a, we
plot the bound for P(θ ≤ a) given by Theorem 1. From left to right, the plots use k1 = 10, 50, and
100 respectively.

6 Algorithm 1 for data preprocessing and dimension reduc-
tion

We remark here briefly about another potential strategy using the output of the SCB approach.
Although this is not the focus of the current work, it may lead to fruitful future directions. The
idea is to use the output from SCB and then apply other established classification methods such
as SVM [9] to the r̃ vectors. Considering SVM specifically, we find that this strategy can perform
better than SVM applied directly to the data.

First, consider a simple example with the synthetic data shown in the upper left plot of Figure 11.
Applying SVM with a linear kernel [14, 9] unsurprisingly performs poorly, achieving an accuracy of
65%. An RBF kernel [4, 14] SVM performs much better, achieving an accuracy of 90%. Applying
SVM instead to the r̃1 values of the training data produced via SCB with a single level L and
m = 100 measurements leads to 80% accuracy using a linear kernel and 97% accuracy using an
RBF kernel. Thus, applying SVM to the r̃1 values as opposed to the original data leads to an
improvement in accuracy of 15% for SVM with a linear and 7% for SVM with an RBF kernel.

For the same initial data, if we increase the number of levels L used in SCB to four and the
number of measurements to m = 200, the accuracies of SVM trained on the resulting r̃1 values
are 97% with a linear kernel and 94% with an RBF kernel (Figure 12). The respective accuracies
are improved by 21% and 4% respectively as compared to SVM applied to the original data. This
increase in the number of levels L and measurements m also leads to improved performance for both
SCB and ISCB with two applications. Note that if SCB is able to perfectly classify the training
data points, then SVM with a linear kernel trained on the r̃1 values of the training points will also
perfectly classify the training data points, as the r̃1 values of the training points will be linearly
separable.

7 Conclusion

We have illustrated that iterative applications of SCB of [23] lead to improved classification accuracies
as compared to a single application in a variety of settings. Numerical experiments on the MNIST,
YaleB, and Norb datasets support this claim. Experiments and theoretical analyses on synthetic data
in simple settings demonstrate the effects of multiple iterations on the data and predictions. These
examples also highlight simple situations in which the ISCB framework excels. We also demonstrate
that an application of SCB can be used as a dimension reduction or data preprocessing technique
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Figure 11: The four plots on the left display accuracies and predictions made via various methods
for the data given in the upper left-most plot. In the plots of the training and testing data, circles
indicate training data and crosses indicate test data. Filled markers indicate that a given method
misclassified that particular data point. The methods considered are SCB and SVM with both a
linear and RBF kernel. The right set of four plots display accuracies and predictions made via the
same set of methods applied to the r̃ values from a single application of SCB with a single level
(L = 1) and m = 100 measurements.

Figure 12: The four plots on the left display accuracies and predictions made via various methods
for the data given in the upper left-most plot. In the plots of the training and testing data, circles
indicate training data and crosses indicate test data. Filled markers indicate that a given method
misclassified that particular data point. The methods considered are SCB and SVM with both a
linear and RBF kernel. The right set of four plots display accuracies and predictions made via the
same set of methods applied to the r̃ values from SCB at the first application. L = 4 levels and
m = 200 measurements are used for each application of SCB.
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to improve the performance of other classification methods such as SVM.
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A Detailed calculations for Subsection 5.4

In this section, we provide details for calculating Equation (6). Let

K11 =

k1∑
h=1

uh(1− uh)

(uh + 1)2
, K12 =

k1∑
h=1

1− uh
(uh + 1)2

, K21 =

k2∑
h=1

1− u′h
(1 + u′h)2

, K22 =

k2∑
h=1

u′h(1− u′h)

(1 + u′h)2
,

where uh and u′h are i.i.d. uniformly random variables between zero and one. We can then rewrite
Equation (5) as

cos(θ) ≤ (j +K11 +K21)(K11 +K21) + (j +K12 +K22)(K12 +K22)

j2

=
j(K11 +K21 +K12 +K22) +K2

11 + 2K11K21 +K2
21 +K2

12 + 2K12K22 +K2
22

j2
. (8)

We then require the expectation of each term in the numerator. Since uh and u′h are i.i.d.,
EK11K21 = EK11EK21. Straightforward integral calculations lead to the following expected values:

E
(
uh(1− uh)

(uh + 1)2

)
= 3 log 2− 2, E

(
1− uh

(uh + 1)2

)
= 1− log 2,

E
(
u2h(1− uh)2

(uh + 1)4

)
= 25/6− 6 log 2, E

(
(1− uh)2

(uh + 1)4

)
= 1/6.

We then have the following expectations:

EK11 = k1(3 log 2− 2)

EK12 = k1(1− log 2)

EK2
11 = k1(k1 − 1)(3 log 2− 2)2 + k1(25/6− 6 log 2)

EK2
12 = k1(k1 − 1)(1− log 2)2 + k1(1/6).

EK22,EK21,EK2
22, and EK2

21 take the same forms with k2 replacing k1.
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Taking the expectation of Equation (8),

E(cos(θ)) ≤ (k1 + k2)(2 log 2− 1)

j

+
(k21 − k1 + k22 − k2)(3 log 2− 2)2 + (k21 − k1 + k22 − k2)(1− log 2)2

j2

+
4k1k2(1− log 2)(3 log 2− 2) + (k1 + k2)(1/6 + 25/6− 6 log 2)

j2

≤ (k1 + k2)(2 log 2− 1)

j

+
(k21 − k1 + k22 − k2)(10(log 2)2 − 14 log 2 + 5)

j2

+
4k1k2(1− log 2)(3 log 2− 2) + (k1 + k2)(13/3− 6 log 2)

j2

≤ (k1 + k2)(2 log 2− 1)

j
+

(k21 + k22)(10(log 2)2 − 14 log 2 + 5)

j2

+
4k1k2(1− log 2)(3 log 2− 2) + (k1 + k2)(−2/3 + 8 log 2− 10(log 2)2)

j2
,

providing the desired bound.
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