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Abstract

Shape analysis is important in anthropology, bioarchaeology and forensic

science for interpreting useful information from human remains. In par-

ticular, teeth are morphologically stable and hence well-suited for shape

analysis. In this work, we propose a framework for tooth morphometry using

quasi-conformal theory. Landmark-matching Teichmüller maps are used for

establishing a 1-1 correspondence between tooth surfaces with prescribed

anatomical landmarks. Then, a quasi-conformal statistical shape analysis

model based on the Teichmüller mapping results is proposed for building a

tooth classification scheme. We deploy our framework on a dataset of human

premolars to analyze the tooth shape variation among genders and ancestries.

Experimental results show that our method achieves much higher classifica-

tion accuracy with respect to both gender and ancestry when compared to

the existing methods. Furthermore, our model reveals the underlying tooth

shape difference between different genders and ancestries in terms of the local
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geometric distortion and curvatures.

Keywords: tooth morphometry, quasi-conformal theory, shape analysis,

Teichmüller map, ancestry, sexual dimorphism, classification

1. Introduction

In anthropology, bioarchaeology and forensic science, a major problem

is to obtain useful information from human remains. While it is possible to

extract the DNA from the remains, the genetic information may be degraded

during excavation or decomposition [1]. Also, the extraction process may

creates irreversible damages to the samples [2]. To avoid the above-mentioned

issues, one possible alternative approach is to analyze the shape of the

remains. Unlike tissues and skins, which decay significantly over time, teeth

are morphologically stable and resistant to degradation. Hence, the shape

analysis of teeth is important for interpreting information of gender, ancestry

and other identifiable factors.

Traditional morphometric methods have been extensively used for the

study of the human tooth variation in terms of tooth size [3], tooth weight

[4] etc.. To have a better understanding of the tooth shape variation, it is

more desirable to consider landmark-based geometric morphometrics, which

compares teeth based on prescribed anatomical landmarks such as their cusps

and pits. Earlier methods in landmark-based geometric morphometrics such as

the Procrustes superimposition [5] and thin plate spline (TPS) transformation

[6] have been applied for studying the dental variation of different populations

[7, 8, 9, 10]. However, a well-known limitation of these mapping methods

is that in general neither the entire tooth shapes nor the landmarks can be
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exactly matched. This inaccuracy may compromise the comparison between

the geometry of different tooth shapes. In recent years, conformal and

quasi-conformal mappings have been considered for the analysis of medical

and biological shapes such as brain cortical surfaces [11, 12], hippocampi

[13, 14], vestibular systems [15], carotid arteries [16] and insect wings [17, 18].

In particular, Teichmüller map, a special type of quasi-conformal maps, is

advantageous in the sense that it allows for exact landmark matching and is

associated with a constant conformal distortion, as well as a natural metric

called the Teichmüller distance. The Teichmüller distances between shapes,

together with the differences in curvature of the shapes, serve as a powerful

tool for capturing and quantifying shape variation.

In this work, we propose a framework for accurately classifying a large set

of 3D simply-connected open surfaces, by characterizing the shape variations

using landmark-matching Teichmüller maps. The key to the unparalleled

accuracy lies in taking into account the additional surface shape information

using ideas from computational geometry and quasi-conformal theory. Illus-

tration of our framework is done by applying the new algorithms to a dataset

of tooth occlusal surfaces from Indigenous Australians [19] and Australians

of European ancestry [20] (see Figure 1 for examples). More specifically,

to capture and quantify the shape differences between the 3D surfaces in

terms of the overall shape, the curvature and the positions of the anatomical

landmarks, we extend our previous work on landmark-matching Teichmüller

map [21] to achieve an accurate 1-1 mapping between them, and further

develop a quasi-conformal shape analysis model based on our previous work

[14] for performing a classification. The classification results for the tooth
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Figure 1: Examples of the second upper premolar occlusal surfaces from two populations in
Australia [19, 20], with four landmarks of the buccal cusp, the lingual cusp, the mesial fossa
pit and the distal fossa pit highlighted in red. Each row shows four specimens with the
same ancestry and gender. First row: Indigenous males. Second row: Indigenous females.
Third row: European males. Fourth row: European females. It can be observed that the
surfaces are different in terms of the overall shape, curvature and landmark positions.

dataset shed light on the ancestral variation and sexual dimorphism of teeth.

2. Mathematical background

We first review some important concepts in quasi-conformal theory. Read-

ers are referred to [21, 22, 23] for more details.
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2.1. Quasi-conformal map

Intuitively, quasi-conformal maps are orientation-preserving homeomor-

phisms with bounded conformality distortions. Under a quasi-conformal map,

an infinitesimal circle is mapped to an infinitesimal ellipse with bounded

eccentricity. The formal definition of quasi-conformal maps on the complex

plane is given below.

Definition 2.1 (Quasi-conformal maps). A quasi-conformal map f : C→

C is a map satisfying the Beltrami equation

∂f

∂z̄
= µf (z)

∂f

∂z
, (1)

for some complex-valued function µf (z) with ‖µf‖∞ < 1.

One can easily see that if µf = 0, the above equation becomes the Cauchy-

Riemann equation and hence f is conformal (i.e. angle preserving).

More generally, let S1, S2 be two Riemann surfaces in R3. A Beltrami

differential µ(z)dz
dz

on a Riemann surface S is an assignment to each chart

(Uα, φα) on an L∞ complex-valued function µα, defined on local parameter

zα such that µα
dzα
dzα

= µβ
dzβ
dzβ

on the domain which is also covered by another

chart (Uβ, φβ). An orientation-preserving diffeomorphism f : S1 → S2 is

said to be a quasi-conformal map associated with the Beltrami differential

µ(z)dz
dz

if for any chart (Uα, φα) on S1 and any chart (Uβ, ψβ) on S2, the map

fαβ = ψβ ◦ f ◦ φ−1
α is a quasi-conformal map.

In case the surfaces are simply-connected open surfaces, they can be

represented by a single chart. Then, the computation of quasi-conformal

maps between them can be easily reduced to the computation on the complex

5



plane via a composition of mappings. Below is a useful property concerning

the Beltrami coefficient associated with a composition of quasi-conformal

maps, also known as the composition formula.

Proposition 2.2 (Composition of quasi-conformal maps). If f : C→

C and g : C → C are quasi-conformal maps, then g ◦ f is also a quasi-

conformal map with Beltrami coefficient

µg◦f (z) =
µf (z) + fz

fz
µg(f(z))

1 + fz
fz
µf (z)µg(f(z))

. (2)

From the above composition formula, it is easy to see that if f is conformal

and g is quasi-conformal, then µg◦f(z) = µg(f(z)) as µf = 0. Also, if f is

quasi-conformal and g is conformal, then µg◦f (z) = µf (z) as µg = 0. In other

words, the composition with a conformal map does not change the Beltrami

coefficient.

2.2. Teichmüller map

Teichmüller map is a quasi-conformal map whose Beltrami coefficient

has a constant norm. Hence, a Teichmüller map has a uniform conformal

distortion over the entire domain. The formal definition of Teichmüller map

is described below.

Definition 2.3 (Teichmüller map). Let f : S1 → S2 be a quasi-conformal

map. f is said to be a Teichmüller map (T-map) associated with the quadratic

differential q = ϕdz2 where ϕ : S1 → C is a holomorphic function if its
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associated Beltrami coefficient is of the form

µ(f) = k
ϕ

|ϕ|
, (3)

for some constant k < 1 and quadratic differential q 6= 0 with ||q||1 =
∫
S1
|ϕ| <

∞.

Furthermore, Teichmüller maps are closely related to a class of maps called

extremal quasi-conformal maps.

Definition 2.4 (Extremal quasi-conformal map). Let f : S1 → S2 be a

quasi-conformal map. f is said to be an extremal quasi-conformal map if for

any quasi-conformal map h : S1 → S2 isotopic to f relative to the boundary,

we have

K(f) ≤ K(h), (4)

where K(f) is the maximal quasi-conformal dilation of f . It is uniquely

extremal if the inequality (4) is strict when h 6= f .

The two above-mentioned concepts are connected by the following theorem.

Theorem 2.5 (Landmark-matching Teichmüller map [24]). Let g :

∂D → ∂D be an orientation-preserving diffeomorphism of ∂D, where D is

the unit disk. Suppose further that g′(eiθ) 6= 0 and g′′(eiθ) is bounded. Let

{lk}nk=1 ∈ D and {qk}nk=1 ∈ D be the corresponding interior landmark con-

straints. Then there exists a unique Teichmüller map f : (D, {lk}nk=1) →

(D, {qk}nk=1) matching the interior landmarks, which is the unique extremal

extension of g to D. Here (D, {lk}nk=1) denotes the unit disk D with prescribed

landmark points {lk}nk=1.
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Therefore, besides equipped with uniform conformal distortion, Teichmüller

maps are extremal in the sense that they minimize the maximal quasi-

conformal dilation. Furthermore, Teichmüller maps induce a natural metric,

called the Teichmüller distance [23], which can be used to measure the

difference between two shapes in terms of local geometric distortion.

Definition 2.6 (Teichmüller distance). For every i, let Si be a Riemann

surface with landmarks {pki }nk=1. The Teichmüller distance between (fi, Si)

and (fj, Sj) is defined as

dT ((fi, Si), (fj, Sj)) = inf
ϕ

1

2
logK(ϕ), (5)

where ϕ : Si → Sj varies over all quasi-conformal maps with {pki }nk=1 cor-

responds to {pkj}nk=1, which is homotopic to f−1
j ◦ fi, and K is the maximal

quasi-conformal dilation.

3. Proposed method

In this section, we describe our proposed method for accurately classify-

ing a large set of 3D simply-connected open surfaces. To characterize the

shape variation in terms of the surface geometry as well as the prescribed

landmarks on them, we first propose a method for computing lanmdark-

matching Teichmüller maps between 3D surfaces. Then, with the Teichmüller

mapping results, we further propose a shape classification model based on

quasi-conformal theory.
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3.1. Landmark-matching Teichmüller map between simply-connected open

surfaces

Denote two simply-connected open surfaces by Si and Sj, each with n

landmarks {l1i , . . . , lni } and {l1j , . . . , lnj }. We aim to quantify the difference

between the two surfaces using a landmark-matching Teichmüller map fij :

Si → Sj that satisfies

fij(l
k
i ) = lkj , k = 1, . . . , n. (6)

Unlike other methods such as radial basis function and spline-based methods,

our approach takes both the overall shape and the landmarks of the surfaces

into account, and is guaranteed by quasi-conformal theory.

The procedure for finding fij is outlined in Figure 2. It consists of three

steps, namely the rectangular conformal parameterizations, the landmark-

matching Teichmüller map between the rectangles and the composition. Below,

we discuss the technical detail of each step.

3.1.1. Rectangular conformal parameterizations

To simplify the mapping problem, we begin with flattening Si and Sj onto

the plane. While there exists other flattening methods such as area-preserving

maps [27, 28], conformal parameterizations are preferred in our case as they

preserve the Beltrami coefficient and hence the conformal distortion under

compositions. Following the approach in [21], we compute two conformal maps

gi : Si → Ri and gj : Sj → Rj that flatten Si and Sj onto two rectangular

domains Ri, Rj on the plane.

Note that the rectangular conformal parameterization algorithm in [21]
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Figure 2: An illustration of the computation of the landmark-matching Teichmüller map
fij between two occlusal surfaces Si and Sj (landmarks highlighted in red). The two
surfaces are first flattened onto the plane by two rectangular conformal parameterizations
gi and gj . The landmark-matching Teichmüller map hij between the two rectangles is then
computed. Finally, the landmark-matching Teichmüller map fij between the surfaces is
given by the composition g−1

j ◦ hij ◦ gi.

was developed for point clouds. In our case of surface morphometry here,

the approximation of the differential operators in [21] can be replaced by

the mesh-based approximations, which are much simpler and more accurate.

The rectangular conformal parameterization algorithm in [21] consists of a

step of conformally parameterizing a surface onto the unit disk and a step of

conformally mapping the unit disk to a rectangle. Here, the disk conformal

parameterization step can be replaced by our more recent disk conformal
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map algorithms [29, 30] for accelerating the computation and improving the

accuracy.

3.1.2. Landmark-matching Teichmüller map between the rectangular domains

We then proceed to compute the landmark-matching Teichmüller map

hij : Ri → Rj between the rectangular domains, following the approach in

[21]. In particular, to satisfy the landmark correspondences, we require that

hij(gi(l
k
i )) = gj(q

k
i ), k = 1, . . . , n. (7)

Again, note that [21] was developed for point clouds while the mesh structure

is available in our case here. Therefore, the numerical algorithm used in [21]

can be replaced by the more efficient mesh-based QC Iteration algorithm [22].

Besides the landmark-matching Teichmüller map hij, we can also obtain

the associated Beltrami coefficient µhij . Since hij is Teichmüller, µhij is with

uniform norm, i.e. |µhij | is a constant over the entire domain.

3.1.3. Composition for obtaining the landmark-matching Teichmüller map

between the surfaces

With the rectangular conformal maps gi, gj and the landmark-matching

Teichmüller map hij, a map fij : Si → Sj can be obtained by

fij = g−1
j ◦ hij ◦ gi. (8)

Note that for any landmark lki , we have

fij(l
k
i ) = g−1

j ◦ hij ◦ gi(lki ) = g−1
j (hij(gi(l

k
i ))) = g−1

j (gj(q
k
i )) = qki . (9)
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Hence, fij is a landmark-matching map between Si and Sj.

Furthermore, the conformal distortion of fij is the same as the conformal

distortion of hij. In other words, fij achieves a uniform conformal distortion

|µhij | and hence fij is a Teichmüller map. This can be explained by the

composition formula (2). Since gi, gj are conformal, we have µgi = µgj = 0.

Now, by the composition formula, we have

µhij◦gi(z) =
µgi (z)+

giz
giz

µhij (gi(z))

1+
giz
giz

µgi (z)µhij (gi(z))
=

0+
giz
giz

µhij (gi(z))

1+0
= giz

giz
µhij(gi(z)), (10)

which implies that

|µhij◦gi(z)| =
∣∣∣∣gizgizµhij(gi(z))

∣∣∣∣ = |µhij(gi(z))| = |µhij |. (11)

Similarly,

|µfij(z)| = |µg−1
j ◦hij◦gi

(z)| = |µhij◦gi(z)| = |µhij(gi(z))| = |µhij |. (12)

As a consequence, the Teichmüller distance is also uniquely determined by

the maximal quasi-conformal dilation of the extremal map between the two

rectangular domains. The Teichmüller distance d between the two surfaces

Si and Sj is then given by

dij =
1

2
log

1 + |µhij |
1− |µhij |

. (13)

This completes the computation of the landmark-matching Teichmüller map

between the two surfaces. The algorithm is summarized in Algorithm 1.
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Algorithm 1: Landmark-matching Teichmüller map between simply-
connected open surfaces.

Input: Two simply-connected open surfaces Si, Sj with landmarks
{l1i , . . . , lni } and {l1j , . . . , lnj }.

Output: A landmark-matching Teichmüller map fij : Si → Sj, the
Teichmüller distance dij.

1 Compute disk conformal parameterizations of Si and Sj using the linear
disk conformal map algorithm [30];

2 Using the linear disk conformal map algorithm [30] and the
disk-to-rectangle conformal map algorithm [21], obtain rectangular
conformal parameterizations gi : Si → R2 and gj : Sj → R2;

3 Using the QC Iteration algorithm [22], compute the landmark-matching
Teichmüller map hij : gi(Si)→ gj(Sj) and obtain the Beltrami
coefficient µhij ;

4 Obtain fij = g−1
j ◦ hij ◦ gi and dij = 1

2
log

1+|µhij |
1−|µhij |

;

3.2. Quasi-conformal statistical shape analysis

Note that the landmark-matching Teichmüller maps do not only provide

us with a quantitative measure of the local geometric distortion of surfaces

but also an accurate 1-1 correspondence between different parts of them. As

illustrated in Figure 3, the mean and Gaussian curvatures also effectively

quantify the surface geometry. With the aid of the landmark-matching

Teichmüller maps, it is possible for us to analyze the surface shapes in terms

of both the local geometric distortion and the curvature differences. Below,

we devise a quasi-conformal statistical shape analysis model for building a

surface classification machine.

Given a set of simply-connected open surfaces {Si}Ni=1, we first compute

the landmark-matching Teichmüller maps fi : Si → S from every Si to their

mean surface S. We can then obtain the associated Teichmüller distance
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Figure 3: Quantifying tooth geometry using mean and Gaussian curvatures. Top row: The
mean curvature H of two occlusal surfaces. Bottom row: The Gaussian curvature K of
them. An accurate comparison between the curvatures of different occlusal surfaces is
made possible using landmark-matching Teichmüller maps.

di. Also, for each Si, we compute the mean curvature Hi and the Gaussian

curvature Ki at every vertex of it. After obtaining the results for all surfaces,

a classification model can be built based on di, Hi, and Ki. More specifically,

given a landmark-matching Teichmüller map fi : Si → S, the following shape

index Eshape is considered:

Eshape(fi)(v
k) = α|Hi(v

k)−H(fi(v
k))|+ β|Ki(v

k)−K(fi(v
k))|+ γdi. (14)

Here H, K represent the mean and Gaussian curvature of the mean surface S,
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vk are the vertices of Si with k = 1, 2, . . . ,M , and α, β, γ are real nonnegative

scalar parameters. Without loss of generality, we assume α2 + β2 + γ2 = 1.

Note that Eshape is a complete shape index for measuring all kind of distortion

of the mapping fi. The first two terms measure the curvature deviation of

the mapping, and the third term measures the local geometric distortion of

the mapping. In particular, Eshape ≡ 0 if and only if the two surfaces are

identical up to rigid motion.

When compared to the formulation of shape index in [14], the shape

index Eshape here consists of the same first two terms while the third term is

different. More specifically, here we use the Teichmüller distance di instead of

the norm of the Beltrami coefficient |µi(vk)| for the third term. Note that by

quasi-conformal theory, |µi(vk)| is always bounded by [0, 1] for any bijective

mappings. Instead, the Teichmüller distance is a metric and lies within [0,∞).

As the first two terms |Hi(v
k)−H(fi(v

k))| and |Ki(v
k)−K(fi(v

k))| also have

range [0,∞), using the Teichmüller distance as the third term gives a better

balance between the three terms. Also, since fi is a Teichmüller map, di is

constant over the entire domain. Instead of the vertex-wise evaluation of

|µi(vk)|, we can use a single scalar di to capture the quasi-conformal distortion

between Si and S.

Using the shape index function Eshape, a feature vector ci = (c1
i , c

2
i , ..., c

M
i )

can be computed for each surface, with cki = Eshape(fi)(v
k). Combining all
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feature vectors, we obtain a feature matrix

C =


c1

c2

...

cN

 . (15)

The feature matrix provides full information of all shapes and hence can be

used to develop a classification model. However, it is not necessarily true that

all parts of the surfaces (i.e. all columns in C) are statistically significant for

the classification. To extract the statistically significant regions that are the

most related to the classification from the surfaces, the bagging predictors

[31] are applied. We extract all vertices having a p-value less than or equal

to a nonnegative threshold parameter pcut ∈ [0, 1] as statistically significant

regions. Readers are referred to [14] for more details.

Now, given a set of shapes and a binary classification criterion (e.g.

classifying all tooth shapes into two ancestral/gender groups), we determine

the optimal shape index parameters (α, β, γ) and the optimal threshold

parameter pcut that yield the highest classification accuracy. To search for the

optimal (α, β, γ), the following spherical marching scheme (SMS) is utilized.

Since we assume that α2+β2+γ2 = 1, the space of the shape index parameters

{(α, β, γ) ∈ R3 : α2 + β2 + γ2 = 1} can be regarded as the unit sphere S2.

Then, in order to search for the best set of parameters (α, β, γ) over S2 to

maximize the classification accuracy in a timely manner, we parameterize S2
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using the spherical coordinates

S2 = {(sin(θ)cos(ϕ), sin(θ)sin(ϕ), cos(θ)) ∈ R2 : θ ∈ [0, π], ϕ ∈ [0, 2π)}. (16)

Now, we discretize the parameter domain [0, π]× [0, 2π) using regular gridding

with density ρ > 0, i.e.

[0, π]× [0, 2π) ≈ Ω =
{

(nρ,mρ) ∈ R2 : n = 0, 1, . . . , π
ρ
,m = 0, 1, . . . , 2π

ρ

}
. (17)

Then, for each n,m, (nρ,mρ) corresponds to a set of parameters

(α, β, γ)n,m = (sin(nρ)cos(mρ), sin(nρ)sin(mρ), cos(nρ)) (18)

on S2, and hence we can compute the classification accuracy of the proposed

model using this set of parameters (α, β, γ)n,m. Therefore, the optimal (α, β, γ)

can be chosen as the set of (α, β, γ)n,m that gives the highest classification

accuracy among all n,m. In practice, the density parameter ρ is chosen

within [0.01π, 0.03π]. The optimal threshold parameter pcut for the extraction

of statistically significant regions is determined by testing among different

magnitudes of 10k, with k = 0,−1,−2,−3,−4. The quasi-conformal shape

classification algorithm is summarized in Algorithm 2.

It is noteworthy that the optimal shape index parameters (α, β, γ) deter-

mined by our model do not only maximize the classification accuracy with

respect to a given criterion but also help us analyze the shape difference

between the surfaces. More specifically, note that the mean and Gaussian

curvatures uniquely determine a surface up to rigid motions, while the Te-
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Algorithm 2: Quasi-conformal shape classification.

Input: A set of simply-connected open surfaces {Si}Ni=1 with
prescribed landmarks, and a classification criterion.

Output: The classification result and the optimal parameters
α, β, γ, pcut.

1 Compute the mean surface S of {Si}Ni=1;
2 Compute the landmark-matching Teichmüller map fi : Si → S and the

Teichmüller distance di for all i;
3 For all i and for all k, evaluate the mean curvature difference
|Hi(v

k)−H(fi(v
k))| and the Gaussian curvature difference

|Ki(v
k)−K(fi(v

k))|;
4 Search for the optimal parameters α, β, γ, pcut such that the shape

index Eshape and the statistically significant vertices together give the
best classification result;

ichmüller distance encodes the local geometric distortion. By changing the

shape index parameters (α, β, γ) and comparing the corresponding classi-

fication accuracies, we can study the importance of each component (the

mean curvature difference, the Gaussian curvature difference and the Te-

ichmüller distance) for the classification and determine the major factor that

distinguishes the surfaces.

4. Data description

4.1. Study subjects

Our study focuses on 140 subjects from two populations in Australia,

namely the Indigenous group (subjects of Indigenous Australian ancestry)

and the European group (subjects of European ancestry). The Indigenous

group consists of 70 subjects (35 females, 35 males) of the Walpiri people (a

group of Indigenous Australians who speak the Warlpiri language) living at
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Yuendumu in the Northern Territory of Australia [19]. The European group

consists of 70 subjects (35 females, 35 males) with parents of Southern or

Western European origin obtained from the Australian Twin study [20], with

one co-twin from each twin pair selected randomly. The dental casts of the

permanent dentitions of the subjects were obtained from the Yuendumu and

Australian Twin collections housed in the Murray James Barrett Laboratory,

Adelaide Dental School, The University of Adelaide. To overcome the problem

of advanced tooth wear rate for Indigenous Australians due to hunter-gatherer

dietary practices [25] in the Yuendumu collection, assessment was limited to

subjects in their early teens, with recently erupted premolars. Mean ages

of the subjects were 12 years and 5 months (Indigenous females), 13 years

(Indigenous males), 14 years and 8 months (European females), and 15 years

and 7 months (European males). Readers are referred to [10] for a more

detailed description of the dataset.

4.2. Data acquisition and pre-processing

The detailed procedure for the tooth data acquisition and the landmark

protocol were described in [10]. The dental casts of the subjects were scanned

using a 3D scanner at the resolution of 80-µm point distance. The upper

second premolar in the maxillary right quadrant of each subject was extracted

for this study. Four anatomical features on each tooth, including the buccal

cusp, the lingual cusp, the mesial fossa pit and the distal fossa pit, were

selected as landmarks by dentists. Besides the 4 landmarks, 88 curve and

surface semi-landmarks were placed on each 3D tooth scan to delineate the

occlusal circumference.

For our surface-based morphometric approach, it is desirable to represent
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the occlusal surfaces using triangle meshes. To achieve the triangle mesh

representation, we first triangulated the landmarks and semi-landmarks of

the occlusal surfaces. We then enhanced the mesh quality and resolution

by surface remeshing [26], thereby obtaining smooth, high-quality triangle

meshes for our subsequent surface morphometry. Each remeshed occlusal

surface consists of 1217 vertices.

For each remeshed occlusal surface Si, denote the four landmarks of the

buccal cusp, lingual cusp, mesial fossa pit and distal fossa pit by l1i , l
2
i , l

3
i , l

4
i

respectively. Note that above-mentioned rectangular conformal parameter-

ization procedure involves specifying four vertices on each occlusal surface

to be mapped to the four corners of the corresponding rectangular domain.

It is natural to consider the two crest landmarks l1i , l
2
i on the boundary of

the tooth surface as two corners, and the two other points on the boundary

closest to the pit landmarks l3i , l
4
i as the other two corners (see the bottom

part of Figure 2 for an illustration). This ensures an accurate correspondence

between the rectangular domains for different tooth surfaces.

5. Results

5.1. Landmark-matching Teichmüller map of occlusal surfaces

As for a demonstration of our proposed method, we compute the landmark-

matching Teichmüller map fij between the occlusal surfaces Si and Sj shown

in Figure 2. We remark that Si is an Indigenous male sample and Sj is

an European female sample. Figure 4 shows the mapping result and the

curvature differences between the two surfaces. Comparing the mapping

result in Figure 4 and the original surfaces shown in Figure 2, it can be
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Figure 4: The landmark-matching Teichmüller map between the two occlusal surfaces
Si, Sj shown in Figure 2. Top left: The landmark-matching Teichmüller mapping result
fij(Si). Top right: The histogram of |µfij |. Bottom left: The mean curvature difference
|Hi(v) − Hj(fij(v))| between the two occlusal surfaces. Bottom right: The Gaussian
curvature difference |Ki(v)−Kj(fij(v))| between the two occlusal surfaces.

observed that Si is completely mapped onto Sj under the mapping fij, with

the landmarks exactly matched. The histogram of the norm of the Beltrami

coefficients |µfij | is highly concentrated at one value, indicating that the

mapping is Teichmüller. Also, using the landmark-matching Teichmüller map,

we can easily evaluate the mean and Gaussian curvature differences between

the two surfaces, thereby quantifying the shape difference between them. It

is noteworthy that the major difference in Gaussian curvature is located at

the fossa pits, while the difference in mean curvature is relatively widespread

over the surfaces.
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5.2. Classification of the 140 upper second premolars with respect to ancestry

and gender

After demonstrating the effectiveness of the landmark-matching Teichmüller

map for quantifying tooth shape difference, we deploy the mapping algorithm

and the quasi-conformal statistical shape analysis model on the 140 upper

second premolars in the dataset.

5.2.1. The classification accuracy

We first perform the classifications of all 140 occlusal surfaces in the

dataset with respect to ancestry and gender using our proposed model. For

comparison, we evaluate the classification accuracy achieved by our model as

well as that achieved by two other classification methods respectively based

on traditional morphometrics and landmark-based geometric morphometrics.

More specifcally, we consider the area-based classification [32, 33] (note that

the method in [32, 33] was originally volume-based for genus-0 surfaces, and

so its analogue for simply-connected open surfaces is area-based) and the

Procrustes-based classification [10].

Table 1 summarizes the classification results obtained by the two previous

methods and our proposed method. It can be observed that the area-based

method results in low classification accuracy for both classification tasks,

which suggests that the traditional morphometric methods are incapable of

capturing the tooth shape variation. The Procrustes-based method gives

a satisfactory result for the classification with respect to ancestry but not

gender. This implies that while earlier methods in landmark-based geometric

morphometrics are more capable than the traditional morphometric methods,

they are still insufficient for detecting certain kinds of tooth shape variation. In

22



Classification
Criterion

Overall Accuracy
(Area-based

[32, 33])

Overall Accuracy
(Procrustes-based

[10])

Overall Accuracy
(Our Method)

Ancestry 67.14% 91.43% 98.57%

Gender 51.43% 68.57% 97.14%

Table 1: Classification accuracy for all the 140 upper second premolars with respect to
ancestry and gender obtained by the area-based method [32, 33], the Procrustes-based
method [10] and our method.

Parameters Classification Result w.r.t. Ancestry

Description α β γ pcut #v
Correct

Indigenous
Rate

Correct
European

Rate

Overall
Accuracy

Optimal 0.1910 0.2034 0.9603 0.1 288 0.9857 0.9857 0.9857

No H term 0 0.2034 0.9603
0.1

129 0.0286 0.9286 0.4786
No K term 0.1910 0 0.9603 108 0.6857 0.4571 0.5714
No d term 0.1910 0.2034 0 535 0.5429 0.8143 0.6786

Varying pcut

0.0922 0.9749 0.2028 0.0001 54 0.8286 0.8286 0.8286
0.2761 0.6974 0.6613 0.001 79 0.8429 0.8000 0.8214
0.1421 0.7449 0.6518 0.01 211 0.9714 0.9857 0.9786
0.1910 0.2034 0.9603 0.1 288 0.9857 0.9857 0.9857
0.6956 0.1786 0.6959 1 1217 0.6571 0.7143 0.6857

Table 2: Classification results for all the 140 upper second premolars with respect to
ancestry for various choices of the shape index parameters α, β, γ and the threshold
parameter pcut. Here, #v is the number of statistically significant vertices extracted by
our model under the parameter settings. The correct Indigenous rate is calculated by
# of Indigenous subjects being classified as Indigenous

Total # of Indigenous subjects (i.e. 70) , the correct European rate is calculated by
# of European subjects being classified as European

Total # of European subjects (i.e. 70) , and the overall accuracy is evaluated over all

the 140 subjects.

contrast to the two previous methods, our proposed method achieves 98.57%

accuracy (138 correct assignments out of 140 subjects) for the classification

with respect to ancestry, and 97.14% accuracy (136 correct assignments out of

140 subjects) for the classification with respect to gender. In both tasks, our

method outperforms the existing methods. In particular, for the classification

with respect to gender, the accuracy of our method is higher than the existing

methods by around 30%. This demonstrates the effectiveness of our proposed

framework for tooth shape analysis.

23



5.2.2. The optimal parameters obtained by our model and their implications

To have a better understanding, we analyze the optimal parameters

obtained by our model for the two classification tasks. As shown in Table 2,

the optimal parameters for achieving the maximum classification accuracy with

respect to ancestry are (α, β, γ) = (0.1910, 0.2034, 0.9603), with pcut = 0.1.

From the values of α, β, γ, it can be observed that the Teichmüller distance

plays the most significant role in the classification with respect to ancestry.

To study whether all the three terms (mean curvature difference, Gaussian

curvature difference, Teichmüller distance) in the shape index are necessary

for yielding an accurate classification, we consider setting one of α, β, γ to be

0 and evaluating the accuracy. We observe that dropping any of these terms

will lead to a significant decrease in the accuracy. This implies that while

the optimal α and β are much smaller than γ, all the three terms are in fact

important for the classification with respect to ancestry. In other words, the

shape difference between the teeth from different ancestries is captured by the

conformal (i.e. local geometric) distortion as well as the curvature differences.

Next, we consider varying the threshold parameter pcut and obtaining

the best parameters (α, β, γ) that maximize the classification accuracy for

different pcut. In general, a larger pcut leads to a larger number of vertices

identified as statistically significant by our model, and pcut = 1 treats all

vertices as statistically significant. Among several choices of pcut, we observe

that pcut = 0.1 gives the highest classification accuracy. This suggests that

using the entire surfaces does not necessarily lead to the best classification.

Instead, it is important to extract certain regions on the surfaces which

capture the shape difference between the Indigenous teeth and European

24



Parameters Classification Result w.r.t. Gender

Description α β γ pcut #v
Correct

Male Rate

Correct
Female
Rate

Overall
Accuracy

Optimal 0.2330 0.0147 0.9724 0.001 468 0.9857 0.9857 0.9857

No H term 0 0.0147 0.9724
0.01

1217 0.9429 0.9857 0.9643
No K term 0.2330 0 0.9724 478 0.9857 0.9857 0.9857
No d term 0.2330 0.0147 0 0 N/A N/A N/A

Varying pcut

0.187 0.0118 0.9823 0.0001 185 0.9857 0.9857 0.9857
0.2330 0.0147 0.9724 0.001 468 0.9857 0.9857 0.9857
0.0281 0.1093 0.9936 0.01 1188 0.9571 0.9857 0.9714
0.0351 0.1841 0.9823 0.1 1198 0.9429 0.9857 0.9643

0 0.9049 0.4258 1 1217 0.9714 0.9857 0.9786

Table 3: Classification result for all the 140 upper second premolars with respect to gender
for various choices of the shape index parameters α, β, γ and the threshold parameter pcut.
Refer to Table 2 for the description of the terms.

teeth.

A similar analysis on the choices of the parameters can be performed for

the classification with respect to gender (Table 3). The optimal parameters

for achieving the maximum accuracy are (α, β, γ) = (0.2330, 0.0147, 0.9724),

with pcut = 0.001. This time, it can be observed that the Teichmüller distance

term is dominant in the shape index, while the Gaussian curvature difference

term is with an extremely small weight. By setting one of α, β, γ to be zero,

we can see that dropping the mean curvature difference term or the Gaussian

curvature difference term in the shape index do not affect the classification

accuracy much. By contrast, dropping the Teichmüller distance term will

even lead to zero statistically significant vertices and hence the classification

cannot be done. In other words, the shape difference between teeth from

different genders is mostly captured by the local geometric distortion but not

the curvature differences. Again, by varying pcut and evaluating the accuracy

based on the corresponding optimal parameters, it can be observed that

taking too many or too few vertices will lead to a sub-optimal result for the
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Figure 5: The statistically significant regions (highlighted in red) extracted by our algorithm
for the classifications with respect to ancestry (left) and gender (right), visualized on the
mean surface of the 140 occlusal surfaces.

classification with respect to gender.

5.2.3. The statistically significant regions on the occlusal surfaces for the two

classification tasks

We compare the statistically significant regions identified by our proposed

model for the two classification criteria. As recorded in Table 2 and Table

3, around 20% of the vertices (288 out of 1217 per surface) are statistically

significant for the classification with respect to ancestry, while around 40%

(468 out of 1217 per surface) are statistically significant for the classification

with respect to gender. In other words, the classification with respect to gender

requires more global information. We visualize the regions by highlighting

the relevent vertices in the mean surface of all teeth (see Figure 5). It can be

observed that the statistically significant regions for the classification with

respect to ancestry are primarily around the fossa pits, while those for the

classification with respect to gender are primarily around the cusps.
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5.2.4. Possible explanation for the improvement achieved by our model when

compared to the existing methods

It is natural to ask why our method is capable of achieving a significant

improvement in classification accuracy when compared to the existing methods,

especially for the classification with respect to gender. In fact, this can possibly

be explained by the optimal parameters obtained by our model for the two

classification tasks.

Note that the Procrustes-based method [10] aligns the teeth by rigid

motions and studies their shape difference. Since the mean and Gaussian

curvatures uniquely determine a surface up to rigid motions, the shape

information captured by the Procrustes approach can be considered as that

captured by the two curvature terms in our shape index. As we have analyzed

above, the Teichmüller distance is the only significant factor in the shape index

for the classification with respect to gender. Therefore, with the consideration

of the Teichmüller distance in our proposed model, it is reasonable that we

can achieve a significant improvement in the classification accuracy with

respect to gender. As for the classification with respect to ancestry, we have

pointed out above that both the curvature differences and the the Teichmüller

distance are important. Therefore, it is again reasonable that the Procrustes

approach [10] achieves satisfactory accuracy, and our proposed model leads

to an even better result.

5.3. Classifications over subgroups

Besides performing the classifications over the entire set of 140 subjects,

we consider the classifications over subgroups. More specifically, we study

whether the classification with respect to ancestry within each gender group
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Gender Group
(size = 70)

α β γ pcut

Ancestry
Classification

Accuracy

Female 0.1950 0.0661 0.9786 0.01 0.9714

Male 0.0912 0.0234 0.9956 0.01 0.9714

Table 4: The optimal parameters α, β, γ, pcut and the accuracy of our proposed model for
the classification with respect to ancestry within each gender group (each with size = 70).

Ancestral Group
(size = 70)

α β γ pcut

Gender
Classification

Accuracy

Indigenous 0.0940 0.0829 0.9921 0.01 0.9714

European 0.1702 0.1813 0.9686 0.01 0.9714

Table 5: The optimal parameters α, β, γ, pcut and the accuracy of our proposed model for
the classification with respect to gender within each ancestral group (each with size = 70).

and the classification with respect to gender within each ancestral group are

similar to the ones over the entire set of 140 subjects.

We first consider the classification with respect to ancestry within each

gender group (female/male, each with 70 subjects in total). For each gender

group, we compute a landmark-matching Teichmüller map for each surface and

repeat the classification procedure on the 70 mapping results for classifying

the teeth with respect to ancestry. As shown in Table 4, our method achieves

over 97% classification accuracy for both gender groups. Also, in the two sets

of optimal shape index parameters, γ is much greater than α and β. This

suggests that our findings for the classification with respect to ancestry over

the entire dataset also hold when we consider the classification among females

and males separately. In other words, the aforementioned shape difference

between the two ancestries can be found in both genders.

We then consider the classification with respect to gender within each
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ancestral group (Indigenous/European, each with 70 subjects in total). As

shown in Table 5, our method achieves over 97% classification accuracy for

both ancestral groups. Also, the optimal γ are again much greater than α

and β. This suggests that our findings for the classification with respect to

gender over the entire dataset also hold when we consider the classification

among the two ancestries separately. In other words, the aforementioned

shape difference between the two genders can be found in both ancestries.

6. Conclusion

In this work, we have developed a framework for tooth morphometry using

quasi-conformal theory. Landmark-matching Teichmüller maps are first used

for finding a 1-1 correspondence and the Teichmüller distance between tooth

surfaces. Then, a quasi-conformal statistical shape analysis model based on

the Teichmüller distance and curvature differences is developed for building a

classification scheme. We have deployed our method on a dataset of Australian

upper second premolars. Our method achieves better classification accuracy

with respect to both ancestry and gender when compared to the existing

methods. Moreover, the optimal parameters and statistically significant

regions obtained by our model for the classifications reveal the shape difference

between teeth from different groups. For future work, we plan to perform a

more comprehensive shape analysis on dentition using our proposed method,

and further apply the framework for the study of other human organs.
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