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ABSTRACT. Empirical evidence and theoretical results suggest that the prox-
imal point method can be computed approximately and still converge faster
than the corresponding gradient descent method, in both the stochastic and
exact gradient case. In this article we provide a perspective on this result by
interpreting the method as gradient descent on a regularized function. This
perspective applies in the case of weakly convex functions where proofs of the
faster rates are not available. Using this analysis we find the optimal value of
the regularization parameter in terms of the weak convexity.

1. INTRODUCTION

The importance of large scale optimization problems in machine learning has
led to a resurgence of interest in first order optimization methods [Becl7], and sto-
chastic gradient descent in particular [BCN16]. Proximal point methods [PB*14]
are alternative to gradient descent methods, which first came to use in the setting
where the proximal mapping can be computed exactly. Later, they were used in
the stochastic setting where the proximal mapping can only be computed approx-
imately [LMH15]. When the proximal point method parameter is tuned correctly,
the proximal point method can converge faster than the corresponding stochastic
gradient descent method [SRB11] [RVV14] [CDHS18]. However the optimal choice
of the parameter depends on convexity parameters for the objective, which may not
be available. Insight into the method is provided by a regularization interpreta-
tion: in [COO™ 18] the method was interpreted as gradient descent for a regularized
objective function, which was the solution of a partial differential equation. The
interpretation was also used to apply and tune the method in [YPOO18].

A heuristic explanation for the method motivated the implementation in [LMH15]:
the proximal point method with parameter A corresponds to implicit gradient de-
scent with time step A, which has a corresponding convergence rate. The conver-
gence rate is much slower for stochastic gradient descent. However the proximal
point method can be solved approximately, in a small number of iterations, even
using stochastic gradients, since it is a strongly convex optimization problem. Thus
stochastic proximal point method with parameter A can converge as fast as exact
gradient descent with time step A. However, the challenge is to tune the parame-
ter A which depends on the unavailable weak-convexity parameter of the objective
function.
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While many problems are non-convex, the model problem for analysis is convex,
which allows for global analysis of convergence rates. Since many problems are
ill-conditioned, accelerated methods [Pol64] [Nes13] [BT15] are used to improve
convergence rates. Proximal stochastic methods can also be accelerated [PLDT18]
[Nit14] [LMH15] (direct stochastic acceleration methods are also available [AZ17]).

Polyak’s method [Pol64] provably accelerates strongly convex quadratic func-
tions, but not general convex functions. However it has the advantage of a simple
interpretation as the explicit Forward Euler discretization of a second order ODE.
On the other hand, Nesterov’s method provably accelerates convex functions, but
defies such a simple interpretation. The influential paper [SBC14] provided an in-
terpretation of Nesterov’s method as the discretization of an ordinary differential
equation (ODE), but with the gradients evaluated at an non-standard point in time.
This interpretation was further studied in the quadratic case in [LRP16] and [FB15]
as well as [SRBD17], using linear stability analysis. However, while linear stability
analysis provides insight locally, it does not apply globally to convex functions.

In this paper we study two aspects of proximal methods. The first is a method
which interpolates between gradient descent and the proximal point method. This
may give insight into Nesterov’s method, which involves a gradient evaluated at
an intermediate point. In connection with the regularization interpretation of
[COOT18], we study the convex analytical properties of the regularized function
corresponding the proximal point method, in the weakly convex case. We also study
the optimal parameter for the proximal step, in terms of the weak convexity of the
objective function. In the article we focus on exact gradients rather than stochastic
gradients. In this simpler setting we can study the weakly convex case using tools
from convex analysis and optimization.

Both the proximal point and the gradient descent methods can be interpreted
as a time discretization of the Ordinary Differential Equation (ODE)

dz(t)
dt

When the ODE is discretized using either the forward or backward Euler method,
the resulting algorithm corresponds to the gradient descent and the proximal point
method as we explain below. Our starting point is a one-parameter family of dis-
cretizations of the which appears in the numerical study of ODEs as the 8-method,
cf. [SH96]. These methods are numerical discretizations of (GD-ODE) which inter-
polate between gradient descent (for # = 0) and (for § = 1). The proximal point
methods require the solution of a strongly convex optimization problem at each step,
but allow for much longer time steps. We can also consider the non-differentiable
case, where V f(x) is replaced by a subdifferential (regular/limiting/Clarke), see
e.g. Section 2 or [RW98, Chapter 8], and we get the differential inclusion
dx(t)

at € —0f(z(t)).

= —Vf(=(t) (GD-ODE)

2. PRELIMINARIES

We first recall standard concepts from nonsmooth analysis where, see [RW98]. A
function f: R™ — R(:= R U {£o0}) is called closed if its epigraph

epif = {(z,a) | f(z) <o}
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is a closed set. We call it proper if f : R™ — RU {400} and its domain
dom f:={z | f(z) < +o0}
is nonempty. Moreover, we call f convez if epi f is a convex set.
For a function f : R — R its (reqular) subdifferential at T with f(Z) € R is
defined by
0f(z) :={veR" [ f(Z)+ (v, 2 = Z) + o[z — Z|]) < f(z) (x €R")}.
If f:R™ — RU{+o0} is closed, proper, convex it is well known that we have
0F(3) = {v €R™ | () + (v, v — 7) < f(2) (z €R™)},

cf. e.g. [RW98, Proposition 8.12]. For f:R" — R its (Fenchel) conjugate is the
function f* : R™ — R defined by

[ (y) = sup {z, y) — f(2)}.

If f is proper and has an affine minorant its conjugate f* is always closed, proper,
convex, see e.g. [RW98, Theorem 11.1] and notice that f is proper and has an affine
minorant if and only if its convex hull is proper.

For f : R™ — R U {+o0} closed, proper, convex, the subdifferential and the
conjugate function interact in the following way:

yeof(z) < zeif(y), (1)

see e.g. [RW98, Proposition 11.3].
Given f:R"™ - RU{+o0} and X > 0, the prozimal mapping or proz-operator is
the set-valued map P f : R™ = R” defined by

. 1
Prf(a) = argmin, { £0) + gllo — l?}.
while the Moreau envelope ey f : R™ — R is given by
. 1
ext() = int { ) + gl —ul?}.
2.1. Discretizations of ODEs.
Definition 2.1. The §-method for (GD-ODE) corresponds to the time discretiza-
tion
k+1 k

A_x = V(1 0)z* + zh ) (2)

where A is the time step. When 6 = 0, 1, the #-method is called the explicit, implicit
Euler method,

T

=-Vf("), = =-Vf("),
respectively.

Note that we can generalize (2) to the nonsmooth case by

M € —of((1 — 0)a"r + o1, (3)

The 6-method from (2) and (3), respectively can be recovered from a proximal
point-type iteration.
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Lemma 2.2 (f-method as #-proximal point). Let f : R™ — RU {400} be proper
(see below), § > 0 and let {x*} be generated by

0

2"t = argmin, . {f((l — 0)2" + 0y) + ﬁﬂxk - y||2} . (4)

Then {x*} satisfies (3).

Proof. We observe that the necessary optimality conditions for x,; read

0 .
0€00f((1—0)z" + 02" + ﬁ(a:kﬂ —z").
cf. [RWO98, Exercise 8.8/10.7 and Theorem 8.15]. For § # 0 this is equivalent
to (3). O

While the 6-method is implicit for § # 0 (meaning it requires the solution of a
nonlinear equation or nonlinear optimization problem to find z¥*1), we can rewrite
it as the gradient descent method on a modified function. In fact, defining the
0-Moreau envelope (see Section 3.2 for more details)

W)= inf {7100+ 00) + 5o = w2}

yeR?

as we show below, for weakly convex f (see Section 2.2), the sequence (4) is also
equivalent to

= —Vul (zF: N).

Remark 2.3 (PDE interpretation). Our analysis of the 6-Moreau envelope is based
on direct arguments. An alternative approach is using the Hamilton-Jacobi PDE.
It can be shown that the §-Moreau envelope u?(x, \) = v(x, \) where v(z,t) is the
weak (viscosity) solution of the Hamilton-Jacobi equation

0
Opv(z,t) = f§||va(x,t)||2, 0<t<A

along with initial data
v(x,0) = f(x).

In the special case § = 1, we recover the standard Hamilton-Jacobi equation for
the Moreau envelope

1
8tu(x, t) = —§||va:u(xa t)||2’
see [Eva9g].

2.2. Weakly convex functions. The proximal point algorithm is based on the
fixed-point iteration

zk +1:= Py f(2") = argmin, cg» {f(u) + %ka - u||2}

for some A > 0. This is in essence only tractable if the subproblem for computing
the prox-operator is convex, and ideally has a unique solution. A natural class of
functions that does this is the following; see also Proposition 3.1.
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Definition 2.4 (Weakly and strongly convex functions). A function f : R® —
R U {+o0} is called c-weakly convez if f + £|| - ||? is closed, proper, convex. We
denote by I'. the c-weakly convex functions, i.e.

T, := {f :R" 5> RU{+o00} | f+ §|| -||? closed, proper, convex} .
A c-weakly convex function with ¢ < 0 is called c-strongly convex.

Clearly, T’y is the cone of closed, proper, convex functions. Moreover, we have
I'. ¢ Ty whenever ¢ < d.

Weakly convex functions can be further generalized to the class of lower-C?
functions [RW98, Definition 10.29, Theorem 10.33], and many of the ideas and
results in the sequel will hold for these kinds of functions too, but for simplicity we
confine ourselves to weakly convex ones.

The class of weakly convex functions also contains the Lasry-Lions regulariza-
tion [LL86],

() (e) = supint { £0) + gllo =l = 5= ol |

This regularization is a C*! function and, in [AA93], the authors show that any
lower semi-continuous function defined on a Hilbert space, quadratically minorized
can be approximate by the Lasry-Lions regularization.

We also point the reader to [KT98, Proposition 1] for another class of functions
which are weakly convex restricted to some open set.

The central property of weakly convex functions is that if we add a ”large
enough” strongly convex term, the sum becomes strongly convez, hence both coer-

cive, i.e.
f@)

1
| —oo ||| ’

in particular, level-bounded and also strictly conver. We state this formally below.

Lemma 2.5. Let ¢ >0 and f € .. Then function
1 9 1
= —|| - O< A< -, 5
=t gl 1P (0<a<t) )
is strongly convex, hence coercive and strictly convex.

Proof. Strong convexity is clear (by the c-weak convexity of f) and implies both
coercivity (using an affine minorization argument, see [RW98, Proposition 8.12])
and obviously strict convexity. O

The next result is clear from an elementary sum rule.

Proposition 2.6. Let ¢ > 0 and f € T'.. Then for 0 < A < % we have
0f(a) = 9pa(x) = T (Vo € dom f),

where ¢y is given by (5). In particular, Of(x) is compact for every x € int (dom f),
and gph 0f = {(z,g) | g € 0f(z) } is closed in R™ x R™.

Proof. See e.g. [RW98, Exercise 10.10] for the representation of the subdifferential.
The remainder follows from that and the fact that the respective statements hold
for convex functions. (]
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We also point out that weakly convex functions are Clarke regular (see Definition
[RW9S8, Definition 7.25]) hence their regular and limiting subdifferential coincide.
In particular, for a (finite-valued) weakly convex functions, the (regular) subdiffer-
ential is equal to Clarke’s subdifferential, i.e. can be computed as

df(x) = conv {v e R™ | H{xkéDf}:Vf(xk)%v} (6)

where Dy is the (full measure) set of differentiability of f and conv is the convex
hull-operator. We use (6) in Example 3.6.
We define c-weak convexity below, and prove the following lemma.

Lemma 2.7. Suppose f is c-weakly conver. Then x*T1, solution of (4), can be
found as the solution of a convexr optimization problem, provided \,0 > O satisfy
the following (generalized CFL condition/time step restriction):

cAd < 1.

Proof. To prove the CFL condition, notice that, since f is c-weakly convex, for
all x € R", the function y — f((1 — )z + Oy) is 6?c-weakly convex. Then for A
satisfying

> 0% = <1,

>

the mapping y — f((1— 0)z + 0y) + & ||z — y||* is convex. O

Notation: The notation used is standard and widely consistent with the one used
in [RW98]. However, here we use || - || to denote the Euclidean norm.
For f: R™ - RU {+o0} we define

argmin,, f(x) := {56 e R"

f(@) =inf f(z) } .
In order to indicate that a function F' maps vectors in R™ to subsets in R™ we write
F:R® = R™ and call F set-valued. The domain of F' is defined by

domF:={z eR" | F(z)#0}.

2.3. DC functions. It is easily seen that I'. (¢ > 0) is contained in the (much
larger class) of DC functions where a function f is called a DC' (difference of convex)
function if f = g— h for some g, h € I'g. We recall the central duality result for DC
optimization.

Proposition 2.8 (Toland-Singer duality). Let g,h € T'g. Then the following hold:

*

a) infg — h =inf h* — g*.
b) If T € argming — h and §j € Oh(T) then § € argmin h* — g*.
c) If y € argmin h* — g* and & € dg*(y) the T € argming — h.

We point out that item a) and b) in Proposition 2.8 remain valid even if the
convexity of g is dropped.

3. THE PROX-OPERATOR AND MOREAU ENVELOPE FOR WEAKLY CONVEX
FUNCTIONS

3.1. The Moreau envelopes. In this section we study the Moreau envelope and
proximal mapping for weakly convex functions. Many of the properties follow
from more general results in variational analysis and montone operator theory, see
[BC11, RW98]. We will point out where this is the case. However, we present
a vastly self-contained account only built on convex analysis (except when the
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nonconvex subdifferential is involved) and improve some of the existing results
along the way.
Throughout this section we use the following;:

Assumption 1:

(1) fele (¢>0);

(2) or=Ff+oxl- 117 (0<A<1/e).
Proposition 3.1 (Prox-operator of weakly convex functions). Let f and ¢ as in
Assumption 1. Then the following hold:

a) P\f is a single-valued mapping R™ — R™.

b) Prf = (0¢x)"(5) = (Vo) (5) (which is single-valued).

c) 0 € Of(x) if and only if Pyf(x) = x, i.e. the critical points of f are exactly

the fized points of the proz-operator of Py f.

Proof. a) By definition we have, for all © € R",

Paf(a) = avguin, { 70+ 5 o = alP } = avgin, {on(0) = § (o0}

The function u — ¢x(u) — 5 (z, u) is strongly convex for every x € R", see Lemma
2.5. Hence, the argmin set above is always a singleton.

b) We have
ye @) (5) = §einw

= 0ea(t-56) )
< y€ P fla)

where the second equivalence uses the convexity of ¢, and the third one follows
from the consideration above in a).
This proves the first equivalence in b). The second one then follows from (1).

¢) We have

0€df(x) = § € 9pa(x) <= z = (D)~} (%) .

Here the first equivalence is due to Proposition 2.6. Part b) now gives the claim. O

Note that part b) is in a similar form given in [RW98, Proposition 12.19].
The following result constitutes a slight generalization of [BC11, Proposition
12.26] and its self-contained proof follows the same pattern.

Lemma 3.2. Let ¢ > 0 and f € T, x € R", 0 < A¢ < 1, and put p := Py f(x).
Then

@)+ w—py—p) S S+ Slp -yl (v € R,

Proof. Let y € R™ and ¢, defined by (5). Using the (% — c)—strong convexity of ¢y
and noticing that § € d¢x(p) by Proposition 3.1 b), we obtain

or) < or+ (For=w) =3 (5 - ) I - ol

Therefore, we have

1
)+ 55 (1P = llgll? + llp = 91 = 26z, p = 1)) < FW) + 5 lIp = 9II%.
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which is equivalent to

fp)+~p—z,p—y) < fly) + gllpfyIIQ-

1
Y
0

From Lemma 3.2 we infer the following property of the prox-operator, which in the
literature is known as cocoercivity, and which can be derived as a consequence of
the Baillon-Haddad Theorem [BH77, BC10, BC11] as ¢, is (% — ¢)-strongly convex,
and Vo3 = Prf(A(+)), see Proposition 3.1. Our proof is, however, self-contained as
it only builds on Lemma 3.2 which itself is self-contained.

Proposition 3.3 (Cocoercivity of the prox-operator). Let ¢ > 0 and f € T'.. Then
for 0 < Ac < 1 we have

1
P - P 2 <
IPAT) ~ PAFI < 1
Proof. Let z,y € R™ and put p := P\f(z) and ¢ := P, f(y). By Lemma 3.2 we
have

(zr—y, Pf(z) - Paf(y) (z,y €R").

F®)+ 5 (e —p g~ < F@) + gl

A
and
1 c 9
Fa)+ 5 w—ap—a < f)+lla—pl"
Adding the above inequalities yields
1 2
Yp—a—@—y).p—a) <clp-dl
Rearranging gives the desired inequality. O

As an immediate consequence of Proposition 3.3 we recover the well-known result,
see [RW98, Proposition 12.19] that P f is ﬁ-Lipschitz continuous for any f € T,
and 0 < cA.

We now turn our attention to the Moreau envelope. We point out that the
Lipschitz constant for the gradient of the Moreau envelope is, to the best of our
knowledge, sharper than what can be found in the literature.

Corollary 3.4 (Moreau envelope). Let ¢ > 0 and f € T'.. Then the following hold
for 0 < e < 1:
a) exf=gxll - IP = (fF+ %l - 1)) (5)-
b) Verf = 1 (id — Pxf) is L-Lipschitz with
[ =T A EORS
o % if 0<cA< %

c) inf f =infeyf.

d) argmin f = argmine, f.

e) 0 € 9f(x) if and only if Veyxf(z) =0, i.e. the stationary points of f and
exf coincide.
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Proof. Put ¢y := f + 55| - ||I*.
a) We observe that

exfl@) = gyllell = sup{ 5 (@, - 6r(o)}

= Sl -6 (3).

b) By Proposition 3.1, ¢, is strongly convex, hence ¢3 is continuously differentiable
with Lipschitz gradient, see e.g. [RW98, Proposition 12.60]. Thus, by a), we have

1 /. e [
Verf = 5 (i - vo3 (X)) .
Since, by Proposition 3.1 ¢), Pxf = (0¢x) "' (5) = (Vé3)(5), this gives the formula
for Ve, f.
The Lipschitz modulus can be seen as follows: By Proposition 3.3, we have
(@ —p) = (y—a)?

1 1
oo+ ({2 —2) 0= a o=+l alP - g - a2 =)

1—cA

IN

1
oo+ (1205 —2) - .- ).

where p = P, f(z) and ¢ = Py f(y). Now observe that

—-2>20 — 1 < cA.
1—cA - 2~
First, considering the case % >ch as (p—q, x—y) > 0 (cf. Proposition 3.3), we
thus have
Iz =p) = (= * < llz —yl*
On the other hand, for 1 < ¢\, we can continue the sequence of inequalities from

2
above using Proposition 3.3 and Cauchy-Schwarz to find

o= -G-0F < lo-ul?+ (=5 -2) b-wo-

IN

1
2
— ) gl - |z —
|z —yl*+ (1 — ) lp—dall - [z —yl
1 1
_ 2 - 9 _ 2
lz =yI*+ 77— (1 —x ) [z —yll

A\’
= (%) e

2
el (125) if 1<e<,
1 if 0<er<3,

IN

All in all, putting

we see that
1
IVerf@) ~ Vet @)l = @~ p) — (v~ @)l < 3Vl — g,

which proves the desired Lipschitz constant.
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¢) We have
@) = o - gy el
=t { 0o - 7}
= st {311 - 0o
= gt {3 -2 () }

1
= e { il - 6 (4)]
= inferf(y).

Here the third equality uses Toland-Singer duality (see Proposition 2.8) and the
last equality is due to a).

d) Let A > 0 such that Ac < 1. Then ¢) = f + ;|| - [|> € To. Using the same
arguments as in c¢) we find that
1 1
argmin f = argmin Agy — §|| > and argmineyf = argmin§|| 17 = (Aon)™.
We now apply Proposition 2.8 to g := A¢y and h := g| - [|?: Since Vh = id,
Proposition 2.8 b) gives the ’C’-inclusion immediately.

In turn, let § € argminey f. Combining (1) and Proposition 3.1 b), we observe
that 0g*(y) = Pxf(y). Therefore, by Proposition 2.8 c), Pyf(y) € argmin f. But
every minimizer of f is a fixed point of the prox-operator, cf. Proposition 3.1 ¢),
and therefore § = Py f(§) € argmin f, which proves the remaining inclusion.

e) Follows from b) and Proposition 3.1 c). O

The fact in Corollary 3.4 ¢) and d) that the optimal value and minimizers, re-
spectively, of f and its Moreau envelope coincide is well-known, and valid under
even weaker assumptions, see [RW98, Example 1.46]. However, our technique of
proof via DC duality theory is novel and remains in the convex realm and merits
presentation of said proof.

Remark 3.5 (Optimal parameter choice for A). Corollary 3.4 b) provides us with
an "optimal choice” for the parameter A\: Suppose that

c:= inf{cz 0 ’ f+ g” )12 convex} >0

Then A = i yields L = 2c¢ which is as small as the Lipschitz constant can be for a
given f.

In view of the Lipschitz constant for Ve, f derived in Corollary 3.4 b) the question as
to whether this constant can be improved generally in the class I'. arises naturally.
The following example gives an illustration of Corollary 3.4 and also provides a
negative answer to this question, in that it presents a I'.-function for which the
Lipschitz constant provided by Corollary 3.4 is sharp in either case.
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FIGURE 1. Illustration of Example 3.6

Ezample 3.6 (Piecewise quadratic). For 0 < a < b consider f : R — R defined by
_7 a,. a0 b oo [t —-a?) if |z <1,
f(@) 'maX{Q(l v) 5 1)}{ Ba2—1) if |a| > 1.

Then, clearly, f is a-weakly convex. Using (6) we find that

—az if |z] <1, o i |z < 1= Aa,
) [-ab] if z=1, B 1 if ze[l—Aa, 1+ D],
OF@) =9 (pa] if o=-1, DI@=9" 11 ¢ 2ela+ab)ra—1),
bu if x| > 1, g i [z > 1+ A0

Therefore we have

5 2
%(1—<1fﬁ)2)+%($—1fm) if Jo| <1-Aa,
1 2
B sx(x—1)7 if ze[l—Aa, 14 N,
exf(z) = P12 i xe[—(1+Ab),Aa— 1]

IZ xT .
(m_l)—ki(m_u—)\b) if fz[>1+Xb

[\GliS

and

——2—x if |z|]<1- Aa,

1 .
. W lf Q:E[l*Aa,l‘i’)\b],
Verf(z) = i g [—(14 M), ha— 1],
if |z| > 14 Ab.
In particular, we see that the Lipschitz constant

e —T
L:{ ra N
by 1

<al,
> a\

N[N [

for Ve, f provided by Corollary 3.4 b) is sharp.
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3.2. The 6-envelopes. We now generalize the notion of the proximal point map-
ping and Moreau envelope by embedding them in a parameterized family of proxi-
mal mappings and envelopes, respectively.

Definition 3.7 (f-Moreau envelopes). Let f: R"™ — RU {+oco} and 6, A > 0. The
0-proximal point operator is the map Pf f:R™ — R™ given by

PLf(o) = angmin s { £ (1= 002+ 69) + 5l —1?)}.
The 0-Moreau envelope is the function e§ f : R* — R defined by

7w i= ing {71 = 0)o +04) + illo — ol

ERn

The following result shows the intimate relation of the #-envelope and the #-method
objects to the Moreau envelope and the prox-operator.

Lemma 3.8. Let 6,A >0 and f : R™ — RU {+oc0}. Then the following hold:

a) &§f =exf; .
b) Pff _ P/\ef*(glfe)ld

, B.e.

Paof(@) = (1— )z +0P{f(z) (z€R").
Proof. Let & € R™ be fixed. The mapping
— (1 —0)x+ 0y

is bijective on R"™. Therefore, we observe that

Q5@ = it {f<(1—0>x+6y>+||x—y||2}

yeRn
| }

_ uiglﬂin{f( HH u—(le—(‘))f

0 2

- uienﬂgn{ﬂ )+ 33 o ul’
= eAgf(i’).

This proves a). In order to prove b) just revisit the above reasoning and observe
that

r—1Uu

0

y € argmin, g {f<<1 )y + y||2}

if and only if

(1—-6)T + 0y € argmin, cpn {f( )+ — ||z — u||2} .

We readily infer the following result.

Corollary 3.9 (6-envelope). Forc > 0let f € T and 0, A > 0 such that 0 < O\ <
1. Then the following hold:
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a) e5f = mgl 17 = (F + 3l - 1) (55)-
b) Vel f = 55(d — P,\gf) %(1d Pef) is L-Lipschitz with

L:{ =y zf %§0A9<11,
s U 0<eAd < 3.

c) inf f = infef f.

d) 0 € 0f(x) if and only if Vel f(z) =

e) argmin f = argmin e f.
Proof. Follows immediately from combining Corollary 3.4 with Lemma 3.8. (]

4. PROXIMAL-POINT AS GRADIENT DESCENT

In this section, we study the behavior of a function f € I'. in the #-method dis-
cretization for the gradient descent

k1 _ ok

A
Note that in the following, 6 can be chosen bigger than 1. In the implicit case
(6 = 1), the decrease of f along the iteration is straightforward and in Proposition
4.1, we extend this result for (7). We do not discuss about the rate of convergence
and we refer to [AB09, MP10].
By Lemma 2.2, the method described in (7) is equivalent to the §-proximal point
method

z = V(1 - 0)z" + 0k, (7)

= P,
To simplify, we assume that f is differentiable but the results can be generalized to
the nonsmooth case. We say that V f is one-sided L¢-Lipschitz if

(Vf(x) = Vy),z—y) < Lfllz —yl|* (x,y €RY)

which is equivalent to

f@) < fly) +(VI(y),z—y) + Lfllx yl? (z,y €R). (®)

It is easy to check that if Vf is a L-Lipschitz function then Vf is one-sided
L¢-Lipschitz. In addition, if f is convex then the two conditions are equivalent.

Proposition 4.1. f € T'; be a differentiable function such that Vf is one-sided
L¢-Lipschitz and let {x*} be generated by (7) for § > 0. Then

f<xk+1)—f<x’f)s<Lf(l_Z) — ‘i) @ =t (keN).  (9)

In particular, if A € (O, W} , the sequence {f(x*)} is decreasing.

Proof. Denote g = (1 — 0)z* + §2*+1. By weak convexity and (8), we obtain
Fa) = f@@h) = f@) — flae) + f(we) — f(2")

L
(Vo) a** = ) + b —

IN

c
+ (Vf(zg),zg — ") + §|:179 —zF
By definition of xg, we have

2" — g = (1 - 0)(zF! — 2%) and 29 — 2% = O(aFFL — 2F),
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which then yields the desired inequality using (7). O
Remark 4.2. Note that in the convex or strongly convex case i.e. —Ly < ¢ <0
and for all 6 € \/ﬁ jf/jcv mff/jc , we recover the fact that the descent of f is

guaranteed for all A > 0.

In addition, given f € T, we have already seen that the sequence {z*} generated
by (7) can be interpreted as a sequence obtained from applying the gradient descent
to the f-envelope €f f. By Corollary 3.9, we know that Ve§ f is L-Lipschitz which
implies that eg f satisfies (8) and thus the following result follows readily.

Proposition 4.3. Let f € T, § > 0, A > 0 such that 0 < O\ < 1, and let {z*}
be generated by (7). Then

1
AT — ) < (L3 ) I+ = o,
where L > 0 is the Lipschitz constant in Corollary 3.9. In particular, if A < %, the
sequence {€§ f(z*)} decreases.
Proof. Follows immediately from (8). O

From Proposition 4.1, we deduce that every accumulation point of {z*} is a sta-
tionary point of f.

Proposition 4.4. Let ¢ > 0 and f € T'.. In addition, assume that f is a C*,
coercive bounded from below function satisfying (8). Now, let {x*} be generated by
(7). Then, for all X such that

2
Li(1—0)% + cf2’

every accumulation point of {xk} s a stationary point of f.

0< A<

Proof. The proof is similar to [AB09, Proposition 1]. Using Proposition 4.1, observe
that {f(2*)} is decreasing and, since f is bounded from below, f(z*) converges to
f*. By coercivity, there exists a subsequence z#(*) which converges to .. From
(9), we obtain

+oo

1
DL =M < () — it f) < oo,
1=0

L;(1—0)%+ch?

where p = § — > 0, and then |z*+1 — 2¥| — 0. Therefore we deduce

that Vf(zs) = 0 by %7)
g

Remark 4.5. The C' condition can be relaxed to a lower semicontinuity assumption
using the limiting subdifferential, see [AB09].

We illustrate the above result by two examples. In the first one we revisit Exam-
ple (3.6).

Ezample 4.6 (Piecewise quadratic). In Example 3.6, for a = 1,b = 2, the function

fla) =max {51~ 22). 0 - D)}
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is 1-weakly convex. By Remark 3.5, the optimal parameter choice is A = % Then
the proximal point method w311 = Py/af(73) is explicit:
e if x5 = 0,1, —1 then the sequence is constantly equal to 0,1 and —1, re-
spectively;
o if 2y € [QK%, QLK) U (2K,2K+1) for a fixed K € N, then the algorithm
converges in K + 1 steps to 1,
o if 29 € (— 5@, — 51| U[—25, —2K71) for a fix K € N, then the algorithm
converges in K + 1 steps to —1.

The second example concerns the classical Rosenbrock function.
Ezample 4.7 (Rosenbrock function). Consider the Rosenbrock function f : RZ — R
defined by

fla,y) = (z = 1)* +100(y — 2*)*.

In Figure 2, we plot the iterations for the gradient descent and the proximal point

method with the optimal parameter choice A\ = . In addition, we observe the

2c
decay of the Rosenbrock function.

5. PERSPECTIVES ON THE PROXIMAL POINT METHOD FOR WEAKLY CONVEX
FUNCTIONS

In this section we present different interpretations of the proximal point method,
namely as DC algorithm and proximal-gradient method, all of which provide dif-
ferent insights.

5.1. Proximal point method as DC algorithm. A very popular and powerful
algorithm for solving DC optimization problems of the form
minf=g—h (10)

with g,h € Iy is the so-called DC Algorithm, DCA for short, which goes back to
An and Tao, see e.g. [AT97]. In its simplified version (which coincides with the
original version in our setting) it reads as follows:

(1) Choose z° € dom dh;
(2) Compute y* € Oh(a*);
(3) Compute ¢t € dg* (y*).
We point out that DCA applied to (10) is well-defined if (and only if)

dom dg C dom dh and dom Oh* C dom dg*, (11)
cf. [AT97, Lemma 1]. Now assume that f € I'.. As was argued earlier, a natural
DC decomposition of f is

F=or— g5l P ©<re<)
— TN s

where, as always, ¢x = f + 55| - [|?. Condition (11) is clearly satisfied. Hence, for
any z° € R", the DCA is well-defined and generates the sequences

1
Yk = Xﬂﬁk and 2" =Vl (y*) = P f(2"),

cf. Proposition 3.1 b).
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FIGURE 2. Top: Iterations of gradient descent and the proximal
point method. The proximal point method gets closer to the global
mininum with the same number of total gradient evaluations. Bot-
tom: function values at each iteration of gradient descent and at
each outer proximal point iteration for the Rosenbrock function
(a fair comparison is used by counting total gradient evaluations,
using 10 or 20 for the approximate proximal point). After 2000
gradient evaluations the function value for gradient descent is still
order 1, while the proximal point method is order 1072, moreover
the function values appear to decrease at a first order rate.

5.2. Proximal point as proximal gradient. Again, we consider the trivial de-
composition

f=on— il P O0<re <),
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The proximal gradient iteration with Ly := L = %, cf. [Becl7, Section 10.2], for
this decomposition reads

241 = Pyon (o TV 1)) = Proneet),

On the other hand we have the following lemma.
Lemma 5.1. For f € I'. we have

Pyox(2z) = P%f(m) (x €R™, 0< Ae < 1).
Proof. We have

(P2} = arguin, { 0) + g5l + 55 12e - vl
1 2 1
i, { 706+ 31012 = 3 (o + 55 20l
2
~ argain, { 1)+ S0P = 3 (o, + 5
~ arguin, { 50 + 1~

{P%f(x)}.

6. FINAL REMARKS

We studied proximal point-type methods for weakly convex functions where the
main results were the following: We investigated the proximal mapping and Moreau
envelope for weakly convex (not necessarily smooth) functions while establishing
an optimal choice for the regularization parameter. In the smooth case we re-
vealed a connection between the f-proximal point method and the #-method for
gradient flows. Moreover, under an additional one-sided Lipschitz property we
prove a guaranteed decrease of the regularized objective function for the 6-proximal
point method. Finally, we gave three different interpretations of the proximal point
method for (possibly nonsmooth) weakly convex functions, which provide new in-
sights into the algorithm.
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