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Abstract

ShuffleNet is a state-of-the-art light weight convolutional neural network architecture. Its
basic operations include group, channel-wise convolution and channel shuffling. However,
channel shuffling is manually designed empirically. Mathematically, shuffling is a multiplication
by a permutation matrix. In this paper, we propose to automate channel shuffling by learning
permutation matrices in network training. We introduce an exact Lipschitz continuous non-
convex penalty so that it can be incorporated in the stochastic gradient descent to approximate
permutation at high precision. Exact permutations are obtained by simple rounding at the
end of training and are used in inference. The resulting network, referred to as AutoShuffleNet,
achieved improved classification accuracies on CIFAR-10 and ImageNet data sets. In addition,
we found experimentally that the standard convex relaxation of permutation matrices into
stochastic matrices leads to poor performance. We prove theoretically the exactness (error
bounds) in recovering permutation matrices when our penalty function is zero (very small).
We present examples of permutation optimization through graph matching and two-layer
neural network models where the loss functions are calculated in closed analytical form. In the
examples, convex relaxation failed to capture permutations whereas our penalty succeeded.

1 Introduction

Light convolutional deep neural networks (LCNN) are attractive in resource limited conditions for
delivering high performance at low costs. Some of the state-of-the-art LCNNs in computer vision
are ShuffleNet ([20], [13]), IGC (Interleaved Group Convolutions, [19]) and IGCV3 (Interleaved Low-
Rank Group Convolutions,[15]). A noticeable feature in the design is the presence of permutations
for channel shuffling in between separable convolutions. The permutations are hand-crafted by
designers outside of network training however. A natural question is whether the permutations can
be learned like network weights so that they are optimized based on training data. An immediate
difficulty is that unlike weights, permutations are highly discrete and incompatible with the stochastic
gradient descent (SGD) methodology that is continuous in nature. To overcome this challenge, we
introduce an exact Lipschitz continuous non-convex penalty so that it can be incorporated in SGD
to approximate permutation at high precision. Consequently, exact permutations are obtained by
simple rounding at the end of network training with negligible drop of classification accuracy. To
be specific, we shall work with ShuffleNet architecture ([20], [13]). Our approach extends readily to
other LCNNs.

Related Work. Permutation optimization is a long standing problem arising in operations
research, graph matching among other applications [7, 3]. Well-known examples are linear and
quadratic assignment problems [16]. Graph matching is a special case of quadratic assignment
problem, and can be formulated over N ×N permutation matrices PN as: minπ∈PN ‖A−πBπT ‖2F ,
where A and B are the adjacency matrices of graphs with N vertices, and ‖ · ‖F is the Frobenius
norm. A popular way to handle PN is to relax it to the Birkhoff polytope DN , the convex hull of PN ,
leading to a convex relaxation. The problem may still be non-convex due to the objective function.
The explicit realization of DN is the set of doubly stochastic matrices DN = {M ∈ RN×N : M1 =
1,MT1 = 1,M ≥ 0}, where 1 = (1, 1, , · · · , 1)T ∈ RN . An approximate yet simpler way to treat
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DN is through the classical first order matrix scaling algorithm e.g. the Sinkhorn method [14].
Though in principle such algorithm converges, the cost can be quite high when iterating many
times, which causes a bottleneck effect [11]. A non-convex and more compact relaxation of PN
is by a sorting network [11] which maps the box [0, 1]N into a manifold that sits inside DN and
contains PN . Yet another method is path following algorithm [18] which seeks solutions under
concave relaxations of PN by solving a linear interpolation of convex-concave problems (starting
from the convex relaxation). None of the existing relaxations are exact.

Contribution. Our non-convex relaxation is a combination of matrix `1−2 penalty function
and DN . The `1−2 (the difference of `1 and `2 norms) has been proposed and found effective in
selecting sparse vectors under nearly degenerate linear constraints [5, 17]. The matrix version is
simply a sum of `1−2 over all row and column vectors. We prove that the penalty is zero when
applied to a matrix in DN if and only if the matrix is a permutation matrix. Thanks to the DN
constraint, the penalty function is Lipschitz continuous (almost everywhere differentiable). This
allows the penalty to be integrated directly into SGD for learning permutation in LCNNs. As
shown in our experiments on CIFAR-10 and Imagenet data sets, the closeness to PN turns out
to be remarkably small at the end of network training so that a simple rounding has negligible
effect on the validation accuracy. We also found that convex relaxation by DN fails to capture
good permutations for LCNNs. To our best knowledge, this is the first time permutations have been
successfully learned on deep CNNs to improve hand-crafted permutations.

Outline. In section 2, we introduce our exact permutation penalty, and prove the closeness to
permutation matrices when the penalty values are small as observed in the experiments. We also
present the training algorithm combining thresholding and matrix scaling to approximate projection
onto PN for SGD. In section 3, we analyze three permutation optimization problems to show the
necessity of our penalty. In a 2-layer neural network regression model with short cut (identify map),
convex relaxation does not give the optimal permutation even with additional rounding while our
penalty can. In section 4, we show experimental results on consistent improvement of auto-shuffle
over hand-crafted shuffle on both CIFAR-10 and Imagenet data sets. Conclusion is in section 5.

2 Permutation, Matrix `1−2 Penalty and Exact Relaxation

The channel shuffle operation in ShuffleNet [20, 13] can be represented as multiplying the feature
map in the channel dimension by a permutation matrix M . The permutation matrix M is a square
binary matrix with exactly one entry of one in each row and each column and zeros elsewhere. In the
ShuffleNet architecture [20, 13], M is preset by the designers and will be called “manual”. In this
work, we propose to learn an automated permutation matrix M through network training, hence
removing the human factor in its selection towards a more optimized shuffle. Since permutation
is discrete in nature and too costly to enumerate, we propose to approach it by adding a matrix
generalization of the `1−2 penalty [5, 17] to the network loss function in the stochastic gradient
descent (SGD) based training.

Specifically for M = (mij) ∈ RN×N , the proposed continuous matrix penalty function is

P (M) :=

N∑
i=1

 N∑
j=1

|mij | −

 N∑
j=1

m2
ij

1/2
+

N∑
j=1

 N∑
i=1

|mij | −
(

N∑
i=1

m2
ij

)1/2
 , (1)

in conjunction with the doubly stochastic constraint:

mij ≥ 0, ∀(i, j);
N∑
i=1

mij = 1, ∀ j;
N∑
j=1

mij = 1, ∀ i. (2)

Remark 1. When the constraints in (2) hold,
∑N
j=1 |mij | and

∑N
i=1 |mij | in P (M) can be removed.

However, in actual computation, the two equality constraints of (2) only hold approximately, so the
full expression in (1) is necessary.

Remark 2. Thanks to (2), we see that the penalty function P (M) is actually Lipschitz continuous

in M as
∑N
j=1 m

2
ij 6= 0, ∀i, and

∑N
i=1 m

2
ij 6= 0, ∀j.

Theorem 1. A square matrix M is a permutation matrix if and only if P (M) = 0, and the doubly
stochastic constraint (2) holds.
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Proof. (⇒) Since a permutation matrix consists of columns (rows) with exactly one entry of 1 and
the rest being zeros, each term inside the outer sum of P (M) equals zero, and clearly (2) holds.

(⇐) By the Cauchy-Schwarz inequality, N∑
j=1

|mij |

−
 N∑
j=1

m2
ij

1/2

≥ 0, ∀i,

with equality if and only if the row-wise cardinalty is 1:

| {j : mij 6= 0} | = 1, ∀i. (3)

This is because the mixed product terms like 2 |mijmij′ | (j 6= j′) in (
∑N
j=1 |mij | )2 must all be

zero to match
∑N
j=1 m

2
ij . This only happens when equation (3) is true. Likewise,

N∑
i=1

|mij | −
(

N∑
i=1

m2
ij

)1/2

≥ 0, ∀j,

with equality if and only if | {i : mij 6= 0} | = 1, ∀j. In view of (2), M is a permutation matrix.

The non-negative constraint in (2) is maintained throughout SGD by thresholding mij →
max(mij , 0). The normalization conditions in (2) are implemented sequentially once in SGD
iteration. Hence they are not strictly enforced. In theory, if the column normalization (divide each
column by its sum) and row normalization (divide each row by its sum) are iterated sufficiently
many times, the resulting matrices converge to (2). This is known as the Sinkhorn process or RAS
method [14], which is a first order method to approximately solve the so called matrix scaling
problem (MSP). Simply state, the MSP for a given non-negative real matrix A ∈ RN×N is to scale
its rows and columns (i.e. multiply each by a non-negative constant) to realize the prescribed row
sums and column sums. The approximate MSP is: given tolerance ε > 0, find positive diagonal
matrices X and Y such that |XAY 1 − 1 | ≤ ε, |1TXAY − 1T | ≤ ε. For a historical account of
MSP and a summary of various algorithms to date, see [2] and Table 1 therein. The RAS method
is an alternate minimization procedure with convergence guarantees. Each iteration of the RAS
method costs complexity O(m), m being the number of non-zero entries in A. If the entries of
A are polynomially bounded (which is the case during network training due to the continuous
nature of SGD), the RAS method converges in Õ(N/ε2) iterations [6], giving total complexity
Õ(mN/ε2), where tilde hides logarithmic factors in N and ε−1. Improvements of complexity bounds
via minimizing the log of capacity and higher order methods can be found in [2]. However for our
study, the first order method [14] suffices for two reasons. One is that it is computationally low
cost, the other is that the error in the matrix scaling step can be compensated in network weight
adjustment during SGD. In fact, we did not find much benefit to iterate RAS method more than
once in terms of enhancing validation accuracy. This is quite different from solving MAP as a stand
alone task.

The multiplication by M can be embedded in the network as a 1× 1 convolution layer with M
initialized as absolute value of a random Gaussian matrix. After each weight update, we threshold
the weights to [0,∞), normalize rows to unit lengths, then repeat on columns. Let L be the network
loss function. The training minimizes the objective function:

f = f(w,M) := L(w) + λ

J∑
j=1

P (Mj), (4)

where J is the total number of “channel shuffles” Mj ’s abbreviated as M , w is the network weight,
λ a positive parameter. The training algorithm is summarized in Algorithm 1. The `1 term in the
penalty function P has standard sub-gradient, and the `2 term is differentiable away from zero,
which is guaranteed in the algorithm 1 due to continuity of SGD and the normalization in columns
and rows. λ is chosen to be 10−3 or 2× 10−3 so as to balance the contributions of the two terms in
(4) and drive

∑J
j=1 P (Mj) close to 0.

We shall see that the penalty P indeed gets smaller and smaller during training. Here we show
a theoretical bound on the distance to PN when P is small and (2) holds approximately.

3



Algorithm 1 AutoShuffle Learning.

Input:
mini-batch loss function ft(w,M), t being the iteration index;
learning rate ηt for (w,M);
penalty parameter λ for P ;
total iteration number Tn.
Start:
w: sample from unit Gaussian distribution;
M : sample from unit Gaussian distribution then take absolute value.
WHILE t < Tn, DO:

(1) Evaluate the mini-batch gradient (∇wft,∇Mft) at (wt,M t);
(2) wt+1 = wt − ηt∇wft(wt,M t); // gradient update for weights
(3) M t+1 = M t − ηt∇Mft(wt,M t); // gradient update for M
(4) M t+1 ← max(M t+1, 0); // thresholding to enforce non-negativity constraint
(5) normalize each column of M t+1 by dividing the sum of entries in the column;
(6) normalize each row of M t+1 by dividing the sum of entries in the row.
END WHILE
Output: wTn,MTn; project each matrix MTn

j inside MTn to the nearest permutation matrix.

Theorem 2. Let the dimension N of a non-negative square matrix M be fixed. If P (M) = O(ε),
ε� 1, and the doubly stochastic constraints are satisfied to O(ε), then there exists a permutation
matrix P ∗ such that ‖M − P ∗ ‖ = O(ε).

Proof. It follows from P (M) = O(ε) that N∑
j=1

|mij |

−
 N∑
j=1

m2
ij

1/2

= O(ε), ∀i,

implying that:
|mijmij′ | = O(ε), ∀j 6= j′, ∀i. (5)

On the other hand for ∀i:
N∑
j=1

mij = 1 +O(ε). (6)

Let j∗ = argmaxj |mij |, at any i. It follows from (6) that

|mij∗ | ≥ 1/N +O(ε),

and from (5) that
mij′ = O(ε), ∀j′ 6= j∗.

Hence each row of M is O(ε) close to a unit coordinate vector, with one entry near 1 and the rest

near 0. Similarly from
∑N
i=1 |mij | −

(∑N
i=1m

2
ij

)1/2

= O(ε), ∀j, and
∑N
i=1 mij = 1 + O(ε), we

deduce that each column of M is O(ε) close to a unit coordinate vector, with one entry near 1 and
the rest near 0. Combining the two pieces of information above, we conclude that M is O(ε) close
to a permutation matrix.

The learned non-negative matrix M will be called a relaxed shuffle and will be rounded to
the nearest permutation matrix to produce a final auto shuffle. Strictly speaking, this “rounding”
involves finding the orthogonal projection to the set of permutation matrices, a problem called the
linear assignment problem (LAP), see [1] and references therein. The LAP can be formulated as a
linear program over the doubly stochastic matrices or constraints (2), and is solvable in polynomial
time [1]. As we shall see later in Table 3, the relaxed shuffle comes amazingly close to an exact
permutation in network learning. Hence, it turns out unnecessary to solve LAP exactly, indeed a
simple rounding will do. AutoShuffleNet units adapted from ShuffleNet v1 [20] and ShuffleNet v2
[13] are illustrated in Figs. 1-2.
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1 × 1 GConv

BN ReLU

Auto Shuffle

3 × 3 DWConv

BN

1 × 1 GConv

BN

Add
ReLU

3× 3 AVG Pool
(stride = 2)

1 × 1 GConv

BN ReLU

Auto Shuffle

3× 3 DWConv
(stride = 2)

BN

1 × 1 GConv

BN

Concat
ReLU

Figure 1: AutoShuffleNet units based on Shuf-
fleNet v1.

Channel Split

1 × 1 Conv

BN ReLU

3× 3 DWConv

BN

1 × 1 Conv

BN ReLU

Concat

Auto Shuffle

3 × 3 DWConv
(stride = 2)

BN

1 × 1 Conv

BN ReLU

1 × 1 Conv

BN ReLU

3 × 3 DWConv
(stride = 2)

BN

1 × 1 Conv

BN ReLU

Concat

Auto Shuffle

Figure 2: AutoShuffleNet units based on Shuf-
fleNet v2.

3 Permutation Problems Unsolvable by Convex Relaxation

The doubly stochastic matrix condition (2) is a popular convex relaxation of permutation. However,
it is not powerful enough to enable auto-shuffle learning as we shall see later. In this section, we
present examples from permutation optimization to show the limitation of convex relaxation (2),
and how our proposed penalty (1) can strength (2) to retrieve permutation matrices.

Let us recall the graph matching (GM) problem, see [16, 11, 1, 12, 18] and references therein.
The goal is to align the vertices of two graphs to minimizes the number of edge disagreements.
Given a pair of n-vertex graphs GA and GB, with respective adjacency n× n matrices A and B,
the GM problem is to find a permutation matrix Q to minimize ‖AQ−QB‖2F . Let Π be the set of
all permutation matrices, solve

Q∗ := argminQ∈Π ‖AQ−QB‖2F . (7)

By algebraic identity:

‖AQ−QB‖2F = trace{(AQ−QB)T (AQ−QB)}
= trace(AT A) + trace(BT B)− 2trace(AQBT QT ),

the GM problem (7) is same as:

Q∗ = argminQ∈Πtrace((−A)QBT QT ), (8)

a quadratic assignment problem (QAP). The general QAP for two real square matrices A and B is
[16, 11]:

Q∗ = argminQ∈Π trace(AQBT QT ). (9)

The convex relaxed GM is:

Q∗ := argminQ∈DN ‖AQ−QB‖2F . (10)

As an instance of general QAP, let us consider problem (7) in case n = 2 for two real matrices:

A =

[
a b
c d

]
, B =

[
a′ b′

c′ d′

]
.

If Q ∈ D2, then:

Q =

[
q 1− q

1− q q

]
, q ∈ [0, 1];
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and AQ−QB equals ( q′ := 1− q ):[
(a− a′) q + (b− c′) q′ (b− b′) q + (a− d′) q′
(c− c′) q + (d− a′) q′ (d− d′) q + (c− b′) q′

]
.

Example 1: We show that Q∗ 6= Q∗ by selecting:

A =

[
1 2
3 1

]
, B =

[
0 2
3 1

]
.

AQ−QB =

[
2q − 1 0
1− q 1− q

]
,

‖AQ−QB‖2F = (2q − 1)2 + 2(1− q)2 = 6q2 − 8q + 3,

which is convex on [0, 1] and has minimum at q∗ = 2/3. The convex relaxed matrix solution is:

Q∗ =

[
2/3 1/3
1/3 2/3

]
,

however, the permutation matrix solution Q∗ to GM problem (7) is the 2× 2 identity matrix at
q = 1.

In the spirit of objective function (4), let us minimize:

‖AQ−QB‖2F + λP (Q),

or equivalently minimize (after skipping some additive constants in P ):

F = F (q) := 6 q2 − 8 q + 2− 4λ(q2 + (1− q)2)1/2.

An illustration of F is shown in Fig. 3. The minimal point moves from the interior of the interval
[0, 1] when λ = 0.25 (dashed line, top curve) to the end point 1 as λ increases to 1 (line-star, middle
curve) and remains there as λ further increases to 2 (line-circle, bottom curve). So for λ ∈ [1, 2],
Q∗ is recovered with our proposed penalty.

Figure 3: The function F (q) as penalty parameter λ varies from 0.25 (interior minimal point,
dashed line, top) to 1 (line-star, middle) and 2 (line-circle, bottom). Minimal point occurs at q = 1
in the latter two curves.

Example 2: Consider the adjacent matrix B (A) of an un-directed graph of 2 nodes and 1
edge (with a loop at node 1). An edge adds 1 and a loop adds 2 to an adjacent matrix.

A =

[
2 1
1 0

]
, B =

[
0 1
1 0

]
.
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Then:

AQ−QB =

[
2q 2(1− q)
0 0

]
,

‖AQ−QB‖2F = 4[q2 + (1− q)2].

So Q∗ = Q(1/2) 6= Q∗ = Q(0) = Q(1). The P regularized objective function (modulo additive
constants) is:

F = 4[q2 + (1− q)2]− 4λ(q2 + (1− q)2)1/2,

with F (0) = F (1) = 4− 4λ. In view of:

F ′/4 = (2q − 1)[2− λ/(q2 + (1− q)2)1/2],

two possible interior critical points are:

q = 1/2 or q2 + (1− q)2 = λ2/4. (11)

Since maxq∈[0,1]{q2 + (1− q)2} = 1, if λ > 2, the second equality in (11) is ruled out. Comparing

F (1/2) = 2− 4λ2−1/2 = 2(1−
√

2λ) with F (0), we see that the global minimal point does not occur
at q = 1/2 if

1−
√

2λ > 2− 2λ or λ > 1/(2−
√

2) ≈ 1.7071.

Hence if λ > 2, minimizing F recovers Q∗.
In Fig. 4, we show that two minimal points of F occur in the interior of (0, 1) when λ = 1.8, 1.9,

and transition to q = 0, 1, at λ = 2. When λ2/4 < minq∈[0,1]{q2 + (1− q)2} = 1/2, or λ <
√

2, the
second equality in (11) cannot hold, F becomes convex with a unique minimal point at q = 1/2.

Figure 4: The function F (q) as penalty parameter λ varies from 1.8 (solid line, top) to 1.9 (dot,
middle) and 2 (line-circle, bottom) where minimal points occur at q = 0, 1. Interior minimal points
occur on [0, 1] when λ = 1, 8, 1.9.

Remark 3. We refer to [12] on certain correlated random Bernoulli graphs where Q∗ 6= Q∗. On
the other hand, there is a class of friendly graphs [1] where Q∗ = Q∗. Existing techniques to improve
convex relaxation on GM and QAP include approximate quadratic programming, sorting networks
and path following based homotopy methods [16, 11, 18]. Our proposed penalty (1)-(2) appears more
direct and generic. A detailed comparison will be left for a future study.

Remark 4. In example 1 above, if the convex relaxed q∗ = 2/3 is rounded up to 1, then Q∗ = Q∗.
In example 2 (Fig. 4), the two interior minimal points at λ = 1.8, 1.9, after rounding down
(up), become zero or one. So convex relaxation with the help of rounding still recovers the exact
permutation. We show in example 3 below that convex relaxation still fails after rounding (to 1 if
the number is above 1/2, to 0 if the number is below 1/2).
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Example 3: We consider the two-layer neural network model with one hidden layer [10]. Given
m ≥ 0, the forward model is the following function:

fm (x,W ) = ‖φ ((mI +W )x) ‖1 ,

where φ (v) = max (v, 0) is the ReLU activation function, x = (x1, x2) ∈ R2 is the input random
vector drawn from a probability distribution, W ∈ R2×2 is the weight matrix, I is the identity
matrix. Consider a two-layer teacher network with 2× 2 weight matrix

W ∗ =

[
a b
c d

]
, a, b, c, d ≥ 0.

We train the student network with doubly stochastic constraint on W using the `2 loss:

L (W ) = Ex [fm (x,W )− fm (x,W ∗)]
2
.

Let p ∈ [0, 1],

W =

[
p 1− p

1− p p

]
.

We write the loss function as

lm (p) :=L (W )

= Ex [φ ((m+ p)x1 + (1− p)x2) + φ ((1− p)x1 + (m+ p) px2)

−φ (ax1 + bx2)− φ (cx1 + dx2)]
2

= Exφ ((m+ p)x1 + (1− p)x2)
2

+ Exφ ((1− p)x1 + (m+ p)x2)
2

+ 2Ex [φ ((m+ p)x1 + (1− p)x2)φ ((1− p)x1 + (m+ p)x2)]

− 2Gm (p, a, b)− 2Gm (p, c, d) + Ex [φ (ax1 + bx2) + φ (cx1 + dx2)]
2
, (12)

where for s, t ≥ 0, Gm (p, s, t) is defined as

Ex [φ ((m+ p)x1 + (1− p)x2)φ (sx1 + tx2) + φ ((1− p)x1 + (m+ p)x2)φ (sx1 + tx2)] .

Define I (q, r, s, t) := Ex [φ (qx1 + rx2)φ (sx1 + tx2)] , then I (q, r, s, t) = I (s, t, q, r) and

Gm (p, s, t) = I (m+p, 1−p, s, t) + I (1−p,m+p, s, t) .

For simplicity, let x obey uniform distribution on [−1, 1]
2
. For qt ≥ rs, q + r > 0, s + t > 0,

I (q, r, s, t) equals

2

3
(qs+ rt) +

q2 (qt− 3rs)

24r2
+
s2 (3qt− rs)

24t2
, q < r

1

3
(qs+ rt) +

1

4
(qt+ rs) +

1

24
(
r2

q2
+
s2

t2
) (3qt− rs) , q ≥ r and t ≥ s

2

3
(qs+ rt) +

r2 (3qt− rs)
24q2

+
t2 (qt− 3rs)

24s2
, t < s.

(13)

We have

Exφ ((m+ p)x1 + (1− p)x2)
2

= Exφ ((1− p)x1 + (m+ p)x2)
2

=
2

3

[
(m+ p)

2
+ (1− p)2

]
, (14)

Ex [φ ((m+p)x1+(1−p)x2)φ ((1−p)x1+(m+p)x2)] =
(m+ 1)

3

3θm (p)
+

(m+ p)
4

12θm (p)
2 , (15)

where θm (p) := max (m+ p, 1− p). The last term in (12) is a constant:

Ex [φ (ax1 + bx2) + φ (cx1 + dx2)]
2

=
2

3

(
a2 + b2 + c2 + d2

)
+ 2 I (a, b, c, d) . (16)
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Consider a special case when a = 1/3, b = 2/3, c = 1/4 and d = 3/4. By (14)-(16), the loss function
lm (p) equals

2

3

[
(m+ p)

2
+ (1− p)2

]
+

2 (m+ 1)
3

3θm (p)
+

(m+ 1)
4

6θm (p)
2 − 2Gm(p,

1

3
,

2

3
)− 2Gm(p,

1

4
,

3

4
) +

8113

5184
.

Let Fm (p) := lm (p) − 4λ

√
p2 + ((1− p)2

. When m = 0, λ = 0, Fig. 5 (top left) shows l0 (p)

has minimal points in the interior of (0, 1). A permutation matrix W that minimizes L (W ) can
be achieved by rounding the minimal points. However, when m = 1, λ = 0, (Fig. 5, top right),
rounding the interior minimal point of l1 (p) gives the wrong permutation matrix at p = 1. At
λ = 0.4, the P regularization selects the correct permutation matrix.

Figure 5: Fm(p) (m = 0 left, m = 1 right) as penalty parameter λ varies for the uniformly
distributed input data on [−1, 1]2.

Remark 5. If x obeys the unit Gaussian distribution as in [10], the Fm(p) functions are more
complicated analytically, however their plots resemble those for uniformly distributed x, see Fig. 6.

Figure 6: Fm(p) (m = 0 left, m = 1 right) as penalty parameter λ varies for unit Gaussian input
data on R2.

4 Experiments

We relax the shuffle units in ShuffleNet v1 [20] and ShuffleNet v2 [13] and perform experiments on
CIFAR-10 [8] and ImageNet [4, 9] classification datasets. The accuracy results of auto shuffles are
evaluated after the relaxed shuffles are rounded.

On CIFAR-10 dataset, we set the `1−2 penalty parameter λ = 10−3. All experiments are
randomly initialized with learning rate linearly decaying from 0.2. We train each network for 200
epochs. We set weight-decay 10−4, momentum 0.95 and batch size 128. The experiments are
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carried out on a machine with single Nvidia GeForce GTX 1080 Ti GPU. In Table 1, we see that
auto shuffle consistently improves by as much as 1% on manual shuffle in both v1 and v2 models of
ShuffleNet.

Table 1: CIFAR-10 validation accuracies.

Networks Manual Auto

ShuffleNet v1 (g=3) 90.55 91.76
ShuffleNet v1 (g=8) 90.06 91.26
ShuffleNet v2 (1×) 91.90 92.81
ShuffleNet v2 (1.5×) 92.56 93.22

On ImageNet dataset, we set the `1−2 penalty parameter λ = 2× 10−3. For each experiment,
the training process includes two training cycles: the first cycle is randomly initialized with learning
rate starting at 0.2 and the second one is resumed from the first one with learning rate starting at
0.1. Each cycle consists of 100 epochs and the learning rate decays linearly. We set weight-decay
4× 10−5, momentum 0.9 and batch size 512. The experiments are carried out on a machine with
4 Nvidia GeForce GTX 1080 Ti GPUs. In Table 2, we see that auto shuffle again consistently
improves on manual shuffle for both v1 and v2 models.

Table 2: ImageNet top-1 validation accuracies.

Networks Manual Auto

ShuffleNet v1 (g=3) 65.50 65.62
ShuffleNet v1 (g=8) 65.18 65.76
ShuffleNet v2 (1×) 67.46 67.69
ShuffleNet v2 (1.5×) 70.58 70.60

The permutation matrix of the first shuffle unit in ShuffleNet v1 (g=3) is a matrix of size 60×60,
which can be visualized in Fig. 7 (manual, left) along with an auto shuffle (right). The dots (blanks)
denote locations of 1’s (0’s). The auto shuffle looks disordered while the manual shuffle is ordered.
However, the inference cost of auto shuffle is comparable to manual shuffle since the shuffle is fixed
and stored after training.

Figure 7: Permutation matrices of the first shuffle unit in ShuffleNet v1 (g=3) of manual shuffle
(left) and auto shuffle (right). The auto shuffle is trained on CIFAR-10 dataset. The dots (blanks)
indicate locations of 1’s (0’s). The auto shuffle looks disordered while the manual shuffle is ordered.
However, the inference cost of auto shuffle is comparable to manual shuffle in inference.

The accuracy drop due to rounding to produce auto shuffle from relaxed shuffle is indicated
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by relative error in Table 3. On CIFAR-10 dataset, negligible drop is observed for ShuffleNet v1.
Interestingly, rounding even gained accuracy for ShuffleNet v1 on ImageNet dataset.

Table 3: Relative error of accuracy of rounding relaxed shuffle. The -/+ refer to accuracy drop/gain
after rounding to produce auto shuffle from relaxed shuffle.

Dataset Networks Relative Error

CIFAR-10

ShuffleNet v1 (g=3) 0
ShuffleNet v1 (g=8) 0
ShuffleNet v2 (1×) -2.15E-4
ShuffleNet v2 (1.5×) -1.07E-3

ImageNet

ShuffleNet v1 (g=3) +6.10E-5
ShuffleNet v1 (g=8) +3.04E-5
ShuffleNet v2 (1×) 0
ShuffleNet v2 (1.5×) -2.83E-5

The `1−2 penalty of ShuffleNet v1 (g=3) is plotted in Fig. 8. As the penalty decays, the
validation accuracy of auto shuffle (after rounding) becomes closer to relaxed shuffle (before
rounding), see Fig. 9.

Figure 8: Training loss L and penalty P of ShuffleNet v1 (g=3) with relaxed shuffle on CIFAR-10.

To demonstrate the significance of the `1−2 regularization, we also tested auto shuffle with
various λ on ShuffleNet v1 (g=3). Table 4 shows that the accuracy drops much after the relaxed
shuffle is rounded. We plot the stochastic matrix of the first shuffle unit of the network at λ = 0
and λ = 10−5 respectively in Fig. 10. The penalty is large when λ is relatively small, indicating
that the stochastic matrices learned are not close to optimal permutation matrices.

5 Conclusion

We introduced a novel, exact and Lipschitz continuous relaxation for permutation and learning
channel shuffling in ShuffleNet. We showed through a regression problem of a 2-layer neural network
with short cut that convex relaxation fails even with additional rounding while our relaxation is
precise. We plan to extend our work to auto-shuffling of other LCNNs and hard permutation
problems in the future.
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Figure 9: Validation accuracy of ShuffleNet v1 (g=3) with relaxed shuffle (before rounding) and
auto shuffle (after rounding) on CIFAR-10. The rounding error becomes smaller during training.

Table 4: CIFAR-10 validation accuracies of ShuffleNet v1 (g=3) with relaxed shuffle (before
rounding) and auto shuffle (after rounding), and penalty values of relaxed shuffle at various λ’s.
The penalty and rounding error tends to zero as λ increases.

λ 0 1E-5 1E-4 5E-4 1E-3

relaxed 90.00 90.18 90.48 91.45 91.76
auto 10.00 38.18 11.37 71.50 91.76

penalty 3.37E3 1.59E3 4.95E2 3.13E-1 5.07E-2

Figure 10: Stochastic matrices of the first shuffle unit in ShuffleNet v1 (g=3) with relaxed shuffle
before rounding at λ = 0 (left) and λ = 10−5 (right). The relaxed shuffle is trained on CIFAR-10
dataset. The matrices are quite diffusive and not close to optimal permutation matrices when λ is
relatively small.
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