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Abstract In this chapter, we present a low dimensional manifold model (LDMM)
for hyperspectral image reconstruction. This model is based on the observation that
the spatial-spectral blocks of hyperspectral images typically lie close to a collection
of low dimensional manifolds. To emphasize this, we directly use the dimension
of the manifold as a regularization term in a variational functional, which can be
solved efficiently by alternating direction of minimization and advanced numeri-
cal discretization. Experiments on the reconstruction of hyperspectral images from
sparse and noisy sampling demonstrate the superiority of LDMM in terms of both
speed and accuracy.

1 Introduction

Hyperspectral imagery is an important domain in the field of remote sensing with
numerous applications in agriculture, environmental science, and surveillance [6].
When capturing a hyperspectral image (HSI), the sensors detect the intensity of
reflection at a wide range of continuous wavelengths, from the infrared to ultraviolet,
to form a 3D data cube with up to thousands of spectral bands. When such data of
high dimensionality are collected, the observed images are very likely degraded
due to various reasons. For instance, the collected images might be extremely noisy
because of limited exposure time, or some of the voxels can be missing due to the
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malfunctions of the hyperspectral cameras. Thus an important task in HSI analysis
is to recover the original image from its noisy incomplete observation. This is an
ill-posed inverse problem, and some prior knowledge of the original data must be
exploited.

One widely used prior information of HSI is that the 3D data cube has a low-rank
structure under the linear mixing model (LMM) [3]. More specifically, the spectral
signature of each pixel is assumed to be a linear combination of a few constituent
endmembers. Under such an assumption, low-rank matrix completion and sparse
representation techniques have been used for HSI reconstruction [7, 16, 27]. Despite
the simplicity of LMM, the linearmixing assumption has been shown to be physically
inaccurate in certain situations [9].

Partial differential equation (PDEs) and graph based image processing techniques
have also been applied to HSI reconstruction. The total variation (TV) method
[23] has been widely used as a regularization in hyperspectral image processing
[1, 13, 15, 28]. The nonlocal total variation (NLTV) [11], which computes the
gradient in a nonlocal graph-based manner, has also been applied to the analysis of
hyperspectral images [14, 18, 29]. However, such methods typically fail to produce
satisfactory results when there is a significant number of missing voxels in the
degraded HSI.

Over the past decade, patch-basedmanifoldmodels have achieved great success in
image processing. The key assumption in the manifold model is that image patches
typically concentrate around a low dimensional smooth manifold [5, 17, 21, 22].
Based on such assumption, a low dimensional manifold model (LDMM) has been
proposed for general image processing problems [20, 24], in which the dimension of
the patchmanifold is directly used as a regularization term in a variational functional.
LDMMachieved excellent results, especially in image inpainting problems fromvery
sparse sampling.

In this chapter, we will illustrate how LDMM can be used in HSI reconstruction.
The direct extension of LDMM to higher dimensional data reconstruction has been
considered in [31], but such generalization typically has poor scalability and requires
huge memory storage. A considerable amount of computational burden can be
reduced, however, if the special structure of hyperspectral images is utilized. Because
an HSI is a collection of 2D images of the same spatial location, a single spatial
similaritymatrix can be shared across all spectral bands [30]. The resulting algorithm
is considerably faster than its 3D counterpart: it typically takes less than two minutes
given a proper initialization as compared to hours in [31].

2 Low Dimensional Manifold Model

We provide a detailed explanation of LDMM in HSI reconstruction, which includes
the definition of the patch manifold of an HSI, the variational functional with the
manifold dimension as a regularizer, and how to compute the dimension of amanifold
sampled from a point cloud.
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2.1 Patch Manifold

Let u ∈ Rm×n×B be a hyperspectral image, where m × n and B are the spatial
and spectral dimensions of the image. For any x ∈ Ω̄ = [m] × [n], where [m] =
{1, 2, . . . ,m}, we define a patch Pu(x) as a 3D block of size s1 × s2 × B of the
original data cube u, and the pixel x is the top-left corner of the rectangle of size
s1 × s2. The patch set P (u) is defined as the collection of all patches:

P (u) = {Pu(x) : x ∈ Ω̄} ⊂ Rd, d = s1 × s2 × B. (1)

It has been shown in [20, 31] that the point cloud P (u) is typically close to a
collection of low dimensional smooth manifolds M = ∪L

l=1Ml embedded in Rd .
This collection of manifolds is called the patch manifold of u.

Remark 1 We sometimes regard P : Rm×n×B → Rd×|Ω̄ | as an operator that maps an
HSI u ∈ Rm×n×B to its patch set P (u) ∈ Rd×|Ω̄ | . This point of view will be assumed
throughout Sect. 3.

2.2 Model Formulation and Calculating the Manifold Dimension

Our objective is to reconstruct the unknown HSI u from its noisy and incomplete
observation b ∈ Rm×n×B . Assume that for each spectral band t ∈ [B], b is only
known on a random subset Ωt ⊂ Ω̄ = [m] × [n], with a sampling rate r (in our
experiments r = 5% or 10%.) We also use the notation

Ω̄all = [m] × [n] × [B] and Ωall = ∪
B
t=1Ω

t (2)

to denote the domain of the entire 3D data cube and its sampled subset. According
to the analysis in Sect. 2.1, we can use the dimension of the patch manifold as a
regularizer to reconstruct u from b:

min
u∈Rm×n×B

M⊂Rd

∫
M

dim(M (p))d p + λ
B∑
t=1
‖ut − bt ‖2

L2 (Ωt )

subject to: P (u) ⊂ M, (3)

where ut ∈ Rm×n is the t-th spectral band of the HSI u ∈ Rm×n×B ,M (p) denotes
the smooth manifoldMl to which p belongs,M = ∪L

l=1Ml , and∫
M

dim(M (p))d p =
L∑
l=1
|Ml | dim(Ml )

is the L1 norm of the local dimension. Note that (3) is not mathematically well
defined, since we do not know how to compute the manifold dimension given
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only a point cloud sampling the manifold. Fortunately, the following formula from
differential geometry provides a simple way of calculating the dimension of a smooth
manifold [20]:

Proposition 1 LetM be a smooth submanifold isometrically embedded in Rd . For
any p ∈ M, we have

dim(M) =
d∑
j=1
‖∇Mα j (p)‖2,

where αi, i = 1, . . . , d are the coordinate functions onM, i.e.,

αi (p) = pi, ∀p = (p1, . . . , pd ) ∈ M .

Proof SinceM is a smooth submanifold isometrically embedded in Rd , it can be
locally parametrized as

p = ψ(γ) : U ⊂ Rk →M ⊂ Rd (4)

where k = dim(M), γ = (γ1, · · · , γk )T ∈ Rk and p = (p1, · · · , pd )T ∈ M. With
the induced metric from Rd , we have ∂i′ = (∂i′ψ1, · · · , ∂i′ψ

d ), and the metric tensor
is

gi′ j′ =< ∂i′, ∂j′ >=

d∑
l=1

∂i′ψ
l∂j′ψ

l . (5)

Let gi′ j′ denote the inverse of gi′ j′ , i.e.,

k∑
l′=1

gi′l′ g
l′ j′ = δi′ j′ =

{
1, i′ = j ′,
0, i′ , j ′. (6)

For any function u onM, its gradient ∇Mu is defined as

∇Mu =
k∑

i′, j′=1
gi
′ j′∂j′u ∂i′ . (7)

When viewed as a vector in the ambient space Rd , the j-th component of ∇Mu in
the ambient coordinates can be written as

∇
j

M
u =

k∑
i′, j′=1

∂i′ψ
jgi

′ j′∂j′u, j = 1, · · · , d. (8)

Following the definition of ∇M in (8), we have
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d∑
j=1
‖∇Mα j ‖

2 =

d∑
i, j=1
∇i
M
α j∇

i
M
α j

=

d∑
i, j=1

*.
,

k∑
i′, j′=1

∂i′ψ
jgi

′ j′∂j′α j
+/
-

*.
,

k∑
i′′, j′′=1

∂i′′ψ
jgi

′′ j′′∂j′′α j
+/
-

=

d∑
j=1

k∑
i′, j′, i′′, j′′=1

*
,

d∑
i=1

∂i′ψ
i∂i′′ψ

i+
-
gi
′ j′gi

′′ j′′∂j′α j∂j′′α j

=

d∑
j=1

k∑
j′, i′′, j′′=1

*
,

k∑
i′=1

gi′i′′g
i′ j′+

-
gi
′′ j′′∂j′α j∂j′′α j

=

d∑
j=1

k∑
j′, i′′, j′′=1

δi′′ j′g
i′′ j′′∂j′α j∂j′′α j

=

d∑
j=1

k∑
j′, j′′=1

g j′ j′′∂j′α j∂j′′α j .

Notice that ∂j′α j =
∂

∂γ j′ α j (ψ(γ)) = ∂j′ψ j . We thus have

d∑
j=1
‖∇Mα j ‖

2 =

d∑
j=1

k∑
j′, j′′=1

g j′ j′′∂j′ψ
j∂j′′ψ

j

=

k∑
j′, j′′=1

g j′ j′′ *.
,

d∑
j=1

∂j′ψ
j∂j′′ψ

j+/
-

=

k∑
j′, j′′=1

g j′ j′′g j′ j′′

=

k∑
j′=1

δ j′ j′ = k = dim(M) (9)

This concludes the proof. �

Based on Proposition 1, we can rewrite (3) as

min
u∈Rm×n×B

M⊂Rd

ds∑
i=1

B∑
t=1
‖∇Mα

t
i ‖

2
L2 (M) + λ

B∑
t=1
‖ut − bt ‖2

L2 (Ωt )

subject to: P (u) ⊂ M, (10)

where ds = s1 × s2 is the spatial dimension, αt
i is the coordinate function that maps

a point p =
(
pti

)
i∈[ds ], t ∈[B]

∈ M ⊂ Rd into its (i, t)-th coordinate pti . Note that
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(10) is a constrained nonconvex optimization problem with respect toM and u, the
solution of which will be explained in detail in the next section.

3 Two Numerical Approaches of Solving the LDMM Model

Because (10) is nonconvex, we attempt to solve it by alternating the direction of
minimization with respect to u andM. More specifically, givenM (k ) and u(k ) at
step k satisfying P (u(k )) ⊂ M (k ):

• With fixed M (k ) , update the data u(k+1) and the perturbed coordinate
functions α(k+1) =

{
[αt

i ]
(k+1)

}
i, t

by solving:

(u(k+1), α(k+1)) = argmin
u,α

∑
i, t

‖∇M (k )αt
i ‖

2
L2 (M (k ) ) + λ

B∑
t=1
‖ut − bt ‖2

L2 (Ωt ) .

subject to: α(Pu(k )) = P (u) (11)

• Update the manifold M (k+1) as the image of M (k ) under the perturbed
coordinate function α(k+1):

M (k+1) = α(k+1) (M (k )). (12)

Remark 2 Note that P (u(k+1)) ⊂ M (k+1) holds because they are the images of
P (u(k )) andM (k ) under the same perturbed coordinate functions α(k+1) . Moreover,
if the above iterative procedure converges, then the adjacent iteratesM (k ) ≈ M (k+1)

when k is large enough. Therefore the perturbed coordinate function α(k+1) is indeed
very close to identity as defined in Proposition 1.

Notice that (12) is easy to implement, whereas (11) is a constrained optimization
problemwhose numerical implementation involves the discretization of themanifold
gradient operator ∇M over an unstructured point cloud P (u(k )). In what follows, we
provide two numerical procedures to solve the LDMM model. In the first method,
problem (11) is further split into two subproblems, whose Euler-Lagrange equation,
a Laplace-Beltrami equation over the manifoldM (k ) , is solved by the point integral
method (PIM) [19]. In the second approach, we directly discretize the Dirichlet
energy ‖∇Mαt

i ‖
2
L2 (M)

in (11) using the weighted nonlocal Laplacian (WNLL) [25],
a practical way of finding a smooth interpolation function on a point cloud.
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3.1 The First Approach

Notice that (11) is a convex optimization problem subject to a linear constraint,
which can be further split into two simpler subproblems using the split Bregman
iteration [12]. More specifically, given the l-th iterates α(k+1),l, u(k+1),l , and zl :

• Update α(k+1),l+1 =
{
[αt

i ]
(k+1),l+1

}
i, t

with fixed u(k+1),l and zl ,

α(k+1),l+1 = min
α

∑
i, t

‖∇M (k )αt
i ‖

2
L2 (M (k ) ) + µ‖α(P (u(k ))) − P (u(k+1),l ) + zl ‖2F,

(13)

where both the patch set P (u(k+1),l ) and the image of the patch set under
the perturbed coordinate functions α(P (u(k ))) are treated as matrices in
Rd×|Ω̄ | .

• Update u(k+1),l+1 with fixed α(k+1),l+1 and zl ,

u(k+1),l+1 =min
u
λ

B∑
t=1
‖ut − bt ‖2

L2 (Ωt ) + µ‖α
(k+1),l+1(P (u(k ))) − P (u) + zl ‖2F

=min
u
λ‖IΩallu − b‖2

L2 (Ω̄all)
+ µ‖α(k+1),l+1(P (u(k ))) − P (u) + zl ‖2F,

(14)

where Ωall ⊂ Ω̄all are defined in (2), and IΩall : Rm×n×B → Rm×n×B is the
projection operator that sets u(x, t) to zero for (x, t) < Ωall, i.e.,

IΩallu(x, t) =
{
u(x, t) , (x, t) ∈ Ωall,
0 , (x, t) < Ωall,

(15)

• Update zl+1,

zl+1 = zl + α(k+1),l+1(P (u(k ))) − P (u(k+1),l+1). (16)

Note that among (13), (14), and (16), the dual variable update (16) is trivial to
implement, and the u update (14) has the following closed form solution

u(k+1),l+1 =
(
λI∗
Ωall

IΩall + µP
∗P

)−1 [
λI∗
Ωall

b + µP∗
(
zl + α(k+1),l+1(P (u(k )))

)]
,

(17)

where I∗
Ωall

: Rm×n×B → Rm×n×B and P∗ : Rd×|Ω̄ | → Rm×n×B are the adjoint
operators of IΩall andP. It is worthmentioning that

(
λI∗
Ωall

IΩall + µP
∗P

)
is a diagonal
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operator, and hence (17) can be solved efficiently. As for the α update (13), one can
easily check that the coordinate functions

{
[αt

i ]
(k+1),l+1

}
i, t

are decoupled, and thus
(13) can be solved separately,

[αt
i ]

(k+1),l+1 = min
αt
i

‖∇M (k )αt
i ‖

2
L2 (M (k ) ) + µ‖α

t
i (P (u(k ))) − P t

i (u(k+1),l ) + (zl )ti ‖
2,

(18)

where

P t
i (u) =

(
P t
i u(x)

)
x∈Ω̄
∈ R |Ω̄ |, (19)

and P t
i u(x) is the (i, t)-th element in the patch Pu(x). We next explain how to solve

problem (18) using the point integral method.

3.1.1 Discretization with the Point Integral Method

Note that problem (18) for each individual [αt
i ]

(k+1),l+1 can be cast into the following
canonical form,

min
u∈H1 (M)

‖∇Mu‖2
L2 (M) + µ

∑
p∈P

|u(p) − v(p) |2, (20)

where u can be any αt
i ,M =M

(k ) ,M ⊃ P = P (u(k )), and v(p) is a given function
on P. It can easily be checked by standard variational methods that (20) is equivalent
to the following Euler-Lagrange equation :




−∆Mu(p) + µ
∑
q∈P

δ(p − q) (u(q) − v(q)) = 0, p ∈ M

∂u
∂n
= 0, p ∈ ∂M .

(21)

This is a Laplace-Beltrami equation over the manifoldM sampled by the point cloud
P, which can be solved efficiently using the point integral method (PIM) [19]. The
key observation in PIM is the following integral approximation

Theorem 1 If u ∈ C3(M) is a function onM, then








∫
M

∆Mu(q)Rt (p, q)dq − 2
∫
∂M

∂u(q)
∂n

Rt (p, q)dτq

+
1
t

∫
M

(u(p) − u(q))Rt (p, q)dq





L2 (M)

= O(t1/4). (22)

where Rt is the normalized heat kernel:
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Rt (p, q) = Ct exp
(
−
|p − q |2

4t

)
. (23)

Theorem 1 suggests that the solution u of (21) should approximately satisfy the
following integral equation∫

M

(u(p) − u(q)) Rt (p, q)dq + µt
∑
q∈P

Rt (p, q) (u(q) − v(q)) = 0 (24)

If we further assume that P = P (u(k )) =
{
p1, . . . , p |Ω̄ |

}
⊂ Rd samples the manifold

M uniformly at random, then (24) can be discretized into the following linear system:

|M|

|Ω̄|

|Ω̄ |∑
j=1

Rt, i j (ui − u j ) + µt
|Ω̄ |∑
j=1

Rt, i j (u j − v j ) = 0, (25)

where ui = u(pi ), vi = v(pi ), and Rt, i j = Rt (pi, p j ). Equation (25) can be written
in the matrix form

(L + µ̄W )u = µ̄Wv, (26)

where u = (u1, . . . , u |Ω̄ |)
T , v = (v1, . . . , v |Ω̄ |)

T , µ̄ = µt |Ω̄ |
|M |

,W = (wi j )i, j ∈{1, ..., |Ω̄ | } is
the weight matrix with wi j = Rt, i j , and L is the difference between D and W ,

L = D −W, (27)

where D = diag(di ) is the degree matrix with di =
∑ |Ω̄ |

j=1 wi j . In the numerical
experiments, we always truncate the weight matrix W to 20 nearest neighbors,
searched efficiently using the k-d tree data structure [10]. Thus (26) is a sparse
symmetric linear system, which can be solved by the conjugate gradient method. We
summarize the numerical procedures of solving LDMMwith the PIM discretization
in Algorithm 1.

3.2 The Second Approach

We now explain our second approach of solving (11). This involves directly dis-
cretizing theDirichlet energy ‖∇M (k )αt

i ‖
2
L2 (M (k ) )

in (11) using theweighted nonlocal
Laplacian (WNLL) [25] without splitting the update of α and u [30].

3.2.1 Weighted Nonlocal Laplacian

The weighted nonlocal Laplacian was proposed in [25] to find a smooth interpolation
of a function on a point cloud. Suppose that C = {c1, c2, . . . , cn } is a set of points
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Algorithm 1 LDMM for HSI reconstruction with the PIM discretization
Input: A noisy and incomplete observation b of an unknown hyperspectral image u ∈ Rm×n×B .

For every spectral band t ∈ [B], u is only partially observed on a random subset Ωt of
Ω̄ = [m] × [n].

Output: Reconstructed HSI u.
Initial guess u (0) , z0 = 0.
while not converge do

1. Compute the weight matrixW = (wi j )1≤i, j≤|Ω̄| and L from P (u (k ) ),

wi j = Rt, i j = Rt (pi, p j ), pi, p j ∈ P (u (k ) ), i, j = 1, . . . , |Ω̄ |, L = D −W .

while not converge do
1. Solve the linear systems forU l+1 = α (k+1),l+1(P (u (k ) )) ∈ Rd×|Ω̄|

(L + µ̄W )(U l+1)T = µ̄WV l,

where V l =
(
P (u (k+1),l ) − z l

)T
.

2. Update u (k+1),l+1

u (k+1),l+1 =
(
λ I ∗
Ωall

IΩall + µP
∗P

)−1 [
λ I ∗
Ωall

b + µP∗
(
z l +U l+1

)]
,

3. Update z l+1

z l+1 = z l +U l+1 − P (u (k+1),l+1).

4. l ← l + 1.
end while
1. u (k+1) ← u (k+1),l .
2. k ← k + 1.

end while
u ← u (k ) .

in Rd , and let g be a function defined on a subset S = {s1, s2, . . . , sn } ⊂ C. The
objective is to extend g to C by finding a smooth function u onM that agrees with
g when restricted to S.

A widely used method to solve the above interpolation problem is the harmonic
extension model [8, 32], which seeks to minimize the following energy:

J (u) = ‖∇Mu‖2
L2 (M), subject to: u(p) = g(p) on S. (28)

A common way of discretizing the manifold gradient ∇Mu is to use its non-local
approximation:

∇Mu(p)(q) ≈
√
w(p, q) (u(p) − u(q)) ,

where w is a positive weight function, e.g. w(p, q) = exp
(
−
‖p−q ‖2

σ2

)
. With this

approximation, we have
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J (u) ≈
∑

p,q∈P

w(p, q) (u(p) − u(q))2 . (29)

Such discretization of solving the harmonic extension model leads to the well-known
graph Laplacian method [2, 4, 32]. However, a closer look into the energy J in (29)
reveals that the model fails to achieve satisfactory results when the sample rate
|S |/|C | is low [20, 25]. More specifically, after splitting the sum in (29) into two
terms, we have

J (u) =
∑
p∈S

∑
q∈C

w(p, q) (u(p) − u(q))2 +
∑

p∈C\S

∑
q∈C

w(p, q) (u(p) − u(q))2 .

(30)

Note that the first term in (30) is much smaller than the second term when |S | �
|C |. Therefore the second term will be prioritized when minimizing (30), and the
continuity of u on the sampled set S will be sacrifice . An easy remedy is to add a
large weight µ = |C |/|S | in front of the first term in (30) to balance the two terms:

JWNLL(u) = µ
∑
p∈S

∑
q∈C

w(p, q) (u(p) − u(q))2 +
∑

p∈C\S

∑
q∈C

w(p, q) (u(p) − u(q))2 .

(31)

It is readily checked that JWNLL generalizes the graph Laplacian J in the sense that
JWNLL = J when |S | = |C |. The generalized energy functional JWNLL is called the
weighted nonlocal Laplacian.

We point out that such intuition can be made precise by deriving (31) through the
point integral method [19]. The interested reader can refer to [25] for the details.

3.2.2 Numerical Discretization

We now explain how to solve the optimization problem (11) using the weighted non-
local Laplacian (31). Using the terminology introduced in Sect. 3.2.1, the functions
to be interpolated in (11) are αt

i , the point cloud C is P (u(k )), and the sampled set
for αt

i is

St
i =

{
Pu(k ) (x) : Piu(k ) (x) is sampled

}
⊂ C.

Based on the discussion of WNLL in Sect. 3.2.1, we can discretize the Dirichlet
energy ‖∇M (k )αt

i ‖
2
L2 (M (k ) as



12 Wei Zhu, Zuoqiang Shi, and Stanley Osher

‖∇M (k )αt
i ‖

2
L2 (M (k ) =

|Ω̄|

|Ωt
i |

∑
x∈Ωt

i

∑
y∈Ω̄

w̄(x, y)
(
αt
i (Pu

(k ) (x)) − αt
i (Pu

(k ) (y))
)2

+
∑

x∈Ω̄\Ωt
i

∑
y∈Ω̄

w̄(x, y)
(
αt
i (Pu

(k ) (x)) − αt
i (Pu

(k ) (y))
)2
, (32)

where

Ω
t
i =

{
x ∈ Ω̄ : P t

i u
(k ) (x) is sampled

}

is a spatially translated version of Ωt , |Ω̄|/|Ωt
i | = 1/r is the inverse of the sampling

rate, and w̄(x, y) = w(Pu(k ) (x),Pu(k ) (y)) is the similarity between the patches,
with

w(p, q) = exp
(
−
‖ p − q‖2

σ(p)σ(q)

)
, (33)

where σ(p) is the normalizing factor. Combining the WNLL discretization (32) and
the constraint in (11), the update of u in (11) can be discretized as

min
u

λ

B∑
t=1
‖ut − bt ‖2

L2 (Ωt ) +
∑
i, t



∑
x∈Ω̄\Ωt

i

∑
y∈Ω̄

w̄(x, y)
(
P t
i u(x) − P t

i u(y)
)2

+
1
r

∑
x∈Ωt

i

∑
y∈Ω̄

w̄(x, y)
(
P t
i u(x) − P t

i u(y)
)2

. (34)

Remark 3 Unlike our first approach of solving (11) detailed in Sect. 3.1, we do not
explicitly update the perturbed coordinate function α. The reason is that the value
of α on the point cloud P (u(k )) is already implicitly determined for a given u, and
this is enough to discretize the Dirichlet energy ‖∇M (k )αt

i ‖
2
L2 (M (k ) )

on the manifold
M (k ) .

Note that (34) is decoupled with respect to the spectral coordinate t, and for any
given t ∈ [B], we only need to solve the following problem:

min
u t

λ‖ut − bt ‖2
L2 (Ωt ) +

ds∑
i=1



∑
x∈Ω̄\Ωt

i

∑
y∈Ω̄

w̄(x, y)
(
Piu

t (x) − Piut (y)
)2

+
1
r

∑
x∈Ωt

i

∑
y∈Ω̄

w̄(x, y)
(
Piu

t (x) − Piut (y)
)2

, (35)

where Pi : Rm×n → Rm×n satisfies Piut (x) = P t
i u(x). A standard variational

technique shows that (35) is equivalent to the following Euler-Lagrange equation:
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
µ

ds∑
i=1
P∗i IΩt

i
ht
i (x) +

ds∑
i=1
P∗i g

t
i (x) + λIΩt

(
ut − bt

)
(x) = 0, ∀x ∈ Ω̄ (36)

where µ = 1/r − 1, P∗i is the adjoint operator of Pi , IΩt is the projection operator
that sets ut (x) to zero for x < Ωt , i.e.,

IΩt ut (x) =
{
ut (x) , x ∈ Ωt,
0 , x < Ωt,

(37)

and




ht
i (x) =

∑
y∈Ω̄

w̄(x, y)
(
Piu

t (x) − Piut (y)
)

gti (x) =
∑
y∈Ω̄

2w̄(x, y)
(
Piu

t (x) − Piut (y)
)
+ µ

∑
y∈Ωt

i

w̄(x, y)
(
Piu

t (x) − Piut (y)
)

We use the notation x ĵ to denote the j-th component (in the spatial domain) after
x in a patch. Assuming a periodic padding is used when patches exceed the spatial
domain of HSI, one can easily verify that




Piu
t (x) = ut (x

î−1),

P∗i u
t (x) = ut (x1̂−i ).

With such notations, it follows that

P∗i IΩt
i
ht
i (x) =

[
IΩt

i
ht
i

]
(x1̂−i )

=IΩt

[
ht
i (x1̂−i )

]

=IΩt



∑
y∈Ω̄

w̄(x1̂−i, y1̂−i )
(
Piu

t (x1̂−i ) − Piu
t (y1̂−i )

)

=IΩt



∑
y∈Ω̄

w̄(x1̂−i, y1̂−i )
(
ut (x) − ut (y)

)
, (38)

and
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P∗i g
t
i (x) =gti (x1̂−i )

=
∑
y∈Ω̄

2w̄(x1̂−i, y)
(
Piu

t (x1̂−i ) − Piu
t (y)

)
+ µ

∑
y∈Ωt

i

w̄(x1̂−i, y)
(
Piu

t (x1̂−i ) − Piu
t (y)

)
=

∑
y∈Ω̄

2w̄(x1̂−i, y1̂−i )
(
Piu

t (x1̂−i ) − Piu
t (y1̂−i )

)
+ µ

∑
y∈Ωt

w̄(x1̂−i, y1̂−i )
(
Piu

t (x1̂−i ) − Piu
t (y1̂−i )

)
=

∑
y∈Ω̄

2w̄(x1̂−i, y1̂−i )
(
ut (x) − ut (y)

)
+ µ

∑
y∈Ωt

w̄(x1̂−i, y1̂−i )
(
ut (x) − ut (y)

)
. (39)

Therefore, we can rewrite (36) as

ds∑
i=1



∑
y∈Ω̄

2w̄(x1̂−i, y1̂−i )
(
ut (x) − ut (y)

)
+ µ

∑
y∈Ωt

w̄(x1̂−i, y1̂−i )
(
ut (x) − ut (y)

)

+ µIΩt



∑
y∈Ω̄

ds∑
i=1

w̄(x1̂−i, y1̂−i )
(
ut (x) − ut (y)

)
+ λIΩt

(
ut − bt

)
= 0, ∀x ∈ Ω̄.

(40)

After assembling the weight matrices w̄(x1̂−i, y1̂−i ) into

w̃(x, y) =
ds∑
i=1

w̄(x1̂−i, y1̂−i ), (41)

it follows that (40) is equivalent to

2
∑
y∈Ω̄

w̃(x, y)
(
ut (x) − ut (y)

)
+ µ

∑
y∈Ωt

w̃(x, y)
(
ut (x) − ut (y)

)

+ µIΩt



∑
y∈Ω̄

w̃(x, y)
(
ut (x) − ut (y)

)
+ λIΩt

(
ut − bt

)
= 0, ∀x ∈ Ω̄

(42)

Note that (42) is a sparse linear system for ut in Rmn , but unlike (26), the
coefficient matrix is not symmetric because of the projection operator IΩt . We
thus use the generalized minimal residual method (GMRES) to solve the systems
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(42). The numerical procedures of solving LDMM with the WNLL discretization is
summarized in Algorithm 2.

Algorithm 2 LDMM for HSI reconstruction with the WNLL discretization
Input: A noisy and incomplete observation b of an unknown hyperspectral image u ∈ Rm×n×B .

For every spectral band t ∈ [B], u is only partially observed on a random subset Ωt of
Ω̄ = [m] × [n].

Output: Reconstructed HSI u.
Initial guess u (0) .
while not converge do

1. Extract the patch set Pu (k ) from u (k ) .
2. Compute the similarity matrix on the spatial domain

w (x, y) = w (Pu (k ) (x), Pu (k ) (y)), x, y ∈ Ω.

3. Assemble the new similarity matrix

w̃ (x, y) =
ds∑
i=1

w̄ (x1̂−i, y1̂−i )

4. For every spectral band t , Update (u t )(k+1) as the solution of (42) using GMRES.
5. k ← k + 1.

end while
u = u (k ) .

3.3 A Comparison of the Two Approaches

We first compare the computational cost of the two approaches. The most time
consuming part of both algorithms is solving the |Ω̄|-dimensional sparse linear
systems. For each iteration in the inner loop of Algorithm 1, one needs to solve
d = s1 × s2 × B linear systems. On the other hand, one only needs to solve B
linear systems in each iteration of Algorithm 2. Moreover, unlike Algorithm 1,
Algorithm 2 does not have an inner loop. The reason is that the weight assembly step
(41) in Algorithm 2 combines s1 × s2 equations in the spatial patch domain into only
one equation, and the WNLL discretization enforces the constraint in (11) directly
without a further splitting. Therefore Algorithm 2 is much more computationally
efficient as compared to Algorithm 1.

We also compare the numerical accuracy of the two algorithms in the recon-
struction of hyperspectral images from their 5% noise-free random subsamples. In
the experiments, we set the spatial patch size s1 × s2 to 2 × 2, and Figure 1 and
Figure 2 present the performance of the two algorithms on the Pavia Center and
Pavia University datasets. The peak signal-to-noise ratio,
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Original data LDMM_PIM (PSNR = 33.47) Error
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Fig. 1 Reconstruction of the Pavia Center dataset from its 5% noise-free subsample. The first
column displays the original image and its 5% random subsample at one spectral band. The
remaining two columns display the reconstructed images and the error using LDMM with the PIM
(first row) and the WNLL (second row) discretization.

Original data LDMM_PIM (PSNR = 32.94) Error
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Fig. 2 Reconstruction of the Pavia University dataset from its 5% noise-free subsample. The
first column displays the original image and its 5% random subsample at one spectral band. The
remaining two columns display the reconstructed images and the error using LDMM with the PIM
(first row) and the WNLL (second row) discretization.
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PSNR = 10 log10
(
‖u∗‖∞
MSE

)
, (43)

is used to evaluate the reconstruction, where u∗ is the ground truth, and MSE is
the mean squared error. As can be seen from Figure 1 and Figure 2, even though
both algorithms lead to remarkable results of HSI reconstruction, LDMM with the
WNLL discretization has a slight edge over PIM in terms of accuracy as well.

4 Numerical Experiments

In this section, we present the numerical results on the following datasets: Pavia
University, Pavia Center, Indian Pine, and San Diego Airport. All images have been
cropped in the spatial dimension to 200× 200 for easy comparison. The objective of
the experiment is to reconstruct the original HSI from 5% random subsample (10%
random subsample for noisy data). As discussed in Sect. 3.3, we choose LDMM
with the WNLL discretization (Algorithm 2) as the default method because of its
computational efficiency and superior numerical accuracy.

4.1 Experimental Setup

Empirically, we discovered that it is easier for LDMM to converge if we use a
reasonable initialization. In our experiments, we always use the result of the low-rank
matrix completion algorithm APG [26] as an initialization, and run three iterations
of manifold update for LDMM. The peak signal-to-noise ratio (PSNR) defined in
(43) is used to evaluate the reconstruction accuracy. All experiments were run on
a Linux machine with 8 Intel core i7-7820X 3.6 GHz CPUs and 64 GB of RAM.
Codes and datasets are available for download at http://www.math.duke.
edu/~zhu/software.html.

4.2 Reconstruction from noise-free subsample

We first present the results of the reconstruction of hyperspectral images from their
5% noise-free random subsamples. Table 1 displays the computational time and
accuracy of the low-rank matrix completion initialization (APG) and LDMM with
different spatial patch sizes (1 × 1 and 2 × 2). One can easily see that LDMM
significantly improves the accuracy of APG initialization with comparable extra
computational time. Figure 3 and Figure 4 provide a visual illustration of the results.
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Original (Band 33) APG (PSNR = 32.43) Error
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Fig. 3 Reconstruction of the San Diego Airport dataset from its 5% noise-free subsample. Note
that the error is displayed with a scale 1/20 of the original data to visually amplify the difference.
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Fig. 4 Reconstruction of the Indian Pine dataset from its 5% noise-free subsample.
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APG LDMM (1 × 1) LDMM (2 × 2)
PSNR time PSNR time PSNR time

Indian Pine 26.80 13 s 32.09 8 s 34.08 22 s
Pavia Center 32.61 17 s 34.54 11 s 34.25 31 s

Pavia University 31.51 13 s 33.38 11 s 33.66 29 s
San Diego Airport 32.43 23 s 40.33 16 s 44.21 46 s

Table 1 Reconstruction of the HSIs from their noise-free 5% subsamples. LDMM (1 × 1) and
LDMM (2 × 2) stand for LDMM with spatial patch size of 1 × 1 and 2 × 2. The reported time of
LDMM does not include that of the AGP initialization.

4.3 Reconstruction from noisy subsample

We next show the results of the reconstruction of hyperspectral images from their
10% noisy subsample. A gaussian noise with a standard deviation of 0.05 is first
added to the original image, and 90% of the voxels are later removed from the data
cube. We report the accuracy and computational time of the experiments in Table 2.
Note that when noise is present, LDMM with 2 × 2 patches typically produce better
results than that with 1 × 1 patches. Visual illustrations of the reconstruction are
displayed in Figure 5 and Fig 6.

APG LDMM (1 × 1) LDMM (2 × 2)
PSNR time PSNR time PSNR time

Indian Pine 31.56 18 s 34.03 54 s 34.02 56 s
Pavia Center 30.22 47 s 30.55 82 s 31.61 82 s

Pavia University 29.88 38 s 30.26 77 s 31.40 86 s
San Diego Airport 33.90 69 s 39.17 186 s 41.31 231 s

Table 2 Reconstruction of the noisy HSIs from their 10% subsamples. LDMM (1×1) and LDMM
(2 × 2) stand for LDMM with spatial patch size of 1 × 1 and 2 × 2. The reported time of LDMM
does not include that of the AGP initialization.

5 Conclusion

We explained in this chapter the low dimensional manifold model for the recon-
struction of hyperspectral images from noisy and incomplete observations with a
significant number of missing voxels. LDMM is based on the assumption that the
3D patches in a hyperspectral image tend to sample a collection of low dimensional
manifolds. As a result, we directly use the dimension of the patch manifold as a
regularizer in a variational functional, which can be solved using either the point
integral method or the weighted nonlocal Laplacian. Because of the special data
structure of hyperspectral images, the same similarity matrix can be shared across
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Original (Band 33) Noise added

10% noisy subsample LDMM

Fig. 5 Reconstruction of the San Diego Airport dataset from its 10% noisy subsample.

Original (Band 38) Noise added

10% noisy subsample LDMM

Fig. 6 Reconstruction of the Indian Pine dataset from its 10% noisy subsample.
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all spectral bands, which significantly reduces the computational burden. Numerical
experiments show that the proposed algorithm is both accurate and efficient for HSI
reconstruction from its noisy and incomplete observation.
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