
CESMA: Centralized Expert Supervises
Multi-Agents

Alex Tong Lin
Department of Mathematics

UCLA
atlin@math.ucla.edu

Mark J. Debord
NAVAIR

Katia Estabridis
NAVAIR

Gary Hewer
NAVAIR

Stanley Osher
UCLA

Abstract

We consider the reinforcement learning problem of training multiple agents in
order to maximize a shared reward. In this multi-agent system, each agent seeks
to maximize the reward while interacting with other agents, and they may or may
not be able to communicate. Typically the agents do not have access to other agent
policies and thus each agent observes a non-stationary and partially-observable
environment. In order to obtain multi-agents that act in a decentralized manner,
we introduce a novel algorithm under the framework of centralized learning, but
decentralized execution. This training framework first obtains solutions to a multi-
agent problem with a single centralized joint-space learner. This centralized expert
is then used to guide imitation learning for independent decentralized multi-agents.
This framework has the flexibility to use any reinforcement learning algorithm
to obtain the expert as well as any imitation learning algorithm to obtain the
decentralized agents. This is in contrast to other multi-agent learning algorithms
that, for example, can require more specific structures. We present some theoretical
error bounds for our method, and we show that one can obtain decentralized
solutions to a multi-agent problem through imitation learning.

1 Introduction

Reinforcement Learning (RL) is the problem of finding an action policy that maximizes reward for an
agent embedded in an environment [44]. It has recently has seen an explosion in popularity due to its
many achievements in various fields such as, robotics [18], industrial applications [8], game-playing
[25, 39, 37], and the list continues. However, most of these achievements have taken place in the
single-agent realm, where one does not have to consider the dynamic environment provided by
interacting agents that learn and affect one another.

This is the problem of Multi-agent Reinforcement Learning (MARL) where we seek to find the best
action policy for each agent in order to maximize their reward. The settings may be cooperative, and
thus they might have a shared reward, or the setting may be competitive, where one agent’s gain is
another’s loss. Some examples of a multi-agent reinforcement learning problem are: decentralized
coordination of vehicles to their respective destinations while avoiding collision, or the game of
pursuit and evasion where the pursuer seeks to minimize the distance between itself and the evader
while the evader seeks the opposite. Other examples of multi-agent tasks can be found in [29] and
[20].

Preprint. Under review. A.T.L. and S.O. was partially supported by AFOSR MURI FA9550-18-0502

ar
X

iv
:1

90
2.

02
31

1v
3

 [
cs

.M
A

]
 1

8
Ju

n
20

19

The key difference between MARL and single-agent RL (SARL) is that of interacting agents, which
is why the achievements of SARL cannot be absentmindedly transferred to find success in MARL.
Specifically, the state transition probabilities in a MARL setting are inherently non-stationary from the
perspective of any individual agent. This is due to the fact that the other agents in the environment are
also updating their policies, and so the Markov assumptions typically needed for SARL convergence
are violated. This aspect of MARL gives rise to instability during training, where each agent is
essentially trying to learn a moving target.

In this work, we present a novel method for MARL in the cooperative setting (with shared reward).
Our method first trains a centralized expert with full observability, and then uses this expert as a
supervisor for independently learning agents. There are a myriad of imitation/supervised learning
algorithms, and in this work we focus on adapting DAgger (Dataset Aggregation) [34] to the
multi-agent setting. After the imitation learning stage, the agents are able to successfully act in a
decentralized manner. We call this algorithm Centralized Expert Supervises Multi-Agents (CESMA).
CESMA adopts the framework of centralized training, but decentralized execution [16], the end goal
of which is to obtain multi-agents that can act in a decentralized manner.

2 Related works

The most straight-forward way of adapting single-agent RL algorithms to the multi-agent setting is
by having agents be independent learners. This was applied in [46], but this training method gives
stability issues, as the environment is non-stationary from the perspective of each agent [23, 3, 4].
This non-stationarity was examined in [28], and stabilizing experience replay was studied in [10]

Another common approach to stabilizing the environment is to allow the multi-agents to communicate.
In [41], they examine this using continuous communications so one may backpropagate to learn
to communicate. And in [9], they give an in-depth study of communicating multi-agents, and also
provide training methods for discrete communication. In [31], they decentralize a policy by examining
what to communicate and by utilizing supervised learning, although they mathematically solve for a
centralized policy and their assumptions require homogeneous communicating agents.

Others approach the non-stationarity issue by having the agents take turns updating their weights
while freezing others for a time, although non-stationarity is still present [7]. Other attempts adapt
Q-learning to the multi-agent setting: Distributed Q-Learning [17] updates Q-values only when they
increase,and updates the policy only for actions that are not greedy with respect to the Q-values, and
Hysteretic Q-Learning [22] provides a modification. Other approaches examine the use of parameter
sharing [13] between agents, but this requires a degree of homogeneity of the agents. And in [48],
their approach to non-stationarity was to input other agents’ parameters into the Q function. Other
approaches to stabilize the training of multi-agents are in [40], where the agents share information
before selecting their actions.

From a more centralized view point, [27, 32, 42] derived a centralized Q-value function for MARL,
and in [49], they train a centralized controller and then sequentially select actions for each agent. The
issue of an exploding action space was examined in [47].

A few works that follow the framework of centralized training, but decentralized execution are:
RLar (Reinforcement Learning as Rehearsal) [16], COMA (Counterfactual Multi-Agent), and also
[36, 11] – where the idea of knowledge-reuse is examined. In [6], they examine decentralization of
policies from an information-theoretic perspective. There is also MADDPG [20] where they train in a
centralized-critics decentralized-actors framework; after training completes, the agents are seperated
from the critics and can execute in a fully distributed manner.

For surveys of MARL, see articles in [2, 30].

3 Background

In this section we briefly review the requisite material needed to define MARL problems. Additionally
we summarize some of the standard approaches in general reinforcement learning and discuss their
use in MARL.

2

Dec-POMDP: A formal framework for multi-agent systems is called a decentralized partially-
observable Markov decision process (Dec-POMDP) [1]. A Dec-POMDP is a tuple
(I,S, {Ai}, {Oi}, P,R) where I is the finite set of agents indexed 1 to M , S is the set of states,
Ai is the set of actions for agent i, and thus

∏M
i=1Ai is the joint action space, Oi is the observa-

tion space of agent i, and thus
∏M
i=1Oi is the joint observation space, P = P (s′, o|s, a) (where

o = (o1, . . . , oM) and similarly for the others) is the state-transition probability for the whole system,
and R : S ×

∏M
i=1A → R is the reward. In the case when the joint observations o equals the world

state of the system, then we call the system a decentralized Markov decision process (Dec-MDP).

DAgger: The Dataset Aggregation (DAgger) algorithm [34] is an iterative imitation learning algo-
rithm that seeks to learn a policy from expert demonstration. The main idea is to allow the learning
policy to navigate its way through the environment, and have it query the expert on states that the
it sees. It does this by starting with a policy π̂2 which learns from the dataset of expert trajectories
D1 through supervised learning. Using π̂2, a new dataset is generated by rolling out the policy and
having the expert provide supervision on the decisions that the policy made. This new dataset is
aggregated with the existing set into D2 ⊃ D1. This process is iterated, i.e. a new π̂3 is trained,
another new dataset is obtained and aggregated into D3 ⊃ D2 and so on. Learning in this way has
been shown to be more stable and have nicer convergence properties as learning utilizes trajectories
seen from the learner’s state distribution, as opposed to only the expert’s state distribution.

Policy Gradients (PG): One approach to RL problems are policy gradient methods [45]: instead
of directly learning state-action values, the parameters θ of the policy πθ are instead adjusted to
maximize the objective,

J(θ) = Es∼pπ,a∼πθ [∇θ log πθ(a|s)Qπ(s, a)]
where pπ is the state distribution from following policy π. The gradient of the above expression can
written as [45, 44]:

∇θJ(θ) = Es∼pπ,a∼πθ [∇θ log πθ(s|a)Qπ(s, a)]
Many policy gradient methods seek to reduce the variance of the above gradient estimate, and thus
many study how one estimates Qπ(s, a) above [35]. For example, if we let Qπ(s, a) be the sample
return Rt =

∑T
i=t γ

i−tri, then we get the REINFORCE algorithm [14]. Or one can choose to learn
Qπ(s, a) using temporal-difference learning [43, 44], and would obtain the Actor-Critic algorithms
[44]. Other policy gradients algorithms are: DPG [38], DDPG [19], A2C and A3C [24], to name a
few.

Policy Gradients have been applied to multi-agent problems; in particular the Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) [20] uses an actor-critic approach to MARL, and this
is the main baseline we test our method against. Another policy gradient method is by [12] called
Counterfactual Multi-Agent (COMA), who also uses an actor-critic approach.

4 Methods

In this section, we explain the motivation and method of our approach: Centralized Expert Supervises
Multi-Agents (CESMA).

4.1 Treating a multi-agent problem as a single agent problem

Intuitively, an optimal strategy of a multi-agent problem could be found by a centralized expert with
full observability. This is because the centralized controller has the most information available about
the environment, and therefore would not pay a high of cost of partial-observability that independent
learners might. This is discussed more in 5.

To find this centralized expert, we treat a multi-agent problem as a single agent problem in the joint
observation and action space of all agents. This is done by concatenating the observations of all agents
into one observation vector for the centralized expert, and the expert learns outputs that represent the
joint actions of the agents.

Our framework does not impose any other particular constraints on the expert. Any expert architecture
that outputs an action that represents the joint-actions of all of the agents may be used. Due to that,
we are free to use any standard RL algorithm for the expert such as DDPG, DQN, or potentially even
analytically derived experts.

3

4.2 Curse of dimensionality and some reliefs

When training a centralized expert, both the observation space and action space can grow exponen-
tially. For example, if we use a DQN for our centralized expert then the number of output nodes will
typically grow exponentially. This is due to each output needing to correspond to an element in the
joint action space

∏M
i=1Ai.

This problem has been studied by QMIX [32] and VDNs (Value-Decomposition Networks) [42],
where exponential scaling of the output space is solved by having separate Q values for each agent
and then using the sum as a system Q. Other techniques such as action branching [47] have also been
considered.

In our experiments, we use DDPG (with Gumbel-Softmax action selection if the environment is
discrete, as MADDPG does also) to avoid the exploding input nodes of the observation space, as well
as exploding output nodes of the action space. Under this paradigm, the input and output nodes only
grow linearly with the number of agents.

4.3 CESMA for supervised learning on the multi-agents

In order to perform imitation learning to decentralize the centralized expert policy, we adapt DAgger
to the multi-agent setting. There are many ways DAgger can be applied to multi-agents, but we
implement a method that best allows the theoretical analysis from [34] to apply: Namely after training
the expert, we do supervised learning on a single neural network with disconnected components, each
of which corresponds to a multi-agent.

In more detail, after training a centralized expert π∗, we initialize the M agents πθ1 , . . . , πθM , and
initialize the dataset D. The agents then step through the environment, storing each observation the
multi-agents encounter along with its action label: (o, aexpert), where aexpert = π∗(o). After D has
reached a sufficient size, at every kth time step (chosen by the practitioner; we used k = 1 in our
experiments), we sample a batch from this dataset {(o(b), a(b)

expert)}Bb=1, and then distribute observation

o
(b)
i and action-label a(b)

expert,i to agent i. The observation and action label is then used to perform
supervised learning on the agents. Having a shared dataset of trajectories in this way allows us to
view (πθ1 , . . . , πθM) as a single neural-network with disconnected components, and thus the error
bounds from [34] directly apply, as discussed in Section 5.

See Figure 1 for a diagram. The appendix contains pseudo-code for our method.

Figure 1: Diagram presenting how the centralized
expert guides supervised learning for the multi-
agents. The multi-agents can be thought of as mak-
ing up the disconnected components of a single-
agent learner.

The aformentioned procedure is sufficient when
the agents do not have to communicate in order
to solve the environment (e.g. they all have full
observability, or their observations are isomor-
phic to full observability, or the partial observ-
ability is not too detrimental). When communi-
cation is involved, then we have to modify the
above method.

4.4 CESMA
for multi-agents that communicate

In order to train multi-agents that communicate,
especially in an environment where communica-
tion is necessary (see Section 6.3 for two such
cases), we have to slightly modify the above
procedure. Training the centralized expert in
a communication scenario follows the original
procedure, but since the expert has full observ-
ability, it has no incentive to communicate with
itself. Indeed, most of the time the reward func-
tion is independent of the communication (although if one desired to act covertly, then this may not
be the case). Thus any observations and actions regarding communication are not utilized when
training the expert. In the next phase, the agents learn to communicate amongst themselves.

4

We leave the full details in the appendix, and opt here to provide an overview: In the environments
we test, the communication action by an agent at time step t− 1 will appear to other agents at the
next time step t. Then in our dataset of observations, we store together the observations from time
step t− 1 and t.

The idea is to separate the losses of the agent actions into an action loss and a communication loss.
In order to obtain the action loss, we do supervised learning on the observation and actions at time
t where the input is the observation but with updated communications from the other agents, and
the label is the centralized expert action label. The communication loss for agent i is computed
by first obtaining agent i’s output communication action at t − 1. This is then combined with the
observations and actions and of all other agents (at time t). We query the expert on the correct action
for the other agents, and we use this supervised learning loss to backpropagate the errors through to
agent i weights. Indeed, our main motivation was the chain rule.

By using this procedure we allow the decentralized agents to learn communications that help reduce
the penalty associated with operating in a partially-observable environment. Section 5.1 discusses
this in more detail.

In this way, we have alleviated a bit the issue of communication being a sparse reward, which is
because even when an agent communicates to another agent, the receiving agent is still learning, so it
is unclear if the broadcasting agent was correct, or the receiving agent was correct; we have a double
ambiguity. With an expert supervisor, the correct action by the acting agent is clear.

5 Theoretical analysis

Although the proposed framework could handle a myriad of imitation learning algorithms, such as
Forward Training [33], SMILe [33], SEARN [5], and more, we use DAgger in our experiments, and
thus we follow its theoretical analysis, and provide some multi-agent extensions. And since our
method can be viewed as using a single-agent learner with disconnected components so that we can
trivially decompose it into multi-agents, then this gives us direct theoretical insights [34].

In our setting, the centralized expert observes the joint observations of all agents, and thus it is a
function π∗ : O1 × · · · × OM → A1 × · · · × AM , and we can decompose π∗ into,

π∗(o) = (π∗1(o), . . . , π
∗
M (o))

where π∗i : O1 × · · · × OM → Ai. In order to decentralize our policy, our goal is to find policies
π1, . . . , πM such that,

π∗(o) = (π∗1(o), . . . , π
∗
M (o))

want
= (πi(o1), . . . , πM (oM))

Note that π∗i is able to observe the joint observations while πi is only able to observe its own local
observation oi. This means we may encounter issues where

π∗i (o1, . . . , oi−1, oi, oi+1, . . . , oM) = ai, but π∗i (o
′
1, . . . , o

′
i−1, oi, o

′
i+1, . . . , o

′
M) = a′i

so we want
πi(oi) = ai or a′i,

Thus the agent policy can act sub-optimally in certain situations, being unaware of the global
observation. This unfortunate situation not only afflicts our algorithm, but any multi-agent training
algorithm (and in general, any algorithm attempting to solve a POMDP).

We call this the partial observability problem of decentralization (note partial observability afflicts
any algorithm trying to solve a POMDP (e.g. multi-agent systems), but here we examine from the
viewpoint of decentralization).

More concretely, we can say there is is a partial observability problem of decentralization if there
exists observations (o1, . . . , oi−1, oi, oi+1, . . . , oM) and (o′1, . . . , o

′
i−1, oi, o

′
i+1, . . . , o

′
M) such that

π∗(o1, . . . , oi−1, oi, oi+1, . . . , oM) 6= π∗(o′1, . . . , o
′
i−1, oi, o

′
i+1, . . . , o

′
M).

As it pertains to our algorithm, if we can bound the cost of this problem, then we can obtain an error
bound. Then suppose ` is the 0-1 loss of matching the expert policy π∗, and suppose the partial
observability problem of decentralization is such that

Eo∼d
(π

(i)
1 ,...,π

(i)
M

)
[`(o, (π1, . . . , πM)] ≥ cp

5

for all iterations i, observations o and policies (π1, . . . , πM). Then we have the following theorem
(whose proof is in the appendix),

Theorem 1. If the number of iterations N is Õ(T), and J(π) is the cost (negative of the reward) of
executing policy π, then there exists a joint multi-agent policy π̂ ∈ {π̂(i)}Ni=1 such that

J(π̂) ≤ J(π∗) + TεN +O(1)

≤ J(π∗) + Tcp +O(1)

where,

εN = min
(π1,...,πM)∈Π1×···×ΠM

1

N

N∑
i=1

Eo∼ d
(π

(i)
1 ,...,π

(i)
M

)
[`(o, (π1, . . . , πM)]

Under these assumptions, this implies that decentralizing the policy always requires paying a cost of
partial observability, independent of the number of iterations N . Although in our experiments, we
sometimes find this cost is negligible.

5.1 The need for communication

The most effective setting for our methods is when the multi-agents are all able to observe the full
joint observation. From the perspective of each agent the only non-stationarity when learning comes
from other agents’ policies, as opposed to from the non-agent portion of the environment.

In the situation when each agent only has local observations, then to avoid the partial observability
problem of decentralization, there is an incentive to communicate. Namely, we want for the multi-
agent policy (π1, . . . , πM),

π∗(o) = (π∗1(o), . . . , π
∗
M (o))

want
= (πi(o1, c1), . . . , πM (oM , cM))

where ci is the communication from either all or only some of the other agents, to agent i. Note that
we can view ci as a function ci : O1 × · · · × Oi−1 × Oi+1 × · · · × OM → Ci (where Ci is some
communication action space). Then under the following conditions, we have the error bound:
Theorem 2. If the multi-agent communication ci : O1 × · · · × Oi−1 × Oi+1 × · · · × OM → Ci
satisfies the following condition:

π∗(o1, . . . , oi−1, oi, oi+1, . . . , oM) 6= π∗(o′1, . . . , o
′
i−1, oi, o

′
i+1, . . . , o

′
M)

implies that ci(o1, . . . , oi−1, oi+1, . . . , oM) 6= c(o′1, . . . , o
′
i−1, o

′
i+1, . . . , o

′
M)

for all i = 1, . . . ,M , then there is no partial observability cost of decentralization, and thus if the
number of iterations N is of Õ(T), then there exists a policy π̂1,...,M ∈ {π̂(i)

1,...,M}Ni=1 such that
Eo∼dπ̂1,...,M [`(o, π̂1,...,M)] ≤ εN +O(1/T). Then this implies, J(π̂1,...,M) ≤ J(π∗1,...,M) + εNT +

O(1)

The proof is in the appendix. We remark that a naive communication protocol satisfying the above
conditions is when ci is the identity operator.

6 Experiments

Our experiments are conducted in the Multi-Agent Particle Environment [26, 20] provided by OpenAI,
which has basic simulated physics (e.g. Newton’s law) and multiple multi-agent scenarios.

6.1 Preliminaries

In order to conduct comparisons to MADDPG, we also use the DDPG algorithm with the Gumbel-
Softmax [15, 21] action selection for discrete environments, as they do. For the single-agent central-
ized expert neureal network, we always make sure the number of parameters matches (or is lower)
than that of MADDPG’s. For the decentralized agents, we use the same number of parameters as the
decentralized agents in MADDPG (i.e. the actor part). We always use the discount factor γ = 0.9,

6

as that seemed to work best both for our centralized expert, and also MADDPG. Following their
experimental procedure, we average our experiments over three runs. And for the decentralization, we
trained three separate centralized experts, and used each of them to obtain three decentralized policies.
Full details of our hyperparameters is in the appendix. Rewards are also averaged over 1,000 episodes.
And we always use two-hidden layer neural networks. Brief descriptions of each environment are
provided, and fuller descriptions and some example pictures are placed in the appendix.

6.2 Cooperative Navigation – Homogeneous and Nonhomogenous Agents

Figure 2: Reward curves for the various multi-agent environments. The
dotted red lines for the decentralized curves represent when we stop the
decentralization procedure, as the reward sufficiently matches the expert.

Here we examine the
situation of N agents
occupying N land-
marks in a 2D plane,
and the agents are
either homogeneous
or heterogeneous. The
(continuous) observa-
tions of each agent are
the relative positions
of other agents, the
relative positions
of each landmark,
and its own velocity.
The agents do not
have access to others’
velocities so we have
partial observability.
The reward is based
on how close each
landmark has an agent
near it, and the actions
of each agent are
discrete: up, down,
left, right, and do
nothing.

In Figure 2, in all
cases the fully central-
ized expert is able to
achieve a lower reward
than MADDPG and
DDPG. We are also
able to decentralize the
expert policy (which was chosen to be the one with lowest reward) so as to reach this same reward.
And we remark that our method seems to work better with more agents.

The six nonhomogeneous case works as a good experiment to see what happens when we stop the
centralized expert before it truly converges. In this case, decentralization to achieve the same reward
as the expert is quickest and occurs within the first 5,000 episodes. Intuitively, it makes sense that a
suboptimal solution allows faster convergence.

We observe our method improves sample efficiency over MADDPG: we picked centralized experts
that achieved a reward of -350 (averaged over its past 1,000 episodes) which took the centralized
expert around 50,000 episodes. Decentralizing these polices so that we obtain a reward higher than
-355 took around 7,000 episodes, so in total it took 57,000 episodes to obtain decentralized policies
achieving a reward higher than -355. But it takes MADDPG around 80,000 to sometimes more than
100,000 episodes to obtain rewards higher than -355.

We also examined the use of DQNs, one with an exponential number of output nodes, and a
QMIX/Centralized VDN that sums the individual agents Q-values so we get linear growth in action.
And we also test decentralization performance when each agent has its own dataset of trajectories, in

7

the 3 nonhomogeneous agents scenario. We hypothesized that the nonhomogeneity of the agents may
have an effect on convergence, but this turned out not to be so. See Figure 2 for the reward curves.

6.3 Cooperative Communication

Here we we adapt CESMA to a task that involves communication. In this scenario, the communication
action taken by each agent at time step t− 1 will appear to the other agents at time step t. Although
we require continuous communication to backprop, in practice we can use the softmax operator to
provide the bridge between the discrete and continuous. And during decentralized execution, our
agents are able to act with discrete communication inputs.

We examine three scenarios for CESMA that involve communication, and use the training scenario
described in section 4.4. The first scenario called the “speaker and listener" environment has a speaker
who broadcasts the correct goal landmark (in a “language" it must learn) out of a possible 3 choices,
and the listener, who is blind to the correct goal landmark, must use this information to move there.
Communication is a necessity in this environment. The second scenario is cooperative navigation
with communication and here we have two/three agents whose observation space includes the goal
landmark of the other agent, and not their own, and there are three/five possible goal landmarks.

We see in figure 2 that we achieve a lower reward and in a more sample efficient manner. For the
speaker and listener environment, the centralized expert near-immediately converges, and same for
the decentralization process. And MADDPG has a much higher variance in its convergence. In the
cooperative navigation with communication scenarios, the story is similar, that the centralized expert
quickly converges, and the decentralization process is near immediate.

6.4 Reward vs. loss, and slow and fast learners

Figure 3: Reward vs. loss, and loss vs. episode.

In our experiments with cooperative navigation,
when using the cross entropy loss, we did not
find an illuminating correlation between the re-
ward and the loss. We reran the experiments
in a truer DDPG fashion by solving a contin-
uous version of the environment, and used the
mean-squared error for the supervised learning.
We examined the loss in the cooperative naviga-
tion task with 3 agents, both homogeneous and
nonhomogeneous agents. We plot the figures in
6.4. We found that in these cases, the reward
and loss were negatively correlated as expected,
namely that we achieved a higher reward as the
loss decreased. In the nonhomogeneous case,
we plot each individual agents’ reward vs its
loss and found that the big and slow agent had
the biggest loss, followed by the medium agent,
and the small and fast agent being the quick-
est learner. This example demonstrates that in
nonhomogeneous settings, some agents may be
slower to imitate the expert than others.

7 Conclusion

We propose a MARL algorithm, called Central-
ized Expert Supervises Multiagents (CESMA), which takes the training paradigm of centralized
training, but decentralized execution. The algorithm first trains a centralized expert policy, and then
adapts DAgger to obtain decentralized policies that execute in a decentralized fashion.

8

A Experiment where each agent has its own dataset of trajectories

Here we describe in a little bit more detail our procedure for experimenting with individual dataset
trajectories for each agent, vs a shared dataset. Namely, we plot the learning curves for decentralizing
a policy in the two cases: (1) When each agent has its own dataset of trajectories, or (2) when
there is a shared dataset of trajectories (which is the one we use in the experiments). We tested on
the cooperative navigation environment with 3 nonhomogeneous agents. We hypothesized that the
nonhomogeneity of the agents would have an effect on the shared reward, but this turned out not to
be so. But it is interesting to note that in the main text, we found that the some agents had a bigger
loss when doing supervised learning from the expert.

B Experiment with DQNs

Here we examined decentralizing DQNs. We briefly described it in the main text, and give a bit
more info here. We used the cross entropy loss for the supervised learning portion, and used the
cooperative navigation environment with 3 nonhomogenous agents. The DQNs we used are: the
exponential actions DQN, which is just a naive implementation of DQNs for the multi-agents, and a
Centralized VDN where the system Q value is the sum of the individual agent Q values. We used a
neural network with 200 hidden units, batch size 64, and for the exponential DQN, we used a learning
rate and τ of 5× 10−4, and for the QMIX/Centralized VDN DQN we used a learning rate and τ of
10−3. We also used a noisy action selection for exploration.

9

C Pseudo-algorithm of CESMA (without communication)

Algorithm 1 CESMA: Centralized Expert Supervises Multi-Agents
Require: A centralized policy π∗ that sufficiently solves the environment.
Require: M agents πθ1 , . . . πθM , observation buffer D for multi-agent observations, batch size B

1: while πθ1 , . . . , πθM not converged do
2: Obtain observations o1, . . . , oM from the environment
3: Obtain agents’ actions, a1 = πθ1(o1), . . . , aM = πθM (oM)
4: Obtain expert action labels ei = π∗(o1, . . . , oM)i, for i = 1, . . . ,M
5: Store the joint observation with expert action labels ((o1, e1), . . . , (oM , eM) in D
6: if |D| sufficiently large then
7: Sample a batch of B multi-agent observations {((ob1, eb1), . . . , (obM , ebM))}Bb=1

8: Perform supervised learning for πθi where the inputs are {obi} and the labels are {ebi}, for
i = 1, . . . ,M .

9: end if
10: end while

D Detailed description of CESMA with communicating agents

The main intuition for our idea is very simple: the chain rule. In order to minimize notational burden,
we first leave out some details, and then provide them after: If the supervised learning loss function is
`, the expert is π∗, and if we have agents: π1, . . . , πM , then in order to update the communication of
agent i to agent j, then denoting c−i the communications from all other agents to agent j excluding
agent i, then we want to minimize:

min
πi

`(π∗(o)j , πj(oj , c−i ∪ πi(oi)comm)))

and so we should backpropagate through other agents’ actions (namely the physical actions which have
the expert label, and not the communication action which does not) to update agent i’s communication.
We note both c−i and πi(oi)comm are communication actions that are obtained from the current policy
of the agents, i.e. we re-query the agents for their communication actions.

And to update the action loss of agent i, we want to minimize
min
πi

`(π∗(o)i, πi(oi, c)action)

(note bold characters are vectors, e.g. o = (o1, . . . , oM)). We note that c is an up-to-date communi-
cation action, which we obtain by re-querying the other agents for their communication actions.

The above leaves out some notation for ease of understanding and to get the main idea. The technically
and notationally correct version is:

If

• the supervised learning loss function is `,
• the expert is π∗,
• the agents at the current iteration are: π1, . . . , πM ,
• oi is the observation of agent i,
• ôi is the observation of agent i at the next timestep (i.e. after observing oi and communica-

tions from other agents, and then taking a step in the environment, to get a new observation),
• ci is the communication action of other agents towards agent i that accompanies observation
oi,

• ĉi is the updated (i.e. using the most up-to-date policy) communication action of agents
towards agent i, i.e. ĉi = (πj(oj , cj)comm,i)j 6=i

then we want to minimize:

min
πi

1

M − 1

M∑
j=1,j 6=i

`(π∗(ô)j , πj(ôj , ĉj)action) (communication loss)

10

where we note ĉj contains the communication action from agent i to agent j, and thus we can
backprop, and the subscript “action" means the physical action (and not the communication action).

And for the action loss, we want to minimize:

min
πi

`(π∗(ô)i, πi(ôi, ĉi)action) (action loss)

where ĉi is the updated communications from all other agents, to agent i (i.e. we use the current
most-up-to-date policy to form ĉi. The need to use an updated version of communication ĉi is because
the language of the agents tends to change more drastically as training progresses. (One thing we did
try was to set a low size limit on the trajectory datasetD, but preliminary results showed it did not help
much). But we do note that in order to construct ĉi, we need to use the observation/communications
from time step t−1, so reliance on an older language is still there. One can imagine going all the way
back to t = 0 in order to update the communications of the whole trajectory, but for our experiments,
going back one timestep sufficed.

We give a pseudocode in algorithm 2.

A diagram of the action loss and communication loss is given in figure 4 (action loss) and 5
(communication loss).

We remark that we also considered the case of a hybrid objective, where the actions are learned
by supervised learning from the expert, and the communication is learned similar to a standard RL
algorithm (e.g. the Q-values are communication actions). Preliminary results showed this did not
work well.

Figure 4: A diagram of the computation of the action loss for agent i. The πj’s are the most up-to-date
policies, and ĉi is an updated communication from the other agents.

11

Figure 5: A diagram of the computation of the communication loss for agent i. The πj’s are the
most-up-to-date policies, and the ĉj’s are updated communications from the other agents. Note we
calculate the action loss of agent j, j 6= i, and then backpropagate this loss to agent i’s weights.

12

Algorithm 2 CESMA: Centralized Expert Supervises Multi-Agents (Communicating Agents)
Require: A centralized policy π∗ that sufficiently solves the environment.
Require: M initial agents π1, . . . πM , observation buffer D for multi-agent observations, batch size

B
Require: `, the supervised learning loss

1: while π1, . . . , πM not converged do
2: Obtain the observations and communications {(oi, ci)}Mi=1 from the environment.
3: With these observations, obtain actions and step through the environment, to get new observa-

tions {ôi}Mi=1.
4: Store the observations/communications together (((o1, c1), ô1), . . . , ((oM , cM), ôM)) in D
5: if |D| sufficiently large then
6: Sample a batch of B multi-agent observations {((o1,b, c1,b), ô1,b), . . . ,

((oM,b, cM,b), ôM,b)}Bb=1
7: for each agent i = 1 to M do
8: Action loss:
9: Obtain the up-to-date communication actions from each agent, to agent i: ĉi,b =

(πj(oj,b, cj,b)comm,i)j 6=i (this can be pre-computed outside the for-loop)
10: Obtain the action loss:

action loss =
1

B

B∑
b=1

`(π∗(ôb)i, πi(ôi,b, ĉi,b))action)

where the subscript “action" denotes the physical action (and not the communication
action).

11: Communication loss:
12: For each other agent j, obtain the up-to-date communication ĉj,b (similarly to above for

ĉi,b), which contains agent i’s communication action to agent j so we can backprop to
agent i’s weights (ĉj,b can pre-computed outside the for-loop just like ĉi,b above)

13: Obtain the communication loss,

communication loss =
1

B

B∑
b=1

1

M − 1

M∑
j=1,j 6=i

`(π∗(ôb)j , πj(ôj,b, ĉj,b)action)

where the subscript “action" denotes the physical action (and not the communication
action).

14: Update:
15: Update the weights of πi where the total loss equals the action loss plus the communica-

tion loss, to obtain πnew
i .

16: end for
17: Set πi ← πnew

i , for i = 1, . . . ,M .
18: end if
19: end while

E More detailed descriptions of the environments used in the experiments

E.1 Cooperative navigation

The goal of this scenario is to have N agents occupy N landmarks in a 2D plane, and the agents are
either homogeneous or heterogeneous. The environment consists of:

• Observations: The (continuous) observations of each agent are the relative positions of other
agents, the relative positions of each landmark, and its own velocity. Agents do not have
access to other’s velocities, and thus each agent only partially observes the environment
(aside from not knowing other agents’ policies).

13

• Reward: At each timestep, if Ai is the ith agent, and Lj the jth landmark, then the reward
rt at time t is,

rt = −
N∑
j=1

min {‖Ai − Lj‖ : i = 1, . . . , N}

This is a sum over each landmark of the minimum agent distance to the landmark. Agents
also receive a reward of −1 at each timestep that there is a collision.

• Actions: Each agents’ actions are discrete and consist of: up, down, left, right, and do
nothing. These actions are acceleration vectors (except do nothing), which the environment
will take and simulate the agents’ movements using basic physics (i.e. Newton’s law).

Figure 6: Example of cooperative navigation environment with 6 nonhomogeneous agents. The
agents (blue) must decide how best to cover each landmark (grey).

E.2 Speaker listener

In this scenario, the goal is for the listener agent to reach a goal landmark, but it does not know which
is the goal landmark. Thus it is reliant on the speaker agent to provide the correct goal landmark. The
observation of the speaker is just the color of the goal landmark, while the observation of the listener
is the relative positions of the landmark. The reward is the distance from the landmark.

• Observations: The observation of the speaker is the goal landmark. The observation of the
listener is the communication from the speaker, as well as the relative positions of each goal
landmark.

• Reward: The reward is merely the negative (squared) distance from the listener to the goal
landmark.

• Actions: The actions of the speaker is just a communication, a 3-dimensional vector. The
actions of the listener are the five actions: up, down, left, right, and do nothing.

14

Figure 7: Example of the speaker and listener environment. The speaker (grey) must communicate to
the agent which colored landmark to go towards (blue in this case).

E.3 Cooperative navigation with communication

In this particular scenario, we have one version with 2 agents and 3 landmarks, and another version
with 3 agents and 5 landmarks. Each agent has a goal landmark that is only known by the other
agents. Thus the each agent must communicate to the other agents its goal. The environment consists
of:

• Observations: The observations of each agent consist of the agent’s personal velocity, the
relative position of each landmark, the goal landmark for the other agent (an 3-dimensional
RGB color value), and a communication observation from the other agent.

• Reward: At each timestep, the reward is the sum of the distances between and agent and its
goal landmark.

• Actions: This time, agents have a movement action and a communication action. The
movement action consists of either not doing anything, or outputting an acceleration vector
of magnitude one in the direction of up, down, left, or right; so do nothing, up, down, left
right. The communication action is a one-hot vector; here we choose the communication
action to be a 10-dimensional vector.

Figure 8: Example of cooperative navigation environment with communication. We have 3 agents
and 5 landmarks. The lightly colored circles are agents and they must go towards their same-colored
landmark.

15

F Hyperparameters
• For all environments, we chose the discount factor γ to be 0.9 for all experiments, as

that seemed to benefit both the centralized expert as well as MADDPG (and as well as
independently trained DDPG). And we always used a two-hidden-layer neural network for
all of MADDPG’s actors and critics, as well as the centralized expert, and the decentralized
agents. The training of MADDPG used the hyperparameters from the MADDPG paper
[20], with the exception of having γ = 0.9 (instead of 0.95), as that improved MADDPG’s
performance.

• For the cooperative navigation environments with 3 agents, for both homogeneous and
nonhomogeneous: Our centralized expert neural network was a two-hidden-layer neural
network with 225 units each (as that matched the number of parameters for MADDPG when
choosing 128 as their number of hidden units for each of their 3 agents), and we used a
batch size of 64. The learning rate was 0.001, and τ = 0.001. We also clipped the gradient
norms to 0.1. When decentralizing, each agent was a two-hidden-layer neural network with
128 units (as in MADDPG), where we trained with a batch size of 32 and a learning rate of
0.001. In our experiment comparing with MADDPG, we use the cross entropy loss. The
MADDPG and DDPG parameters were 128 hidden units, and we clipped gradients norms at
0.5, with a learning rate of 0.01.

• For the cooperative navigation with 6 agents, for both homogeneous and nonhomogeneous:
Our centralized expert neural network was a two-hidden-layer neural network with 240 units
each (as that matched the number of parameters for MADDPG when choosing 128 as their
number of hidden units for each of their 3 agents’ actor and critic), and we used a batch size
of 32. The learning rate was 0.0001, and τ = 0.0001. We also clipped the gradient norms to
0.1. When decentralizing, each agent was a two-hidden-layer neural network with 128 units
(as in MADDPG), where we trained with a batch size of 32 and a learning rate of 0.001. In
our experiment comparing with MADDPG, we use the cross entropy loss. The MADDPG
and DDPG parameters were 128 hidden units, and we clipped gradients norms at 0.5, with a
learning rate of 0.01.

• For the speaker and listener environment: Our centralized expert neural network was a two-
hidden-layer neural network with 64 units each (which gave a lower number of parameters
than MADDPG when choosing 64 as their number of hidden units for each of their 2
agents’ actor and critic), and we used a batch size of 32. The learning rate was 0.0001, and
τ = 0.001. When decentralizing, each agent was a two-hidden-layer neural network with
64 units (as in MADDPG), where we trained with a batch size of 32 and a learning rate of
0.001. In our experiment comparing with MADDPG, we use the cross entropy loss. The
MADDPG and DDPG parameters were 64 hidden units, and we clipped gradients norms at
0.5, with a learning rate of 0.01.

• For the cooperative navigation with communication environment: Our centralized expert
neural network was a two-hidden-layer neural network with 95 units each (which matched
the number of parameters as MADDPG when choosing 64 as their number of hidden units
for each of their 2 agents’ actor and critic), and we used a batch size of 32. The learning
rate was 0.0001, and τ = 0.0001. When decentralizing, each agent was a two-hidden-layer
neural network with 64 units (as in MADDPG), where we trained with a batch size of 32
and a learning rate of 0.001. In our experiment comparing with MADDPG, we use the cross
entropy loss. The MADDPG and DDPG parameters were 64 hidden units, and we clipped
gradients norms at 0.5, with a learning rate of 0.01.

• We also run all the environments for 25 time steps.

G Proofs of theorems

G.1 Mathmetical notation and preliminaries

For completeness, we provide here proofs of the theorems from the main text. The proofs heavily
borrow from [34].

In order to reduce notational burden, we denote,
π1,...,M = (π1, . . . , πM)

16

so that
π1,...,M (o) = (π1(o1), . . . , πM (oM))

where o = (o1, . . . , oM) is the joint multi-agent observation. And we notate π̂1,...,M similarly.

We also denote dtπ1,...,M
the distribution of states seen at time t, and dπ1,...,M

= 1
T

∑T
t=1 d

t
π1,...,M

the
average distribution of states encountered if we follow π1,...,M for T time-steps.

And letting C(o, a) be the cost of executing action a in state o, and letting Cπ1,...,M
(o) =

Ea∼π1,...,M (o) [C(o, a)], then we let

J(π1,...,M) =

T∑
t=1

Eo∼dtπ1,...,M

[
Cπ1,...,M

(o)
]
= TEo∼dπ1,...,M

[
Cπ1,...,M

(o)
]

We use the following lemma which gives a total variation bound:

Lemma 3. If d
π̂
(i)
1,...,M

is the average distribution of states encountered by π̂(i)
1...,M (the policy that

best mimics the expert on past trajectories at iteration i), and if dπ1...,M
is the average distribution of

states encountered by the policy π(i)
1...,M (which picks expert actions with probability βi and π̂(i)

1,...,M

otherwise), then we have ‖d
π
(i)
1,...,M

− d
π̂
(i)
1,...,M

‖1 ≤ 2Tβi.

Proof. Suppose d is the distribution of states encountered over T steps for a policy π(i)
1,...,M that picks

expert actions π∗ at least once. Then since π(i)
1,...,M picks actions from π̂

(i)
1,...,M over T steps with

probability (1− βi)T , then we have

d
π
(i)
1,...,M

= (1− βi)T dπ̂(i)
1,...,M

+ (1− (1− βi)T)d

Then,∥∥∥dπ̂(i)
1,...,M

− d
π
(i)
1,...,M

∥∥∥
1
= (1− (1− βi)T)

∥∥∥d− dπ̂(i)
1,...,M

∥∥∥
1
≤ 2(1− (1− βi)T) ≤ 2Tβi

Now we can prove:

Theorem 4. If the number of iterationsN is Õ(T), then there exists a policy π̂1,...,M ∈ {π̂(i)
1,...,M}Ni=1

such that Eo∼dπ̂1,...,M [`(s, π̂1,...,M)] ≤ εN +O(1/T) where

εN = min
π1,...,M∈Π1,...,M

1

N

N∑
i=1

Eo∼d
π
(i)
1,...,M

[`(o, π1,...,M)]

Proof. Let `max = supo,π1,...,M
`(o, π1,...,M), and let {βi}Ni=1 be a non-increasing sequence, and

suppose nβ is the largest n ≤ N where βn > 1
T .

Now, the lemma above implies,

Eo∼d
π̂
(i)
1,...,M

[
`(s, π̂

(i)
1,...,M)

]
≤ Eo∼d

π
(i)
1,...,M

[
`(s, π̂

(i)
1,...,M)

]
+ 2`max min(1, Tβi)

Then let γN be a constant bounding (the no-regret bound),

1

N

N∑
i=1

Eo∼π(i)
1,...,M

[
`(o, π(i)

1,...,M)
]
− min
π1,...,M∈Π1,...,M

1

N

N∑
i=1

Eo∼π(i)
1,...,M

[`(o, π1,...,M)]

17

Then we have the following set of inequalities,

min
π̂1,...,M∈{π̂(i)

1,...,M}Ni=1

Eo∈dπ̂1,...,M [`(s, π̂1,...,M)] ≤ 1

N

N∑
i=1

Eo∼π̂(i)
1,...,M

[
`(o, π̂(i)

1,...,M)
]

≤ 1

N

N∑
i=1

(
Eo∼π(i)

1,...,M

[
`(o, π̂(i)

1,...,M)
]
+ 2`max min(1, Tβi)

)

≤ γN +
2`max

N

nβ + T

N∑
i=nβ+1

βi

+ min
π1,...,M∈Π1,...,M

1

N

N∑
i=1

Eo∼π(i)
1,...,M

[`(o, π1,...,M)]

= γN + εN +
2`max

N
[nβ + T

N∑
i=nβ+1

βi]

So we have,
Corollary 5. If the number of iterations N is Õ(T), then there exists a joint multi-agent policy
π̂ ∈ {π̂(i)}Ni=1 such that

J(π̂) ≤ J(π∗) + TεN +O(1)

where,

εN = min
π1,...,M∈Π1,...,M

1

N

N∑
i=1

Eo∼ d
π
(i)
1,...,M

[`(o, π1,...,M]

And now we can prove the Theorem 1 from the main text:
Theorem 1. Let ` = `(o, π1,...,M) be the 0-1 loss of matching the expert policy. And suppose we
have the cost of partial observability,

Eo∼d
π
(i)
1,...,M

[`(o, π1,...,M)] ≥ cp

If the number of iterations N is Õ(T), then there exists a joint multi-agent policy π̂ ∈ {π̂(i)}Ni=1 such
that

J(π̂) ≤ J(π∗) + TεN +O(1)

≤ J(π∗) + Tcp +O(1)

where,

εN = min
(π1,...,πM)∈Π1×···×ΠM

1

N

N∑
i=1

Eo∼ d
(π

(i)
1 ,...,π

(i)
M

)
[`(o, (π1, . . . , πM)]

Proof. The condition on cp gives us that,

εN = min
(π1,...,πM)∈Π1×···×ΠM

1

N

N∑
i=1

Eo∼ d
(π

(i)
1 ,...,π

(i)
M

)
[`(o, (π1, . . . , πM)] ≤ 1

N
Ncp = cp.

And thus we have,

J(π̂) ≤ J(π∗) + TεN +O(1)

≤ J(π∗) + Tcp +O(1)

And now we prove Theorem 2 from the main text:

18

Theorem 2. If the multi-agent communication ci : O1 × · · · × Oi−1 × Oi+1 × · · · × OM → Ci
satisfies the following condition:

π∗(o1, . . . , oi−1, oi, oi+1, . . . , oM) 6= π∗(o′1, . . . , o
′
i−1, oi, o

′
i+1, . . . , o

′
M)

implies that ci(o1, . . . , oi−1, oi+1, . . . , oM) 6= c(o′1, . . . , o
′
i−1, o

′
i+1, . . . , o

′
M)

for all i = 1, . . . ,M , then there is no partial observability problem of decentralization, and thus if
the number of iterations N is of Õ(T), then there exists a policy π̂1,...,M ∈ {π̂(i)

1,...,M}Ni=1 such that
Eo∼dπ̂1,...,M [`(o, π̂1,...,M)] ≤ εN +O(1/T). Then this implies, J(π̂1,...,M) ≤ J(π∗1,...,M) + εNT +

O(1)

Proof. We need only show that the there is no partial observability problem of decentralization when
the above conditions hold. As a note: we now have that the observation of agent i is not just oi, but
now (oi, ci).

Suppose for contradiction that there is a partial observability problem of decentralization, and
thus there exists an agent i, observations o = (o1, . . . , oi−1, oi, oi+1, . . . , oM) and o′ =
(o′1, . . . , o

′
i−1, oio

′
i+1, . . . , o

′
M) such that

π∗(o)i = ai, π∗(o′)i = a′i, ai 6= a′i.

Denote o−i as the observation without oi and similarly for o′−i. We then see we must have,

πi(oi, ci(o−i)) = πi(oi, ci(o′−i))

for all possible policies πi. But of course by the above conditions, ci(o−i) 6= ci(o′−i), and thus we
can certainly construct a policy where the above does not hold true, a contradiction. And thus we
must have that there is no partial observability problem of decentralization.

19

References

[1] Daniel S Bernstein, Eric A Hansen, and Shlomo Zilberstein. Bounded policy iteration for
decentralized pomdps. In Proceedings of the nineteenth international joint conference on
artificial intelligence (IJCAI), pages 52–57, 2005.

[2] Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156–172, 2008.

[3] Lucian Busoniu, Robert Babuska, and Bart De Schutter. Multi-agent reinforcement learning :
An overview. 2010.

[4] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative
multiagent systems. AAAI/IAAI, 1998:746–752, 1998.

[5] Hal Daumé, John Langford, and Daniel Marcu. Search-based structured prediction. Machine
learning, 75(3):297–325, 2009.

[6] Roel Dobbe, David Fridovich-Keil, and Claire Tomlin. Fully decentralized policies for multi-
agent systems: An information theoretic approach. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 30, pages 2941–2950. Curran Associates, Inc., 2017.

[7] Maxim Egorov. Multi-agent deep reinforcement learning, 2016.

[8] Richard Evans and Jim Gao. Deepmind ai reduces google data centre cooling bill by 40, 2016.

[9] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems, pages 2137–2145, 2016.

[10] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip HS Torr,
Pushmeet Kohli, and Shimon Whiteson. Stabilising experience replay for deep multi-agent
reinforcement learning. arXiv preprint arXiv:1702.08887, 2017.

[11] Jakob N. Foerster, Christian A. Schröder de Witt, Gregory Farquhar, Philip H. S. Torr, Wendelin
Boehmer, and Shimon Whiteson. Multi-agent common knowledge reinforcement learning.
CoRR, abs/1810.11702, 2018.

[12] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients. CoRR, abs/1705.08926, 2017.

[13] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control
using deep reinforcement learning. In International Conference on Autonomous Agents and
Multiagent Systems, pages 66–83. Springer, 2017.

[14] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8, 09 1998.

[15] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[16] Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82 – 94, 2016.

[17] Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement learning in
cooperative multi-agent systems. In In Proceedings of the Seventeenth International Conference
on Machine Learning, pages 535–542. Morgan Kaufmann, 2000.

[18] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[19] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
CoRR, abs/1509.02971, 2015.

[20] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. CoRR, abs/1706.02275, 2017.

[21] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

20

[22] L. Matignon, G. J. Laurent, and N. L. Fort-Piat. Hysteretic q-learning :an algorithm for
decentralized reinforcement learning in cooperative multi-agent teams. In 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 64–69, Oct 2007.

[23] Laetitia Matignon, Guillaume j. Laurent, and Nadine Le fort piat. Review: Independent
reinforcement learners in cooperative markov games: A survey regarding coordination problems.
Knowl. Eng. Rev., 27(1):1–31, feb 2012.

[24] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. CoRR, abs/1602.01783, 2016.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[26] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-
agent populations. arXiv preprint arXiv:1703.04908, 2017.

[27] Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value
functions for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353,
2008.

[28] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian. Deep
decentralized multi-task multi-agent reinforcement learning under partial observability. CoRR,
abs/1703.06182, 2017.

[29] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art. Autonomous
Agents and Multi-Agent Systems, 11(3):387–434, Nov 2005.

[30] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art. Autonomous
agents and multi-agent systems, 11(3):387–434, 2005.

[31] James Paulos, Steven W. Chen, Daigo Shishika, and Vijay Kumar. Decentralization of multiagent
policies by learning what to communicate. 2018.

[32] Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar, Jakob N.
Foerster, and Shimon Whiteson. QMIX: monotonic value function factorisation for deep
multi-agent reinforcement learning. CoRR, abs/1803.11485, 2018.

[33] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of
the thirteenth international conference on artificial intelligence and statistics, pages 661–668,
2010.

[34] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. No-regret reductions for imitation
learning and structured prediction. CoRR, abs/1011.0686, 2010.

[35] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. CoRR, abs/1506.02438,
2015.

[36] Felipe Leno Da Silva, Matthew E. Taylor, and Anna Helena Reali Costa. Autonomously reusing
knowledge in multiagent reinforcement learning. In Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-18, pages 5487–5493. International
Joint Conferences on Artificial Intelligence Organization, 7 2018.

[37] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.
Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484,
2016.

[38] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In Proceedings of the 31st International Conference
on International Conference on Machine Learning - Volume 32, ICML’14, pages I–387–I–395.
JMLR.org, 2014.

[39] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354, 2017.

21

[40] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropa-
gation. In Advances in Neural Information Processing Systems, pages 2244–2252, 2016.

[41] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication
with backpropagation. CoRR, abs/1605.07736, 2016.

[42] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296,
2017.

[43] Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9–44, 1988.

[44] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
2018.

[45] Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In S. A. Solla, T. K. Leen, and
K. Müller, editors, Advances in Neural Information Processing Systems 12, pages 1057–1063.
MIT Press, 2000.

[46] Ming Tan. Readings in agents. chapter Multi-agent Reinforcement Learning: Independent vs.
Cooperative Agents, pages 487–494. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1998.

[47] Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep
reinforcement learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[48] Gerald Tesauro. Extending q-learning to general adaptive multi-agent systems. In Advances in
neural information processing systems, pages 871–878, 2004.

[49] Nicolas Usunier, Gabriel Synnaeve, Zeming Lin, and Soumith Chintala. Episodic exploration
for deep deterministic policies: An application to starcraft micromanagement tasks. CoRR,
abs/1609.02993, 2016.

22

	1 Introduction
	2 Related works
	3 Background
	4 Methods
	4.1 Treating a multi-agent problem as a single agent problem
	4.2 Curse of dimensionality and some reliefs
	4.3 CESMA for supervised learning on the multi-agents
	4.4 CESMA for multi-agents that communicate

	5 Theoretical analysis
	5.1 The need for communication

	6 Experiments
	6.1 Preliminaries
	6.2 Cooperative Navigation – Homogeneous and Nonhomogenous Agents
	6.3 Cooperative Communication
	6.4 Reward vs. loss, and slow and fast learners

	7 Conclusion
	A Experiment where each agent has its own dataset of trajectories
	B Experiment with DQNs
	C Pseudo-algorithm of CESMA (without communication)
	D Detailed description of CESMA with communicating agents
	E More detailed descriptions of the environments used in the experiments
	E.1 Cooperative navigation
	E.2 Speaker listener
	E.3 Cooperative navigation with communication

	F Hyperparameters
	G Proofs of theorems
	G.1 Mathmetical notation and preliminaries

