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Recent experiments of thin films flowing down a vertical fiber with varying nozzle
diameters present a wealth of new dynamics that illustrate the need for more advanced
theory. We present a detailed analysis using a full lubrication model that includes slip
boundary conditions, nonlinear curvature terms, and a film stabilization term. This study
brings to focus the presence of a stable liquid layer playing an important role in the full
dynamics. We propose a combination of these physical effects to explain the observed
velocity and stability of traveling droplets in the experiments and their transition to
isolated droplets. This is also supported by stability analysis of the traveling wave solution
of the model.
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1. Introduction

Thin liquid films flowing down vertical fibers exhibit complex and interesting interfacial
dynamics, including the formation of droplets and traveling wave patterns (Quéré (1990);
Kalliadasis et al. (2011)). Such dynamics is an important consideration in various applica-
tions (Chinju et al. (2000); Zeng et al. (2017)) that take advantage of extended interfacial
areas afforded by thin liquid films. A recent experimental study (Sadeghpour et al. (2017))
observed three distinct regimes of interfacial patterns by simply varying the diameters
of the nozzles feeding the fluid. This was quite unexpected because other experimental
conditions (flow rate, fiber radius, and fluid), which were thought to primarily govern
interfacial dynamics, remained the same. These experimental results motivate us to
revisit the existing modeling studies in the literature and extend them for an improved
understanding of the physics involved.

The Rayleigh-Plateau instability and the effects of gravity modulation that leads
to the rich variety of dynamical behaviors, including the droplet formation, sliding
droplets of constant speeds, and irregular waves patterns, have been extensively studied
(Kliakhandler et al. (2001)). A key physical feature of films falling down vertical fibers
is that the surface tension plays both a stabilizing and destabilizing role due to the
axial and azimuthal curvatures of the interface, respectively (Craster & Matar (2009)).
Frenkel (1992), Chang & Demekhin (1999) and Kalliadasis & Chang (1994) investigated
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a weakly nonlinear thin film model under the assumption that the film thickness is
much smaller than the fiber radius. These studies reveal that the system can exhibit
interesting dynamics with large-magnitude waves. A thick-film (KDB) model was later
proposed by Kliakhandler et al. (2001), which utilizes fully nonlinear curvature terms
for the case where the film thickness is larger than the fiber radius. However, their
model was not derived asymptotically and overestimated the bead velocity. Craster &
Matar (2006) revisited this problem and derived an asymptotic (CM) model using a
low-Bond-number, surface-tension-dominated theory. These two studies focused on cases
with relatively small flow rates and developed single evolution equations. To study the
case of moderate flow rates, Trifonov et al. (1992) firstly formulated a system of evolution
equations for both the film thickness and volumetric flow rate. This model was then re-
formulated by Sisoev et al. (2006) using the integral boundary layer method. It was more
recently revisited by Ruyer-Quil et al. (2008), Duprat et al. (2009) and Ruyer-Quil &
Kalliadasis (2012).

In Kliakhandler et al. (2001), with decreasing mass flow rates, three different flow
regimes were observed from experiments: (a) convective regime where faster moving
droplets collide into slower moving ones, (b) Rayleigh-Plateau regime where stable
traveling wave propagates without any collisions, and (c) isolated droplet dripping regime
where widely spaced traveling beads are separated by smaller droplets.

Regimes (b) and (c) were qualitatively captured by both the KDB and CM models
using traveling wave solutions but the calculated bead velocities were overestimated by
more than 40%. Moreover, the CM theory led to a conclusion that regime (b) would
be a transient rather than a steady-state phenomenon. These discrepancies were further
investigated by Duprat et al. (2007) and Smolka et al. (2008). However, quantitative
models that can resolve the reported discrepancies are still lacking, motivating further
studies.

In the present paper, we report a combination of experimental and numerical results
for flows in the Rayleigh-Plateau regime (regime (b)), in particular under flow conditions
where the film thickness is comparable to or larger than the fiber radius. The recent
work by Sadeghpour et al. (2017) showed that one can observe all three flow regimes
under a fixed flow rate and a fixed fiber radius by simply varying the nozzle diameter.
We leverage their study to examine the characteristics of nonlinear traveling waves that
dominate flow dynamics downstream of the nozzle. We incorporate, into a lubrication
model, the slip condition, the fully nonlinear curvature term and a film stabilization term
for the dynamic pressure. We examine their influences on the wave propagation velocity
and the dynamic transition from regime (b) to regime (c).

Most of the previous models summarized above employed the classical no-slip boundary
condition at the solid-liquid interface. Haefner et al. (2015) incorporated slip boundary
conditions into a thin-film model and showed that slippage strongly affects the growth
rate of undulations when gravitational effects are neglected. Halpern & Wei (2017)
later demonstrated that slip effects promote droplet formation and provided a plausible
explanation for the discrepancy between the predicted and experimentally-obtained
critical Bond number for droplet formation. More recently, Chao et al. (2018) reported
that wall slippage also enhances the size and speed of droplets for thin liquid films flowing
down a uniformly heated (cooled) cylinder. All of these past slip models assumed that
the liquid film thickness is much smaller than the fiber radius, which is not true in our
case. We quantitatively investigate the slip effects for the first time on flow dynamics
where the fluid film thickness is comparable to the fiber radius.

To describe the wetting behavior of a liquid on a solid substrate, intermolecular forces
such as van der Waals interactions and Born repulsion are usually modeled by adding
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a disjoining pressure in lubrication equations. Different forms of the disjoining pressure
representing a combination of long-range and short-range intermolecular forces can be
used to characterize hydrophobic or hydrophilic phenomenon. For a well wetting liquid
studied in Reisfeld & Bankoff (1992), these forces favor a thick film, and the disjoining
pressure can be described as Π(h) = −A/h3 with a positive Hamaker constant A > 0. In
contrast, for a dewetting liquid, the purely destabilizing intermolecular forces modeled by
Π(h) = A/h3 can lead to finite-time rupture in the film thickness. For partially wetting
liquids, a combination of stabilizing and destabilizing molecular interactions are involved
and the disjoining pressure takes the form Π(h) = −A/h3(1−b/h) (Thiele (2011)). For an
extensive review of this topic, we refer the readers to de Gennes (1985); Bonn et al. (2009)
and Israelachvili (2011). The role of the intermolecular forces in slowly withdrawing a
thin fiber out of a bath of wetting liquid has been studied in Quéré et al. (1989) and
Quéré (1999). The dynamics of non-isothermal liquid film with van der Waals interactions
on a horizontal cylinder was considered in Reisfeld & Bankoff (1992) and Thiele (2011).
To the best of our knowledge, the stabilization of the coating film in dynamics of liquid
flowing down vertical fibers has not been discussed in the literature. In this paper we
propose a film stabilization model to account for thin undisturbed layers of well-wetting
silicone oil found in our experiments.

The stability of the traveling beads plays a key role in the flow regime transition. For
the case of thin films of liquid, classical theory developed by Kalliadasis & Chang (1994);
Chang & Demekhin (1999); Yu & Hinch (2013) and experiments by Quéré (1990) show
that the behavior of the well-separated pulses is determined by the local undisturbed
film thickness connecting these pulses. For the case where the undisturbed film is thicker
than a critical value hc, the pulse grows by collecting fluid from the undisturbed liquid
layer in between the pulses (regime (c)); while for thinner films, a stable traveling wave
propagates at a constant speed (regime (b)). In this study, we focus on the case where
the fiber is coated with relatively thick films of liquid compared to the fiber radius, and
show that the inclusion of the film stabilization term allows us to better capture the
undisturbed liquid layer and thereby the regime transition.

The structure of this paper is as follows. Experimental setup and observations in the
Rayleigh Plateau regime are presented in section 2. In section 3, the model for viscous thin
films flowing down a wetting fiber that incorporates wall slippage, nonlinear curvature,
and a film stabilization term is formulated. The traveling wave pattern that appears
in the model is examined in section 4. In this section, we also discuss the influences
of the film stabilization term on the moving speed and profile of sliding droplets. In
addition, the stability of the spatially uniform solutions and traveling wave solutions
for the film stabilization model is explored. New experimental results, parametrized by
varying nozzle diameters, are compared with theory in section 5. These comparisons
reveal that the discrepancy between experiment and theory in the moving speed of
droplets, for regimes (b) and (c), can be reasonably resolved by including the film
stabilization term. Concluding notes and discussion of the remaining open questions
are presented in section 6.

2. Experiments

2.1. Methods

Figure 1 shows a schematic of the setup we used to experimentally study the charac-
teristics of a liquid film flowing down a vertical string. We use a programmable syringe
pump to introduce a working liquid into the nozzle and generate flows. The high-speed
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Figure 1: Experimental setup.

camera is mounted on a translation stage for focusing and positioning and is operated
at a frame rate of 1000 frames/second.

The working fluid is a well-wetting liquid of low surface energy, Rhodorsil silicone oil
v50, with density ρ = 963 kg/m3, kinematic viscosity ν = 50 mm2/s, surface tension
σ = 20.8 mN/m at 20◦C, and capillary length lc = 1.5 mm. We use stainless steel nozzles
with the nozzle inner diameters (IDs) ranging from 0.6 mm to 2.5 mm and the wall
thicknesses ranging from 0.1 mm to 0.2 mm. The experiments are performed using 0.6 m
long Nylon strings of diameter 0.2 and 0.43 mm, both smaller than the capillary length.
A weight is attached to vertically align the string. Two X-Y stages are used to center the
string with respect to the nozzle. The liquid mass flow rate, monitored using a weight
scale connected to a computer, is varied from 0.02 g/s to 0.09 g/s.

2.2. Data Analysis

We use image processing tools to extract parameters such as the average bead speed,
period L∗, maximum film thickness h∗m, and mass contained in each bead. In order to
characterize the liquid bead profile, we use the longitudinal distance between the fiber
and the maximum curvature point along the liquid. We utilize the color contrast on
the image to extract the contour of the fluid and the fiber to thereby determine the
liquid film thickness h∗. A local least squares smoothing is performed to account for
pixelation noise. From this profile, we determine the average period L∗ as the distance
between two adjacent maxima. Integrating the profile over the chosen domain, we find
the mass constraint value M0 as defined later in section 3. Figure 2 shows a representative
experimental frame and the film profile produced after the data is processed.

The uncertainties in the parameters obtained from our image processing are estimated
in terms of a single pixel scaling and the selection of the color value for the contour. The
estimated uncertainty is ±0.08 mm for the streamwise length and ±0.10 mm for the bead
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Figure 2: Experimental frame (top) and processed data analysis (bottom) for fiber radius
R∗ = 0.1 mm, nozzle inner diameter ID = 0.8 mm, and flow rate Q∗m = 0.04 g/s, shown at
a distance 8 - 10 mm from the nozzle . The red dots superimposed on the experimental
frame correspond to the extracted film profile and the black dots on the bottom plot
correspond to the locations of the maxima. The average distance between two maxima is
L∗ = 5.92 mm and the film thickness between the drops ranges from 0.095 to 0.120 mm.
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Figure 3: Schematic of a thin liquid film flowing down a vertical cylindrical fiber.

height. Using a total of 1000 images for each run, we measure the averages for maximum
fluid height, mass, bead speed, and distance between two subsequent beads.

3. Model formulation

We consider a flow of two-dimensional axisymmetric Newtonian fluid down a vertical
cylinder of radius R∗ (see Figure 3). The liquid properties, including the surface tension
σ, density ρ, and kinematic viscosity ν, are all assumed to be constant. This model
formulation does not include the nozzle size as a system parameter because we are
interested in the flow downstream where the nozzle does not affect the dynamics. Instead,
we consider the scales for frequency and mass of the droplets, which depend on the nozzle
size (Sadeghpour et al. (2017)). We will discuss this dependence later in Appendix B.
We review below the derivation of the governing equations and boundary conditions

by Ruyer-Quil et al. (2008) and Craster & Matar (2006) and discuss our inclusion of
additional physics related to slip, curvature, and wetting properties.
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The dimensional Navier-Stokes equations for axisymmetric flows are

u∗t∗ + u∗u∗x∗ + v∗u∗y∗ = −1

ρ
(p∗x∗ + Π∗x∗) + g + ν

(
u∗x∗x∗ +

u∗y∗

y∗
+ u∗y∗y∗

)
, (3.1a)

v∗t∗ + v∗v∗y∗ + u∗v∗x∗ = −
p∗y∗

ρ
+ ν

(
v∗y∗

y∗
+ v∗y∗y∗ −

v∗

y∗2
+ v∗x∗x∗

)
, (3.1b)

where t∗ represents the time, u∗ and v∗ represents the axial and radial components
of the velocity, p∗ is the pressure, and g is the gravitational acceleration. We adopt the
functional form of the disjoining pressure used in Reisfeld & Bankoff (1992) and introduce
the film stabilization term Π∗(h∗)

Π∗(h∗) = − A
∗

h∗3
, (3.1c)

where A∗ is a stabilization parameter. The equation of continuity is given by

v∗y∗ +
v∗

y∗
+ u∗x∗ = 0. (3.1d)

Along the fiber, at the interface between the solid substrate and the fluid y∗ = R∗, we
impose the Navier slip and no penetration boundary conditions:

v∗ = 0, u∗ = λ∗u∗y∗ at y∗ = R∗, (3.1e)

where λ∗ > 0 is the slip length in standard slip models (Haefner et al. (2015); Münch
et al. (2005)). The no-slip boundary condition corresponds to λ∗ = 0. Typical slip lengths
for polymeric liquids such as silicone oil range from 1 to 10µm (Halpern & Wei (2017);
Quéré (1990)). The normal and shear stress balances on the free surface y∗ = R∗ + h∗

are given by

p∗ =
2µ

1 + h∗2x∗
(h∗2x∗u∗x∗−h∗x∗(v∗x∗ +u∗y∗)+v∗y∗)+

σ

(1 + h∗2x∗)3/2

(
1 + h∗2x∗

R∗ + h∗
− h∗x∗x∗

)
, (3.1f )

(1− h∗2x∗)(v∗x∗ + u∗y∗) + 2h∗x∗(v∗y∗ − u∗x∗) = 0, (3.1g)

where µ is the dynamic viscosity, and σ scales the total curvature which consists of a
destabilizing azimuthal curvature term and a stabilizing axial curvature term. We then
complete the system by including the kinematic boundary condition on the free surface
y∗ = R∗ + h∗,

h∗t∗ + u∗h∗x∗ = v∗ at y∗ = R∗ + h∗. (3.1h)

The next step is to choose the appropriate dimensionless parameters in order to
nondimensionalize the model. Following Duprat et al. (2009) we choose the scales for
the system as follows: the lengthscale in the radial direction y is H, and the lengthscale
in the streamwise direction x is L = H/ε. The scale ratio ε is set by the balance between
the surface tension term σh∗x∗x∗x∗ , arising from p∗x∗ , and the gravity g, and is given by
ε = (ρgH2/σ)1/3. This scale ratio is small (around 0.4) in typical experiments and can

also be rewritten as ε = We−1/3, where the Weber number We = (lc/H)2 compares
the capillary length lc =

√
σ/(ρg) to the radial lengthscale H. Then the characteristic

streamwise velocity is U = (gH2)/ν, and the pressure- and time-scales are given by ρgL
and (νL)/(gH2) respectively. With these scales, we drop the star superscript in (3.1) and
write the non-dimensional Navier-Stokes equations using dimensionless variables in the
form

ε2Re (ut + uux + vuy) = −px−Πx + 1 +
uy
y

+ uyy + ε2uxx, (3.2a)
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ε4Re (vt + vvy + uvx) = −py + ε2
(
vy
y

+ vyy −
v

y2

)
+ ε4vxx, (3.2b)

where the Reynolds number Re = UL/ν. The dimensionless continuity equation is
identical to (3.1d) in form. The balances of normal and tangential stresses at y = h+R
are expressed as

(1− ε2h2
x)(ε2vx + uy) + 2ε2hx(vy − ux) = 0, (3.2c)

p =
α

ε2(1 + αh)(1 + ε2h2
x)1/2

− hxx
(1 + ε2h2

x)3/2

+
ε4

1 + ε2h2
x

[
h2
xux − hxvx + ε2(−hxuy + vy)

]
, (3.2d)

where the dimensionless parameter α = H/R∗ is the aspect ratio of the characteristic
radial length scale and the fiber radius, and the dimensionless fiber radius R = R∗/H.
The slip and no-penetration boundary conditions on y = R are

v = 0, u = λuy, (3.2e)

where the non-dimensional slip length λ = λ∗/H. The kinematic boundary condition
remains unaltered in its form.

We next simplify the above set of governing equations by following Ruyer-Quil et al.
(2008). Under the lubrication approximation, the inertial contributions can be neglected
since Re = O(1) and ε � 1. Note that we do not assume the small ratio α between the
liquid film thickness and the fiber radius. Omitting the terms of order O(ε2), we rewrite
the leading order non-dimensional reduced momentum and continuity equations for the
velocity field (u, v) and the dynamic pressure p as

1− ∂p

∂x
−∂Π

∂x
+
∂2u

∂y2
+
uy
y

= 0, (3.3a)

−∂p
∂y

= 0, (3.3b)

∂u

∂x
+
∂v

∂y
+
v

y
= 0. (3.3c)

The balance of tangential stresses at the free surface y = h+R is reduced to

uy = 0. (3.3d)

The destabilizing azimuthal curvature and the stabilizing streamwise curvature terms in
(3.2d) are both important throughout the liquid film. For ε � 1 a formal expansion of
the azimuthal curvature term in (3.2d) yields

α

ε2(1 + αh)
√

1 + ε2h2
x

=
α

ε2(1 + αh)

(
1− 1

2
ε2h2

x +O(ε4)

)
,

which shows that this term is of order O(α/ε2), for both cases αh � 1 and αh = O(1).
At the steep front of a moving droplet, we have hx = O(1), and the second term in the
expansion contributes an additional O(α) term to the dynamic pressure. Similarly, for
the streamwise curvature term in (3.2d), we have

hxx
(1 + ε2h2

x)3/2
= hxx

(
1− 3

2
ε2h2

x +O(ε4)

)
.

At the front of the moving droplet, the O(ε2) term introduced by the nonlinear curvature
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is negligible. Therefore, we only keep a fully nonlinear azimuthal curvature term and use
the linearized curvature in the streamwise direction. The balance of normal stresses at
the free surface y = h+R is then reduced to

p =
α

ε2(1 + αh)
√

1 + ε2h2
x

− ∂2h

∂x2
. (3.3e)

It is important to note that the first term on the right-hand-side of (3.3e) accounts for
the balance between the azimuthal and axial scales characterized by α and ε. We will
further discuss appropriate forms of this term for different cases later.

To derive the evolution equation for h from above, we first consider a uniform Nusselt
flow without any interfacial instabilities. The velocity field of this flow is obtained by
balancing the viscosity and gravity acceleration in (3.2). That is, the streamwise velocity
u0 of the Nusselt flow satisfies the reduced system

1 +
∂2u0

∂y2
+

1

y

∂u0

∂y
= 0 (3.4a)

with boundary conditions

∂u0

∂y
= 0 at y = h+R, u0 = λ

∂u0

∂y
at y = R. (3.4b)

Solving (3.4) for u0 leads to

u0(y) = −1

4
(y2 −R2) +

1

2
(h+R)2 ln

( y
R

)
+ hλ

(
h

2R
+ 1

)
. (3.5)

The rescaled kinematic boundary conditions together with the slip and no-penetration
boundary conditions (3.2e) and the shear stress condition (3.3d) lead to the mass
conservation equation

(1 + αh)
∂h

∂t
+
∂q

∂x
= 0, where q =

1

R

∫ h+R

R

uy dy. (3.6)

Following Ruyer-Quil et al. (2008) where an approach based on a projection of the velocity
field of a test function is used, we take the inner product of (3.3a) with the Nusselt
uniform solution u0, and obtain∫ h+R

R

(1 + uyy +
uy
y

)u0y dy =

∫ h+R

R

(px+Πx)u0y dy. (3.7)

From equation (3.3b), we see that the pressure p is a function of x only, and the right-
hand-side of the above equation becomes pxR̄q0. Note that the Nusselt solution u0

satisfies (3.4). By integrating by parts and applying the slip and no-penetration boundary
conditions (3.2e) and the shear stress condition (3.3d), we obtain

q =

(
1− ∂p

∂x
−∂Π

∂x

)
q0. (3.8)

Here q0, the flow rate per unit circumference length for the uniform Nusselt layer, is

q0 =
1

R

∫ R+h

R

u0y dy =
h3

3
φ (αh) +

h2

4
(αh+ 2)

2
λ, (3.9)

where the shape factor φ is a function defined by

φ(X) =
3

16X3
[(1 +X)4(4 log(1 +X)− 3) + 4(1 +X)2 − 1]. (3.10)
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Given a dimensional volumetric flow rate Q∗m and fiber radius R∗, we define the
volumetric flow rate per circumference unit q∗0 as q∗0 = Q∗m/(2πρR

∗). From (3.9) the
characteristic axial lengthscale H for a uniform Nusselt flow can then be obtained. For
the no-slip case λ = 0, equation (3.9) gives the Nusselt solution h ≡ H used in Duprat
et al. (2009); Ruyer-Quil et al. (2008).

Finally, by rescaling the time scale t → t/φ(α) and combining (3.6), (3.9) and (3.8),
we obtain the dimensionless governing equation

∂

∂t

(
h+

α

2
h2
)

+
∂

∂x

[
M(h)

(
1− ∂p

∂x
−∂Π

∂x

)]
= 0, (3.11)

where the mobility function takes the form

M(h;λ, α) =
h3

3

φ(αh)

φ(α)
+
h2(αh+ 2)2λ

4φ(α)
. (3.12)

This choice of timescale leads to a normalized mobility function such that M = 1/3 for
h = 1 and λ = 0. Moreover, in the limit of the aspect ratio α→ 0, the mobility function
becomes

M(h;λ, α) =
1

3
h2(h+ 3λ) +

α

3
h2(h+ 3λ)(h− 1) +O(α2), (3.13)

and its leading order term agrees with the mobility function used in the slip model
proposed by Halpern & Wei (2017). Substituting (3.3e) into (3.11) yields an evolution
equation for the film thickness h(x, t)

∂

∂t

(
h+

α

2
h2
)

+
∂

∂x

[
M(h)

(
1− ∂

∂x

[
Z(h)− ∂2h

∂x2

])]
= 0, (3.14)

where Z(h) includes the destabilizing azimuthal curvature of the film and the film sta-
bilization term. Comparing (3.14) and (3.11), and using (3.3e) with a scaling parameter
η = ε2, we write the complete form of Z(h) as

Z(h) = p+ hxx + Π =
α

η(1 + αh)
√

1 + ηh2
x

+ Π(h).

Equation (3.14) is a fourth-order nonlinear partial differential equation for the thickness
h(x, t). This model accounts for the surface tension, gravity and azimuthal instabilities,
but neglects inertia and streamwise viscous dissipation (Ruyer-Quil et al. (2009)). When
the Rayleigh-Plateau instability dominates over the inertia and streamwise viscous dis-
sipation, our model (3.14) is expected to provide a good agreement with experimental
data.

Different forms of Z(h) appear in the literature to represent the azimuthal curvature
of the film. For instance, Yu & Hinch (2013) assumed that the film is much thinner
than the fiber radius, H � R∗ (which corresponds to α � 1), and used a simple
form Z(h) = −(α/ε)2h where the leading-order constant term in the expansion of the
azimuthal curvature is neglected. For thicker films that are of interest to the present
study, α = O(1) and αh is at most O(1) so we use (3.15) as the first form of Z

ZCM (h) =
α

η(1 + αh)
(3.15)

following Craster & Matar (2006); Sisoev et al. (2006); Ruyer-Quil et al. (2008, 2009).
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With ZCM(h) in (3.15) and λ = 0, the evolution equation (3.14) reduces to

(CM)
∂

∂t

(
h+

α

2
h2
)

+
∂

∂x

[
h3

3

φ(αh)

φ(α)

(
1− ∂

∂x

[
α

η(1 + αh)
− hxx

])]
= 0, (3.16)

which is consistent with the evolution equation derived by Craster & Matar (2006) except
for a scaling difference. For the rest of this paper, we will refer to the model (3.16) as
the Craster & Matar (CM) model.

To incorporate the slip effects under the framework of the CM model, we use the
evolution equation (3.14) with the non-dimensional slip length λ > 0, the mobility
function (3.12) and the azimuthal curvature term (3.15). This will be referred to as
the Slip Craster & Matar (SCM) model. We will show that this slip model promotes
droplet formation and leads to an increased speed of propagation.

With the aspect ratio α being of O(1), in the limit as η → 0, (3.15) becomes singular.
To address this problem, in this paper we will consider two additional forms of Z(h) to
reflect the balance between the azimuthal and axial scales under different flow conditions.

As the second form of Z, we define

ZFC(h) =
α

η(1 + αh)
√

1 + ηh2
x

. (3.17)

This fully nonlinear azimuthal curvature term provides an O(α/η3/2) contribution to the
dynamic pressure near the advancing edge of the moving beads. It has been shown in
many applications (Snoeijer (2006); Lopes et al. (2018)) that using the full expression
for the curvature term can provide better accuracy for lubrication models, and this issue
was recently reviewed in Thiele (2018). We will show that the inclusion of the fully
nonlinear curvature yields an increased speed of propagation of the traveling beads and
partially improves agreement with our experimental results. Compared with the thick
film model proposed in Kliakhandler et al. (2001), where both curvature terms are fully
nonlinear, our model has only a nonlinear azimuthal curvature term. The stabilizing axial
curvature term is linearly approximated. For the remainder of this paper, we will refer
to the evolution equation (3.14) with the mobility function (3.12) and the azimuthal
curvature term (3.17) as the Full Curvature Model (FCM).

As the third form of Z, we include the film stabilization term to deal with the
unbalanced azimuthal curvature term. Thus we replace (3.15) with

ZFS(h) =
α

η(1 + αh)
− A

h3
. (3.18)

The last term of (3.18) is motivated by the functional form of the long range attractive
part of the well-known apolar van der Waals model (de Gennes (1985); Oron et al.
(1997); Oron & Bankoff (2001)) for the well-wetting liquids used in our experiments.
The stabilization parameter A = (α2ε4p)/(3η(αεp + 1)2) > 0 is expressed in terms of a
dimensionless thickness εp, below which a thin uniform fluid layer on a fiber is stable.
We will discuss this stability criterion further in section 4. The film stabilization term
is found to significantly improve agreement with our experimental data as discussed in
section 5. The model (3.14) with M(h) from (3.12) and the azimuthal curvature with
film stabilization term (3.18) will be referred to as the film stabilization model (FSM).

In summary, this paper considers four versions of the model (3.14) listed in Table 1
to incorporate different physical effects. When contrasted with the CM model, which
corresponds to the asymptotic model studied in Craster & Matar (2006), the other three
new models take into considerations the slip effects, the nonlinear curvature, and the film
stabilization term, respectively.
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(CM) Craster & Matar Model: λ = 0 Z(h) = ZCM (h) in (3.15)
(SCM) Slip Craster & Matar Model: λ > 0 Z(h) = ZCM (h) in (3.15)
(FCM) Full Curvature Model: λ ≥ 0 Z(h) = ZFC(h) in (3.17)
(FSM) Film stabilization model: λ ≥ 0 Z(h) = ZFS(h) in (3.18)

Table 1: A summary of the models using (3.14)

4. Film stabilization model and stability analysis

In this section, we derive the stabilization parameter A in equation (3.18) and study
its effects. Using a stability analysis study, we show that A > 0 is important to reproduce
the stable traveling wave solutions (TWS) observed in experiments.

We begin by examining the linear stability of the uniform Nusselt solution. Following
the approach in Craster & Matar (2006), we perturb the uniform film (h0 = 1) by an
infinitesimal Fourier mode,

h = h0 + δeikx+Λt, (4.1)

where k is the wave number, Λ describes the growth rate of the perturbation, and δ (� 1)
the initial amplitude. Expanding PDE (3.14) then gives the dispersion relation:

Λ = −ikck(α, λ) +
k2

3(1 + α)

(
α2

(1 + α)2η
− k2 − 3A

)(
1 +

3(α+ 2)2λ

4φ(α)

)
, (4.2)

where ck is the speed of linear kinematic wave solutions of (3.14) for small wave numbers,

ck(α, λ) =
1

α+ 1

(
1 +

αφ′(α)

3φ(α)

)
+

(α+ 2)λ

φ(α)
, (4.3)

and it increases linearly with the presence of slip. The real part of Λ is the effective growth
rate, and the thickness h0 = 1 is long-wave unstable with respect to perturbations with

0 < k < kc, where the critical wavenumber kc =
(

α2

(1+α)2η − 3A
)1/2

. For A = 0 this

cut-off wavenumber corresponds to the classical RP mode for the capillary instability
of a viscous jet where Re(Λ) = 0 at k = kc. The most unstable mode occurs at km =(

α2

2(1+α)2η −
3A
2

)1/2

, where the largest growth rate Λm is attained. The equation (4.2)

also shows that the slip effects always enhance the Rayleigh-Plateau instability which
agrees with the work by Halpern & Wei (2017).

We repeat the above analysis for a uniform thin layer h = h0(< 1). The effective
growth rate of disturbances with wavenumber k is given by

Re(Λ0) =
k2

3h0(αh0 + 1)

(
h4

0α
2

(αh0 + 1)2η
− k2h4

0 − 3A

)(
φ(αh0)

φ(α)
+

3(αh0 + 2)2

4h0φ(α)
λ

)
.

(4.4)
Figure 4 gives the dispersion relation (4.4) for the uniform Nusselt solution h0 = 1 and
a thinner undisturbed layer of h0 = 0.2 under the CM, SCM, and FSM models. The
Nusselt solution h0 = 1 is unstable for small wavenumbers for all three models. The
finite slippage increases the growth rates of the unstable modes. For the CM and SCM
models, the thinner undisturbed liquid layer (h0 = 0.2) is unstable over larger ranges
of the wavenumber. In stark contrast, the FSM model saturates the unstable modes,
rendering the thinner undisturbed layer linearly stable for all wavenumbers (see the solid
curve in Figure 4 (right)) for certain values of A.
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Figure 4: Dispersion relation plots of Re(Λ0) against the wavenumber k with the constant
film thickness (left) h0 = 1 and (right) h0 = 0.2 for the CM model, the SCM with slip
λ = 0.1, and the FSM model with εp = 0.2, which corresponds to A = 0.027 from
equation (4.5). Other system parameters are α = 4.96 and η = 0.23.

In the literature, A is typically expressed as a Hamaker constant in terms of microscopic
quantities (de Gennes (1985)) . We instead choose the values of A based on stable
undisturbed liquid layers. Empirical observations of the thin film layers between droplets
indicate that these undisturbed liquid layers are comparable to the corresponding fiber
radius R∗. Therefore, we pick a coating thickness ε∗p ≈ R∗ , obtained from experimental
measurements. Using the dimensionless undisturbed layer thickness εp = ε∗p/H and the

dispersion relation in (4.4), we derive a formula for Ã,

Ã =
α2ε4p

3η(αεp + 1)2
. (4.5)

For A = Ã, any thin flat film of thickness less than the threshold value εp is linearly
stable, i.e. Re(Λ0) < 0, for all wave numbers.

We next examine the influences of the film stabilization terms (3.18) on the profiles
and speeds of propagation of the traveling wave patterns governed by (3.14). We consider
the model over a periodic domain 0 ≤ x ≤ L and introduce a change of variables to the
reference frame of the traveling wave,

ξ = x− ct, s = t, h(x, t) = h̃(ξ, s),

where c is the speed of the traveling wave. Then h̃(ξ, s) satisfies the PDE

∂

∂s

(
h̃+

α

2
h̃2
)
− c ∂

∂ξ

(
h̃+

α

2
h̃2
)

+
∂

∂ξ

[
M(h̃)

(
1− ∂

∂ξ

[
Z(h̃)− h̃ξξ

])]
= 0. (4.6)

The traveling wave solution H(ξ) is a steady state of the PDE (4.6) and satisfies the
fourth-order ordinary differential equation

c
d

dξ

(
H +

α

2
H2
)

=
d

dξ

[
M(H)

(
1− d

dξ
[Z(H)−Hξξ]

)]
. (4.7)

This is a nonlinear eigenvalue problem, where the speed of propagation c corresponds
to the eigenvalue. The effects of slippage λ and full nonlinear curvature (3.17) will be
studied in section 5.3. Newton’s method is used to solve the nonlinear ODE (4.7) where
the speed c is treated as an unknown variable. In order to achieve local uniqueness, we
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and thicker precursor layers (right) the moving speed of drops is significantly increased
with larger values of A.

impose a constraint of mass conservation∫ L

0

H +
α

2
H2 dξ = M0 (4.8)

for given values of massM0 and wavelength L extracted from our experimentally obtained
liquid film profiles. We also set H(ξ0) = H0 for 0 ≤ ξ0 ≤ L.

Numerical investigations reveal that including the film stabilization term in (3.18)
enhances the moving speed of traveling wave solutions. In Figure 5 (left), we plot the
profiles of traveling wave solutions with a varying stabilization parameter A and identical
mass constraint M0 and period L. Since a larger value of A corresponds to a stronger
wetting potential in the lubrication model, the near-flat coating thickness increases with
increasing A, as expected. Correspondingly, the height of the beads decreases as the
coating thickness increases under the fixed overall mass constraint. That is, the presence
of the film stabilization term saturates capillary instabilities and generates smaller moving
beads. Figure 5 (right) shows that the predicted velocity c increases with the parameter
A superlinearly for small A, and increases linearly as A becomes larger. In section 5.1,
we will show that, compared to the CM model (3.16), the FSM model with parameter
A given by (4.5) significantly improves predictions of the traveling wave velocity against
experimental observations.

Earlier works have not reported a detailed stability analysis of the traveling wave.
Therefore, we take a closer look at the linear stability of the traveling wave solutions
in the film stabilization model. We consider a positive periodic traveling wave solution
H(ξ) over the domain 0 ≤ ξ ≤ L, and perturb it by setting h̃(ξ, s) = H(ξ) + δΨ(ξ)eΛs,
where δ � 1 and Ψ(ξ) is also L-periodic. Here we only focus on perturbations of the same
period since the dynamics in both Rayleigh Plateau and isolated droplet regimes have
fixed spatial periods. More complicated droplet dynamics (Kalliadasis & Chang (1994))
in the convective regime is not investigated here. We linearize the equation (4.6) around
the steady state H(ξ) and obtain the O(δ) equation

ΛΨ = L Ψ, (4.9)



14 H. Ji, C. Falcon, A. Sadeghpour, Z. Zeng, Y. S. Ju, A. L. Bertozzi

− 0.02

− 0.01

0

0.01

0.02

0.03

0 0.001 A c 0.004

� T

� 1

� 2
� 3

Re(� )

A

− 1

0

1

2

0 L / 2 �

A = 0

Re(�)

ξ

H
�1

�2

�3

Figure 6: (Left) The dependence of dominant eigenvalues of H(ξ) on the stabilization
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wave profile H and unstable eigenmodes Ψ1, Ψ2, Ψ3 for the CM model (A = 0). The
parameters (L,M0) = (8.86, 22.16) correspond to the experiment with flow rate Q∗m =
0.04 g/s, fiber radius R∗ = 0.1 mm, and nozzle diameter 1.06 mm.

where the linear operator L is

L Ψ ≡ c
(
d

dξ
+

αH ′

1 + αH

)
Ψ +

1

1 + αH

d

dξ

(
M(H)

d

dξ
[Z ′(H)Ψ−Ψ′′]

)
− 1

1 + αH

d

dξ

(
M′(H)

[
1− d

dξ
(Z(H)−H ′′)

]
Ψ

)
. (4.10)

Here Ψ(ξ) is a normalized eigenmode associated with an eigenvalue Λ and ‖Ψ‖2= 1.
If there are any eigenvalues Λ with Re(Λ) > 0 to the problem (4.9), then the periodic
traveling wave solution H(ξ) is unstable. For simplicity we only focus on the case where
a one-period solution fits in the domain, and numerically calculate the spectrum and
corresponding eigenfunctions for the eigenproblem.

Figure 6 (right) shows the unstable modes predicted by the CM model (A = 0).
These instabilities contradict the stable TWS from the corresponding experiment and
generate small wavy patterns in the flat film connecting the moving beads. However,
these instabilities can be saturated by the FSM model with an appropriate stabilization
parameter A. For a typical traveling wave solution H(ξ) to the FSM model, its dominant
eigenvalues with a varying A are plotted in Figure 6 (left). It shows that without the
film stabilization term (i.e. A = 0), the TWS is unstable. In addition to the translational
eigenmode ΛT = 0, the dominant unstable eigenvalues are given by complex-conjuagte
pairs Λ1 = 0.0283±0.756i, Λ2 = 0.0264±1.006i, and Λ3 = 0.0097±0.503i. Increasing the
parameter A yields three pairs of complex conjugate eigenvalues crossing the imaginary
axis, suggesting three Hopf bifurcations occur at these crossing points. At each of these
bifurcation points, a branch of time-periodic solution emerges corresponding to typical
dynamics in the isolated droplet regime.

For A > Ac all the eigenvalues of H(ξ) satisfy Re(Λ) < 0 and the traveling wave is
stabilized. In section 5.2, we will show that the film stabilization term helps better arrest
the stability transition from the Rayleigh-Plateau regime to isolated droplet regime in
experiments with different nozzle diameters.
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Figure 8: Film thickness comparison between experiment and theory, for fiber size R∗ =
0.215 mm, flow rate Q∗m = 0.04 g/s and nozzle inner diameter ID = 3.0 mm.

5. Results

5.1. Experimental comparisons

Here, we present a comparison between physical experiments and two models, the
film stabilization (FSM) model and the Craster & Matar (CM) model. Appendix A,
shows the range of nozzle sizes, fiber radius, and flow rates for the experiments. For
each experimental condition, we extract a characteristic period L∗ and bead liquid mass
M∗0 . We then use these as input parameters in our models. Appendix B describes how a
unique traveling wave solution (TWS) is selected to compare with each experiment for
both the FSM and CM models.

Figure 7 shows the different morphologies that arise when using a thick fiber versus a
thin fiber. In the former case, the droplet height and width are close to the period length.
In the latter case, the droplets appear more isolated. The profiles in Figure 8 illustrate a
direct comparison between the profiles predicted by both models, which are within the
margin of error from the experimental film thickness.

The predicted speeds, however, have noticeable differences between the two models.
In Figure 9, we show plots of the observed and predicted speeds for varying nozzle sizes.
The left panels indicate the thin fiber R∗ = 0.1 mm whereas the right panels illustrate
the thick fiber R∗ = 0.215 mm, with the flow rate Q∗m increasing from top to bottom.
The FSM model agrees quite well with the experimental observations across all of the
data. In contrast, the CM model underestimates the speed. We do not show the case with
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Figure 9: Average bead speed for fiber radius R∗ = 0.1 mm (left) and R∗ = 0.215 mm
(right), and flow rates Q∗m = 0.04, 0.06, and 0.08 g/s from top to bottom, compared
to the proposed model (FSM) as blue diamonds and Craster & Matar (CM) as red
circles. The last two data points in (a) are in the isolated droplet regime. There is no
plot for R∗ = 0.215 mm, Q∗m = 0.08 g/s, because in this case there is no TWS and the
experiments lie in the convective regime.

the fiber radius R∗ = 0.215 mm and the flow rate Q∗m = 0.08 g/s because under those
conditions the flow is in the convective regime and the bead speed cannot be uniquely
defined. We note that for the FSM model, we choose ε∗p to be 0.12 mm for the fiber of
radius R∗ = 0.1 mm, and ε∗p = 0.215 mm for the fiber of radius R∗ = 0.215 mm.

Note in Figure 9(a), the Rayleigh Plateau regime transitions to the isolated droplet
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Figure 10: Experiments (top black halves) with parameters R∗ = 0.1 mm, Q∗m = 0.04 g/s
against the FSM (bottom halves) showing (a) the Rayleigh-Plateau regime with nozzle
ID = 0.8 mm and (b) the isolated droplet regime with nozzle ID = 1.8 mm.

regime, where the TWS is unstable and both models over-predict the speed, as expected.
The following section discusses this transition in detail.

5.2. Regime Transition

The emergence of instabilities in the thin liquid films between traveling droplets
characterizes the transition from the Rayleigh-Plateau (RP) regime to the isolated
droplet (IS) regime. Guided by the stability analysis from section 4, we can explore these
instabilities and the departure from the RP regime as the nozzle diameter varies. The
IS regime gives rise to time periodic dynamics that cannot be captured by the traveling
wave solutions of (4.7). In this case, we need to solve the fully time-dependent model
(3.14). The numerical solution and the experimental observation from the IS regime are
plotted in Figure 10 (b). In contrast, the traveling wave solution for an RP experiment
(ID = 0.8 mm) is plotted in Figure10 (a). Our dynamic simulation captures a difference
in the advancing and receding lines of the droplets, even though this difference is more
pronounced in the experiment.

The nonlinear PDE (3.14) was solved numerically using a fully implicit second-order
finite difference method. Figure 11 shows the dynamics starting from a widely spaced
traveling wave solution obtained from the ODE (4.7) with a small perturbation, h0(x) =
H(x)+0.001Ψ(x). This simulation corresponds to the IS regime experiment with the fiber
radius R∗ = 0.1 mm, flow rate Q∗m = 0.04 g/s and the nozzle diameter ID = 1.8 mm.
It demonstrates the effects of the unstable eigenmodes shown in Figure 6 (right). Such
instabilities lead to interesting spatio-temporal pattern formation with small droplets
appearing from the unstable long flat film between the large traveling beads.

The film stabilization model (FSM) correctly captures the bifurcation from the RP
regime to the IS regime as the nozzle diameter increases. For small fiber size R∗ = 0.1
mm at Q∗m = 0.04 g/s, experiments show that the regime transition occurs between nozzle
inner diameters 1.2 mm and 1.5 mm (see Figure 9 (a)). However, the CM model predicts
the transition between 0.8 mm and 1.06 mm, contradicting experimental observations.
That is, based on stability analysis, the traveling wave solutions of the CM model are
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Figure 11: Dynamic simulation showing the development of instabilities in the isolated
droplet regime for parameters R∗ = 0.1 mm, Q∗m = 0.04 g/s, and nozzle size ID = 1.8
mm.
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Figure 12: PDE simulations for (a) the FSM model (3.14) with ε∗p = 0.12 mm and (b) the
CM model starting from h0(x) = H(x) with identical (M0, L) and small perturbations,
showing that the TWS to the FSM model is stable in time, while the one for the CM model
is unstable and converges to a time-periodic solution in the long time. The (M0, L) values
are obtained from the experiment with fiber radius R∗ = 0.1 mm, flow rate Q∗m = 0.04
g/s and nozzle ID = 1.2 mm.
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λ = 0, 0.05, 0.1, 1 for (L,M0) = (4.94, 8.27) showing that (left) larger slip yields larger
droplet heights and thinner precursor layers (right) in the weak slip limit the moving
speed of drops is O(1), and the speed increases linearly with slip length in the large slip
limit.

unstable for all nozzles bigger than 0.8 mm. For example, for the case of the nozzle
diameter ID = 1.2 mm, Figure 12 shows a comparison of dynamic simulation results of
the CM and the FSM models. The traveling wave in the FSM model propagates steadily
with a constant speed and profile (see the bottom curve in Figure 13). In contrast, the
CM model simulation shows that the initially nearly-flat coating layer quickly evolves
into small waves ahead of the major sliding bead. As the major bead interacts with the
small waves downstream, the maximum height of the film thickness oscillates in time (see
the top curve in Figure 13) since the main bead gains mass from these smaller waves.
The dynamic solution eventually converges to a time-periodic solution that describes the
case in the isolated droplet regime. A similar bifurcation occurs when keeping the nozzle
diameter constant ID = 1.8 mm and changing the flow rate (not shown here). Again,
just the FSM model correctly predicts regime transition between Q∗m = 0.050 g/s and
Q∗m = 0.055 g/s, which agrees with experimental measurements. For larger fiber size
R∗ = 0.215 mm, both models produce a stable traveling wave for all nozzle sizes shown
in Figure 9, i.e. there is no isolated phenomena predicted.

5.3. The effects of slip and curvature

We next study how the slip length λ affects the flow characteristics under the slip
model (SCM). It has been shown in Halpern & Wei (2017) that the presence of slip
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Figure 16: Average bead speed obtained from experiments with R∗ = 0.1 mm and Q∗m =
0.06 g/s, compared to the speed predicted by the original CM model, the SCM model
with λ∗ = 3 µm, and the FCM model with λ∗ = 3 µm.

enhances capillary instability and promotes both droplet formation and the speed of the
falling drops. Similar observations are also made in our study of traveling wave solutions
for given (L,M0) in Figure 14. We observe that compared with the no-slip case, the slip
cases (λ 6= 0) have taller and narrower droplets. The dependence of the speed c on the
slip length λ in Figure 14 (right) agrees with the observation in Halpern & Wei (2017).
The speed of traveling wave solutions is of order O(1) in the weak slip limit and grows
linearly with λ in the strong slip limit. Since typical slip length λ∗ is 1 − 10 µm for
silicone oil, and typical Nusselt film thickness H is about 0.5 mm in our experiments,
our experimental conditions are expected to be in the weak slip limit.

Similar to the slip model, the inclusion of the fully nonlinear curvature term in the
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FCM model with Z(h) given by (3.17) also increases the moving speed of sliding droplets.
Figure 15 shows a comparison of the experimental bead profile against those obtained
from the Craster & Matar model (CM), the slip model (SCM) with the linear azimuthal
term in (3.15), and the full curvature model (FCM) with the full azimuthal curvature
term in (3.17). Under the period and mass constraint, whereas the different models all
yield solution profiles similar to the experimental result, the predicted speed obtained
from the ODE (4.7) is increased when the slippage effects and full curvature term are
included, and the FCM model with the slip length λ∗ = 7 µm provides the best agreement
with the experiment.

While the slip and the full curvature do influence predicted wave propagation velocities,
their corrections alone are not sufficient to improve agreement with the experimental
data. Figure 16 shows that for the thin fiber case (R∗ = 0.1 mm), the CM and SCM
models underestimate the bead velocities for all nozzle sizes. Even though the FCM model
yields a good agreement with the experiment for small nozzles, it overestimates the speed
for large nozzles. Similar trends are observed for the thick fiber case (R∗ = 0.215 mm)
(not shown here). In these cases, the film stabilization term becomes vital for correctly
predicting speeds and the regime transition, as discussed in section 5.1.

6. Conclusion

We have performed a thorough study of viscous flow down vertical fibers, comparing a
range of experimental results to different models of interest. We focus on understanding
the Rayleigh-Plateau (RP) regime, where traveling wave solutions emerge, and its tran-
sition to the isolated droplet (IS) regime due to nozzle effects. We propose a full model
that incorporates the stability of thin uniform layers by including a film stabilization
(FSM) term to the pressure. In this paper, experiments are compared to versions of a
lubrication model, showing the influences of slip effects, nonlinear azimuthal curvature
and the FSM term on predicted bead velocities and film profiles. In addition, we perform
a stability analysis of the traveling wave solutions(TWS) that confirms the importance of
the FSM term to properly capture regime transitions. The model equations lead to both
closely spaced wavy solutions and widely spaced droplet solutions which are affected by
different fiber sizes, flow rates, and nozzle geometry. The slip model (SCM) leads to an
increased speed of propagation and promotes formation of droplets. The full curvature
model (FCM) also increases the magnitude of the bead velocity, while the FSM model
stabilizes the thin undisturbed layer between consecutive droplets which leads to a more
accurate speed prediction. Our results show outstanding experimental agreement using
the FSM’s TWS in the RP regime. In the isolated droplet regime, dynamic simulations
of widely spaced droplet solutions agrees very well with experiments.

For future work, we are interested in the nozzle effects on the global modes (Duprat
et al. (2007)) of the absolutely unstable flows in RP and IS regimes. Of particular interest
would be the selection of spacing between moving beads with a given nozzle diameter.
Duprat et al. (2009) investigated the spatial response of a film flowing down a fiber to
inlet forcing using a system of coupled equations for the flow rate and the film thickness.
We anticipate that a similar model can be used to study the nozzle effects. Moreover,
the nozzle effects in our experiments are also related to the dripping faucet problem
(Coullet et al. (2005); Dreyer & Hickey (1991)) which studies the chaotic behavior of
a dripping faucet. Motivated by these theories, in the future we would like to further
study the connection between the fluid dynamics near the nozzle and its influence on the
downstream flow transitions.

In addition, our experimental observations with different fluids, not published here,
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Definition Symbol Thin fiber Thick fiber

Radius of the fiber (mm) R∗ 0.100 0.215
sample flow rate (g/s) Q∗

m 0.080 0.040
nozzle inner diameter (mm) ID 0.6− 1.8 0.6− 3.0
average maximum height (mm) h∗

m 0.8− 1.0 0.6− 0.8
lengthscale in radial direction (mm) H 0.589 0.494
lengthscale in streamwise direction (mm) L 1.091 1.029
characteristic streamwise velocity (mm/s) U 67.89 47.87
capillary length (mm) lc 1.485 1.485

aspect ratio H/R∗ α 5.886 2.299
slip length λ 0.012 0.014
scaling parameter (H/L)2 η 0.291 0.231
uniform layer thickness εp 0.204 0.435
stabilization parameter A 0.014 0.068
mass constraint M0 14 – 26 6 – 13
period L 4 – 9 3 – 8
speed of TWS c 0.10 – 0.15 0.18 – 0.27
Reynolds number Re 1.481 0.985
Weber number We 2.522 3.004

Table 2: Nomenclature and their sample values.

show that the nonlinear dynamics can change quite drastically, and choosing the appro-
priate coating thickness ε∗p is an interesting question for further study. For ε∗p of the same
order of the fiber radius, the value of the stabilization parameter A∗ is between 10−11 and
10−12 Nm, which is much larger than typical values of Hamaker constant between 10−19

and 10−21Nm. This indicates that the film stabilization term in our model is stronger
than typical van der Waals interactions, and the underlying physics still needs future
investigation.

This work was supported by the Simons Foundation Math+X investigator award
number 510776 and the National Science Foundation under grant CBET-1358034.

Appendix A. Nomenclature

In Table 2, we show the relevant nomenclature and the corresponding values given a
sample flow rate for thin and thick fibers. The first portion of the table shows dimensional
parameters and their units, while the bottom part of the table shows the selected non-
dimensional scales.

Appendix B. Nozzle effects

Motivated by the different regimes shown in Figure 9, we review the details of the
dependence of bead speeds on its spacing and mass constraint, and their relations to the
nozzle diameters. It has been empirically shown in Sadeghpour et al. (2017) that when
other experimental parameters are fixed, the nozzle diameter determines the spacing and
mass constraint for the traveling beads. Typical ranges for the mass constraint and period
with increasing nozzle inner diameter are shown in Table 2.

The plot in Figure 17 (right) shows the traveling wave speeds parametrized by a range
of values for the dimensional period L∗ to examine the impact of large versus small
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Figure 17: (Left) The experimentally measured relations between the dimensional L∗,
M∗0 , and the nozzle inner diameters for fiber radius R∗ = 0.215 mm at flow rate Q∗m =
0.04 g/s; (Right) the predicted speed of traveling wave solutions to the film stabilization
model (FSM) in comparison with the corresponding experimental results (large dots)
with varying M∗0 and L∗.

bead spacings. We also use a range of values for M∗0 to study the influence of bead sizes
on its velocity. For each calculation with a given dimensional (L∗,M∗0 ), the numerically
obtained traveling wave speed from the film stabilization model is labeled by a small
dot. For a fixed fiber radius at a given flow rate, the diameter of the nozzle feeding
the fluid selects the (L∗,M∗0 ) pair. To illustrate this connection, Figure 17 (right) shows
the experimental traveling bead velocities in large dots, for different nozzle sizes which
correspond to specific (L∗,M∗0 ) pairs. These results refer to experiments with fiber radius
R∗ = 0.215 mm at flow rate Q∗m = 0.04g/s, and the measured relations between L∗,M∗0 ,
and the nozzle inner diameter are shown in Figure 17 (left). The nozzle diameter ranges
from 0.6 mm to 3.0 mm. The period L∗ and the mass M∗0 both increase as the nozzle
diameter increases, and the predicted traveling wave speeds show good agreement with
the experimental results.
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