
UCLA
UCLA Electronic Theses and Dissertations

Title
Community detection using total variation and surface tension

Permalink
https://escholarship.org/uc/item/36b668bj

Author
Boyd, Zachary

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/36b668bj
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Community detection using total variation and surface tension

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Mathematics

by

Zachary Mark Boyd

2018

c© Copyright by

Zachary Mark Boyd

2018

ABSTRACT OF THE DISSERTATION

Community detection using total variation and surface tension

by

Zachary Mark Boyd

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2018

Professor Andrea Bertozzi, Chair

In recent years, a massive expansion in the amount of available network data in fields such

as social networks, food networks in ecology, similarity networks in machine learning, trans-

portation networks, brain networks, and many others has motivated the development of “net-

work science” to describe all this data. One of the fundamental branches in network science

is “community detection,” or the decomposition of large networks into coherent subnetworks,

which is useful for visualization, data exploration, hypothesis formation, approximation of

network dynamics, link prediction, and a host of other tasks.

Two of the most well-known frameworks for community detection are modularity op-

timization and stochastic block modeling. They can often uncover meaningful community

structure in networks from diverse applications. However, both of these approaches are

computationally demanding. In this dissertation, I will show how these two statistically-

motivated frameworks for community detection can be reinterpreted more geometrically

using the language of graph total variation (TV) and (discretized) surface tension, respec-

tively. This change in perspective allows one to leverage algorithms and analytical tools

developed for other problems in the fields of compressed sensing, materials science, and

nonlinear partial differential equations. One also can adapt arguments from other domains

to obtain theoretical guarantees on the performance of these algorithms. I illustrate these

ii

approaches on a number of synthetic and real-world datasets, yielding results competitive

with other state-of-the-art techniques on problems from machine learning, image processing,

social networks, and biological networks.

iii

The dissertation of Zachary Mark Boyd is approved.

Mason Alexander Porter

Stanley J. Osher

Christopher R. Anderson

Andrea Bertozzi, Committee Chair

University of California, Los Angeles

2018

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Network Science and Community Detection 1

1.2 Nonlinear differential equations and variational methods on networks 2

1.3 Modularity Optimization . 4

1.4 Stochastic Block Models (SBMs) . 5

2 Background . 8

2.1 Notation and Definitions . 8

2.2 Total Variation . 9

2.3 The Ginzburg–Landau (GL) Functional . 13

2.3.1 Choice of Graph Laplacian . 14

2.4 Merriman–Bence–Osher Schemes . 15

2.5 Similarity Graphs, Hyperspectral Video, and Nonlocal Means 16

2.6 Graph models, NP-completeness, and theoretical guarantees 20

3 Modularity optimization and total variation 21

3.1 Introduction . 21

3.2 Equivalence Theorem and Its Consequences 23

3.2.1 Formulations of Modularity in Terms of TV and Graph Cuts 23

3.2.2 On Convex Relaxations . 27

3.2.3 Ginzburg–Landau Relaxation . 29

3.3 Numerical Scheme . 30

3.3.1 Merriman–Bence–Osher Iteration . 30

v

3.3.2 Treating the Matrix Exponential . 31

3.3.3 Determining the Number of Communities 33

3.3.4 Scaling . 34

3.3.5 The Choice of Timestep . 34

3.4 Results . 36

3.4.1 Summary . 36

3.4.2 Analysis of each experiment . 40

4 Stochastic block models are a discrete surface tension 46

4.1 Background . 46

4.1.1 Stochastic Block Models (SBMs) . 46

4.1.2 Surface Tension . 50

4.2 An Equivalence Between SBM MLE and Discrete Surface Tension 51

4.3 Mean-Curvature Flow (MCF), Γ-Convergence, and Threshold Dynamics . . . 54

4.3.1 Mean-Curvature Flow . 54

4.3.2 Allen–Cahn (AC) Evolution . 58

4.3.3 MBO Iteration . 58

4.3.4 Learning ω . 59

4.4 Empirical Results . 61

5 Conclusion . 66

Appendices . 69

A Γ-Convergence of the Ginzburg–Landau Approximations of Expressions (3.6)

and (4.4) . 69

vi

B Deferred proofs from Section 3.3.5 . 71

C Hyperspectral Image Details . 73

D Eliminating the Diagonal Elements of W . 74

E Additional Notes on the AC and MBO Schemes for Expression (4.4) . . 76

References . 79

vii

LIST OF FIGURES

2.1 Image of the 1-norm unit ball . 10

3.1 Projection of the two moons example onto two dimensions 41

3.2 The urban dataset segmented using different methods 43

3.3 Segmentations of the plume hyperspectral video using different methods . . . 44

4.1 Examples of different connectivity patterns modeled by stochastic block models 48

4.2 Example arrangement of crystals . 51

4.3 Segmentation of a hyperspectral video using graph MCF 63

viii

LIST OF TABLES

3.1 Results of modularity optimization on six networks 38

3.2 Results of modularity optimization on hyperspectral image similarity networks 39

3.3 Results of modularity optimization with and without supervision 40

4.1 Results of SBM tests . 64

4.2 Computation times . 65

4.3 Optimal surface tensions for the MS SBM example 65

ix

ACKNOWLEDGMENTS

My sincerest thanks to Andrea Bertozzi, my advisor, for encouraging me to come to UCLA,

for helping me win my fellowship, for constantly offering resources and ideas, and for helping

me develop my own scientific style. I am also grateful to my collaborators, including Xue-

Cheng Tai for helping develop numerous ideas about modularity and for inviting me to

Norway, Egil Bae for sharing notes and ideas as well as many helpful edits of our paper,

and Mason Porter for the idea to investigate stochastic block models as well as multiple

careful readings of our paper, which greatly improved it. I was also fortunate to work

with several scientists at Los Alamos National Laboratory, including Scott D. Ramsey, Roy

S. Baty, Joseph Schmidt, Carl Hagelberg, Joanne Wendelberger, and the other scientists

at Los Alamos National Laboratory, who devoted countless mentorship and collaboration

hours to me and helped me produce great papers not featured in this dissertation. Scott in

particular gave a great deal of time and energy to me, for which I am profoundly grateful.

A number of others offered helpful advice at various points, notably Ekaterina Merkurjev,

Chris Anderson, Rob Hannah, Brent Edmunds, Shyr-Shea Chang, and Inwon Kim, to name

only a few among many. I am indebted to Andrea, Chris, Stan, and Mason for serving on my

dissertation committee, as well as Fei Sha, who served on my candidacy committee. Thanks

are also due to my fellow grad students and Los Alamos student collaborators, who were true

friends, team mates, and supporters; and to my parents, who nurtured my desire to excel

and supported my family during all my travel. Last and most importantly, special thanks

are owed to my wife, Katie, without whom none of this would have been possible, and my

children, Nathan, Sam, and Lucy, who motivated me to work efficiently.

Chapter 3 is a version of “Simplified energy landscape for modularity using total varia-

tion,” by Zachary M. Boyd, Egil Bae, Xue-Cheng Tai, and Andrea L. Bertozzi, submitted to

SIAM J. App. Math. EB provided expertise on constrained convex optimization. XCT sug-

gested using convex balancing terms for modularity and contributed ideas for the numerics.

ALB helped with the theory, examples, and numerous points of advice. All authors assisted

x

with manuscript preparation.

Chapter 4 is a version of “Stochastic block models are a discrete surface tension,” by

Zachary M. Boyd, Mason A. Porter, and Andrea L. Bertozzi, submitted to J. Nonlinear Sci.

MAP provided network science expertise, and ALB provided expertise in surface tension

dynamics. Both assisted in manuscript preparation.

Parts of Chapters 2 and 5 are also taken from the papers on which Chapters 3 and 4 are

based.

This work was supported by the U.S. Department of Defense (DoD) through the National

Defense Science & Engineering Graduate Fellowship (NDSEG) Program. Support for travel

was provided by NSF grants DMS-1417674 and DMS-1118971 as well as ISP-Matematikk

(Project no. 2390033/F20) at the University of Bergen.

This material is based on research sponsored by the Air Force Research Laboratory and

DARPA under agreement number FA8750-18-2-0066. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes notwithstanding any copyright

notation thereon.

The views and conclusions contained herein are those of the authors and should not be

interpreted as necessarily representing the official policies or endorsements, either expressed

or implied, of the Air Force Research Laboratory and DARPA or the U.S. Government.

xi

VITA

2013 B.S. (Mathematics), Brigham Young University, Provo.

2014 M.S. (Mathematics), Brigham Young University, Provo.

2014–2017 Graduate Research Assistant, Los Alamos National Laboratory, Los

Alamos, New Mexico.

2015–2018 National Defense Science and Engineering Graduate Fellow, Mathematics

Department, UCLA.

PUBLICATIONS

Zachary M. Boyd, Mason A. Porter, and Andrea L. Bertozzi. “Stochastic block models are

a discrete surface tension.” Submitted to J. Nonlinear Anal., arXiv:1806.02485.

Zachary M. Boyd, Emma M. Schmidt, Scott D. Ramsey, and Roy S. Baty. “Converging

shocks and collapsing cavities in non-ideal materials.” Submitted to SIAM J. Math. Anal.,

arXiv:1712.07561.

Zachary M. Boyd, Egil Bae, Xue-Cheng Tai, and Andrea L. Bertozzi. “Simplified en-

ergy landscape for modularity using total variation.” Accepted at SIAM J. App. Math.,

arXiv:1707.09285.

Scott D. Ramsey, Emma M. Schmidt, Zachary M. Boyd, Jennifer F. Lillieholm, and Roy S.

Baty. “Converging shock flows for a Mie-Gruneisen equation of state.” Accepted at Physics

of Fluids, arXiv:1712.08236.

xii

Zachary M. Boyd and Joanne Wendelberger. “An integrated approach to parameter learning

in infinite dimensional space.” Los Alamos technical report LA-UR-17-28326, 2017.

Zachary M. Boyd, Scott D. Ramsey, and Roy S. Baty. “On the existence of self-similar

converging shocks for arbitrary equation of state.” Qu. J. Mech. and App. Math., 70(4),

401-417, 2017.

Scott D. Ramsey, Zachary M. Boyd, and Sarah Burnett. “Solution of the Noh Problem using

the universal symmetry of the gas dynamics equations.” Shock Waves 27(3), 477-485, 2017.

Zachary M. Boyd, Scott D. Ramsey, and Roy S. Baty. “Symmetries of the Euler compressible

flow equations for general equation of state.” Los Alamos technical report LA-UR-15-28034,

2015.

Zachary M. Boyd. Convolutions and convex combinations of harmonic mappings of the disk.

Master’s thesis, Brigham Young University, 2014.

Zachary M. Boyd, Michael Dorff, Maria Nowak, Matthew Romney, and Magdalena Woloszkiewicz.

“Univalency of convolutions of harmonic mappings.” Applied Mathematics and Computa-

tion, 234C, 326-332, 2014.

Zachary M. Boyd and Michael Dorff. “Harmonic univalent mappings and minimal graphs.”

Current topics in pure and computational complex analysis. Eds. S. Joshi, M. Dorff, and I.

Lahiri. Springer, 21-46, 2014.

Zachary M. Boyd, Michael Dorff, Rachel Messick, Matthew Romney, and Ryan Viertel.

“Harmonic univalent mappings with singular inner function dilatation.” 60 years of analytic

functions in Lublin, 191-200, 2012.

xiii

CHAPTER 1

Introduction

1.1 Network Science and Community Detection

The study of networks, in which nodes represent entities and edges encode interactions

between entities [120], can provide useful insights into a wide variety of complex systems

in myriad fields, such as granular materials [128], disease spreading [130], criminology [74],

and more. In the study of such applications, the analysis of large data sets — from diverse

sources and applications — continues to grow ever more important.

The simplest type of network is a graph, and empirical networks often appear to exhibit

a complicated mixture of regular and seemingly random features [120]. Additionally, it is

increasingly important to study networks with more complicated features, such as time-

dependence [76], multiplexity [91], annotations [121], and connections that go beyond a

pairwise paradigm [127]. One also has to worry about “features” such as missing information

and false positives [88].

To try to understand the large-scale structure of a network, it can be very insightful to

coarse-grain it in various ways [55, 136, 138, 141, 142]. The most popular type of clustering

is the detection of assortative “communities,” in which dense sets of nodes are connected

sparsely to other dense sets of nodes [55,138]. Two of the most common approaches to com-

munity detection are modularity maximization, which seeks a partition of the graph nodes

optimizing a quality function, and stochastic block modeling, in which a family of generative

models is fitted to an observed network. The detection of communities has given fascinating

insights into a variety of applications, including brain networks [17], social networks [152],

1

granular networks [13], protein interaction networks [9], political networks [137], and many

others.

The network partitioning problem is very ill posed. Real networks are generated by

complicated processes with many factors, and thus there are often multiple ways to partition

a network that reflect legitimate divisions among the objects being studied [132]. Such effects

have been observed, for instance, in the Zachary Karate Club network, which has both

a community structure and leader-follower structure [132]. In [69], the energy landscape

of modularity was found to have many near-degeneracies, with super-exponentially many

locally optima having similar objective values.

The two main results of this work are (1) an equivalence between modularity maxi-

mization and modified graph total variation minimization and (2) an equivalence between

stochastic block models and surface-tension models from the literature on partial differential

equations (PDEs) that model crystal growth. Section 1.2 surveys some related literature to

provide motivation. We describe the main results of this dissertation in Sections 1.3 and 1.4.

1.2 Nonlinear differential equations and variational methods on

networks

The study of nonlinear PDEs has a long history, with physics and other applications motivat-

ing exploration of topics ranging from well-posedness to asymptotics to numerical schemes,

all of which have become fields in their own right. With the comparatively recent rise of

graph-based machine-learning methods and the host of other applications of network sci-

ence, there has been an interest in transferring some of the tried-and-true knowledge of PDE

theory to these new applications. One of the very early ideas was to consider diffusion on

graphs using a graph version of the heat equation, which has been used to model information

dissemination, peer pressure, disease spread and other processes, see e.g. [37, 104]. Another

prominent family of models centers on SIR equations, which model disease spread [131]. A

third approach involving differential equations is gradient descent of graph energies, which is

2

formulated naturally as a differential equation. See e.g. [10]. Other approaches are reviewed

in [149].

The approaches in this dissertation have their roots in a newer body of literature, ini-

tiated by Bertozzi and Flenner [14], who showed that semisupervised graph-cut problems

arising in machine learning can be solved using a graph version of the Allen–Cahn equation,

which is a nonlinear, second-order PDE arising from the gradient descent of a Ginzburg–

Landau-type energy. This showed the potential of phase-field models and other nonlinear

PDE and variational methods to contribute to graph-based problems, and numerous papers

have expanded on this idea [15]. Soon after this, [107] introduced MBO schemes for graph

segmentation, and [62] generalized Bertozzi and Bertozzi and Flenner’s work to multi-way

cuts. On the theory side, van Gennip and Bertozzi [155] proved Γ-convergence of graph

Ginzburg–Landau functionals to a graph total variation energy, and van Gennip et al. [156]

developed notions of mean curvature flow on graphs, with rigorous estimates on its rela-

tionship to previous graph dynamics. Luo and Bertozzi [101] gave additional guarantees

on the graph Allen–Cahn scheme. At the same time, more applications of these ideas were

developed, including community detection [79], hyperspectral image segmentation [171], bal-

anced cuts [25], body-worn video [106], and many others. PDE and variational models are

sometimes faster than the previous state of the art [14] and may have better guaranteed

accuracy [108]. Further research needs to be directed toward understanding what kinds of

graphs can be subjected to the various PDE methods and the various ways in which graph

topology impacts the dynamics that underly most of these methods. There is also a need to

develop high-quality codes that can be used by non-experts (but see [105]).

This dissertation is in the same spirit as much of the work just cited. Chapter 3 explores

theoretical and practical aspects of the connection between total variation and community de-

tection first found in [79]. Chapter 4 shows that a popular model of heterogeneous community

structure is analogous to a surface-tension energy and can be treated using surface-tension

inspired methods.

3

1.3 Modularity Optimization

In Chapter 3, we develop an equivalence between modularity optimization and graph total

variation minimization. Modularity is a very popular metric which, given a partition of a

network, compares the number of edges within each class to its expected value according

to a null model [122]. One uses modularity for community detection by searching among

all partitions for the one with the highest modularity score. Modularity can be adapted to

account for a variety of features such as directed edges [98], bipartite structure [12], and

spacial embedding [50]. The benefits of this approach include its statistical foundation [119],

automatic selection of the number of communities, and the existence of effective algorithms

and libraries (e.g. [42]).

In [79] an equivalence between modularity optimization (with fixed number of commu-

nities) and minimization of a modified graph total variation functional was developed. This

allowed the application of techniques from compressed sensing, image processing, and ge-

ometric PDE to the community detection problem, yielding good results on benchmark

networks. On the other hand, the model they proposed was nonconvex, whereas traditional

total variation optimization is convex. This difference restricts the optimization tools and

analytic estimates available and forces reliance on ad hoc initialization strategies and multi-

ple runs of the solver to get reliable results. The possibility of obtaining a convex proxy for

the model of [79] motivated much of the work in Chapter 3.

Chapter 3 shows that one of the sources of nonconvexity in [79] can be removed, resulting

in a convex functional over a discrete space. Our efforts to remove the discrete constraint

culminated in a theorem showing that it is impossible to reformulate modularity convexly

under certain conditions. We developed a nonconvex relaxation of modularity using a new

Ginzburg–Landau functional, which Gamma-converges to the modified total variation func-

tional and thus to (negative) modularity. This proof is of interest outside of community

detection since Gamma-convergence results on graphs were previously known only for bi-

nary functions [155] rather than the multiphase functions required for modularity. While

4

not convex, the Ginzburg-Landau relaxation has a scale parameter that allows for a trade-

off between the severity of the nonconvexity and the degree of agreement with the original

modularity model.1 In order to numerically solve the Ginzburg-Landau problem, we develop

a graph Merriman–Bence–Osher (MBO) scheme for modularity, which uses alternating dif-

fusion and thresholding to approximate operator splitting. We are able to prove theoretical

bounds on the associated diffusion dynamics, which we use to automate timestep selection,

a major practical improvement over the algorithm in [79], especially in the case where re-

cursive partitioning is required. We tested our approach on several networks, including one

with over 29 million edges. The results on hyperspectral image networks were particularly

encouraging, beating both the algorithm from [79] and the spectral bipartitioning scheme

of [117, 118], as well as performing competitively with the Louvain method. Our method is

also compatible with semi-supervised community detection, in which the community assign-

ment of some nodes is known beforehand, which improved considerably the navigability of

the otherwise nearly degenerate modularity energy landscape in our tests.

1.4 Stochastic Block Models (SBMs)

Chapter 4 describes the second major result, namely the connection between SBMs and

surface tension models. SBMs are a generative model that can produce networks with com-

munity structure [55,136].2 One uses an SBM for community detection by fitting an observed

graph to a statistical model to attempt to infer the most probable community assignment

for each node. SBMs can incorporate a variety of features, including degree heterogene-

ity [85], hierarchical structure [133], and metadata [121]. The benefits of an SBM approach

include statistical defensibility, theoretical tractability, asymptotic consistency under certain

conditions, definable transitions between solvable and unsolvable regimes, and theoretically

1In [79], a Ginzburg-Landau functional is also used, although in that context it does not have the inter-
pretation of perturbing the energy for improved convexity.

2Networks that are generated from an SBM can also have other types of block structures, depending on
the choice of parameters; see Section 4.1.1 for details.

5

optimal algorithms [113,136].

Recently, Newman showed that one can interpret modularity maximization [117,122] as

a special case of an SBM [119]. This raises the possibility of formulating SBM maximum-

likelihood estimation (MLE) in terms of TV. We develop such a formulation using ideas from

models of surface tension and crystal growth.

The main result of Chapter 4 is the establishment of an equivalence between SBMs and

surface-tension models from the literature on PDEs that model crystal growth. Crystal

growth is an important aspect of certain annealing processes in metallurgy [90, 115]. It is

a consolidation process, wherein the many crystals in a metal grow and absorb each other

to reduce the surface-tension energy that is associated to the interfaces between them. The

various processes involved have been modeled from many perspectives, including molecular

dynamics [40], front tracking [60], vertex models [163], and many others. (See [90] for a much

more extensive set of references.) It has been observed experimentally that the interface

between any two grains evolves according to motion by mean curvature [147]. Although

the interfaces follow mean-curvature flow, each different interface can evolve at a different

rate, as there are different surface-tension densities between each pair of crystals. In realistic

cases, surface tensions are both inhomogeneous and anisotropic, and they require careful

adaptation of standard mean-curvature-flow approaches [47, 81], especially for dealing with

the topological challenges that arise at crystal junctions, which routinely form and disappear.

Because mean-curvature flow is the gradient descent of the TV energy, this leads naturally

to formulations in terms of level sets [126], phase fields [19], and threshold dynamics [111].

Each community in a network is analogous to a crystal, and the set of edges between

nodes from a pair of communities is akin to the topological boundary between a pair of

crystals. The surface-tension densities correspond to the differing affinities between each

pair of communities. To demonstrate the relevance of this viewpoint, we develop and test

discrete analogs of surface-tension numerical schemes on several real and synthetic networks,

and we find that straightforward analogs of the continuum techniques successfully recover

planted community structure in synthetic networks and uncover meaningful structure in

6

the real networks. We also prove a theoretical result, in terms of Γ-convergence, that one

can meaningfully approximate the SBM MLE problem by smoother energies. Finally, we

introduce three algorithms — inspired by work on crystal growth — that we test on synthetic

and real-world networks.

The paper on which Chapter 4 is based appears to be the first connection between

network community detection and surface tension problems of this kind. Recently, Jacobs

showed how to apply techniques from models of crystal growth to graph-cut problems from

semisupervised learning [81]. (See also [82] for related work.) We also note that several

recent papers, which do not directly involve surface tension, have used ideas from perimeter

minimization and/or TV minimization for graph cuts and clustering in machine learning [15].

Three of those papers are concerned explicitly with ideas from network science [20,79,154].

7

CHAPTER 2

Background

In this chapter, we review topics which are relevant to both Chapters 3 and 4. Background

topics not needed in both Chapters 3 and 4 are included at the beginning of the chapter to

which they are relevant. Sections 2.2 to 2.4 develop continuum and graph versions of total

variation, Ginzburg–Landau functionals, and MBO schemes. Section 2.5 introduces nonlocal

means and similarity graphs, a framework used to convert machine learning problems into

graph theory problems to which community detection methods can be applied.

2.1 Notation and Definitions

We use the following notation throughout this dissertation: Let G be an undirected, sparse

graph with N nodes, weighted adjacency matrix A, degree vector k satisfying ki =
∑
j

Aij,

and 2m =
∑
i

ki. We treat k as a column vector. In Chapter 3, G is non-negatively

weighted, and in Chapter 4, it is unweighted. We also assume that G is sparse, meaning

that the number of edges is O(N) rather than O(N2). None of the theory we develop relies

on the sparsity assumption, but our algorithms do require it in order to be efficient — for

example, we assume that the map U → AU for a vector U can be computed in O(N) time.

Definition 1. Let Bα be a subset of the nodes of G for each α ∈ {1, . . . , n̂}. Then B1, . . . , Bn̂

is a partition of the nodes of G if
n̂⋃

α=1

Bα includes all nodes in G and Bα1 ∩Bα2 is empty for

each α1 6= α2.

Throughout this dissertation, we will use two other representations of a partition of graph

8

nodes: community assignment vectors and partition matrices. Given a partition B1, . . . , Bn̂,

the associated community assignment vector g ∈ RN satisfies gi = α iff node i is in Bα. The

equivalent partition matrix is defined as follows.

Definition 2. Let Π(G) be the set of all partitions of the nodes of G. For each partition

B1, . . . , Bn̂ in Π(G), there is an N × n̂ partition matrix U defined by,

Uiα =


1 i ∈ Bα

0 i ∈ Bc
α

For a matrix U , we say U ∈ Π(G) when U is the partition matrix of some partition.

2.2 Total Variation

We briefly introduce total variation (TV) and why it is interesting to establish a connection

between community detection frameworks and TV. Consider a smooth function f : Ω ⊂

Rd → R for some d. The TV of f is

|f |TV =

∫
Ω

| ∇ f |dx . (2.1)

For d = 1, (2.1) describes the total amount of increase and decrease of the function f . If f is

smooth except for jump discontinuities, one can interpret the derivative of f in a generalized

sense, yielding

|f |TV =

∫
Rd−Γ

| ∇ f |dx+

∫
Γ

|[f]| dx ,

where Γ is the union of all curves of discontinuity and [f] is the height of the jump across

the discontinuity. The first integral uses a d-dimensional measure, and the second uses a

(d − 1)-dimensional Hausdorff measure. In the particular case in which d = 2 and f is the

characteristic function of some set S, we see that |f |TV is the perimeter of S. Similarly, when

d = 3, we obtain surface area.

Total variation is an important regularizer in machine learning. It is worth contrasting it

with the Dirichlet energy

∫
Ω

| ∇ f |2dx, which has minimizers that satisfy ∆f = 0, a condition

9

that guarantees smoothness. However, minimizers of TV need not be smooth, as they can

admit jump discontinuities. In image denoising, for instance, regularization using Dirichlet

energy tends to blur edges to remove discontinuities, whereas a TV regularizer leaves the

edges intact [28, 144].

Another use of TV energy is in relaxations, in which one can transform a nonconvex

problem involving piecewise-constant constraints into a convex problem with the same min-

imizers [28, 108]. A common heuristic explanation for this phenomenon (see Fig. 2.1) uses

the shape of the 1-norm unit ball. The simplest case is in two dimensions, where the 1-norm

ball is diamond-shaped, and minimizing the 1-norm over certain domains (e.g., a line) gives

a sparse solution, in the sense that most components of the solution vector are 0. In this

case, minimizing the 1-norm, constrained to a line, is the same as minimizing the number of

nonzero elements of the vector, subject to the same constraint.

In the context of TV minimization, we take the 1-norm of a function’s gradient, rather

than of the function itself. Thus, instead of promoting sparsity of the function values, we

promote sparse gradients, thereby incentivizing piecewise-constant minimizers for TV. Our

discussion above is heuristic, but the ideas therein can be treated rigorously [28].

Figure 2.1: Image of the 1-norm unit ball and a line in the plane. The point on the line with

the smallest 1-norm is almost always on one of the axes.

Algorithmically, one can minimize TV using, for example, phase-field models [19] or

threshold dynamics [111], both of which rely on the fact that the gradient descent of TV

is a generalization of mean-curvature flow. The alternating-directions method of multipliers

(ADMM) [68] and graph-cut methods, such as the one in [22], also solve similar problems

10

effectively.

Thus far, we have restricted our discussion of TV to a continuum setting. There are

graph analogs of the mathematical objects — gradients, measures, integrals, tangent spaces,

divergences, and so on — that one uses to define TV in a continuum setting. For instance,

for any function f on the nodes of a graph and any edge between nodes i and j, the discrete

derivative at i in the direction j is

∇ f(i, j) = f(j)− f(j) .

Using the inner products

〈f, g〉 =
N∑
i=1

figi ,

〈φ, ψ〉 =
∑
i,j

Aijφijψij

on the spaces of functions on the nodes and edges, respectively, gives the divergence as the

adjoint of the gradient:

(div φ)i =
∑
j

Aijφji .

In a continuum, an alternative definition of TV is

|f |TV = sup〈div φ, f〉 , (2.2)

where the supremum is over an appropriate set of test functions. For a graph, (2.2) is

equivalent to

|f |TV =
1

2

∑
i,j

Aij|f(i)− f(j)| . (2.3)

See [65, 156] for a detailed justification of these definitions. We will also use a slight gener-

alization of (2.3) to the case where f : {1, . . . , N} → Rn̂ is vector-valued, in which case

|f |TV =
∑
α

|fα|TV

where fα is the α-th component of f . It is sometimes convenient in this case to identify f

with an N × n̂ matrix U where Uiα = fα(i). Then we have

|U |TV =
∑
α

1

2

∑
i,j

Aij|Uiα − Ujα|.

11

In particular, Section 2.2 allows one to take evaluate the total variation of the matrix of a

partition.

Some methods for graph clustering (e.g., see [160]) rely on the combinatorial (or unnor-

malized) graph Laplacian

L = diag(k)− A, (2.4)

which is a discrete analog of the continuum Laplacian ∆. The continuum Laplacian arises

in solutions to constrained optimization problems that involve the Dirichlet energy, so it

is reasonable to expect minimizers of energies that involve the graph Laplacian to have

analogous properties to minimizers of the Dirichlet energy. Indeed, it is well-known that

the minimizers that arise from spectral methods are usually smooth, instead of having sharp

interfaces, so one needs to threshold them in some way. Such thresholding is a major source of

difficulties for attempts to obtain theoretical guarantees about the nature of minimizers after

thresholding. In contrast, methods that use graph TV can directly accommodate piecewise-

constant solutions [108], which do not require thresholding to give classification information.

Several previous papers have exploited this property of TV on graphs [14,79,153,171].

Graph total variation is connected to graph cuts, which correspond roughly to perimeter

in Euclidean space.

Definition 3. Let B be a subset of the nodes of G. Then the graph cut1associated to B is

given by

Cut(B,Bc) =
∑

i∈B,j∈Bc
Aij.

Let f : {1, . . . , N} → R be the characteristic function of a set of nodes B. Then we can

calculate

|f |TV =
1

2

∑
i,j

Aij|f(i)− f(j)| =
∑

i∈B,j∈Bc
Aij = Cut(B,Bc). (2.5)

TV minimization on a graph tends to produce piecewise-constant functions whose corre-

sponding graph cut is small [108].

1In Chapter 4, we use a slightly different notation for graph cuts that accommodates the additional

12

2.3 The Ginzburg–Landau (GL) Functional

One approach which minimizes total variation by approximating mean-curvature flow is

approximation by a Ginzburg–Landau functional. This approach is popular due both to its

simple implementation and the existence of unconditionally-stable numerical methods [14].

The idea is to use a phase-field u. In the two-phase case, an example GL functional is∫
Ω

[
ε |∇u|2 +

1

2ε
u2(1− u)2

]
dx , (2.6)

where u : Ω ⊂ Rd → R is a smooth function and ε is a small parameter. The L2 gradient

descent of the GL functional is

ut = ε∆u− 1

2ε

d

du

[
u2(1− u)2

]
,

which is the Allen–Cahn (AC) equation. The minimizers of the GL energy are mostly

constant, with O(ε)-width transition layers between the constant regions. Further, one

can show that the GL energy Γ-converges to the TV energy as ε → 0, assuming that∫
Ω

u dx = const [112]. Consequently, if uε is a minimizer of the constrained GL energy

with parameter ε and the minimizers converge in bounded-variation (BV) space as ε → 0,

then the accumulation point is a minimizer of the TV energy.

In order to derive the graph Ginzburg–Landau functional, observe that if we ignore

boundary terms, then integration by parts gives∫
Ω

‖∇u‖2
2 =

∫
Ω

∇u · ∇udx =

∫
Ω

− div∇u · udx =

∫
Ω

−∆u · u, dx (2.7)

which suggests that we use a graph Laplacian in our formulation. The Laplacian that is

appropriate for our context is (2.4). Following this hint, as well as previous works, no-

tably [14,155], we obtain the following graph GL functional.2

Fε = ‖∇U‖2
2 +

1

ε

N∑
i=1

Ψ(U(i, :)) +G(U) (2.8)

complications of the problem considered in that chapter. See Section 4.2 for details. The definition of
volume is correspondingly adjusted as well.

2Note that due to the discrete setting, there is no epsilon factor preceding the Laplacian term, see [155].

13

:= UTLU +
1

ε

N∑
i=1

Ψ(U(i, :)) +G(U), (2.9)

where U is an N × n̂ matrix, G is an application-specific potential, and Ψ is a multi-well

potential on Rn̂ that is small for arguments with exactly one nonzero entry. For example, [62]

found that the following potential works well:

Ψ(U) =

(
n̂∏

α=1

1

4
‖U(i, :)− eα‖2

`1

)
,

where eα is an n̂-element vector that is equal to 0 except for a 1 in the α-th entry. In The-

orem 2 and Section 4.3, we show that (2.9) Γ-converges to graph total variation (plus the

potential G), and in Chapter 4 we develop a more complicated GL functional that is suitable

for a stochastic block model problem and also show Γ-convergence in this case, as well as

showing how to optimize it numerically.

2.3.1 Choice of Graph Laplacian

The graph TV formulation we are working with has led us to use the unnormalized Lapla-

cian (2.4). In practice, three different Laplacians are commonly used, with the other two

being the random walk Laplacian, I − D−1W , and the symmetric normalized Laplacian,

I−D−1/2WD−1/2, where D = diag k. In many applications, normalization is used to reduce

the influence of connections to high-degree nodes, which can dominate the dynamics of the

unnormalized Laplacian, leading to issues such as eigenvector localization (e.g. [129]). This

also leads to issues with consistency of the operator [160] and can lead to visually unappealing

clusterings [14]. On the other hand, this is the Laplacian which naturally arises when us-

ing statistically principled approaches such as modularity optimization and stochastic block

models, which are developed in Chapters 3 and 4. The network science community has dealt

with the problems of normalization by imposing degree-corrected null models rather than

the simplest Erdős–Renyi models, see Chapter 3. Nonetheless, it is important to be aware of

these issues when writing algorithms, since naive approaches based on the spectrum of the

unnormalized Laplacian can have unexpected results if the degree correction terms are not

14

properly incorporated. This will, for instance, influence our decisions when implementing

the pseudospectral scheme in Chapter 3.

2.4 Merriman–Bence–Osher Schemes

In [111], Merriman, Bence, and Osher showed that continuum mean-curvature flow is well-

approximated by the simple iteration in Algorithm 1. In a rectangular domain, the iteration

is extremely efficient, as one can use a fast Fourier transform when solving the heat equation.

It also gracefully handles topological changes that routinely occur in mean curvature flow.

Another approach to understanding MBO schemes goes through operator splitting in the

Algorithm 1 A two-phase, continuum MBO scheme.

Input the initial domain.

Initialize u as the characteristic function of the initial domain.

for n = 1, 2, . . . do

un+1/2 is the solution at time dt of ut = ∆u with initial condition un .

un+1 = bun+1/2 + 0.5c , where b·c is the floor function.

end for

Output the set of points for which u = 1 .

Allen–Cahn equation. Since the theory of mean curvature flow on graphs and its connection

to MBO schemes is still developing [156], we will use the Allen–Cahn approach to show how

graph MBO works.

We minimize the functional from (2.9) where ε is small. The connection between graph-

based TV and MBO was first made in [107] and [62]. Consider the Ginzburg–Landau gradient

descent equation (at fixed n̂)

d

dt
U = −LU − 1

ε
∇

(∑
i

Ψ(U(i, :))

)
−∇G(U),

where ∇ denotes the gradient in the Frobenius inner product. One way to approximate this

flow is by operator splitting [66, p.22] with time-step dt and tn = ndt, n = 0, 1, 2, Given

15

Un one obtains Un+ 1
2 as the solution to

d

dt
U1 = −LU1 −∇G(U1), t ∈ [tn, tn+1],

U1(tn) = Un, Un+1/2 = U1(tn+1).

(2.10)

Then one gets Un+1 by solving

d

dt
U2 = −1

ε
∇

(∑
i

Ψ(U2(i, :))

)
, t ∈ [tn, tn+1],

U2(tn) = Un+1/2, Un+1 = U2(tn+1).

(2.11)

The iteration continues until a fixed point is reached. Such operator splitting schemes

are typically first-order accurate in time. Expression (2.11) is essentially a thresholding

operation, pushing all values of U into the nearest well, i.e.

Un+1
iα =


1 α = argmax

β
U
n+ 1

2
iβ

0 otherwise

Thus, the graph MBO scheme, like the continuum version, consists of alternating diffusion

and thresholding. See Algorithm 2 for an example of pseudocode.

The most expensive part of this procedure is solving the diffusion equation. We accom-

plish this efficiently using a pseudospectral scheme, which will be described in Section 3.3.2

and Appendix E.

2.5 Similarity Graphs, Hyperspectral Video, and Nonlocal Means

In some of the data sets used in this dissertation, the information does not come in a net-

work format, but can be transformed into a graph. A typical situation is when one wishes to

classify objects into groups whose members are similar to each other, either in an unsuper-

vised, supervised, or semisupervised setting. In this case, one wishes to identify the objects

with graph nodes, where (possibly weighted) graph edges encode similarity between pairs

of objects. One then attempts to cluster the graph nodes in such a way that similar nodes

reside in the same cluster, a notion which can be made precise in various ways, including

16

modularity optimization, balanced cuts [87], conductance [36], etc. The details of graph

construction can have a profound impact on the success of graph-based methods, since if the

relevant relationships between objects are not successfully encoded into the graph structure,

no graph clustering method can be expected to extract the desired structure. (In Section 3.4,

we will see with the MNIST example that a naive similarity graph construction leads to is-

sues where the graph clustering algorithm is effective but extracts the wrong information.

This is the only example where we will see such issues, however.)

A typical graph construction procedure might proceed as follows: (1) feature vectors

are extracted from each object, (2) a similarity score is computed between each pair of

feature vectors, and (3) fully-connected graph is constructed, where the weight of the edge

between two distinct nodes is the similarity score. (We do not allow self-edges.) For step

one, feature vectors can be hand-constructed, computed using machine-learning approaches,

such as principle components analysis, or computed using more complicated methods, such

as neural networks. The similarity score is often given by some decreasing function of the

distance between feature vectors, for example

e
−d(xi,xj)

2

σ , (2.12)

where xi is the feature vector corresponding to node i and σ > 0. In this case, the selection

of an appropriate distance is important, with options including Euclidean distance

d(xi, xj)
2 =

∑
α

(xiα − xjα)2,

cosine similarity

d(i, j) =

∑
α xiαxjα
‖xi‖ ‖xj‖

,

and `1 distance

d(i, j) =
∑
α

∑
α

|xiα − xjα|.

Note that cosine similarity is not technically a metric since it does not obey the triangle

inequality, but it is useful in situations where the sign and scale of the vectors should be

ignored. The `1 metric is more robust to noisy dimensions than the Euclidean distance, but

17

the Euclidean distance is rotation-invariant. Each of these distances has a weighed version,

for instance

d(xi, xj)
2 =

∑
α

wα(xiα − xjα)2

for non-negative constants wα. The choice of w is a non-trivial problem that can have a

large impact on performance, and its solution in practice tends to rely more on domain

knowledge and ad hoc engineering than generalizable theoretical considerations. Another

issue to consider is the choice of σ in (2.12). It can be hand-tuned, or a self-tuning approach

can be used where σ varies from edge to edge and is given by
√
τiτj, where i and j index the

nodes at each end of the edge, and τi is the distance from node i to its κ-th nearest neighbor

for some value of κ [169].

When the number of objects, N , is large, it can be cumbersome to compute and store

N2 similarity scores. One solution is to use an interpolation technique such as the Nyström

extension to approximate information about the graph, such as a few leading eigenvectors

of a graph Laplacian, without fully computing or storing the graph [14, 57, 58]. In this

dissertation, we take a different approach, since we will want more detailed information than

just a few eigenvectors. Instead, we sparsify the similarity graph by thresholding to 0 all

values of the weighted adjacency matrix except for the largest κ entries, where κ is often 10.

The adjacency matrix can then be symmetrized by setting A = max(A,AT). This fixes the

issue of requiring quadratic storage, since such a graph can be stored as an adjacency list in

O(κN) space. It is also possible to approximate the κ-nearest neighbor lists in O(N logN)

time using heuristics. In this dissertation, we use the VLFeat library [157] to achieve this.

Finally, for the sake of simplicity, we sometimes remove the weights from the sparsified graph

by setting all non-zero entries of the adjacency matrix to 1.

The methods described in Chapters 3 and 4 are suitable for arbitrary graphs, but the

methods in Chapter 3 work particularly well on similarity graphs. One reason may be that

similarity networks are particularly “spatial.” The triangle inequality restricts the possible

distances among any three feature vectors. This is reflected in the fully connected similarity

matrix because if Ai` and A`j are both large, then Aij will also be fairly large. This is,

18

of course, not true of arbitrary, non-similarity graphs. Since our methods are inspired by

methods known to be effective on discretizations of Euclidean space and other manifolds,

our method’s particularly good performance on similarity graphs is reasonable.

Some of our examples focus on pixel classification involving hyperspectral images or

videos. A hyperspectral video is different from an RGB video, in that each pixel in the former

encodes the intensity of light at a large number (e.g., 129, in this case of the plumes example

from Chapters 3 and 4) of different wavelengths rather than only 3. The extra information

encoded in hyperspectral images and videos can be used to identify physical properties

of the objects being observed, which has applications in finding new oil fields, tracking

the movement of dangerous chemicals, and monitoring the development of crops [70]. We

consider the classification problem of identifying pixels that include similar materials (such

as dirt, road, grass, and so on). This problem is difficult because in practice, a point in space

can hold a mixture of materials, and boundaries tend to be diffuse, irregular, and ill-defined.

Furthermore, the signal is sometimes faint and spread out among many wavelengths. We

construct a graph representation of this video using “nonlocal means,” feature vectors, as

described in [27]. The advantage of this construction is that it captures similarity in local

texture that may not be apparent at the level of a single pixel. Specifically, we use the

following construction. For each pixel p and in each of 7 frames, we construct a vector vp by

concatenating the data in a 3×3 window that is centered at p. We then use a weighted cosine

distance as a similarity measure on these (3×3×129)-component vectors, where we give the

most weight to the components from the center of the window. We weight the center pixel

components by 1, the components from adjacent pixels by 0.5, and the components from

corner pixels by 0.25. That is, we let vîĵ be the 129-element vector at pixel (̂i, ĵ), and we

define wîĵ as the concatenation of vîĵ, .5vî+1,ĵ, .5vî−1,ĵ, .5vî,ĵ+1, .5vî,ĵ−1, .25vî+1,ĵ+1, .25vî+1,ĵ−1,

.25vî−1,ĵ+1, and .25vî−1,ĵ−1. We then calculate the cosine similarity between each pair of wîĵ

vectors. Finally, using the VLFeat software package [157], we build a 10-nearest-neighbor

graph using the similarity measure and a κ-dimensional tree (with κ = 10).

19

2.6 Graph models, NP-completeness, and theoretical guarantees

When working on graphs, many important problems are NP-complete, for example, the

modularity optimization problem in Chapter 3 [24]. This implies that (assuming P 6= NP)

any efficient (i.e. polynomial-time) algorithm yields suboptimal partitions on many graphs.

Nonetheless, these algorithms often perform well in practical applications. One explana-

tion is that the modularity energy landscape for typical real-world networks has many near-

degeneracies [69], with super-exponentially many near-optimal clusterings that may be useful

solutions for many applications. Another explanation for the success of many algorithms is

that the graphs seen in applications are not uniformly sampled from the set of arbitrary

graphs of a given size and that such “real life” graphs present an easier family of graphs to

optimize on than the family of arbitrary graphs in a given size range. Indeed, there is a vast

literature on different types of graph models known to produce realistic graphs for particular

applications [150]. Examples include similarity graphs, stochastic block models (see Chap-

ter 4), and Barabási–Albert scale-free graphs [11]. The case of stochastic block models is

particularly relevant, as it is conjectured that there is a “computability phase transition,” for

which, as one varies the parameters of the generative model, the SBM optimization problem

suddenly becomes NP-hard [113]. A related result is the No Free Lunch Theorem from [132],

which implies that no single algorithm can be optimal for all community-detection tasks.

An important and underdeveloped area of research is creating frameworks that will enable

modelers and algorithm designers understand when various algorithms are appropriate for

the data they want to deal with. Important results in this direction include [26,80,83].

20

CHAPTER 3

Modularity optimization and total variation

3.1 Introduction

The modularity of a partition B1, . . . , Bn̂ of the nodes of G is given by

Q =
1

2m

∑
α

∑
i,j∈Bα

(
Aij − γ

kikj
2m

)
, (3.1)

where γ is a parameter whose role is explained later in this section. The modularity op-

timization problem seeks an partition of the nodes that maximizes (3.1) for a given graph

and fixed γ > 0. Intuitively, we are to understand Aij as the observed edge weight and
kikj
2m

as the expected weight if the edges had been placed at random according to a certain

null model [122]. Thus, when maximizing (3.1), there is an incentive to group those nodes

that are connected — or, more precisely, those nodes that have an unusually high-weight

connection compared to the null model.

Modularity optimization is a very popular heuristic for uncovering community structure.

However, the results of modularity optimization must be interpreted carefully. For example,

maximizing (3.1) will yield non-trivial partitions even in a Erdős–Rényi graph [71], which

indicates that overfitting is a danger. In addition, many dissimilar partitions may yield near-

optimal modularity values on a given network [69, 132], indicating that the model may be

under-specified or at least has more than one near-optimal solution. This is to be expected,

due to the ill-posed nature of community detection in general. One way to leverage this

diversity of high-modularity partitions in practice, as well as prevent the discovery of com-

munities in random graphs, relies on consensus clustering [170]. Another approach is simply

to sample many high-modularity partitions, expecting that multiple intuitively-meaningful

21

partitions may be found. Such effects have been observed, for instance, in the Zachary

Karate Club network, which has both a community structure and “leaders and followers”

(role-based) structure [132].

It has been shown [119,143] that modularity optimization is equivalent to a special case

of likelihood maximization on SBM models, which means that it is just as principled as an

SBM approach as long as one accepts the extra assumptions that reduce SBM to modularity.

These assumptions are that the communities are assortative and statistically similar to each

other, meaning that the probability of intra- (or inter-) community edges forming is the same

for all communities.

Modularity also has preferred scale for communities [54,95]. For this reason, one typically

includes a resolution parameter γ > 0 [7, 139]. When γ is nearly 0, the incentive is to place

many nodes in the same community, so that the edge weight is included in the sum. When γ

is large, few nodes are placed in each community, to avoid including the large penalty term

γ
kikj
2m

.

A number of heuristics have been proposed to optimize modularity [53, 55], with promi-

nent approaches including spectral [117, 118], simulated annealing [71], and Louvain algo-

rithms [18]. Modularity optimization can also be interpreted in terms of force-directed layout

and optimized using visualization techniques [124]. Optimizing (3.1) for a given graph with

γ = 1 is NP-hard [24], which means (assuming P 6= NP) that any given polynomial-time

heuristic will fail to optimize (3.1) for many graphs.

The rest of the chapter is organized as follows: Section 3.2 develops the main theoretical

results optimizing (3.1). Section 3.3 develops the theory and practical implementation of our

algorithm, Balanced TV. Section 3.4 gives numerical examples. Appendices A to C contain

additional background and deferred proofs.

22

3.2 Equivalence Theorem and Its Consequences

In this section, we derive four equivalent formulations the modularity optimization prob-

lem, (3.1), and explore some consequences of these formulations. We will need this definition:

Definition 4. For any subset B of the nodes of G, its volume is given by volB =
∑
i∈B

ki.

3.2.1 Formulations of Modularity in Terms of TV and Graph Cuts

Proposition 1 presents the different formulations of modularity that form the basis for our

subsequent analysis. (See Section 2.1 for notation.)

Proposition 1 (Equivalent forms of modularity). The following optimization problems all

have the same solution set:

Modularity: argmax
n̂∈N,{Bα}n̂α=1∈Π(G)

∑
α

∑
i,j∈Bα

(
Aij − γ

kikj
2m

)
(3.2)

Balanced cut (I): argmin
n̂∈N,{Bα}n̂α=1∈Π(G)

∑
α

(
Cut (Bα, B

c
α) +

γ

2m
(volBα)2

)
(3.3)

Balanced cut (II): argmin
n̂∈N,{Bα}n̂α=1∈Π(G)

∑
α

(
Cut (Bα, B

c
α) +

γ

2m

(
volBα −

2m

n̂

)2
)

+ γ
2m

n̂

(3.4)

Balanced TV (I): argmin
n̂∈N,U∈Π(G)

|U |TV +
γ

2m

∥∥kTU∥∥2

2
(3.5)

Balanced TV (II): argmin
n̂∈N,U∈Π(G)

|U |TV +
γ

2m

∥∥∥∥kTU − 2m

n̂

∥∥∥∥2

2

+ γ
2m

n̂
(3.6)

Each of the preceding forms has a different interpretation. Expression (3.2) is based on

comparison with a statistical model and views communities as regions that are more con-

nected than they would be if edges were random. The cut formulations represent modularity

as favoring sparsely interconnected regions with balanced volumes, and the TV formulation

seeks a piecewise-constant partition function U whose discontinuities have small perimeter,

23

together with a balance-inducing quadratic penalty. The cut and TV forms come in pairs.

The first form (labelled “I”) is simpler to write but harder to interpret, while the second

(labelled “II”) has more terms, but the nature of the balance term is easier to understand,

as it is minimized (for fixed n̂) when each community has volume 2m/n̂. Furthermore, the

third term of the forms labelled II reveals that the incentive to increase the number, n̂, of

communities can be quantified in terms of an O(n̂−1) penalty term, which is not obvious

from other formulations of modularity of which we are aware.

One can compare these equivalent formulations with [79], in which minimizing the func-

tional

|U |TV − γ ‖U −mean(U)‖2
`2(G) = |U |TV − γ

∑
iα

ki

(
Uiα −

1

2m

N∑
j=1

kjUjα

)2

(3.7)

is shown to be equivalent to modularity optimization, subject to the same constraint as

the other TV formulas presented here. Thus, in [79], there are two sources of nonconvexity,

namely the balance term and the constraint, while in our formulation, the discrete constraint

is the only source of nonconvexity.1 It is clear from (3.6) which features of a solution

are incentivized by modularity optimization, namely, the two priorities of having a small

graph cut and balanced class sizes are the only considerations. The relative weight of these

considerations, as well as the number of communities, is governed by γ, via the second and

third terms of (3.6). The rest of the chapter shows how these theoretical simplifications

make the nonconvexity of the problem easier to navigate.

We note that forms similar to (3.3) to (3.6) have appeared in the literature before (see

e.g. [139]), although the only previous work to consider any modularity formula in terms

of total variation is [79].2 To the best of our knowledge, the decomposition of modularity

1To see rigorously that (3.7) is nonconvex, consider the special case of two nodes connected by a single
edge, γ = 1 and U = [c 0; 0 0]. Then considering (3.7) as a function of c immediately shows the nonconvexity.
The nonconvexity is actually very general; computing the second derivative of the second term in (3.7) with
respect to any component of U gives a negative value for any connected graph with more than one node.
Since the TV term grows asymptotically linearly, it is eventually dominated by the quadratic growth of the
second, concave term.

2Another very recent paper [154] used total variation for maximizing modularity, although it was not
phrased primarily in those terms.

24

into the three intuitively meaningful terms in the forms labelled II is also novel. We will

see shortly that the TV perspective on (3.3) to (3.6), combined with the convexity of the

functionals in (3.5) and (3.6) leads to a number of new developments.

Expressions (3.3) to (3.6) provide a convenient way to incorporate metadata into the par-

titioning process.3 This can be done by simply incorporating a fidelity term and minimizing

the functional

|U |TV +
γ

2m

∥∥kTU∥∥2

2
+ µ ‖χ� (U − f)‖ (3.8)

where µ > 0 is a parameter, f is a term containing the metadata labels, � is the entry-wise

matrix product, χ is a matrix satisfying

χiα =


1 label i is known

0 otherwise

,

and || · || is some application-appropriate norm. Including metadata should always be done

with care, of course, but the general utility of semisupervised learning is well-attested in

image processing and machine-learning applications. (See e.g. [14]. See also Table 3.3 for

two numerical examples.)

Proof of Proposition 1. Notice that the cut and TV formulations are really just a change of

notation. That leaves two nontrivial equivalences, namely the equivalence of (3.2) with (3.3)

and the equivalence of (3.3) and (3.4). We first show the equivalence of (3.2) with (3.3). Fix

n̂, and consider an otherwise arbitrary partition {B1, . . . , Bn̂} of the nodes of G. Then we

have

Q =
1

2m

∑
α

∑
i,j∈Bα

(
Aij − γ

kikj
2m

)
(3.9)

=
1

2m

∑
α

 ∑
i∈Bα,j∈{1,...,N}

Aij −
∑

i∈Bα,j∈Bcα

Aij

− γ

2m

∑
α

∑
i,j∈Bα

kikj
2m

(3.10)

=
1

2m

∑
i,j

Aij −
1

2m

∑
α

∑
i∈Bα,j∈Bcα

Aij −
γ

2m

∑
α

∑
i,j∈Bα

kikj
2m

(3.11)

3See [78,121] for other approaches.

25

= 1− 1

2m

∑
α

∑
i∈Bα,j∈Bcα

Aij −
γ

2m

∑
α

∑
i,j∈Bα

kikj
2m

(3.12)

= 1− 1

2m

∑
α

Cut(Bα, B
c
α)− γ

2m

∑
α

∑
i,j∈Bα

kikj
2m

. (3.13)

Summing along the j index first yields

= 1− 1

2m

∑
α

(
Cut(Bα, B

c
α) +

γ

2m

∑
α

∑
i∈Bα

kivolBα

)
(3.14)

= 1− 1

2m

∑
α

(
Cut(Bα, B

c
α) +

γ

2m
(volBα)2

)
. (3.15)

Thus, the maxima of modularity coincide with the minima the functional from (3.3), as

required.

To see that (3.3) and (3.4) are equivalent, we calculate:

∑
α

(
Cut (Bα, B

c
α) +

γ

2m

(
volBα −

2m

n̂

)2
)

(3.16)

=
∑
α

(
Cut (Bα, B

c
α) +

γ

2m

(
(volBα)2 − 4m

n̂
volBα +

4m2

n̂2

))
. (3.17)

Distributing the summation produces

=
∑
α

(
Cut (Bα, B

c
α) +

γ

2m
(volBα)2

)
− γ

2m

4m

n̂

∑
α

volBα +
γ

2m

∑
α

4m2

n̂2
. (3.18)

Using the fact that
∑
α

volBα =
∑
α

∑
i∈Bα

ki =
N∑
i=1

ki = 2m and the fact that the third term

is constant then gives

=
∑
α

(
Cut (Bα, B

c
α) +

γ

2m
(volBα)2

)
− γ

2m

8m2

n̂
+

γ

2m

4m2

n̂
(3.19)

=
∑
α

(
Cut (Bα, B

c
α) +

γ

2m
(volBα)2

)
− γ 2m

n̂
, (3.20)

as expected.

26

3.2.2 On Convex Relaxations

Proposition 1 makes it very tempting to look for a convex relaxation of (3.5). Recall that

given two sets, Ω1 ⊂ Ω2, where Ω1 is discrete, and a functional F : Ω1 → R, a relaxation

of F is any function F̄ : Ω2 → R such that F = F̄ on Ω1. A relaxation is called exact in

the context of minimization if min
x∈Ω1

F = min
x∈Ω2

F̄ .4 Finally, a relaxation is called convex if F̄

is convex.

Modularity (3.2) and balanced TV (3.5) are both defined over a discrete domain, and we

would like an extension, or relaxation, of these functions to a larger, continuum domain so

that they are easier to work with numerically. Ideally, we could arrive at a convex relaxation

and have access to the powerful tools of convex optimization. The formulation in (3.5)

suggests one way to proceed. Using (3.5), we already have a convex functional except for

the domain, so one would hope that the obvious relaxation obtained by using formula (3.5)

on all of RN×n̂ would be useful. Unfortunately, Theorem 1, below, shows that this obvious

relaxation is minimized by the constant matrix and is thus not likely to be useful. In fact, it

shows that a large class of other convex relaxations will be uninformative. This will force us

to look for nonconvex approaches in Section 3.2.3. Before we state the theorem, we include

three more definitions:

Definition 5. The symmetric group on n̂ symbols, Sn̂, is the set of all permutations on

{1, . . . , n̂}. Each element s ∈ Sn̂ acts on a matrix U ∈ RN×n̂ with columns U(:, 1), . . . , U(:, n̂)

by sending U to another matrix, s(U) with columns U(:, s(1)), . . . , U(:, s(n̂)). If U ∈ Π(G),

then s(U) is the same partition with the labels permuted.

Definition 6. A map F from some set of matrices to the real numbers is symmetric if it is

invariant under column permutations, that is F(U) = F(s(U)) for all s and U .

The balanced TV functional (3.5), for example is symmetric.

4Analogous notions apply to maximization problems, but we are using (3.5) rather than (3.2) for the
moment, for consistency with later sections of the chapter.

27

Definition 7. Given a set S lying in a vector space, the convex hull is the smallest convex

set containing S.

In a finite-dimensional vector space, the convex hull exists and is the intersection of all

convex sets containing S. For example, if S is given by three noncolinear points in the plane,

the convex hull is a triangle.

We now state and prove our theorem on convex relaxations of modularity.

Theorem 1. Let F be given by (3.5) with domain Π(G, n̂) = Π(G) ∩ RN×n̂ (the set of

partitions of the nodes of G into n̂ classes), and let F̃ be any symmetric, convex extension

of F to the convex hull of Π(G, n̂). Then F̃ has a trivial, global minimizer Ũ that has all

columns equal to each other.

If the symmetry requirement is dropped, then Ũ will have an objective value at least as

low as any U ∈ Π(G, n̂).

Informally speaking, this theorem states that the solutions of symmetric, convex relax-

ations of the modularity problem over RN×n̂ yield no classification information.

Proof. We first consider the symmetric case. Let U lie in the convex hull of Π(G, n̂). We

will use the symmetry and convexity of F̃ to show that mean all the column permutations of

U satisfies the properties required of Ũ . Let Ũ =
1

n̂!

∑
s∈Sn̂

s(U). Then by Jensen’s inequality

we have

F̃(Ũ) = F̃

(
1

n̂!

∑
s∈Sn̂

s(U)

)
≤ 1

n̂!

∑
s∈Sn̂

F̃(s(U)) = F̃(U). (3.21)

Since U was arbitrary, Ũ is a global minimizer.

Finally, all the columns of Ũ are equal5 and thus uninformative. To see this, take any

α, β ∈ {1, . . . , n̂}. Let s′′ be the permutation that swaps these two values and leaves all the

others fixed. Then any s ∈ Sn̂ can be written uniquely as s′′ ◦ s′, with s′ = s′′ ◦ s. (Proof:

5Incidentally, all of the rows are also equal, since row stochasticity is preserved under column permutation.

28

s′′ ◦ s′′ is the identity, so left-multiply by s′′.) Thus the β-th column of Ũ is given by

Ũ(:, β) =
1

n̂!

∑
s∈Sn̂

s(U)(:, β) (3.22)

=
1

n̂!

∑
s′∈Sn̂

s′′ ◦ s′(U)(:, β) (3.23)

=
1

n̂!

∑
s′∈Sn̂

s′(U)(:, α) (Note the change in index!) (3.24)

= Ũ(:, α) (3.25)

so all columns of Ũ are equal.

The non-symmetric case is similar, except that U must lie in Π(G, n̂) in order for the last

equality of (3.21) to hold. Therefore we can only show that the value of F̃ at Ũ is at least

as large as at any point in Π(G, n̂).

This means that modularity cannot be convexly relaxed using this embedding of Π(G, n̂)

in RN×n̂.67 Thus, to make use of smooth optimization techniques we seek a non-convex

relaxation. In the following subsection, we present one such family of relaxations.

3.2.3 Ginzburg–Landau Relaxation

In this subsection, we develop a way to relax the modularity problem to a continuum domain,

which can make the nonconvexity more manageable. We begin with a convergence result,

which, together with Theorem 3 in Chapter 4 is the first multiphase Γ convergence result of

which I am aware.

Theorem 2 (Γ-convergence for the Balanced TV problem). Assume
Ψ(U(i, :))

‖U(i, :)‖
→ ∞ as

‖U(i, :)‖ → ∞, where U(i, :) is the i-th row of U . Then the functionals in (2.9) with G =

6We do note, however, that by means of a different embedding [34] was able to obtain a convex relaxation
with solutions which, while not discrete, are also not trivial. Thus, the embedding requirement is a non-
trivial part of our theorem. Other related works include [32] and [1].

7Our proof does not rely on many specific properties of modularity, and indeed, a similar theorem holds
for any symmetric quality function over a discrete domain.

29

||kTU ||22 Γ-converge to the functional
|U |TV +

γ

2m
||kTU ||22 if U corresponds to a partition

+∞ otherwise.

(3.26)

In particular,

• for any sequence εn → 0, and any corresponding sequence Uε of minimizers of Fεn,

there is a subsequence that converges to a maximizer of modularity, and

• any convergent subsequence of the Uε converges to a maximizer of modularity.

The proof is given in Appendix A.

Moving forward, we focus on minimizing the relaxed functionals from Theorem 2.8

3.3 Numerical Scheme

3.3.1 Merriman–Bence–Osher Iteration

We minimize the functional from (2.9) using an adaptation of the graph MBO scheme. We

call our approach Balanced TV. The pseudocode for our particular case is Algorithm 2. The

most expensive part of this procedure is evaluating the matrix exponential, for which we use

a pseudospectral scheme (see Section 3.3.2).

We treat the forcing term implicitly, which differs from several recent studies, such as [14,

79,107]. This can be done efficiently because the operator M = L+
γ

m
kkT is positive semi-

definite and can be applied to a vector in linear time. Implicit treatment has the advantage

of avoiding an inner loop, which is time-consuming, has a timestep restriction, and adds

another user-set parameter (namely the inner loop timestep).

8While using the Ginzburg–Landau functional does introduce a Laplacian into our formulation, our
approach should not be considered a spectral method, such as those in [117,118]. In Section 3.3, we will use
a pseudospectral approach in our numerical scheme, but our energy (3.26) is TV-based, which, as discussed
in Section 2.2, has very different optima from related quadratic optimization energies, which are more
closely associated with some spectral approaches. In Section 3.4, we will see numerically that the answers
are different from one particular spectral method.

30

Algorithm 2 Balanced TV MBO scheme

Input A, n̂, γ, dt

Initialize U uniformly randomly.

Set n = 0.

while A stationary point has not been reached do

Un+ 1
2 = e−dtMUn where M = L+

γ

m
kkT

Un+1 = threshold(Un+ 1
2)

n = n+ 1

end while

Output Un+1, a partition matrix

The case where A is dense9 can be approached using the Nyström method, as in [14,57,58].

Note, however, that one must find a way to estimate k and 2m efficiently in that case.

An alternative is to sparsify the network in preprocessing, which is the approach taken in

Section 3.4. This was fast compared to the time to partition the resulting sparse network.

3.3.2 Treating the Matrix Exponential

As stated above, the most time-intensive step in the MBO iteration is the matrix exponential,

and this step is repeated many times. Therefore, it makes sense to use a pseudospectral

scheme, as described, for instance, in [14]. This means that we precompute the eigenvalues

and eigenvectors ofM , and use them to solve the matrix exponential. By doing the eigenvalue

calculation up front, each iteration is accelerated enough that the computational bottleneck

is moved away from the MBO iteration. The scheme is depicted in Algorithm 3.

9That is, A requires O(N2) storage, and x→ Ax requires O(N2) operations for a vector x.

31

Algorithm 3 Pseudospectral Balanced TV MBO scheme

Input A, n̂, γ

Initialize U uniformly randomly.

Calculate the eigenvalues of M , and form the diagonal matrix D with its diagonals being

the eigenvalues.

Also calculate the eigenvectors and form the matrix V whose columns are the eigenvectors.

while a stationary point has not been reached do

Ûn = V TUn

Ûn+1 = e−dtDÛn

Un+ 1
2 = V Ûn+1

Un+1 = threshold(Un+ 1
2)

end while

Output Un+1 a partition matrix.

In practice, it may not be possible to calculate the full spectrum of M , if M is large. In

this case, we calculate the Neig smallest eigenvalues and eigenvectors of M . Then instead of

changing coordinates using a full matrix, use the N × Neig matrix V exactly the same way

as before. This is equivalent to projecting onto a subspace generated by these eigenvectors,

and it makes the algorithms very efficient. See Section 3.4.

To understand the effect of computing only a few eigenvectors, recall that M is positive

semi-definite. Therefore, it has an orthonormal eigenbasis. The evolution we are solving,

namely
d

dt
U = −MU , can be diagonalized10 as Ût = −DÛ where Û = V TU , and V is the

full matrix of eigenvalues, and D is a non-negative, diagonal matrix. Therefore, the evolution

occurs in distinct “modes” (corresponding to the rows of Û) with rates of decay controlled

by the eigenvalues of M . The modes corresponding to small eigenvalues persist longer than

those corresponding to large eigenvalues (which experience rapid exponential decay), so that

it is not a bad approximation to simply project these components away when it is practically

necessary.

10M is symmetric and thus diagonalizable.

32

We use Anderson’s iterative Rayleigh–Chebyshev code [6] — which the author kindly

provided to us — to get the eigenvalues and eigenvectors. We generally set Neig = 5n̂,

although principled ways to determine Neig is an important area of potential further study,

as the performance of the algorithm depends on this parameter in non-obvious ways.

3.3.3 Determining the Number of Communities

The preceding algorithm assumes a fixed n̂. In practice, we found three methods of deter-

mining the value of n̂:

1. Use domain knowledge — for instance, the plumes example, we know that the main

pixel groups ought to be sky, dirt, gas, etc.

2. Try several values of n̂ and take whichever one produces the highest modularity — this

is most efficient in cases where there are few communities, as in MNIST. Note that the

most time-consuming part of the MBO scheme, namely computation of eigenvectors,

need only be done once. Thus several different values of n̂ can be tried without incurring

much extra cost. For example, in the MNIST example, we could try n̂ = 1, . . . , 15 to

explore which digits can be split or merged together.

3. Recursively partition the network — this is most useful when many communities are

present, as in the LFR networks used in Section 3.4.11 Further partitioning is only

accepted at each step if it increases modularity. This approach worked well in our

examples, although in the case of LFR, where O(N) communities are present, a lot of

recursion is needed. This is compensated by the fact that the subgraphs grow smaller

and smaller near the end.

11The value of n̂ at which recursion becomes efficient is not trivial to define rigorously, or even heuristically,
as it involves understanding how large Neigs should be for a given n̂, the depth of recursion expected, and
the computation time required to get Neigs eigenvalues, which in practice depends on the efficiency of
parallelization, the computer architecture, etc. Informally, we found that recursion begins to make sense on
our data sets when n̂ exceeds about 10.

33

3.3.4 Scaling

We expect the scaling of our approach to be roughly linear in N , as suggested by the following

informal argument. The main components of the algorithm are

1. finding eigenvalues and eigenvectors (empirically better than quadratic in N),

2. changing coordinates using only the leading eigenvectors (O(N) per iteration, with

empirically O(1) iterations needed to converge),

3. evaluating the exponential of a vector componentwise (also O(N) per iteration), and

4. thresholding (O(N) per iteration).

The preceding estimates all apply in the case where no recursion is needed. If the recursion

is done by partitioning the graph into n̂ pieces at each level, then the cost is heuristically on

the order of

Õ(N) + n̂Õ

(
N

n̂

)
+ n̂2Õ

(
N

n̂2

)
+ · · ·+O(N)O(1) = Õ(N)

where Õ means that logarithmic terms are neglected, and each term in the sum is the

product of the number of partitioning problems to be solved with the size of the partitioning

problems. This scalability is roughly borne out in Tables 3.1 and 3.2, although we note

that there are additional complications, based on the varying number of communities to be

produced, differences in the efficiency of parallelization at different scales, and differences in

the structure of A.

3.3.5 The Choice of Timestep

Our approach requires the selection of parameters, including γ, dt, Neig, and n̂. In order to

simplify the exploration of this parameter space in practical applications, it is useful to have

some theory about the choice of these parameters. Here, we describe how to set dt in the

MBO scheme. This is especially useful in the recursive implementation, as the appropriate

34

timestep empirically decreases as the graph gets smaller, and it would be laborious for a

human to tune a parameter each recursion step.

Our derivations are inspired by those in [156], and proofs are deferred to Appendix B.

First, we consider a lower bound on the timestep:

Proposition 2 (Lower bounds on the timestep). Let U0 ∈ Π(G, n̂). If U satisfies
d

dt
U =

−MU with initial data U0, then we have the following bounds:

1.

‖U(τ)− U0‖∞ ≤ e2(γ+1)kmaxτ

where τ is the MBO timestep and kmax is the largest element of k.

2. In the case where n̂ = 2, this bound implies that if the MBO timestep τ satisfies

τ <
log 2

2(γ + 1)kmax

≈ 0.15

(γ + 1)kmax

,

then the MBO iteration is stationary/reaches a fixed point.

3. If R is the spectral radius of M , we also have

‖U(τ)− U0‖∞ ≤
√
n̂ ‖U0‖2

(
eτR − 1

)
.

4. If n̂ = 2, the MBO iteration is guaranteed to be stationary whenever

τ < R−1 log
(

1 +N−
1
2

)
.

Although we had to restrict to n̂ = 2 in Proposition 2, we used the timestep restriction

regardless of n̂ — indeed we expect that n̂ = 2 is the worst case, although we are unable to

prove it at present.

The upper bound on the timestep is more delicate. Normally, the upper bound would be

determined using error bounds and stability estimates, the theory of which is incomplete in

the graph setting. Instead, we use the following heuristic to motivate our bounds: In most

35

cases, M is strictly positive definite, so the evolution
d

dt
U = −MU forces U to decay toward

0. The idea behind MBO is that the diffusion effects give information about curvature on

short time scales, and the long time scales give information about more global quantities.

Therefore, in the graph context, it makes sense to try to understand the time scale that is

“long” and set the timestep to be shorter than that. Using the approach to 0 as a convenient

notion of long-time behavior, we obtain the following useful bounds:

Proposition 3 (Decay estimates for M). Let
d

dt
U = −MU with initial data U0 ∈ Π(G, n̂).

Then the following bounds hold:

1. Assume λ1 is the smallest eigenvalue of M . Then

‖U‖2 ≤ e−τλ1 ‖U0‖2 .

2. Let M be nonsingular. Then for any ε > 0, we have ‖U(τ)‖∞ < ε if

τ > λ−1
1 log

(
‖U0‖2

ε

)
.

In practice, setting the timestep as the geometric mean between this upper bound and the

lower bound from Proposition 2 has produced good results without resorting to hand-tuning

of parameters.

3.4 Results

3.4.1 Summary

Tables 3.1 and 3.2 summarize the results of our Balanced TV algorithm on several examples,

mostly drawn from machine learning and image processing.12 We compared our method

to the Modularity MBO algorithm from Hu et al. [79], as well as three other well-known

12We also performed some tests of our method on biological and social networks but found that the results
were not as encouraging, apparently due to some structural differences from our machine learning networks
— it would be interesting to understand this issue more.

36

algorithms: the Louvain method [18],13 the hierarchical method of Clauset, Newman, and

Moore [38],14 and a classic spectral recursive bipartitioning method of Newman [118]. Our

own method and that of Hu et al. were written in Matlab except for the eigenvector

computations, which use Anderson’s Rayleigh–Chebyshev code [6], written in C++ with

OpenMP support. The three other methods are slight modifications of igraph’s library

implementations [42], which are written in the C programming language. In practice, the

difference in programming language may make a difference in speed, although the eigenvalue

computation is typically the most time-intensive part of the computation. We chose a single

conservative timestep for Modularity MBO rather than hand-tuning for each experiment.

Our method and that of Hu et al. use a random starting seed, so we ran those codes 20 times

and report the best modularity and classification rate and the median time.

Overall, we found that our method is competitive on these data sets. Our method

generally found higher-modularity partitions and had faster run times than either the method

of Hu et al. or of Newman.15 The Louvain method and our method often gave similar

modularity scores, although the partitions they uncovered were not necessarily similar. For

example, on the MNIST example, our method achieved the higher modularity score, but

the Louvain partition matched the true labels more closely. On the Plume40 example, the

opposite effect occurs, with our method achieving the lower modularity score but finding a

partition that is closer to the true labeling of the pixels. Such issues are a manifestation of the

well-known near degeneracy of the modularity energy [69], where many dissimilar partitions

can receive similarly high modularity scores. It is also an indication that modularity can

benefit from supervision, regularization, biased initialization, or some other device in order to

13Initial tests relied on the slower GenLouvain code from [84]. A reviewer later suggested that we use
a faster implementation, which led us to redo some the tests using the igraph Louvain code. Thus, in
this section, we will carefully distinguish between results obtained with GenLouvain code and results from
igraph’s Louvain code.

14This is an old method but is the standard “fast” solver in the igraph library, which is very widely used.
Other, more recent approaches, may give better results.

15We chose this particular spectral method because it was available in igraph. A complete comparison
with other spectral methods would be interesting but is beyond the scope of this chapter.

37

reliably find the partition that is most appropriate for the problem. In Table 3.3, we illustrate

the effectiveness of including a small amount of supervision with our method, using (3.8).

Moons MNIST LFR50k Urban Plume7 Plume40

Nodes 2,000 70,000 50,000 94,249 286,720 1,638,400

Edges 1.8× 104 465,832 7.9× 105 707,042 5,281,070 29,247,003

Communities 2 10 2,000 5 5 5

Res. Param. 0.2 0.5 15 0.1 1 1

Mod.

Our method 0.84 0.92 0.77 0.95 0.76 0.64

Hu et al. [79] 0.85 0.91 0.58 0.95 0.74 0.64

Hier. [38] 0.77 0.88 0.88 0.94 0.65 0.92

Louvain [18] 0.72 0.83 0.89 0.90 0.78 0.97

Spectral [118] 0.60 0.56 −5.88 0.90 0.30 0.04

Ref 0.83 0.92 0.89 0.90 0.00 0.00

Classification
Our method 0.97 0.90 0.92 —- —- —-

Hu et al. [79] 0.95 0.80 0.72 —- —- —-

Hier. [38] 0.98 0.93 0.80 —- —- —-

Louvain [18] 0.98 0.96 0.87 —- —- —-

Spectral [118] 0.95 0.30 0.09 —- —- —-

Time

(sec.)

Our method 0.55 59 63 19 135 1284

Hu et al. [79] 0.80 167 206 42 152 39196

Hier. [38] 0.55 16 6 44 3066 9437

Louvain [18] 0.38 9 6 14 89 520

Spectral [118] 0.87 301 1855 24 265 1804

Table 3.1: Results on six networks. Our method generally does better than the spectral

method and Hu et al., but note that modularity and classification score sometimes disagree.

Dashes mark cases where metadata was unavailable.

38

Jas. Rid. Samson Cuprite FLC Pavia U Salinas Salinas 1

Nodes 19,800 14,820 30,162 208,780 207,400 7,092 111,063

Edges 116,375 83,995 170,775 1,582,478 1,683,720 51,397 551,980

Communities 4 3 12 3 9 6 16

Mod.

Our method 0.99 0.98 0.99 0.94 0.93 0.97 0.96

Hu et al. [79] 0.99 0.98 0.90 0.94 0.94 0.97 0.96

Hier. [38] 0.98 0.98 0.99 0.93 0.93 0.97 0.96

Louvain [18] 0.99 0.98 0.99 0.90 0.88 0.95 0.95

Spectral [118] 0.91 0.90 0.91 0.90 0.90 0.96 0.90

Ref 0.90 0.90 0.90 0.90 0.90 0.90 0.90

Time

(sec.)

Our method 17 13 42 121 160 4.6 96

Hu et al. [79] 40 27 63 203 270 3.3 117

Hier. [38] 1.5 1.1 2.4 378 411 0.74 66

Louvain [18] 1.5 1.2 2.7 39 40 0.75 15

Spectral [118] 28 10 148 38 65 6.5 24

Table 3.2: Results on additional hyperspectral data sets. The resolution parameter was

0.1, and the reference partition has all nodes in the same community. Our method achieves

the highest modularity score in each network except for Salinas, where Hu et al.’s method

gets slightly higher results. Our method partitioned recursively and initialized with kmeans

clustering on leading eigenvectors that had been computed for use in the pseudospectral

scheme.

39

Moons MNIST

Modularity

Unsupervised 0.84 0.91

10% supervised 0.84 0.92

Reference 0.83 0.92

Classification
Unsupervised 0.97 0.90

10% supervised 0.97 0.97

Modularity Consistency
Unsupervised 0.75 0.65

10% supervised 1.00 1.00

Classification Consistency
Unsupervised 0.75 0.05

10% supervised 1.00 0.65

Table 3.3: Results of our method using networks constructed from the two-moons and

MNIST examples with and without 10% supervision. Consistency indicates the fraction of

cases for which the results were within 2% of the best value achieved. In the two-moons

example, supervision improves consistent matching to metadata. In the MNIST example,

both consistency and classification are substantially improved. Note that in both cases, the

peak modularity is not changed, indicating that the supervision helps the solver find local

maxima that are more relevant to the classification task.

3.4.2 Analysis of each experiment

We now describe the individual experiments.

Two Moons Two Moons consists of 2,000 points in 100-dimensional space, sampled from

two half-circles of radius 1 centered at (0, 0, 0, 0, . . .) and (1, .5, 0, 0, . . .), respectively, with

Gaussian noise of variance 0.02 added, see Fig. 3.1. The classification problem is to assign

each point to the circle in which it originated. We constructed a 13-nearest neighbors graph16

with the edge weights given by a Gaussian law, with locally-determined decay parameters

16The choice of 13 here is somewhat arbitrary. We did not tune this parameter.

40

[169]. The number of classes assumed known in our tests.

Figure 3.1: Projection of the two moons example onto two dimensions

MNIST MNIST consists of 70,000 28× 28-pixel images, each of which contains a single

handwritten digit [97]. The task is to identify the digit in each image. I constructed the

graph by projecting onto 50 principle components for each image and then using a 10-

nearest neighbors graph with self-tuning Gaussian decay for the weights [169]. The number

of classes was assumed known in our tests. As in [79], 11 classes were assumed, as there

are two different ways to write the digit 1, with or without the top flag and flat base.

This modularity landscape was particularly troublesome, with about 25% of the partitions

we found having higher modularity than the ground-truth partition, despite the fact that

partitions with a classification accuracy greater than 95% were found only about 4% of the

time by our solver. This illustrates the importance of getting good features when building

similarity graphs.

LFR 50k This is a well-known ensemble of artificial networks [96]. We used the following

parameters to generate it: 50,000 nodes, mean degree of 20, maximum degree of 50, power law

degree-distribution with exponent 2, power law community size distribution with exponent 1,

effective mixing parameter of 0.2, maximum community size of 50, minimum community size

of 10.17 The large number of small communities makes this a challenging problem — similar

17This is different from the LFR-type network in [79], which combined multiple LFR networks.

41

experiments I performed on a 1,000-node networks with 40 communities gave near-perfect

classification. We use purity to gauge classification accuracy. Given two partitionsB1, . . . , Bn̂

and B′1, . . . , B
′
n̂′ , the purity is defined as

1

N

n̂∑
α=1

max
β=1,...,n̂′

#{i : i ∈ Bα and i ∈ B′β}, where

denotes the cardinality. Recursive partitioning was used on this network as described

in Section 3.3.3.

Urban Image The urban hyperspectral image is a 307× 307 image of an urban setting,

where each pixel encodes the intensity of light at 129 different wavelengths. The classifica-

tion problem is to identify pixels that contain similar materials, such as dirt, road, grass,

etc. I computed the graph representation using nonlocal means as described in Section 2.5.

I selected the images in Fig. 3.2 for visual appeal from a collection of 200 segmentations.

We compared with a recent NLTV algorithm [171], which is specifically designed for hy-

perspectral imaging applications and found our segmentation competitive in terms of visual

appeal. We also compared with Modularity MBO and GenLouvain [84] segmentations. For

instance, Balanced TV does well at placing the grass into a single class and correctly re-

solved the difference between pavement and dirt. Balanced TV gives the sharpest resolution

of the roads and the surrounding dirt in the upper right. Our method does have a little

trouble compared to GenLouvain when resolving the buildings just below the large road in

the upper-left corner of the picture, although this is partly due to the fact that the roofs

there are made of different materials from most of the houses further down in the image,

and NLTV has a similar problem.

42

RGB image Our method

Modularity MBO GenLouvain segmentation

NLTV segmentation [171]

Figure 3.2: The urban dataset segmented using different methods. Our method effectively

separates the dirt from roads, resolving the roads in the upper right corner, and placing all

of the grass into a single class. It has some difficulty with the buildings in the upper left

corner, just below the main road, which are a different material from the other buildings.

43

Plume Hyperspectral Video The gas plume hyperspectral video records a gas plume

being released at the Dugway Proving Ground [63,102,110]. The graph was constructed by

the same procedure as the urban dataset, simply concatenating each frame side-by-side into

one large image and using nonlocal means to form the graph. Each frame has 320×128 pixels

with data from 129 wavelengths. I used two versions of this data set, one with 7 frames, and

another with 40 frames. We have included the segmentation of one frame in Fig. 3.3, together

with segmentations produced by competing algorithms. This problem is difficult because of

the diffuse nature of the gas, which leads to a faint signal among many wavelengths and

with boundaries that are difficult to determine. Our method is the only one among those I

tested that places the entire plume in a single class. The images shown were chosen by me

as the best out of thirty for visual appeal.

Our method Spectral Clustering

NLTV [171] GenLouvain

Figure 3.3: Segmentations of the plume hyperspectral video using different methods. Ob-

serve that our method is the only method that gets the whole plume into a single class

without any erroneous additions.

Other Hyperspectral Examples We included seven additional hyperspectral image

examples, which are well-known in the image processing community. In each case, we formed

44

the 10-nearest-neighbor18 graph using nonlocal means and VLFeat. See Appendix C for more

details on the images used and Table 3.2 for the numerical results. Overall, our algorithm

performs competitively on these examples in terms of modularity. The speed is slower than

Louvain, but the run time is still reasonable, and the modularity scores are consistently

high.

18The number of nearest neighbors not tuned for optimality.

45

CHAPTER 4

Stochastic block models are a discrete surface tension

This chapter is organized as follows. In Section 4.1, we present background information

about stochastic block models, total variation, and surface tension. In Section 4.2, we state

and prove our main result, which establishes an equivalence between discrete surface tension

and maximum likelihood estimation via an SBM. In Section 4.3, we discuss three numerical

approaches for performing SBM MLE: mean-curvature flow, Γ-convergence, and threshold

dynamics. We discuss our results on both synthetic and real-world networks in Section 4.4.

4.1 Background

4.1.1 Stochastic Block Models (SBMs)

The most basic SBM has N nodes and an assignment g : {1, . . . , N} → {1, . . . , n̂} that

associates each node with one of n̂ sets. It also has an n̂× n̂ symmetric, nonnegative matrix

ω. One generates an undirected, unweighted graph as follows: for each pair of nodes, i

and j, we place an edge between them with probability ωαβ, where α and β, respectively,

denote the community assignments of nodes i and j. Similar models have been studied and

rediscovered many times [41,52,55,59,75,136,148]. In the present chapter, we use the SBM

from [119].

There is considerable flexibility in the choice of ω, which leads in turn to flexibility in

the SBMs themselves [55, 136]. Three examples of ω, using n̂ = 2, will help illustrate the

diversity of block structures.

46

1. If ω11 = ω22 > ω12, one obtains traditional assortative community structure, in which

nodes have a larger probability to be adjacent to nodes in the same community instead

of ones in different communities.

2. If ω11 = ω22 < ω12, nodes tend to associate more with ones that are in other commu-

nities. As ω12 → 0, the graph becomes increasingly bipartite.

3. If ω11 > ω12 > ω22, there is a core–periphery (CP) structure: nodes from set 1 are

connected densely to many nodes, but nodes from set 2 are connected sparsely to

other nodes [43,141].

These three examples are also illustrated in Fig. 4.1. To simplify our presentation, we refer

to latent block structures as “community structure,” regardless of the form of ω.

47

Community structure Core–periphery structure Bipartite structure

Figure 4.1: Examples of different connectivity patterns that one can generate using stochastic

block models. Each panel corresponds to a different kind of structure. In each panel, the

upper-left and lower-right squares represent the density of connections between nodes in the

same set, and the upper-right and lower-left squares represent the density of connections

between nodes in different sets. Darker squares represent more densely connected sets of

nodes. In (assortative) community structure, nodes are densely connected to other nodes

in the same community but sparsely connected to nodes in other communities. In the

core–periphery structure, core nodes (as illustrated by the dark square in the upper left) are

densely both to other core nodes and somewhat densely connected to peripheral nodes, but

the latter predominantly have connections only to core nodes. In bipartite block structures,

a set of nodes is more densely connected to nodes in other sets than to nodes in its own

set. One can also model other structures, such as hierarchical and role-based structures,

using SBMs. See Section 4.1.1 for additional discussion. [This figure is inspired by a figure

from [83].]

The above SBM is not realistic enough for many applications, largely because each node

has the same expected degree [85]. To address this issue, one can suppose that one knows the

degree sequence {ki} and then define connection probabilities to take this information into

account. The easiest approach is to model the adjacency-matrix elements Aij as Poisson-

distributed with parameter ωgigj
kikj
2m

, where k and m are defined as in the previous chapter.

An important point to note is that this allows both multi-edges and self-edges. Although

such edges can have important effects [56], we neglect them for simplicity.

Given an observed network, one can attempt to infer some sort of underlying commu-

nity structure by statistical fitting methods. There are several ways to do this, including

48

maximum-likelihood estimation (MLE), maximum a posteriori (MAP) estimation, and max-

imum marginal likelihood (MML). In MLE, one chooses the parameters g and ω under which

an observed network is most probable (without using a prior), MAP yields the most prob-

able parameter configuration under a Bayesian prior, and MML yields the best community

assignment for each node individually by integrating out all of the other variables [113,136].

We use MLE, which is the simplest approach. In mathematical terms, the problem is stated

as

argmax
g,ω

P (A|g, ω) , (4.1)

where P is the probability density function. Because we determine the edges independently,

P is given by

P (A|g, ω) =
∏
i≤j

P (Aij|g, ω) =
∏
i≤j

P

(
Aij

∣∣∣∣wgigj kikj2m

)
.

We use a Poisson distribution, so

P (Aij|λ) =


λAij

Aij!
e−λ , i 6= j ,

λAij/2

(Aij/2)!
e−λ , i = j ,

where the need for cases arises from the convention that Aii = 2 if a self-edge is present. To

solve (4.1), one can equivalently maximize the logarithm of P (A|g, ω). Conveniently, this

changes the multiplicative structure into additive structure and allows one to drop irrelevant

constants. The resulting objective function is

argmax
g,ω

∑
i,j

[
Aij log(ωgigj)− ωgigj

kikj
2m

]
. (4.2)

The exact optimization of (4.2) is NP-hard, so one needs to use a heuristic. Possibilities

include greedy ascent [85], Kernighan–Lin (KL) node swapping [85, 87], and coordinate de-

scent [119]. As far as we are aware, the theory of these approaches has not received much

attention, although the associated chapters generally include positive results. In light of

the extreme nonconvexity of the modularity objective function [69] (which is known to be

related to the planted-partition form of the SBM [119]), we expect that multiple random

49

initializations are needed for any local algorithm. (Ideas from consensus clustering may also

be helpful [55].)

Ways to elaborate the above SBM include incorporating overlapping and hierarchical

communities [133, 135], generalizing to structures such as time-dependent and multilayer

networks [134], or incorporating metadata [121]. There are also Bayesian models and pseudo-

likelihood-based methods [5, 136]. We do not consider such embellishments in this chapter,

although we conjecture that our approach will generalize to some of these settings.

In the case of SBMs, one can use TV to express (4.2), but we find a more natural

formulation in terms of surface-tension energy (a related notion).

4.1.2 Surface Tension

Very roughly, one can consider a metal object as being composed of a large number of

crystals that range in size from microscopic to macroscopic [8]. Each crystal is a highly-

ordered lattice; and there is a thin, disordered interface between crystals. The sizes and

orientations of these crystals affect material properties, and one goal of annealing processes

is to allow crystals to reorganize to produce a useful metal. The potential energy of a given

crystal configuration is roughly ∑
α,β

σαβArea(Γαβ) , (4.3)

where Γαβ is the interface between crystals α and β, and σαβ is the surface tension energy

density between these crystals. Each σαβ is different, based on physical considerations that

involve the exact offset between the orientations of the lattices in each pair of crystals.

When prepared and heated appropriately, the individual crystals decrease (4.3) by growing

to consume their neighboring crystals. See [47,81,90] for further background information.

50

Figure 4.2: An example arrangement of crystals. The interfaces between pairs of crys-

tals grow into each other according to motion by mean curvature. [This image from

Cenna/Wikimedia Commons/Public Domain [29].]

We exploit the appearance of surface area in (4.3) to cast it as a TV problem. Mathemati-

cally, we model the metal as a region of space that is partitioned into n̂ regions, corresponding

to the crystals in the metal. Let uα and uβ, respectively, denote the characteristic functions

of the regions α and β. Therefore,

Areaαβ = |uα|TV + |uβ|TV − |uα + uβ|TV .

Each interface between two regions evolves according to mean-curvature flow, which is the

gradient descent of TV. Thus, the surface-tension flow is locally mean-curvature flow, except

at the junction of three or more crystals [47,81]. Because of this connection, one can use some

of the ideas (such as phase-field and threshold-dynamics methods [47]) from TV minimization

to perform surface-tension minimization. When using threshold dynamics, it is possible to

do theoretical analysis in the form of Lyapunov functionals, Γ-convergence, and descent

conditions [81].

4.2 An Equivalence Between SBM MLE and Discrete Surface

Tension

We now present a mathematical result that connects SBM MLE and discrete surface tension.

51

Proposition 4. Maximizing the likelihood of the parameters g and ω in the degree-corrected

SBM is equivalent to minimizing∑
α,β

[
WαβCutg,A(α, β) + e−Wαβ

volg,A(α) volg,A(β)

2m

]
, (4.4)

where Cutg,A(α, β) =
∑
gi=α
gj=β

Aij, volg,A(α) =
∑
gi=α

ki, and Wαβ = − logωαβ.

The analogy with continuum surface tension is as follows. Graph cuts are analogous to

surface area: given a domain in R3, one can superimpose a fine grid on space and count

the number of edges that cross the boundary to estimate its surface area. In the limit of

an infinitely fine grid, this estimate converges to the surface area under appropriate condi-

tions [21]. Similarly, graph volumes are analogous to continuum volumes. The quantities

Wαβ play the role of surface tensions σαβ, so the first set of terms is analogous to (4.3).

One can view the second set of terms as a soft volume constraint. A constraint is “soft” if

violating it adds a finite penalty on an objective function, so minimizers will usually approx-

imately satisfy the constraint. Volume-constrained versions of (4.3) have received a great

deal of attention [82,90].1

Proof. In [119], it was shown that maximizing the log-likelihood of the parameters g and

ω for a particular version of the degree-corrected SBM amounts to maximizing (4.2). Let

Π(G, n̂) be the set of partitions of the nodes of a graph G (associated with an adjacency

matrix A) into at most n̂ sets. Substituting Wαβ = − logωαβ into (4.2) gives

argmin
Wαβ∈R
g∈Π(G)

∑
i,j

[
AijWgigj +

kikj
2m

e−Wgigj

]
.

Rearranging the summations gives

argmin
Wαβ∈R
g∈Π(G,n̂)
n̂∈N

∑
α,β

∑
gi=α
gj=β

AijWαβ +
∑
α,β

∑
gi=α
gj=β

kikj
2m

e−Wαβ

 ,

1As far as we are aware, our formulation of SBM MLE in terms of graph cuts and volumes is novel,
although similar formulas have appeared previously in the literature; see, e.g., [136].

52

where the inner sums are over all nodes i and j such that gi = α and gj = β. Rearranging

again gives

argmin
Wαβ∈R
g∈Π(G,n̂)
n̂∈N

∑
α,β

Wαβ

∑
gi=α
gj=β

Aij +
∑
α,β

e−Wαβ

∑
gi=α
gj=β

kikj
2m

 .

Using the definition of Cutg,A in the first set of terms and summing over the j index inde-

pendently in the second set of terms gives

argmin
Wαβ∈R
g∈Π(G,n̂)
n̂∈N

[∑
α,β

WαβCutg,A(α, β) +
∑
α,β

e−Wαβ

∑
gi=α

ki
2m

volg,A(β)

]
.

Finally, we sum over the i index in the second set of terms to obtain

argmin
Wαβ∈R
g∈Π(G,n̂)
n̂∈N

∑
α,β

[
WαβCutg,A(α, β) + e−Wαβ

volg,A(α) volg,A(β)

2m

]
. (4.5)

One difference between (4.4) and (4.3) is that in the latter (i.e., for a graph), one performs

optimization over the Wαβ, whereas in the former (i.e., in a continuum), one ordinarily treats

the surface-tension densities as fixed by the choice of material that one is modeling. Another

difference is that the surface-tension coefficients in the graph setting can be any element of

(−∞,∞], subject only to the symmetry condition Wαβ = Wβα. In contrast, for a continuum,

further restrictions are necessary to ensure well-posedness. Esedoglu and Otto [47] proved

the following sufficient conditions for well-posedness:

(1) σαβ ≥ 0 for all α, β,

(2) σα,α = 0 for all α, and

(3) σαν + σνβ ≥ σαβ for all α, β, ν.

In a graph setting, one can use a straightforward change of variables to make W satisfy

53

requirement (2).2 In general, however, at least one of requirements (1)–(3) are not necessarily

satisfied for a graph.3

4.3 Mean-Curvature Flow (MCF), Γ-Convergence, and Threshold

Dynamics

We now outline three algorithmic approaches that illustrate how one can use tools from

surface-tension theory to solve SBM MLE problems. Our three algorithms are graph versions

of mean-curvature flow (MCF), AC evolution, and MBO dynamics. In Section 4.4, we

conduct several numerical experiments to demonstrate that these algorithms can effectively

evaluate (4.2). We expect the performance of these algorithms to be good relative to other

algorithms for SBM MLE, though a full evaluation of this claim is beyond the scope of this

chapter. We have posted our code at http://www.math.ucla.edu/~zach.boyd/code/SBM.

zip. In the next three subsections, we describe how we infer g when ω is fixed. We then

describe how to jointly infer ω and g.

4.3.1 Mean-Curvature Flow

Surface-tension dynamics are governed by mean-curvature flow except at junctions. Intu-

itively, this means that each point on a surface moves in the direction normal to the surface

at a speed given by the mean curvature at that point. In the two-phase case, such dynamics

have been well-studied, and notions of viscosity solutions and regularity theory have been

developed [103]. In the multiphase case, the situation is much more complicated, notably

because of the topological changes that can occur and the issue of defining the behavior at

2See Appendix D for the change of variables, which causes the sum in (4.4) to instead be over all α 6= β,
so that there are no “internal” surface tensions.

3Requirement (1) is false whenever some component of W is negative; this occurs exactly when ω has
a component that is larger than 1. Requirement (3) may not hold, because the the components of W can
assume any real value. Thus, it is possible to pick some W that violates requirement (3) and generate a
network using it.

54

http://www.math.ucla.edu/~zach.boyd/code/SBM.zip
http://www.math.ucla.edu/~zach.boyd/code/SBM.zip

the junction of three or more phases. In two-phase surface-tension dynamics, it was shown

in [22] that one can approximate the flow by solving a discrete-time minimizing-movements

problem. Let Ĉn be one of the two regions at time n dt, where dt is the time step. We then

have

Ĉn+1 = argmin

[
SurfaceArea(Ĉ) +

1

dt

∫
Ĉn∆Ĉ

ρ̂(p, Ĉn)dp

]
, (4.6)

where

ρ̂(p, Ĉn) = inf
x∈∂Ĉn

‖x− p‖2 ,

the operation ∆ denotes the symmetric difference, and ∂ is the topological boundary oper-

ator. The idea behind this approach is, at each time step, to shorten the curve as much as

possible without straying too far from the curve location at the previous time step.

In the setting of graphs, a similar approach was developed in [156], where the mean-

curvature flow was given by

Cn+1 = argmin

[
Cut(C,Cc) +

1

dt

∑
i∈Cn∆C

ρ(i, ∂(Cn))

]
, (4.7)

where Cn is a subset of graph nodes, the operation ∆ is again the symmetric difference, and

ρ(i, ∂(Cn)) is the shortest-path distance from node i to the boundary of Cn. In this context,

the boundary of a set of nodes is the set of nodes in Cn with at least one neighbor in Cc
n

along with the nodes in Cc
n that have at least one neighbor in Cn. We use the term boundary

node for any node that lies on the boundary. In the limit of small dt, (4.7) may still evolve,

as opposed to the MBO scheme (which we use later), which becomes “stuck” when the time

step is too small. Such evolution can still occur, because the penalty (associated with moving

any node in ∂(Cn)) induced by the second set of terms in (4.7) is 0, regardless of the value

of dt. Conveniently, this implies for sufficiently small dt that the only acceptable moves at

each time step are allowed to change only the boundary nodes themselves. This makes it

possible to drastically reduce the search space when solving (4.7).

Because careful studies in the spirit of [156] are not yet available for multi-way graph

partitioning, we resort to a heuristic approach based on what is known in the binary case.

Specifically, we are motivated by situation in which time steps are sufficiently small that

55

only boundary nodes can change their community assignment. Ideally, we wish to compute

an optimal reassignment of all boundary nodes jointly in order to minimize (4.4). To save

computation time and facilitate implementation, we instead decouple the computations in

the following manner: During a single time step, for each boundary node, we compute an

optimal assignment of that node, assuming that all other nodes keep their assignment from

the beginning of the time step. After this (but before the end of the time step), we assign each

boundary node to its community, as computed previously in the time step. Because most

nodes are boundary nodes4 in our SBM-generated graphs, we find it more efficient and easier

to consider reassigning all nodes in each time step rather than maintaining and referencing a

separate data structure to track the boundary. In Algorithm 4, we give pseudocode for this

graph MCF procedure.

4Recall that a node is a boundary node if it shares an edge with a node that lies outside of its own
community, so most reasonable partitions of many real graphs have many boundary nodes. Additionally,
because we use a random initialization of g, most nodes will initially be boundary nodes for most graphs.

56

Algorithm 4 Modified graph mean-curvature flow (MCF) for SBM MLE (4.2).

Input A, W , n̂ .

Initialize g uniformly at random, and let eW = e−W be the entry-wise exponential of W .

while not converged do

Let Uiα = δgiα for each i, α .

Let X = AU . // Counts the number of neighbors that each node has in each class

Let volg,A = (kTU) .

for α = 1 to n̂ do

Let Jα be the set of nodes currently assigned to group α .

for β = 1 to n̂ do

Let J be the indices 1, . . . , n̂ aside from β and α .

Let Delta(Jα, β) be given by the following formula:

Delta(Jα, β) = 2X(Jα, J)W (J, β)

− 2X(Jα, J)W (J, α)

+ 2X(Jα, β)W (β, β)

− 2X(Jα, β)W (β, α) + 2X(Jα, α)W (β, α)

− 2X(Jα, α)W (α, α)

+
1

2m
(2k(Jα)volg,A(eW (:, β)− eW (:, α))

+ k(Jα)2(eW (β, β) + eW (α, α)− 2eW (β, α))
)
.

end for

end for

for i = 1 to N do

gi = argmin(Delta(i, :)) . // [Choose uniformly at random in case of a tie.]

end for

end while

Output g .

57

4.3.2 Allen–Cahn (AC) Evolution

For the particular case of surface-tension dynamics, we proceed as follows. Given a partition

of a network, if U is the corresponding N × n̂ matrix, one can show that W � (UTLU) =

−W �(UTAU), where � is the entry-wise product. Therefore, an appropriate GL functional

for our problem is∑
α,β

[
−WαβU

T
α LUβ +

volg,A(α) volg,A(β)

2m

]
+

1

2ε

∑
i

Ψ(U(i, :)) . (4.8)

Because kTu gives the vector of volumes, one can rewrite (4.8) as∑
α,β

[
−WαβU

T
α LUβ +

kTUαe
−W
αβ U

T
β k

2m

]
+

1

2ε

∑
i

Ψ(U(i, :)) , (4.9)

where e−W is the entry-wise exponential.

As in a continuum setting, one can prove Γ-convergence.

Theorem 3. The functionals in (4.9) Γ-converge to (4.4) as ε→ 0.

See Appendix A for a proof. As far as we are aware, this is the first Γ-convergence result

for a multiphase graph energy.

The resulting AC equation is

Ut = LUW − 1

2m
kkTUe−W − 1

ε

∑
i

∇Ψ(U(i, :)) . (4.10)

See Appendix E for further details on the numerical solution of (4.10).

4.3.3 MBO Iteration

Esedoglu and Otto [47] developed a generalized version of the MBO scheme (see Algorithm 5)

for computing the evolution of multiphase systems modeled by (4.3).

One can apply the MBO idea to community detection in networks by replacing the

continuum Laplacian with the (negative) combinatorial graph Laplacian, replacing σ with

W , changing u to U , and adding appropriate forcing terms for the gradient descent of the

volume-balance terms. See Appendix E for additional implementation details.

58

Algorithm 5 A multiphase, continuum MBO scheme.

Input the initial state of the domain.

Initialize u1, . . . , un̂ as the characteristic functions of the initial domains.

for n = 1, 2, . . . do

for α = 1, . . . , n̂ do

un+1/2
α is the solution at time dt to uα,t = ∆uα with initial condition unα .

end for

for each point x do

α̂ = argmin
α

∑
β

σαβuβ(x) . // [Choose uniformly at random in case of a tie]

uα̂(x) = 1 and uβ(x) = 0 if β 6= α̂ .

end for

end for

Output u .

4.3.4 Learning ω

The MCF, AC, and MBO algorithms are able to yield a good partition of a network, given

W , but they do not include a way to find W . A simple way to address this issue is to use

an expectation-maximization (EM) algorithm, in which one alternates between an update

of g with fixed W and an update of W with fixed g. One can find the optimal W , given g,

in closed form by differentiating (4.4) with respect to any component of W and setting the

result to 0 [85].

One must be careful, however, because the optimal Wαβ when Cutg,A(α, β) = 0 is infinite.

This is a problem, because once one of the entries in W is infinite, it prevents g in subsequent

iterations from taking any nonzero value of Cutg,A(α, β), which gives bad results in our test

examples. (See Section 4.4 for a discussion of these examples.) We address this issue by

modifying the EM algorithm to reset all infinite values of W to 1.1×Wmax, where Wmax is

the largest non-infinite element of W .

We also need to address another practical issue for an EM approach to work. Specifically,

59

the algorithm that we have described thus far in this section often finds bad local minima, in

which two communities are merged erroneously or a single community is split inappropriately.

To overcome this issue, we implement a wrapper function (see Algorithm 6) that checks each

community that is returned by MCF, AC, or MBO for further possible splitting or merging

with other communities. Whenever we call MCF, AC, or MBO on a subgraph, we use the

values of k and m for the whole graph rather than for a subgraph.5

There is also a danger of overfitting by setting n̂ = N , which gives a likelihood of 1

in (4.2). The proper selection of n̂ is a complicated problem, both algorithmically and

theoretically [123, 140]. For our tests, we were very successful by using a simple heuristic

approach. (However, our framework in this chapter is also compatible with more sophisti-

cated methods for selecting n̂.) For each data set, one supplies an expected value of n̂ for

that data set, and one adds a quadratic penalty to the objective value whenever n̂ differs

from its expected value. This helps curtail overfitting, while still allowing our algorithms to

perform merges and splits to escape bad local minima.

5A similar choice was used for the recursive partitioning procedures in [79,117].

60

Algorithm 6 The splitting–merging wrapper that we use to escape bad local minima.

Input A, n̂expected .

Place all nodes in the same community and add this community to a queue.

while the queue is not empty do

Save gold = g and Wold = W .

Save the current objective value as Q̂old.

Partition the next community in the queue (as a graph in its own right) into

min(n̂expected,
√
N) communities using MCF, AC, or MBO with wαβ =


1 , α = β ,

0.1 , α 6= β .

while it is possible to improve the objective by merging do

Perform the merge that most improves the objective.

end while

if the objective is better than Q̂old then

Add any newly created communities to the queue.

else

Set g = gold and W = Wold .

Remove the current community from the queue.

end if

end while

Output g, W .

4.4 Empirical Results

In this section, we discuss our results from several numerical experiments to (1) confirm that

our algorithms can successfully recover g and ω from networks that we generate using SBMs

and (2) explore their applicability to real-world networks. In our experiments, we use three

different families of SBMs, three Facebook networks (whose community structure is partly

understood [151,152]), and an example related to hyperspectral video segmentation. Because

61

of the random initialization in our approach, we perform three trials on each of the networks

for each algorithm, and we report the best result in each case.6 For comparison, we also report

the results of a Kernighan–Lin (KL) algorithm, which was reported in [85] to be effective.

We summarize our results in Table 4.1, and we highlight that we consistently recover the

underlying structure in the synthetic examples. For the real networks, we compare our

results with a reference partition based on metadata that is thought to be correlated with

the community structure. We find that the MCF scheme performs the best among our three

schemes on these networks, and it finds partitions with a larger likelihood than the reference

partition. We implement our methods in Matlab, so one should interpret our computation

time as indicative that the run time is reasonable for networks with millions of edges and

perhaps on larger networks, given a careful implementation in a compiled language. For an

example of code for a similar problem that was solved by an MBO scheme at large scale,

see [105].

We briefly describe the three families of SBM-generated networks that we use in our

numerical experiments.

• Planted partition (PP) is a 16,000-node graph that consists of 10 equally-sized com-

munities. It is produced by the method that was described in [85]. It builds a degree-

corrected SBM with a truncated power-law degree distribution with exponent 2. The

parameter λ from Equation (27) in [85] is 0.001, indicating a fairly clear separation

between communities.

• Lancichinetti–Fortunato–Radicchi (LFR) is a standard benchmark SBM network [96].

We construct 1000-node LFR graphs with a power-law degree distribution (with expo-

nent 2), mean degree 20, maximum degree 50, power-law-distributed community sizes

6We chose to use three trials to illustrate that our algorithms do not require a large number of attempts
to reach a good optimum. In most of our trials, even a single run of the solver is likely to give good results.
In Table 4.1, we report our best scores. Our worst scores for MCF are 0.00, 0.00, 0.00, −0.14, and 0.01 for
the the PP, MS, LFR, Caltech, and Princeton networks, respectively. We did not record the worst score for
Penn. St. or the plume network. Our corresponding worst scores for AC and MBO, respectively, are 0.00,
0.00, 0.01, 0.22, 0.86 and 0.15, 0.00, 0.02, 0.53, 1.12. Comparing these results with Table 4.1, we see that
our best and worst scores are often similar to each other.

62

(with exponent 1), community sizes between 10 and 50 nodes, and mixing parameter

0.1.

• Multiscale SBM (MS). To construct such a graph, we take a union of disjoint compo-

nents: a 10-clique, a 20-clique, and a sequence of Erdős–Rényi (ER) graphs (drawn

from the G(n, p) model with expected mean degree 20) of sizes 40, 80, 160, . . . , 5120;

there are a total of 10, 230 nodes. We connect the components to each other by adding

a single edge, from nodes chosen uniformly at random, between each consecutive clique

or ER graph. This construction tests whether an algorithm can find communities of

widely varying sizes in the same graph [7,54].

The hyperspectral video is the same plumes video used in Chapter 3, with 7 frames and

the same graph construction procedure. We see from Fig. 4.3 that partitions with small

values of (4.4) correspond to meaningful segmentations of the image.

Figure 4.3: Segmentation of a hyperspectral video using graph MCF. The gas plume is

clearly represented in the yellow and orange pixels. The two bottom blue classes are the

ground, and the other two are the sky. This image is frame 3 of 7.

In Table 4.3, we include an example of a W matrix that we obtain from an MS network to

illustrate that we recover different surface tensions between different pairs of communities.7

7For this example, we have applied the change of variables from Appendix D to eliminate the diagonal
elements.

63

PP LFR MS Caltech Princeton Penn. St. Plume

Nodes 16,000 1,000 10,230 762 6,575 41,536 284,481

Edges 2.9× 105 9.8× 103 1.0× 105 16, 651 293, 307 1, 362, 220 2, 723, 840

Communities 10 40 10 8 4 8 5

MCF 0 0 0 −0.16 −0.02 −0.56 −1.41

AC 0 0 0 0.21 0.58 −0.04 −1.23

MBO 0 0 0 0.53 1.12 0.40 −1.21

KL 0.28 0.03 0.04 −0.16 0.11 −0.55 −1.38

Reference 0 0 0 0 0 0 0

Table 4.1: Results of several tests on several synthetic and empirical networks. We

use three surface-tension-based methods (mean-curvature flow, Allen–Cahn, and Merri-

man–Bence–Osher) and the Kernighan–Lin algorithm from [85] to partition three synthetic

networks (Planted Partition, LFR, and Multiscale SBM) and the largest connected com-

ponents of three empirical networks (Caltech36, Princeton12, and Penn94) from the Face-

book100 data set [152]. The score is the difference between the recovered surface-tension

energy (4.4) and the corresponding energy of a reference partition, divided by the absolute

value of the energy of the reference partition. Smaller values indicate better performance,

and 0 corresponds to a partition that is of comparable quality as the reference partition. For

the synthetic networks, we use the planted (and hence ground-truth) community structure

as the reference partition. For the Facebook networks, we use metadata that is positively

correlated with community structure (namely, House affiliation for Caltech and graduation

year for the others). For the plume video, our reference partition is to assign all nodes to the

same community. The edge counts on the synthetic networks give the order of magnitude,

because the exact number differs across realizations.

64

PP LFR MS Caltech Princeton Penn. State Plume

MCF 5.36 17.71 3.47 1.39 1.46 38.91 77.91

AC 5.37 26.27 7.28 8.84 480.4 3853 268.7

MBO 4.27 11.05 1.73 0.67 7.43 382.31 270.0

KL 16,566 176 5,117 20 662 95,603 980,520

Table 4.2: Computation times (in seconds).

0 5.22 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

5.22 0 6.1817 ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ 6.1817 0 6.8471 ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ 6.8471 0 7.6316 ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ 7.6316 0 8.362 ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ 8.362 0 9.0869 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ 9.0869 0 9.7926 ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ 9.7926 0 10.4911 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 10.4911 0 11.1869

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 11.1869 0

Table 4.3: Optimal surface tensions for the MS SBM example. (Note that the entries are

heterogeneous, so there are different surface tensions between different pairs of communities.)

The infinite entries correspond to sets with no observed edge between them.

65

CHAPTER 5

Conclusion

This dissertation revisits two popular community-detection frameworks from the perspec-

tive of nonlinear, geometric PDEs and associated variational methods. This allowed us to

to use novel theoretical, algorithmic, and numerical methods to understand and compute

community structure. This can be seen as part of a broader literature seeking to understand

the ways in which classical continuum dynamics are relevant to the structural properties of

networks (See [15, 149] for reviews). The resulting theorems (such as nonconvexity of mod-

ularity, Theorem 1, and Gamma-convergence, Theorems 2 and 3) are unlikely to have been

discovered by traditional approaches, and the numerical methods generally have excellent

scalability (linear complexity and feasible on networks of millions of nodes or more). Further

development of theoretical and algorithmic connections with PDEs has great potential to

increase our understanding of network structure and processes.

In Chapter 3, we related modularity optimization to graph cuts and graph total variation.

This led to a nonconvexity theorem Theorem 1 that presents a fundamental barrier to future

attempts to handle modularity convexly and formalizes the common perception that modu-

larity maximization is a nonconvex problem. We next developed a novel, nonconvex smooth-

ing relaxation that is tunable to allow a reasonable tradeoff between accuracy and ease of

navigating the nonconvex landscape. Optimizing this relaxed functional yielded an efficient

algorithm with rigorous bounds on the underlying dynamics in Section 3.3.5. The existence

of good theoretical bounds reduces the need for parameter-tuning. Using this approach, we

effectively computed community structure on hyperspectral image and video examples with

up to 29 million edges, as well as a number of other networks without case-by-case parame-

66

ter tuning. We also showed our approach can incorporate a small amount of supervision to

more successfully navigate the nearly degenerate modularity landscape. These theoretical

and practical advances develop connections between PDEs, geometry, and graph clustering

currently being explored in other parts of the literature (see e.g. [15,82,109,155,156]), with

the broad theme being that popular machine learning, graph analysis, and network science

tasks can be solved accurately and efficiently by nonlinear PDE methods. Another direction

in which these connections might fruitfully be extended include applications to muliplex and

time-dependent graphs, directed graphs, and attributed graphs, which increasingly impor-

tant as more sophisticated network data becomes available [120].

In Chapter 4, we showed that a particular stochastic block model (SBM) maximum-

likelihood estimation problem is equivalent to a discrete version of a well-known surface-

tension problem. The equivalence associates graph cuts to surface areas and SBM parame-

ters to physical surface tensions. This gives new geometric and physical interpretations to

SBM MLE problems, which are traditionally viewed from a statistical perspective. We used

the new connection to adapt three well-known surface-tension-minimization algorithms to

community detection in graphs. Our subsequent computations suggest that the resulting al-

gorithms are able to successfully find underlying community structure in SBM-generated

graphs. When applied to graphs that are constructed from empirical data, our mean-

curvature-flow method performs very well, but the other two methods face some issues (which

will be interesting to explore in future studies). We also proved a Γ-convergence result that

gives theoretical justification for our algorithms and is the first multiphase Γ-convergence

result of which we are aware.

Although the focus of Chapter 4 was a specific form of an SBM and an associated MLE

problem, our techniques should also be insightful for other SBM problems. One straight-

forward adaptation is to consider SBMs without degree correction, although that is more

interesting for theoretical work than for applications. Additionally, one can likely incorporate

priors on the values of g and ω as regularizers in the surface-tension energy. Another viable

extension is to incorporate a small amount of supervision into the community-inference pro-

67

cess using techniques (such as quadratic fidelity terms) from image processing, similar to the

treatment in Chapter 3. It is also important to generalize our approach to more complicated

types of networks, such as multilayer [91] and temporal networks [77], and to incorporate

metadata [121] into our inference methodology. For example, given our successful results on

the hyperspectral video, it may be particularly interesting to use temporal-network clustering

to analyze time-dependent communities in the video.

Our results also raise a number of interesting questions. For example, our result on

the nonconvexity of modularity is restricted to a common family of embeddings. Are there

analogous results that show that the problem is nonconvex regardless of the embedding

family? Both the modularity and SBM solvers had different degrees of success depending

on the structure of the network. What properties of the networks are responsible for this

variability? The modularity solver was robust to different initial conditions in the semi-

supervised case. Is the semi-supervised modularity landscape convex in some sense, and if so,

are there useful quantitative bounds related to this convexification? Finally, the ε parameter

in the Allen–Cahn equation is related to the width of the transition layer in Euclidean

space—an important theoretical question is whether an analogous notion of transition layer

exists in the graph setting, where diffusion distances are inherently more complicated. This

has important applications in removing a tunable parameter from our numerical methods,

as well as those of several other papers [15].

Approaches such as inference using SBMs and modularity maximization are also related

to other approaches for community detection, and the results in this chapter may help

further illuminate those connections. These include recent work that relates SBMs to local

methods for community detection that are based on personalized PageRank [92] and very

recent work that established new connections between modularity maximization and several

other approaches [158]. We expect that further mapping of the relations between the diverse

available perspectives for community detection (and other problems in network clustering)

will yield many new insights for network theory, algorithms, and applications.

68

Appendix A

Γ-Convergence of the Ginzburg–Landau

Approximations of Expressions (3.6) and (4.4)

The following are some fundamental facts about Gamma-convergence to aid in understanding

the results of this dissertation. See [44] for more details.

Definition 8. Let Y be a metric space, and let Fn be a sequence of functionals on Y that

take values in R∪ {∞}∪ {−∞}. We say that Fn Γ-converges to another functional F if for

all z ∈ Y , the following bounds hold:

1. (Lower bound) For every sequence zn → z, we have F (z) ≤ lim inf
n→∞

Fn(zn).

2. (Upper bound) For every z ∈ Y , there is a sequence zn → z such that F (z) ≥

lim sup
n→∞

Fn(zn).

For our purposes, Γ-convergence is primarily a tool for ensuring that the minimizers of

Fn approach the minimizers of F , as guaranteed by the following:

Theorem 4. Let Fn Γ-converge to F , and let zn be a minimizer of Fn. Then every cluster

point of the zn is a minimizer of F . If F is continuous, then Fn + G Γ-converges to F + G.

We end with the proof of Theorems 2 and 3.

Proof. We largely follow [155], though we generalize to account for the multiphase nature of

our problem.

Observe that all of the terms in (3.6) and (4.4) that do not involve the potential Ψ

are continuous and independent of ε, so they cannot interfere with the Γ-convergence [44].

69

Therefore, it suffices to prove that
1

ε
Ψ Γ-converges to

ι(U) =


0 , if U corresponds to a partition ,

+∞ , otherwise .

To prove the lower bound, let Un → U and εn → 0. If U corresponds to a partition,

then ι(U) = 0, which is automatically less than or equal to
1

εn
Ψ(Un) for each n. If U does

not correspond to a partition, then ι(U) = +∞. Pick N1 such that whenever n > N1, the

distance from Un to the nearest feasible point is at least c > 0. Let Ψ̂ be the infimum of

Ψ on all of RN×n̂ except for the balls of radius c that surround each feasible point (so, in

particular, Ψ̂ > 0). It follows that lim inf
n→∞

1

εn
Ψ(Un) ≥ lim

n→∞

1

εn
Ψ̂ = +∞. Thus, the lower

bound always holds.

To prove the upper bound, let U be any N × n̂ matrix. If U corresponds to a partition,

then letting Un = U for all n gives the required sequence. If U does not correspond to a

partition, then Un = U for all n still satisfies the upper bound.

Thus, both the upper and lower bound requirements hold, and we have proven Γ-

convergence for both theorems.

70

Appendix B

Deferred proofs from Section 3.3.5

In this section, we give proofs of propositions stated earlier in the dissertation.

Proof of Proposition 2. We first get pointwise estimates on U − U0:

‖U − U0‖∞ ≤
∥∥e−τM − I∥∥∞ ‖U0‖∞ =

∥∥e−τM − I∥∥∞ ≤ ∞∑
n=1

1

n!
τn ‖M‖n∞ = eτ‖M‖∞ − 1

(B.1)

We estimate ‖M‖∞ as follows:

‖M‖∞ = max
i

∑
j

|Lij +
γ

m
kikj| = max

i

∑
j

|kiδij − Aij +
γ

m
kikj|

≤ max
i
ki + ki +

γ

m
ki2m = 2(1 + γ)kmax

These computations do not depend on n̂, but in order to get a timestep, we assume

that n̂ = 2. We have U(:, 1)t = −MU(:, 1) and U(:, 2)t = −MU(:, 2). Subtracting these,

and letting v = U(:, 1) − U(:, 2) yields vt = −Mv. Allowing v to evolve until the time of

thresholding, we see that node i will switch classes if and only if v(i) has changed sign, that

is if |v − v0|i > 1. The quantity in (B.1) is less than 1 exactly when τ <
log 2

2(γ + 1)kmax

≈
0.15

(γ + 1)kmax

. This is exactly the bound we sought.

Next, we work on the L2 bound

‖U − U0‖∞ ≤
√
n̂ ‖U − U0‖2 ≤

√
n̂
∥∥e−τM − I∥∥

2
‖U0‖2 ≤

√
n̂ ‖U0‖2

∞∑
n=1

1

n!
τn ‖M‖n2 (B.2)

=
√
n̂ ‖U0‖2

(
eτ‖M‖2 − 1

)
=
√
n̂ ‖U0‖2

(
eτR − 1

)
(B.3)

71

As before, when we let n̂ = 2, one can subtract the columns to get v, so that no node will

switch communities as long as ‖v − v0‖∞ < 1, which is guaranteed if τ < R−1 log
(

1 +N−
1
2

)
.

Proof of Proposition 3. To get the bound, we let Λ be a diagonal matrix with the eigenvalues

of M on the diagonal. Since M is positive semi-definite, we can write M = QΛQT for some

orthogonal matrix Q. Then we have

‖U(τ)‖2 =
∥∥e−τMU0

∥∥
2
≤
∥∥e−τM∥∥

2
‖U0‖2 =

∥∥e−τΛ
∥∥

2
‖U0‖2 = e−τλ1 ‖U0‖2

Setting the latter quantity less than ε and then solving for τ yields the required bound.

72

Appendix C

Hyperspectral Image Details

In this appendix we collect some basic facts about the images used in Table 3.2.

• Jasper Ridge: An image of a river area. It has 198 channels and 100x100 pixels.

Retrieved from http://www.escience.cn/people/feiyunZHU/Dataset GT.html.

• Samson: An image of a coastline. It has 156 channels and 952x952 pixels. Retrieved

from http://www.escience.cn/people/feiyunZHU/Dataset GT.html.

• Cuprite: An image of ground near Las Vegas. It has 224 channels and 250x190 pixels.

Retrieved from http://www.escience.cn/people/feiyunZHU/Dataset GT.html.

• FLC: A moderate-dimensional image. It has 12 channels and 949x220 pixels. Available

at ftp://www.daba.lv/pub/TIS/atteelu analiize/MultiSpec/tutorial/ModDime

nsionDataSet.zip.

• Pavia U: An image of Pavia University in Northern Italy. It has 103 channels and

610x610 pixels. Retrieved from http://lesun.weebly.com/hyperspectral-data-

set.html.

• Salinas: An image containing vineyard fields, soils, and vegetation. It has 224 channels

and 512x217 pixels. Retrieved from http://www.ehu.eus/ccwintco/index.php?tit

le=Hyperspectral Remote Sensing Scenes.

• Salinas 1: A subimage of the previous image containing 86x83 pixels.

73

http://www.escience.cn/people/feiyunZHU/Dataset_GT.html
http://www.escience.cn/people/feiyunZHU/Dataset_GT.html
http://www.escience.cn/people/feiyunZHU/Dataset_GT.html
ftp://www.daba.lv/pub/TIS/atteelu_analiize/MultiSpec/tutorial/ModDimensionDataSet.zip
ftp://www.daba.lv/pub/TIS/atteelu_analiize/MultiSpec/tutorial/ModDimensionDataSet.zip
http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes

Appendix D

Eliminating the Diagonal Elements of W

It is difficult to determine the parameters Wαα in the context of (4.4) and our surface-tension

analogy, because they correspond to “internal” surface tensions of a single crystal. In this

appendix, we use a change of variables to eliminate these diagonal terms and replace them

with additional volume terms, which are much easier to interpret.

We begin with the identity∑
α,β

WαβCutg,A(α, β) =
∑
α

∑
β 6=α

WαβCutg,A(α, β) +
∑
α

WααCutg,A(α, α) , (D.1)

and we compute∑
α

WααCutg,A(α, α) =
∑
α

Wα,α

∑
gi=α,gj=α

Aij

=
∑
α

Wα,α

 ∑
gi=α,j=1,...,N

Aij −
∑

gi=α,gj 6=α

Aij


=
∑
α

Wα,α

∑
gi=α

ki −
∑

β 6=α,gi=α,gj=β

Aij


=
∑
α

Wα,α

(
volg,A(α)−

∑
β 6=α

Cutg,A(α, β)

)
. (D.2)

Combining (D.2) with (D.1) yields∑
α,β

WαβCutg,A(α, β) =
∑
α 6=β

(Wαβ −Wαα) Cutg,A(α, β) +
∑
α

Wααvolg,A(α) . (D.3)

This formulation has eliminated the diagonal at the cost of making W asymmetric. We can

fix this issue by replacing (D.3) with∑
α,β

WαβCutg,A(α, β) =
∑
α 6=β

(
Wαβ −

1

2
Wαα −

1

2
Wββ

)
Cutg,A(α, β) +

∑
α

Wααvolg,A(α)

74

=
∑
α 6=β

σ̂αβCutg,A(α, β) +
∑
α

Wααvolg,A(α) , (D.4)

where σ̂αβ = Wαβ −
1

2
Wαα −

1

2
Wββ. The matrix σ̂ is symmetric and has 0 values on the

diagonal.

Finally, we expand a bit on the role of the volume terms in (4.4). The term

∑
α

Wααvolg,A(α) (D.5)

is the inner product of the vector of volumes with the diagonal of W . We minimize (D.5),

subject to the constraints
∑
α

volg,A(α) = 2m and volg,A(α) ≥ 0, by placing all of the nodes

in the community that corresponds to the smallest1 entry in the diagonal of W . Thus, these

terms incentivize placing more mass in the communities with the smallest volume penalty.

1When referring to “smallest” eigenvalues in the appendices, we mean the smallest positive or most-
negative values rather than those that are smallest in magnitude.

75

Appendix E

Additional Notes on the AC and MBO Schemes

for Expression (4.4)

In this appendix, we discuss some practical details regarding our implementation of the AC

and MBO solvers in Chapter 4.

The choice of ε in AC is important, because it selects a characteristic scale of the tran-

sition. If it is too small, the barrier to transition is large, and no evolution occurs. If it is

too large, the transition layer becomes wide enough that a large part of the graph is caught

in it, such that U does not approximately correspond to a partition of the graph. Further-

more, Theorem 3 asserts only that the minimizers of (4.4) and (4.9) are related when ε is

sufficiently small. In our numerical experiments, we set ε = 0.004, a choice that we selected

by hand-tuning using our synthetic networks. There is no reason to believe that the same

value should work for all networks. For example, for the well-known Zachary Karate Club

network [168], we obtain much better results for ε = 0.04. A very interesting problem is to

determine a correct notion of distance and accompanying quantitative estimates to allow an

automated selection of ε to obtain a transition layer with an appropriate width to give useful

results. We discretize the AC equation via convex splitting [51]:

(1 + c dt)Un+1 + LUn+1W = −dt
(
cUn +∇T (Un) +

1

2m
kkTUe−W

)
,

where c > 2/ε [101]. Using the constant c leads to an unconditionally stable scheme, which

negates the stiffness caused by the 1/ε scale.

It is necessary to solve linear system of the form

(1 + c dt)Un+1 + LUn+1W = F̄ n (E.1)

76

many times. In a continuum setting, one can use a fast Fourier transform, but we do not

know of a graph analog with comparable computational efficiency. Instead, we find the 2n̂

eigenvectors that correspond to the smallest eigenvalues1 of L and the entire spectrum of W .

Consequently, L ≈ VLDLV
T
L and W = VWDWV

T
W , and the system (E.1) is approximately

equivalent to

(1 + c dt)V T
L U

n+1VW +DLV
T
L U

n+1VWDW = V T
L F̄

nVW .

Letting Ûn = V T
L U

nVW and ˆ̄F n = V T
L F̄

nVW , we write

(1 + c dt)Ûn+1 +DLÛ
n+1DW = ˆ̄F n , (E.2)

which is easy to solve for Ûn+1. We convert Ûn+1 to a solution using Un+1 = VLÛ
N+1V T

W .

(See [14] for a discussion of this method of recovering Un+1 from Ûn+1.)

One final detail that we wish to note is that we want the evolution of U to be restricted

to have a row sum of 1, so that we can interpret it in terms of probabilities. To do this, we

use a vectorized version of the projection algorithm from [35] at each time step.

The MBO solver uses a very similar pseudospectral scheme, although it does not include

convex splitting. Unlike in the AC scheme, we need to estimate two time steps automatically

in our code, instead of tuning them by hand. The first is the inner-loop step, which we

determined using a restriction (which one can show is necessary for stability2) that the time

step should not exceed twice the reciprocal of the largest eigenvalue of the linear operator

that maps U to
1

m
kkTUe−W . The time step between thresholdings of U is given by the

reciprocal of the geometric mean of the largest and smallest eigenvalues of the operator that

maps U → LUW . The associated intuition is that linear diffusion should have enough time

to evolve (to avoid getting stuck) but not enough time to evolve to equilibrium (because

the equilibrium does not depend on the initial condition, so it carries no information about

it). The reciprocal of the smallest eigenvalue gives an estimate of the time that it takes to

1The number 2n̂ is somewhat arbitrary; we choose it to exceed n̂, but for computational convenience, we
do not want it to be too large.

2See, e.g., [100] for the necessary techniques, which are standard in the numerical analysis of ordinary
differential equations.

77

reach equilibrium, and the reciprocal of the largest eigenvalue gives an estimate of the fastest

evolution of the system. We choose the geometric mean between these values to produce

a number between these two extremes. References [20] and [156] proved bounds (although

in a simpler setting) that support these time-step choices for MBO schemes. Some of these

proofs are reproduced in Appendix B.

78

References

[1] G. Agarwal and D. Kempe, Modularity-maximizing graph communities via math-
ematical programming, Eur. Phys. J. B, 66 (2008).

[2] R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev.
Mod. Phys., 74 (2002), pp. 47–97.

[3] L. A. N. Amaral, A. Scala, M. Barthélemy, and H. E. Stanley, Classes of
small-world networks, Proc. Nat. Acad. Sci. USA, 97 (2000), pp. 11149–11152.

[4] L. Ambrodio and V. Tortorelli, On the approximation of free discontinuity prob-
lems, Boll. Un. Mat. Ital. B, 7 (1992), pp. 105–123.

[5] A. A. Amini, A. Chen, P. J. Bickel, and E. Levina, Pseudo-likelihood methods
for community detection in large sparse networks, Ann. Statist., 41 (2013), pp. 2097–
2122.

[6] C. Anderson, A Rayleigh-Chebyshev procedure for finding the smallest eigenvalues
and associated eigenvectors of large sparse Hermitian matrices, J. Comput. Phys., 229
(2010), pp. 7477–7487.

[7] A. Arenas, A. Fernández, and S. Gómez, Analysis of the structure of complex
networks at different resolution levels, New J. Phys., 10 (2008), 053039.

[8] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Brooks Cole, Pacific
Grove, CA, 1st ed., 1976.

[9] M. Ayati, S. Erten, M. R. Chance, and M. Koyuturk, MOBAS: Identifica-
tion of disease-associated protien subnets using modularity-based scoring, EURASIP J.
Bioinf. Sys. Bio., 1 (2015), pp. 1–14.

[10] B. Baingana, G. Mateos, and G. B. Giannakis, Proximal-gradient algorithms
for tracking cascades over social networks, IEEE J. Selected Topics in Signal Process-
ing, 8 (2014), p. 563.

[11] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science,
286 (1999), pp. 509–512.

[12] M. J. Barber, Modularity and community detection in bipartite networks, Phys. Rev.
E, 76 (2007), 066102.

[13] D. S. Bassett, E. T. Owens, M. A. Porter, M. L. Manning, and K. E.
Daniels, Extraction of force-chain network architecture in granular materials using
community detection, Soft Matter, 11 (2015), pp. 2731–2744.

[14] A. L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classifica-
tion of high dimensional data, Multiscale Model. Simul., 10 (2012), pp. 1090–1118.

79

[15] A. L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classifica-
tion of high dimensional data, SIAM Rev., 58 (2016), pp. 293–328.

[16] A. L. Bertozzi, X. Luo, A. M. Stuart, and K. C. Zygalakis, Uncertainty
quantification in the classification of high dimensional data, SIAM/ASA J. Uncertain.
Quantif., 6 (2018), pp. 568–595.

[17] R. F. Betzel and D. S. Bassett, Multi-scale brain networks, NeuroImage, 160
(2017), pp. 73–83.

[18] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast un-
folding of communities in large networks, J. Stat. Mech. Theory Exp., (2008), P10008.

[19] W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma, Phase-
field simulation of solidification, Ann. Rev. Mater. Res., 32 (2002), pp. 163–194.

[20] Z. Boyd, E. Bae, X.-C. Tai, and A. L. Bertozzi, Simplified energy landscape for
modularity using total variation, Accepted at SIAM J. Appl. Math. (arXiv:1707.09285),
(2018).

[21] Y. Boykov and V. Kolmogorov, Computing geodesics and minimal surfaces via
graph cuts, in Proceedings of the Ninth IEEE International Conference on Computer
Vision, vol. 2 of ICCV ’03, Washington, DC, USA, 2003, IEEE Computer Society,
pp. 26–33.

[22] Y. Boykov, V. Kolmogorov, D. Cremers, and A. Delong, An integral solu-
tion to surface evolution PDEs via geo-cuts, in Computer Vision — ECCV 2006: 9th
European Conference on Computer Vision, Graz, Austria, May 7–13, 2006, Proceed-
ings, Part III, A. Leonardis, H. Bischof, and A. Pinz, eds., Springer-Verlag, Berlin,
Germany, 2006, pp. 409–422.

[23] Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization
via graph cuts, IEEE Trans. Patt. Anal. Mach. Intel., 23 (2001), pp. 1222–1239.

[24] U. Brandes, D. Delling, M. Gaertler, D. Görke, M. Hoefer,
Z. Nikoloski, and D. Wagner, On modularity clustering, IEEE Trans. Knowl.
Data Eng., 20 (2008), pp. 172–188.

[25] X. Bresson, T. Laurent, D. Uminsky, and J. H. von Brecht, Multiclass total
variation clustering, arXiv:1306.1185, (2013).

[26] A. Broido and A. Clauset, Scale free networks are rare, arXiv:1801.03400, (2018).

[27] A. Buades, B. Coll, and J. M. Morel, A non-local algorithm for image denoising,
in Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 60–65.

[28] E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact sig-
nal reconstruction from highly incomplete frequency information, IEEE Trans. Inform.
Theory, 52 (2006), pp. 489–509.

80

[29] Cenna, Grgr3 small.gif. Wikimedia Commons https://commons.wikimedia.org/

wiki/File:Grgr3d small.gif.

[30] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, An
introduction to total variation for image analysis, Theor. Found. Numer. Methods
Sparse Recovery, 9 (2010), p. 227.

[31] A. Chambolle and J. Darbon, On total variation minimization and surface evo-
lution using parametric maximum flows, Int. J. Comput. Vis., 84 (2009), pp. 288–307.

[32] E. Y. Chan and D.-Y. Yeung, A convex formulation of modularity maximization
for community detection, in Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI), Barcelona, Spain, 2011, pp. 2218–2225.

[33] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Trans. on Image
Process., (2001).

[34] Y. Chen, X. Li, and J. Xu, Convexified modularity for degree-corrected stochastic
block models, Accepted at Ann. Stat. (arXiv:1604.03993v1), (2017).

[35] Y. Chen and X. Ye, Projection onto a simplex, arXiv:1101.6081, (2011).

[36] F. Chung, Spectral Graph Theory, AMS, 1992.

[37] S.-Y. Chung, Y.-S. Chung, and J.-H. Kim, Diffusion and elastic equations on
networks, Publications of the Research Institute for Mathematical Sciences, 43 (2007),
pp. 699–726.

[38] A. Clauset, M. E. J. Newman, and C. Moore, Finding community structure in
very large networks, Phys. Rev. E, 70 (2004), 066111.

[39] A. Clauset, C. R. Shalizi, and M. E. J. Newman, Power-law distributions in
empirical data, SIAM Rev., 51 (2009), pp. 661–703.

[40] F. Cleri, S. R. Phillpot, and D. Wolf, Atomistic simulations of intergranular
fracture in symmetric-tilt grain boundaries, Interface Sci., 7 (1999), pp. 45–55.

[41] A. Condon and R. M. Karp, Algorithms for graph partitioning on the planted
partition model, Random Structures Algorithms, 18 (2001), pp. 116–140.

[42] G. Csardi and T. Nepusz, The igraph software package for complex network re-
search, InterJournal, Complex Systems, (2006), p. 1695, http://igraph.org.

[43] P. Csermely, A. London, L.-Y. Wu, and B. Uzzi, Structure and dynamics of
core–periphery networks, J. Complex Netw., 1 (2013), pp. 93–123.

[44] G. Dal Maso, An Introduction to Gamma-Convergence, Birkhäuser, Boston, 1993.

81

https://commons.wikimedia.org/wiki/File:Grgr3d_small.gif
https://commons.wikimedia.org/wiki/File:Grgr3d_small.gif
http://igraph.org

[45] J. Darbon and M. Sigelle, A fast and exact algorithm for total variation mini-
mization, in Iberian Conference on Pattern Recognition and Image Analysis, Springer
Berlin Heidelberg, 2005, pp. 351–359.

[46] E. Davis and S. Sethuraman, Consistency of modularity clustering on random
geometric graphs, Accepted at Ann. Appl. Probab. (arXiv:1604.0399v1), (2016).

[47] S. Esedoglu and F. Otto, Threshold dynamics for networks with arbitrary surface
tensions, Comm. Pure Appl. Math., 68 (2015), pp. 808–864.

[48] S. Esedoglu and Y.-H. R. Tsai, Threshold dynamics for the piecewise constant
Mumford-Shah functional, J. Comput. Phys., 211 (2006), pp. 367–384.

[49] L. Evans, Convergence of an algorithm for mean curvature motion, Indiana Univ.
Math. J., 42 (1993), pp. 553–557.

[50] P. Expert, T. S. Evans, V. D. Blondel, and R. Lambiotte, Uncovering space-
independent communities in spatial networks, Proc. Nat. Acad. Sci. U.S.A, 108 (2011),
pp. 7663–7668.

[51] D. J. Eyre, An unconditionally stable one-step scheme for gradient systems. https:
//www.math.utah.edu/~eyre/research/methods/stable.ps, 1998.

[52] S. E. Fienberg and S. S. Wasserman, Categorical data analysis of single socio-
metric relations, Sociol. Meth., 12 (1981), pp. 156–192.

[53] S. Fortunato, Community detection in graphs, Phys. Rep., 486 (2010), pp. 75–174.

[54] S. Fortunato and M. Barthélemy, Resolution limit in community detection,
Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 36–41.

[55] S. Fortunato and D. Hric, Community detection in networks: A user guide, Phys.
Rep., 659 (2016), pp. 1–44.

[56] B. K. Fosdick, D. B. Larremore, J. Nishimura, and J. Ugander, Con-
figuring random graph models with fixed degree sequences, In press at SIAM Rev.
(arXiv:1608.00607), (2016).

[57] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, Spectral grouping using the
Nyström method, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2004), pp. 214–225.

[58] C. Fowlkes, S. Belongie, and J. Malik, Efficient spatiotemporal grouping using
the Nyström method, in CVPR, Hawaii, 2001.

[59] O. Frank and F. Harary, Cluster inference by using transitivity indices in empirical
graphs, J. Am. Stat. Soc., 77 (1982), pp. 835–840.

[60] H. J. Frost, C. V. Thompson, and D. T. Walton, Simulation of thin film grain
structures I: Grain growth stagnation, Acta Metall. Mater., 38 (1990), pp. 1455–1462.

82

https://www.math.utah.edu/~eyre/research/methods/stable.ps
https://www.math.utah.edu/~eyre/research/methods/stable.ps

[61] H. Gao, M. Guo, R. Li, and L. Xing, 4DCT and 4D cone-beam CT reconstruction
using temporal regularization, in Graphics Processing Unit-Based High Performance
Computing in Radiation Therapy, X. Jia and S. B. Jiang, eds., CRC Press, 2015,
pp. 63–82.

[62] C. Garcia-Cardona, E. Merkurjev, A. L. Bertozzi, A. Percus, and
A. Flenner, Multiclass segmentation using the Ginzburg-Landau functional and the
MBO scheme, IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014), pp. 1600–1614.

[63] T. Gerhart, J. Sunu, L. Lieu, E. Merkurjev, J.-M. Chang, J. Gilles, and
A. L. Bertozzi, Detection and tracking of gas plumes in LWIR hyperspectral video
sequence data, in SPIE Defense, Security, and Sensing, International Society for Optics
and Photonics, 2013, pp. 87430J–87430J.

[64] G. Gilboa, A total variation spectral framework for scale and texture analysis, SIAM
J. Imag. Sci., 7 (2014), pp. 1937–1961.

[65] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,
Multiscale Model. Simul., 7 (2008), pp. 1005–1028.

[66] R. Glowinski, T.-W. Pan, and X.-C. Tai, Some facts about operator-splitting
and alternating direction methods, in Splitting Methods in Communication, Imaging,
Science, and Engineering, R. Glowinski, S. J. Osher, and W. Yin, eds., Springer Inter-
national Publishing, Cham, 2016, pp. 19–94.

[67] D. Goldfarb and W. Yin, Second-order cone programming methods for total
variation-based image restoration, SIAM J. Sci. Comput., 27 (2005), pp. 622–645.

[68] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems,
SIAM J. Imaging Sci., 2 (2009), pp. 323–343.

[69] B. H. Good, Y.-A. de Montjoye, and A. Clauset, Performance of modularity
maximization in practical contexts, Phys. Rev. E, 81 (2010), 046106.

[70] H. Grahn and P. Geladi, Techniques and Applications of Hyperspectral Image
Analysis, John Wiley & Sons, 2007.

[71] R. Guimerè, M. Sales-Pardo, and L. A. N. Amaral, Modularity from fluctua-
tions in random graphs and complex networks, Phys. Rev. E, 70 (2004), 025101.

[72] A. Harten, High resulution schemes for hyperbolic conservation laws, J. Comput.
Phys., 49 (1983), pp. 357–393.

[73] L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. Murray, From molecular
to modular cell biology, Nature, 402 (1999).

[74] R. A. Hegemann, L. M. Smith, A. B. Barbaro, A. L. Bertozzi, S. E. Reid,
and G. E. Tita, Geographical influences of an emerging network of gang rivalries,
Phys. A, 390 (2011), pp. 3894–3914.

83

[75] P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First
steps, Social Netw., 5 (1983), pp. 109–137.

[76] P. Holme, Modern temporal network theory: A colloquium, Eur. Phys. J. B, 88 (2015),
234.

[77] P. Holme and J. Saramäki, Temporal networks, Phys. Rep., 519 (2012), pp. 97–
125.

[78] D. Hric, T. P. Peixoto, and S. Fortunato, Network structure, metadata, and the
prediction of missing nodes and annotations, Physical Review X, 6 (2016), p. 031038.

[79] H. Hu, T. Laurent, M. A. Porter, and A. L. Bertozzi, A method based on
total variation for network modularity optimization using the MBO scheme, SIAM J.
Appl. Math., 73 (2013), pp. 2224–2246.

[80] K. Ikehara and A. Clauset, Characterizing the structural diversity of complex
networks across domains, arXiv:1710.11304, (2017).

[81] M. Jacobs, Algorithms for multiphase partitioning, PhD thesis, University of Michi-
gan, Ann Arbor, 2017.

[82] M. Jacobs, E. Merkurjev, and S. Esedoglu, Auction dynamics: A volume-
constrained MBO scheme, J. Comp. Phys., 354 (2018), pp. 288–310.

[83] L. G. S. Jeub, P. Balachandran, M. A. Porter, P. J. Mucha, and M. W.
Mahoney, Think locally, act locally: The detection of small, medium-sized, and large
communities in large networks, Phys. Rev. E, 91 (2015), 012821.

[84] I. S. Jutla, L. G. S. Jeub, and P. J. Mucha, A generalized Louvain
method for community detection implemented in MATLAB. http://netwiki.am-
ath.unc.edu/GenLouvain, 2011.

[85] B. Karrer and M. E. J. Newman, Stochastic blockmodels and community structure
in networks, Phys. Rev. E, 83 (2011), 016107.

[86] W. O. Kermack and A. G. McKendrick, Contributions to the mathematical
theory of epidemics. ii. —the problem of endemicity, Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, 138 (1932), pp. 55–83.

[87] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning
graphs, Bell Syst. Tech. J., 49 (1970), pp. 291–307.

[88] M. Kim and J. Leskovec, Inferring missing nodes and edges in networks, in Pro-
ceedings of the 2011 SIAM International Conference on Data Mining, N. Chawla and
W. Wang, eds., 2011, pp. 47–58.

84

[89] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, An interior-
point method for large-scale l1-regularized least squares, IEEE J. Sel. Topics in Signal
Process., 1 (2007), pp. 606–617.

[90] D. Kinderlehrer, I. Livshits, and S. Ta’asan, A variational approach to model-
ing and simulation of grain growth, SIAM J. Sci. Comput., 28 (2006), pp. 1694–1715.

[91] M. Kivelä, A. Arenas, M. Barthélemy, J. P. Gleeson, Y. Moreno, and
M. A. Porter, Multilayer networks, J. Complex Netw., 2 (2014), pp. 203–271.

[92] I. M. Kloumann, J. Ugander, and J. Kleinberg, Block models and personalized
PageRank, Proc. Nat. Acad. Sci. USA, 114 (2017), pp. 33–38.

[93] R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc.
Roy. Soc. Edinburgh Sect. A, (1989).

[94] V. Kolmogorov, Y. Boykov, and C. Rother, Applications of parametric
maxflow in computer vision, in 2007 IEEE 11th International Conference on Com-
puter Vision, IEEE, 2007, pp. 1–8.

[95] A. Lancichinetti and S. Fortunato, Limits of modularity maximization in com-
munity detection, Phys. Rev. E, 84 (2011), 066122.

[96] A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for test-
ing community detection algorithms, Phys. Rev. E., 78 (2008), 056117.

[97] Y. LeCun and C. Cortes, The MNIST database of handwritten digits, 1998.

[98] E. A. Leicht and M. E. J. Newman, Community structure in directed networks,
Phys. Rev. Lett., 100 (2008), 118703.

[99] J. Leskovec, L. A. Adamic, and B. A. Huberman, The dynamics of viral mar-
keting, ACM Trans. on the Web, 1 (2007), p. 5.

[100] R. J. LeVeque, Finite difference methods for differential equations. https://pdfs

.semanticscholar.org/8ec6/d5e07121fb25213657d89c3bfb523e1e4721.pdf.

[101] X. Luo and A. L. Bertozzi, Convergence of the graph Allen–Cahn scheme, J. Stat.
Phys., 167 (2017), pp. 934–958.

[102] D. Manolakis, C. Siracusa, and G. Shaw, Adaptive matched subspace detec-
tors for hyperspectral imaging applications, in 2001 IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 5, 2001, pp. 3153–3156.

[103] C. Mantegazza, Lecture Notes on Mean Curvature Flow, Springer-Verlag, Berlin,
Germany, 2011.

[104] N. Masuda, M. A. Porter, and R. Lambiotte, Random walks and diffusion on
networks, Phys. Rep., 716-717 (2017), pp. 1–58.

85

https://pdfs.semanticscholar.org/8ec6/d5e07121fb25213657d89c3bfb523e1e4721.pdf
https://pdfs.semanticscholar.org/8ec6/d5e07121fb25213657d89c3bfb523e1e4721.pdf

[105] Z. Meng, E. Merkurjev, A. Koniges, and A. L. Bertozzi, Hyperspectral image
classification using graph clustering methods, IPOL J. Image Process. Online, 7 (2017),
pp. 218–245.

[106] Z. Meng, J. Sanchez, J.-M. Morel, A. L. Bertozzi, and P. J. Brantingham,
Ego-motion classification for body-worn videos, in Proceedings of the 2016 Conference
on Imaging, Vision, and Learning Based on Optimization and PDEs, 2017.

[107] E. Merkujev, T. Kostic, and A. Bertozzi, MBO scheme on graphs for segmen-
tation and image processing, SIAM J. Imaging Sci., 6 (2013), pp. 1903–1930.

[108] E. Merkurjev, E. Bae, A. L. Bertozzi, and X.-C. Tai, Global binary optimiza-
tion on graphs for classification of high-dimensional data, J. Math. Imaging Vision, 52
(2015), pp. 414–435.

[109] E. Merkurjev, A. L. Bertozzi, and F. Chung, A semi-supervised heat kernel
PageRank MBO algorithm for data classification, Accepted at Comm. Math. Sci.,
(2018).

[110] E. Merkurjev, J. Sunu, and A. L. Bertozzi, Graph MBO method for multi-
class segmentation of hyperspectral stand-off detection video, in IEEE International
Conference on Image Processing, 2014.

[111] B. Merriman, J. Bence, and S. Osher, Diffusion generated motion by mean
curvature, Proc. Comput. Crystal Growers Workshop, (1992), pp. 73–83.

[112] L. Modica, The gradient theory of phase transitions and the minimal interface crite-
rion, Arch. Ration. Mech. Anal., 98 (1987), pp. 123–142.

[113] C. Moore, The computer science and physics of community detection: Landscapes,
phase transitions, and hardness, arXiv:1702.00467, (2017).

[114] P. J. Mucha, T. Richardson, K. Macon, M. Porter, and J.-P. Onnela,
Community structure in time-dependent, multiscale, and multiplex networks, Science,
328 (2010), pp. 876–878.

[115] W. W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl.
Phys., 27 (1956), pp. 900–904.

[116] M. E. J. Newman, Spread of epidemic disease on networks, Phys. Rev. E, 66 (2002),
016128.

[117] M. E. J. Newman, Finding community structure in networks using the eigenvectors
of matrices, Phys. Rev. E, 74 (2006), 036104.

[118] M. E. J. Newman, Modularity and community structure in networks, Proc. Nat.
Acad. Sci. USA, 103 (2006), pp. 8577–8582.

86

[119] M. E. J. Newman, Equivalence between modularity optimization and maximum like-
lihood methods for community detection, Phys. Rev. E, 94 (2016), 052315.

[120] M. E. J. Newman, Networks: an Introduction, Oxford University Press, 2018.

[121] M. E. J. Newman and A. Clauset, Structure and inference in annotated networks,
Nature Commun., 7 (2016), 11863.

[122] M. E. J. Newman and M. Girvan, Finding and evaluating community structure in
networks, Phys. Rev. E, 69 (2004), 026113.

[123] M. E. J. Newman and G. Reinert, Estimating the number of communities in a
network, Phys. Rev. Lett., 117 (2016), 078301.

[124] A. Noack, Modularity clustering is force-directed layout, Phys. Rev. E, 79 (2009),
026102.

[125] O. A. Oleinik, Discontinuous solutions of nonlinear differential equations, Uspekhi
Mat. Nauk, 12 (1957), pp. 3–73.

[126] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., 79 (1988),
pp. 12–49.

[127] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harring-
ton, A roadmap for the computation of persistent homology, EPJ Data Sci., 6 (2017),
pp. 1–38.

[128] L. Papadopoulos, M. A. Porter, K. E. Daniels, and D. S. Bassett, Network
analysis of particles and grains, J. Complex Netw., advanced access (arXiv:1708.08080)
(2018).

[129] R. Pastor-Satorras and C. Castellano, Eigenvector localization in real net-
works and its implications for epidemic spreading, J. Stat. Phys., (2018), pp. 1–14.

[130] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani,
Epidemic processes in complex networks, Rev. Mod. Phys., 87 (2015), pp. 925–979.

[131] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani,
Epidemic processes in complex networks, Rev. Mod. Phys., 87 (2015), pp. 925–979.

[132] L. Peel, D. B. Larremore, and A. Clauset, The ground truth about metadata
and community detection in networks, Sci. Adv., 3 (2017), e1602548.

[133] T. P. Peixoto, Hierarchical block structures and high-resolution model selection in
large networks, Phys. Rev. X, 4 (2014), 011047.

[134] T. P. Peixoto, Inferring the mesoscale structure of layered, edge-valued, and time-
varying networks, Phys. Rev. E, 92 (2015), 042807.

87

[135] T. P. Peixoto, Model selection and hypothesis testing for large-scale network models
with overlapping groups, Phys. Rev. X, 5 (2015), 011033.

[136] T. P. Peixoto, Bayesian stochastic blockmodeling, arXiv:1705.10225, (2018). Chap-
ter in “Advances in Network Clustering and Blockmodeling”, edited by P. Doreian, V.
Batagelj, A. Ferligoj, (John Wiley & Sons, New York City, USA [forthcoming]).

[137] M. A. Porter, P. J. Mucha, M. E. J. Newman, and C. M. Warmbrand, A
network analysis of committees in the U.S. House of Representatives, Proc. Nat. Acad.
Sci. U.S.A., 102 (2005), pp. 7057–7062.

[138] M. A. Porter, J.-P. Onnela, and P. J. Mucha, Communities in networks,
Notic. Amer. Math. Soc., 56 (2009), pp. 1082–1097.

[139] J. Reichardt and S. Bornholdt, Statistical mechanics of community detection,
Phys. Rev. E, 74 (2006), 016110.

[140] M. A. Riolo, G. T. Cantwell, G. Reinert, and M. E. J. Newman, Efficient
method for estimating the number of communities in a network, Phys. Rev. E, 96
(2017), 032310.

[141] P. Rombach, M. A. Porter, J. H. Fowler, and P. J. Mucha, Core-periphery
structure in networks (revisited), SIAM Rev., 59 (2017), pp. 619–646.

[142] R. A. Rossi and N. K. Ahmed, Role discovery in networks, IEEE Trans. Knowl.
Data Eng., 27 (2015), pp. 1112–1131.

[143] A. Roxana Pamfil, S. D. Howison, R. Lambiotte, and M. A. Porter, Re-
lating modularity maximization and stochastic block models in multilayer networks,
arXiv:1804.01964, (2018).

[144] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation noise removal algo-
rithm, Phys. D, 60 (1992), pp. 259–268.

[145] S. J. Ruuth, B. Merriman, and S. Osher, A fixed grid method for capturing the
motion of self-intersecting wavefronts and related PDEs, J. Comput. Phys., 193 (2000),
pp. 1–21.

[146] H.-W. Shen, X.-Q. Cheng, and J.-F. Guo, Quantifying and identifying the over-
lapping community structure in networks, J. Stat. Mech. Theory Exp., (2009), P07042.

[147] C. S. Smith, Metal Interfaces, American Society for Metals, Cleveland, 1952,
ch. Grain shapes and other metallurgical applications of topology, pp. 65–113.

[148] T. A. B. Snijders and K. Nowicki, Estimation and prediction for stochastic block-
models for graphs with latent block structure, J. Classif., 14 (1997), pp. 75–100.

[149] J. Solomon, PDE approaches to graph analysis, arXiv:1505.00185, (2015).

88

[150] S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), pp. 268–276.

[151] A. L. Traud, E. D. Kelsic, P. J. Mucha, and M. A. Porter, Comparing
community structure to characteristics in online collegiate social networks, SIAM Rev.,
53 (2011), pp. 526–543.

[152] A. L. Traud, P. J. Mucha, and M. A. Porter, Social structure of Facebook
networks, Phy. A, 391 (2012), pp. 4165–4180.

[153] N. G. Trillos, D. Slepcev, J. Von Brecht, T. Laurent, and X. Bresson,
Consistency of Cheeger and ratio graph cuts, J. Mach. Learn. Res., 17 (2016), pp. 1–46.

[154] F. Tudisco, P. Mercado, and M. Hein, Community detection in networks via
nonlinear modularity eigenvectors, arXiv:1708.05569, (2017).

[155] Y. van Gennip and A. L. Bertozzi, Gamma-convergence of graph Ginzburg-
Landau functionals, Adv. Differential Equations, 17 (2012), pp. 1115–1180.

[156] Y. van Gennip, N. Guillen, B. Osting, and A. L. Bertozzi, Mean curvature,
threshold dynamics, and phase field theory on finite graphs, Milan J. Math., 82 (2014),
pp. 3–65.

[157] A. Vedaldi and B. Fulkerson, VLFeat: An open and portable library of computer
vision algorithms. http://www.vlfeat.org, 2008.

[158] N. Veldt, D. F. Gleich, and A. Wirth, A correlation clustering framework for
community detection, in Proceedings of the 2018 World Wide Web Conference, WWW
’18, Republic and Canton of Geneva, Switzerland, 2018, International World Wide
Web Conferences Steering Committee, pp. 439–448.

[159] B. P. Vollmayr-Lee and A. D. Rutenberg, Fast and accurate coarsening sim-
ulation with an unconditionally stable time step, Phys. Rev. E, 68 (2003), 032310.

[160] U. von Luxborg, A tutorial on spectral clustering, Statist. Comput., 17 (2007),
pp. 395–416.

[161] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algo-
rithm for total variation image reconstruction, SIAM J. Imag. Sci., 1 (2008), pp. 248–
272.

[162] D. J. Watts and S. H. Strogatz, Collective dynamics of “small-world” networks,
Nature, 393 (1998), pp. 440–442.

[163] D. Weaire and J. P. Kermode, Computer simulation of a two-dimensional soap
froth I: Method and motivation, Phil. Mag. B, 48 (1983), pp. 245–259.

[164] M. Welk, J. Weickert, and G. Gilboa, A discrete theory and efficient algorithms
for forward-and-backward diffusion filtering, Preprint NI17005, Isaac Newton Institute
for Mathematical Sciences, 2017.

89

http://www.vlfeat.org

[165] X. Yan, C. Shalizi, J. E. Jensen, F. Krzakala, C. Moore, L. Zdeborová,
P. Zhang, and Y. Zhu, Model selection for degree-corrected block models, J. Stat.
Mech. Theory Exp., 5 (2014), 05007.

[166] J. Yang, Y. Zhang, and W. Yin, A fast alternating direction method for TVL1-L2
signal reconstruction from partial Fourier data, IEEE J. Sel. Topics in Signal Process.,
4 (2010), pp. 288–297.

[167] J. Yuan, E. Bae, and X.-C. Tai, A study on continuous max-flow and min-cut
approaches, in CVPR, IEEE, 2010, pp. 2217–2224.

[168] W. W. Zachary, An information flow model for conflict and fission in small groups,
J. Anthropological Res., 33 (1977), pp. 452–473.

[169] L. Zelnik-Manor and P. Perona, Self-tuning spectral clustering, in NIPS, 2005,
pp. 1601–1608.

[170] P. Zhang and C. Moore, Scalable detection of statistically significant communities
and hierarchies, using message passing for modularity, Proc. of the Nat. Acad. Sci.,
111 (2014), pp. 18144–18149.

[171] W. Zhu, V. Chayes, A. Tiard, S. Sanchez, D. Dahlberg, A. L. Bertozzi,
S. Osher, D. Zosso, and D. Kuang, Unsupervised classification in hyperspectral
imagery with nonlocal total variation and primal-dual hybrid gradient algorithm, IEEE
Trans. Geosci. Remote Sensing, 55 (2017), pp. 2786–2798.

90

	Introduction
	Network Science and Community Detection
	Nonlinear differential equations and variational methods on networks
	Modularity Optimization
	Stochastic Block Models (SBMs)

	Background
	Notation and Definitions
	Total Variation
	The Ginzburg–Landau (GL) Functional
	Choice of Graph Laplacian

	Merriman–Bence–Osher Schemes
	Similarity Graphs, Hyperspectral Video, and Nonlocal Means
	Graph models, NP-completeness, and theoretical guarantees

	Modularity optimization and total variation
	Introduction
	Equivalence Theorem and Its Consequences
	Formulations of Modularity in Terms of TV and Graph Cuts
	On Convex Relaxations
	Ginzburg–Landau Relaxation

	Numerical Scheme
	Merriman–Bence–Osher Iteration
	Treating the Matrix Exponential
	Determining the Number of Communities
	Scaling
	The Choice of Timestep

	Results
	Summary
	Analysis of each experiment

	Stochastic block models are a discrete surface tension
	Background
	Stochastic Block Models (SBMs)
	Surface Tension

	An Equivalence Between SBM MLE and Discrete Surface Tension
	Mean-Curvature Flow (MCF), -Convergence, and Threshold Dynamics
	Mean-Curvature Flow
	Allen–Cahn (AC) Evolution
	MBO Iteration
	Learning

	Empirical Results

	Conclusion
	Appendices
	-Convergence of the Ginzburg–Landau Approximations of exp:balancedtv2,exp:cutformulation
	Deferred proofs from sec:timestep
	Hyperspectral Image Details
	Eliminating the Diagonal Elements of W
	Additional Notes on the AC and MBO Schemes for exp:cutformulation
	References

