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Abstract. The Wasserstein distance serves as a loss function for unsupervised learning
which depends on the choice of a ground metric on sample space. We propose to use a
Wasserstein distance as the ground metric on the sample space of images. This ground
metric is known as an e↵ective distance for image retrieval, since it correlates with
human perception. We derive the Wasserstein ground metric on image space and define
a Riemannian Wasserstein gradient penalty to be used in the Wasserstein Generative
Adversarial Network (WGAN) framework. The new gradient penalty is computed
e�ciently via convolutions on the L2 (Euclidean) gradients with negligible additional
computational cost. The new formulation is more robust to the natural variability of
images and provides for a more continuous discriminator in sample space.

1. Introduction

In recent years, optimal transport has become increasingly important in the formulation
of training objectives for machine learning applications (Frogner et al., 2015; Montavon
et al., 2016; Arjovsky et al., 2017). In contrast to traditional information divergences
(arising in maximum likelihood estimation), the Wasserstein distance between probability
distributions incorporates the distance between samples, via a ground metric of choice. In
this way, it provides a continuous loss function for learning probability models supported
on possibly disjoint, lower dimensional subset of the sample space. These properties are
especially useful for training implicit generative models, with a prominent example being
Generative Adversarial Networks (GAN). The application of the Wasserstein metric to
define the objective function of GANs is known as Wasserstein GANs (WGANs) (Frogner
et al., 2015; Arjovsky et al., 2017).

When training WGANs, one problem that remains is that of choosing a suitable ground
metric for the sample space. The choice of the ground metric plays a crucial role in the
training quality of WGANs. Usually, the distance between two sample images is taken to be
the mean square di↵erence over the features, i.e., the L

2 (Euclidean) norm. This, however,
does not incorporate additional knowledge that we have about the space of natural images.
In order to improve training and direct focus to selected features, other Sobolev norms in
image space have been studied (Adler and Lunz, 2018). Recent works are also investigating
distances based on higher level representations of the samples, which can be obtained by
means of techniques such as vector embeddings (Mroueh et al., 2017), auto-encoders, or
other unsupervised and semi-supervised feature learning techniques (Nowak et al., 2006).
Meanwhile, another distance that has been very successful in comparing images, has
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remained unnoticed in the context of WGANs, namely the Wasserstein distance (also
named Earth Mover’s distance or Monge-Kantorvich distance). In particular, this distance
has been considered in image retrieval problems (Rubner et al., 2000; Zhang et al., 2007).
The Wasserstein distance between images is known to correlate well with human perception
for natural images, e.g., being robust to translations and rotations (Engquist and Yang,
2018; Puthawala et al., 2018). See Figure 1. In addition, this distance is very natural
and does not require computing higher level representations of the images or any feature
selection.

In this paper, we propose to apply the Wasserstein distance over the sample space of
images with a ground metric over the discrete space of pixels in the generative model
formulation. We call this ground metric the Wasserstein ground metric, and call the
Wasserstein loss over the Wasserstein ground metric the Wasserstein of Wasserstein loss.
At first sight, it may appear overly complicated to define a loss function of this form. Since
computing the Wasserstein distance is already quite involved, a Wasserstein loss based on
another Wasserstein ground metric may seem infeasible. Nonetheless, we will show that it
is possible to derive an equivalent expression in the settings of gradient penalty of WGANs
(Petzka et al., 2017). In details, the Wasserstein-2 ground metric exhibits a metric tensor
structure (Otto, 2001; Villani, 2009). This introduces a Lipschitz condition based on the
Wasserstein norm, rather than the L

2 norm of the standard WGAN setting.

In this work we focus on generative models for images and specifically the WGAN
formulation, but the proposed Wasserstein of Wasserstein loss function can be applied to
learning with other types of models or other types of data for which a natural distance
between features can be introduced.

This paper is organized as follows. In Section 2, we introduce the Wasserstein loss
function with Wasserstein ground metric. Based on duality and the metric tensor of the
proposed problem, we derive an equivalent practical formulation. In Section 3 we discuss
our application to Wasserstein of Wasserstein GANs (WWGANs). Numerical experiments
illustrating the benefits of the new gradient norm penalty are provided in Section 4. Related
works are reviewed in Section 5.

2. Wasserstein of Wasserstein Loss

In this section, we introduce the Wasserstein ground metric in the Wasserstein loss
function. A motivating example is presented to demonstrate the utility of the proposed
model.

2.1. Wasserstein loss. Consider a metric sample space (X , dX ). The Wasserstein-p
distance is defined as follows. Given a pair P0, P1 2 Pp(X ) of probability densities with
finite p-th moment, let

Wp,dX (P0,P1) = inf
⇧

n⇣
E(X,Y )⇠⇧dX (X,Y )p

⌘ 1
p
o
, (1)

where ⇧ is a joint distribution of (X,Y ) with marginals X ⇠ P0, Y ⇠ P1. We note that
Wp depends on the choice of a distance function dX : X ⇥ X ! R on sample space, which
is usually called the ground metric.
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Wasserstein-2 ground metric L
2 (Euclidean) ground metric

Figure 1. Source and 9 nearest neighbors of images from the CIFAR-10
dataset, with respect to the Wasserstein-2 (top) and L

2 (bottom) ground
metrics. We note that the Wasserstein-2 distance give rise to neighbors
that are similar perceptually and robust to translations and rotations. In
contrast, the Euclidean distance is highly sensitive and oftentimes the
nearest neighbors are predominantly white images.

In practice, the sample space X is typically very high dimensional, sometimes even
being an (infinite dimensional) Banach space. We focus on the case where X is the space
of images, which can be regarded as a density space over pixels, i.e., X = P(⌦), where
⌦ = [0,M ] ⇥ [0,M ] is a discrete grid of pixels. With this in mind, we will define the
distance function between pixels d : ⌦⇥ ⌦! R+ as their physical distance.

2.2. Wasserstein loss function with Wasserstein ground metric. We further in-
troduce the Wasserstein of Wasserstein loss. Here, the first ‘Wasserstein’ refers to the
Wasserstein loss function over probability distributions on the space of images. The second
‘Wasserstein’ refers to the ground metric of this loss function. It is chosen as the Wasserstein
distance over the space of images defined as histograms over pixels, having a ground metric
over pixel locations.

That is, a raster image can be viewed as a 2D histogram with each pixel representing a
bin. Defining a ground metric between pixels (e.g., the physical distance between pixels),
the Wasserstein distance between images can be introduced. This serves as the new ground
metric for defining a Wasserstein distance between probability distributions over images.
See Figure 2.

As mentioned in the introduction, the Wasserstein distance is also known as the Earth
Mover’s distance and is known as an e↵ective metric in distinguishing images (Rubner
et al., 2000). Motivated by this fact, we use the Earth Mover’s distance (of images) as the
ground metric,

dX (X,Y ) :=Wq,d⌦(X,Y )

= inf
⇡

n⇣
E(x,y)⇠⇡d⌦(x, y)

q
⌘ 1

q
o
,

(2)

where ⇡ is a joint distribution of (x, y) with marginals x ⇠ X, y ⇠ Y both being images,
viewed as histograms over pixels. Here dX = Wq,d⌦(x, y) is named Wasserstein-q ground
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Figure 2. Illustration of Wasserstein-p loss function with Wasserstein-q
ground metric.

metric. It is defined with the pixel ground metric d⌦ : ⌦⇥ ⌦! R+ assigning distances to
pairs of pixels.

In this work, combining the above approaches, we obtain a Wasserstein-p distance with
Wasserstein-q ground metric as the loss function for training.

Definition 1. Given a probability model {PG : G 2 ⇥} ✓ Pp(X ) and a data distribution
Pr 2 Pp(X ), we propose the minimization problem

inf
G

Wp,Wq,d⌦
(PG,Pr), (3)

where Pp(X ) are densities with finite p-th moment, Wp,dX is defined by (1) and Wq,d⌦ is
given by (2).

The next example illustrates the di↵erence between the proposed Wasserstein of Wasser-
stein loss and the Wasserstein loss with L

2 ground metric.

Motivation example: Consider the distribution Pr = �X which assigns probability one
to a single image X. Suppose the generative model tries to mimic this via a distribution
of the form PG = �Y which assigns probability one to a fake image Y . Now suppose that
X = �x, Y = �y are images with intensity 1 on pixel locations x, y, respectively, and
intensity zero elsewhere. See Figure 3. In this case we have

Wp,dX (Pr,PG) = dX (X,Y ).

We check the following choices of the ground metric dX between images X and Y .

(1) Wasserstein-2 ground metric:

dX (X,Y ) = W2,d⌦(X,Y ) = d⌦(x, y);

(2) L
2 (Euclidean) ground distance:

dX (X,Y ) = dL2(X,Y ) =

(
0 if x = y

constant if x 6= y
.

We see that the Wasserstein distance will assign two distant pixels the same cost as two
adjacent pixels. This results in a highly discontinuous distance that is sensitive to single
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Figure 3. Depending on how we measure distances between pixel loca-
tions, the distance between images will be determined, and this in turn will
determine how distances are measured between probability distributions.

pixel translations! To make matters worse, in the case of continuous domain images, the L2

distance will be infinite for all non-overlapping pixels. Hence, for learning images with low
dimensional support, the Wasserstein of Wasserstein loss function is still well defined, while
the Wasserstein loss with L

2 ground metric function is ill-posed. We note, in particular,
that the Wasserstein of Wasserstein loss function is continuous with respect to continuous
change of pixels in images.

2.3. Duality formulation and properties. The computation required for the Wasser-
stein of Wasserstein loss function as stated in the previous section is unfeasible. To
compute (3) one needs to handle a linear programming computation at both the level of
probability distributions over images and individual images over pixels.

In this section, we present the Kantorovich duality formulation of Wasserstein of Wasser-
stein loss function with p = 1 and q = 2. As is done for Wasserstein GANs (Arjovsky et al.,
2017), we consider an equivalent Lipschitz-1 condition, which can be practically applied in
the framework of GANs.

Theorem 2 (Duality of Wasserstein of Wasserstein loss function). The Wasserstein-1 loss
function over Wasserstein-2 ground metric has the following equivalent formulation:

W1,W2,d⌦
(PG,Pr) = sup

f2C(X )

n
EX⇠PGf(X)�EX⇠Prf(X) :

Z

⌦

krx�Xf(X)(x)k2d⌦X(x)dx  1
o
,

(4)
where rx is the gradient operator in pixel space ⌦ and �X is the L

2 gradient in image
space X .

Proof. The result is from the duality of Wasserstein-1 metric, together with the Wasserstein-
2 metric induced gradient operator. First, the Wasserstein-1 metric has a particular dual
formulation, known as the Kantorovich duality:

W1,dX (P0,P1) = sup
f

EX⇠P0f(X)� EX⇠P1f(X),
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where the supremum is taken among all f : X ! R satisfying a 1-Lipschitz condition with
respect to the ground metric dX , i.e.,

k grad f(X)kdX  1. (5)

Second, consider the ground metric given by the Wasserstein-2 metric dX = W2,d⌦ with
ground metric d⌦ of pixel space. Then the gradient operator in (X , dX ) is the Wasserstein-2
gradient, i.e.,

grad f(X) = �rx · (X(x)rx�Xf(X)(x)).

The 1-Lipschitz condition for (X , dX ) in (5) gives k grad f(X)kW2,d⌦
 1, i.e.,

(grad f(X), grad f(X))W2,d⌦  1.

It is rewritten as the following integral of the Lipschitz-1 condition w.r.t. the Wasserstein
ground metric: Z

⌦

krx�Xf(X)(x)k2d⌦X(x)dx  1.

Combining the above facts, we derive the formula for Wasserstein of Wasserstein loss
function. ⇤

Remark 1. We note that the Kantorovich duality formula holds for any ground metric.
The Wasserstein ground metric introduces di↵erential structures and can be computed from
the L

2 gradient. We review the Wasserstein gradient operators in Appendix A.

The minimizer f in (4) corresponds to an Eikonal equation in image space (X ,W2,d⌦).
In other words, the Lipschitz-1 condition in Wasserstein norm has the form

Z

⌦

krx�Xf(X)(x)k2d⌦X(x)dx = 1.

We call this equation the Wasserstein Eikonal equation.

Proposition 3 (Wasserstein Eikonal equation). The characteristic of characteristic for
the Wasserstein Eikonal equation is the geodesic in pixel space.

We defer the proof of the above proposition to Appendix A. Here the characteristic
curve of our Eikonal equation is the geodesic curve in Wasserstein space (X ,W2,d⌦). The
characteristic curve of geodesics in Wasserstein space is again a geodesic in pixel space
(⌦, d⌦). We call this fact the double characteristic property. This is illustrated in
Figure 3. In contrast, the characteristic of geodesics in L

2 space does not depend on pixel
space. In the experiments section, we show that with the double characteristic property,
the discriminator is continuous with respect to translations in pixel space, and is robust
with respect to spatially independent noise added to the samples.

3. Wasserstein of Wasserstein GANs

In this section we apply the Wasserstein of Wasserstein loss function to implicit generative
models.
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3.1. Background. We start by reviewing generative adversarial networks (GAN). GANs
are a deep learning approach to generative modelling that has demonstrated significant
potential in the realm of image and text synthesis (Yu et al., 2017; Meng et al., 2018). The
GAN model is composed of two competing agents: A discriminator and a generator. At
each training step the generator produces synthesized images and the discriminator is given
a batch of real and synthesized images to be classified as real or fake. The generator is
trained to maximize the predictions of the discriminator while the discriminator is trained
to classify generated images aside from real images. At the end of training the generator
has learned how to trick the discriminator and ideally also the underlying data distribution.

Mathematically if we define a trainable generative model PG and discriminator D, the
GAN objective formulation is as follows:

min
PG

max
D

n
Ex⇠Pr log(D(X)) + Ex⇠PG log(1�D(X))

o
. (6)

Here Pr is the true, or real, data distribution. The distribution PG is defined in terms of
a generator parameterized by ✓ 2 Rd. Let the generator be given by G✓ : Rm

! X ; z 7!
x = G(✓, z). This takes a noise sample Z ⇠ p(z) 2 P2(Rm) to an output sample with
density given by X = G(✓, Z) ⇠ ⇢(✓, x) = PG. Here Rd is the parameter space, Rm is the
latent space, and X is the sample space.

The approach described above was found to su↵er from di�culties at training including
lack of convergence and mode collapse, a phenomenon where PG restricts to a subset of Pr.
The above-mentioned challenges are often the result of the discontinuous nature of the loss
in (6). To resolve such problems, Arjovsky et al. (2017) proposed to use the Wasserstein
metric with Euclidean ground metric as the objective, formulated as

min
PG

W1,L2(PG,Pr) = min
PG

sup
f2C(X )

n
EX⇠PGf(X)� EX⇠Prf(X) : k grad f(X)k2  1

o
. (7)

The Lipschitz condition in (7) was enforced via weight-clipping, ensuring k grad f(X)k2 <
C0. While now providing GAN with a continuous loss, the WGAN formulation with weight-
clipping has su↵ered cyclic behavior and in-stability which was significantly improved by
Gulrajani et al. (2017) by changing the Lipschitz enforcing condition from hard weight-
clipping to a soft gradient penalty term,

min
PG

sup
f2C(X )

n
EX⇠PGf(X)� EX⇠Prf(X) + �Ex⇠Pinterp(rXf(x)� 1)2

o
. (8)

where Pinterp is an interpolation between Pr and PG and � is fixed. The gradient penalty
term in (8) is not in full compliance with the Kantorovich duality of the problem as it also
penalizes a discriminator of Lipschitz constants smaller than 1. To remedy this issue, the
works of Petzka et al. (2017) replace the gradient penalty term in (8) by

�Ex⇠Pinterp(max(rXf(x)� 1, 0))2

We now derive our formulation that improves current methods based on the L2 ground
metric. Following Theorem 2, the Wasserstein of Wasserstein loss function can be rewritten
to give the optimization problem

min
PG

W1,W2,d⌦
(PG,Pr) = min

PG

sup
f2C(X )

n
EX⇠PGf(X)�EX⇠Prf(X) : k grad f(X)kW2,d⌦

 C

o
.
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The above formulation is suitable for training GANs. Here we call the dual variable, f ,
the discriminator, while G is the generator. In the setting of GANs, we further apply
neural networks to approximate both the discriminator and generator, which results in the
optimization problem

min
✓

sup
w

n
EZ⇠p(z)fw(g(✓, Z))� EX⇠Prfw(X) :

Z

⌦

krx�Xf(X)(x)k2d⌦X(x)dx  1
o
.

Here the generator G is expressed as a neural network with parameters ✓ 2 ⇥, and the
discriminator is approximated by a neural network with parameters w. Our approach
implements the 1-Lipschitz condition in terms of the Wasserstein gradient operator.

3.2. Discretization. We next present a discrete version of the Wasserstein-2 gradient.
In practice, the image space X is not infinite dimensional, although it may have a huge
dimension. E.g., X = R28⇥28 or R32⇥32 for MNIST or CIFAR-10 datasets. To discretize, we
first review the L2-Wasserstein metric tensor (matrix) defined on a finite dimensional space.
Consider a pixel space graph G = (V,E,!). Here V = {1, · · · , n} is the vertex set (e.g.,
n = 28⇥ 28), E is the edge set, and ! is a matrix of weights associated to the edges, with
!ij = !ji, which defines a ground metric of pixels. We denote the neighborhood of node

i 2 V by N(i) = {j 2 V : (i, j) 2 E}, and the degree of node i by di =
P

j2N(i) !ijPn
i=1

P
i02N(i) !ii0

.

We can then define a Wasserstein-2 metric W on X (details in Appendix B), and further
introduce the Wasserstein-2 gradient on discrete image space.

Proposition 4 (Wasserstein gradient on pixel space graph). Given a pixel space graph G,
the gradient of f 2 C

1(X ) w.r.t. (X ,W ) satisfies

grad f(X) = L(X)rXf(X),

where rX is the Euclidean gradient operator, and L(X) 2 Rn⇥n is the weighted Laplacian
matrix defined as

L(X)ij =

8
><

>:

1

2

P
k2N(i) !ik(

Xi
di

+ Xk
dk

) if i = j;

�
1

2
!ij(

Xi
di

+ Xj

dj
) if j 2 N(i);

0 otherwise.

Moreover, the 1-Lipschitz condition w.r.t. (X ,W ), k grad f(X)kW  1, is equivalent to

rxf(X)TL(X)rxf(X)  1.

Remark 2. We observe that the 1-Lipschitz condition is exactly the discrete analog of the
one in (4),

rxf(X)TL(X)rxf(X) =
X

(i,j)2E

!ij(rXjf(X)�rXif(X))2
Xi/di +Xj/dj

2
 1.

In the implementation, we simply times the weighted Laplacian matrix L(X) with
Euclidean gradient operator in image space. The product is the Wasserstein gradient
operator. We note that the Wasserstein gradient written in this form can be compared
with the graph Laplacian on images (Bertozzi and Flenner, 2012; Zheng et al., 2011).
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3.3. Computing the Wasserstein gradient via convolutions. We utilize the symme-
try of the similarity graph of the image space to compute the Wasserstein gradient e�ciently
via convolutions as illustrated in Algorithm 2. As the optimal transport can be defined
for local distances and truncated at a given threshold, this leads to a sparse !i,j , positive
only for nearby pixels. We therefore can calculate all pairs rXif(X)�rXjf(X) with a
given neighboring pattern by computing a set of kernels KO1 . . .KOd on the Euclidean
gradient rXf(X). The kernels KO1 . . .KOd are each defined as a convolution with fixed
kernel of zeros with 1 and �1 in the corresponding neighbor pattern pixels. By creating
a convolution filter for each neighbor pattern (e.g., right or up neighbor) we reach the
desired output channels. In practice the di↵erent kernels KO1 . . .KOk are grouped to form
a single 3D kernel. Likewise we apply the same kernel patterns, now with 1

2
,1
2
in the

corresponding neighbor pattern pixels to obtain the terms Xi/di+Xj/dj
2

for each i, j. This is
done analogously, computing each kernel MOk over the images X/d. Applying entry-wise
multiplication (�) and a summation collapsing all pixel locations and channels then yields
an e�cient and general method of calculating the Wasserstein gradient k grad fkW2,d(⌦)

for
general local cost metrics on highly optimized convolution. The specific choice of the graph
could serve to enhance di↵erent e↵ects, which is a possibility that we leave for future study.

3.4. Wasserstein gradient regularization in GANs. We next adopt the gradient
penalty into the loss function (cf. Petzka et al., 2017; Gulrajani et al., 2017) as follows:

min
✓

sup
w

n
Ez⇠p(z)fw(g(✓, z))� Ex⇠Prfw(x) + �EX̂⇠P̂

⇣q
rXf(X̂)TL(X̂)rXf(X̂)� 1

⌘2o
,

where � is chosen as a large constant and P̂ is the distribution of x̂ taken to be the uniform
distributions on “Euclidean” lines connecting points drawn from PG and Pr. Our WWGAN
training method is summarized in Algorithm 1.

Remark 3. In practice, the image is often not with the same intensity. We need to
consider a gradient operator, which also takes the e↵ect of the change of total intensity. As
proposed by Li (2018), we consider

L̃(X) = ↵11
T + L(X).

Here 1 = (1, · · · , 1)T 2 Rn is a constant vector. In Appendix C, we will show that 1 adds
one additional direction into the original normalized Wasserstein metric tensor. Compared
to L(X) being an inverse metric tensor defined in a simplex (normalized intensity space),
L̃(X) is a well defined inverse metric tensor in the positive orthant. In the algorithm, we
simply replace matrix function L by L̃ for general unnormalized intensity space.

4. Experiments

In this section, we present experiments demonstrating the e↵ects and e↵ectiveness of
WWGAN. We preform experiments on the CIFAR-10 and 64⇥ 64 cropped-CelebA image
datasets. In both experiments the discriminator is a convolutional neural network with 3
hidden layers and leaky ReLU activations. For the generator we utilize a network with 3
hidden de-convolution layers and batch normalization. The dimensionality of the latent
variable input of the generator is set at 128. Batch normalization is not applied to the
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Algorithm 1 WWGAN Gradient Penalty

Require: The gradient penalty coe�cient �, discriminator iterations per generator itera-
tion ndiscriminator, batch size m, ADAM hyperparameters ↵, �1, �2.

Require: initial discriminator parameters w0, initial generator parameters ✓0
Require: L matrix-function derived from the graph structure for image space G =

(V,E,!)
1: while ✓ has not converged do

2: for t = 1, . . . , ndiscriminator do

3: for i = 1, . . . ,m do

4: Sample real data x ⇠ Pr, latent variable z ⇠ p(z ), a random number ✏ ⇠ U [0, 1].
5: x̃  G✓(z )
6: x̂  ✏x + (1� ✏)x̃
7: M

(i)
 D!(x̃ )�D!(x ) + �(

p
rx̂D!(x̂ )TL(x̃ )rx̂D!(x̂ )� 1)2

8: end for

9: !  Adam(r!
1

m

Pm
i=1

M
(i)
,!,↵,�1,�2)

10: end for

11: Sample a batch of latent variables {z i
}
m
i=1
⇠ p(z )

12: ✓  Adam(r✓
1

m

Pm
i=1
�D!(G✓(z ), ✓,↵,�1,�2))

13: end while

Algorithm 2 Wasserstein gradient norm k grad f(X)kW

Require: The pixel graph: G = (V,E,!); local weights: (wij); neighbor relations arranged
symmetrically: O1 . . .Od

Require: Euclidean gradient rXf

1: Wasserstein-grad 0
2: for neighbor relations k = 1, . . . , d do

3: Build kernel KOk to compute rXif �rXOk(i)
f

4: Build corresponding kernel MOk to compute Xi
2di

+
XOk
2dOk

5: H  KOk(rXf)
6: V  MOk(X)
7: H  H �H (entry-wise multiplication)
8: W  H � V

9: Wasserstein-grad Wasserstein-grad+ sum(W )
10: end for

11: Return k grad f(X)kW =
p
Wasserstein-grad

discriminator, in order to avoid dependencies when computing the gradient penalties. The
model is then trained with the ADAM optimizer with fixed parameters (�1,�2) = (0.9, 0).
More details on the implementation are provided in Appendix C.

Figure 6 shows that in terms of computation time and quality of the generated images as
measured by the Frechét Inception Distance (FID), WWGAN is comparable to state of the
art WGAN-GP. Next, we take a closer look at the properties of the trained discriminators,
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Example of a translated image

Figure 4. Discriminator for CIFAR-10 images translated continuously
by a vertical shift from 0 (no shift) to 32 pixels (complete image). The
WWGAN discriminator is continuous to natural perturbations, e.g. vertical
translation. WGAN-GP discriminator exhibits unpredictable behavior for
small vertical perturbations, oscillating between real (positive values) and
fake (negative values) labels. Both WWGAN, WGAN-GP discriminators
tested were trained identically to reach an FID value of 40.

which also serves to probe the shape of the probability densities over images defined by
generators.

4.1. Perturbation stability. In this experiment we investigate how the discriminator
trained with WWGAN on images benefits from the properties of the Wasserstein ground
metric. Specifically, we test whether the discriminator trained with the new gradient penalty
is more continuous with respect to natural variations of the images, which is a desirable
property. The variability refers continuous transformations of natural images that result
in natural looking images, such as translations and rotations. If the transformations are
applied gradually, one should expect to observe only gradual changes in the discriminator.
The experiment is illustrated in Figure 4, where a randomly selected image from the
CIFAR-10 dataset is gradually shifted vertically, shifting all pixels a single pixel downward
at each step. In the figure, the sequence of shifted images is passed through the WWGAN
and the WGAN-GP discriminators trained with their respective loss to reach an FID value
of 40 for the generator. We observe with our WWGAN model, the discriminator values
change continuously with the translation of the input image. In contrast, this type of
continuity is not observed in models that are trained with the Euclidean Lipschitz condition.
We note that WWGAN assigns a positive value to the image and gradually decreases
to the end limit when the entire image is shifted away. Unlike WWGAN, WGAN-GP
is highly sensitive to perturbations in image space and oscillates wildly, assigning highly
positive (real label) and negative (fake labels) to images shifted less than 2 pixels away.
We observed the same type of behavior across all images that we tested.
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Figure 5. Here we test the robustness of the discriminator values to noise
on real CIFAR-10 images. The noise is the RGB version of salt and pepper
noise, where 15% of the pixels are modified. As we can see, the WGAN-GP
discriminator values cluster according to noise, so they give di↵erent values
to whether a real image is noisy or not. In the bottom figure, the WWGAN
discriminator is more robust to noise and changes relatively little.

Figure 6. WWGAN gives comparable results with state of the art
WGAN-GP training in terms of the Frechét Inception Distance (FID) of
generated images. In terms of computation time, the overhead of WWGAN
is negligible, with average epoch wall-clock times of 218.1 (s) and 236.9 (s),
respectively, for the settings of our experiments.

4.2. Discriminator robustness to noise. In this experiment, we test the robustness
of the discriminator to RGB salt and pepper noise, i.e., every pixel in the image has a
probability to be changed to either 0 or 1. We chose our probability to be 15%, so 15%
of the pixels are modified. We trained GANs under the WGAN-GP and the WWGAN
loss, until each achieved an FID of about 40. We then use the trained discriminators and
measure their values on real images with RGB salt and pepper noise. In Figure 5, we see
that the WGAN-GP discriminator has separate clusters for noisy and clean images, while
the WWGAN discriminator is more robust to the noise and assigns more consistent values
to all these images.
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5. Related works

In this section, we review the connection between the proposed work and literature.

Ground Metric for space of functions. Banach GAN (Adler and Lunz, 2018) pointed out
the importance of ground metric in training Wasserstein loss function in GANs. They
apply Sobolev norms and their induced gradient operator for the ground metric. Other
than the Sobolev gradient, we apply the optimal transport induced operator (Otto, 2001;
Villani, 2009). The gradient operator depends on the new ground metric structure within
the sample space. We demonstrate that the optimal transport gradient provides the other
practical 1-Lipschitz condition for training GANs.

Connection with Mean field games. Mean field games considers the optimal control problem
in Wasserstein space (Cardaliaguet et al., 2015). In potential games, the Hamilton-Jacobi
equation in Wasserstein space plays a vital roe (Gangbo et al., 2008). In this paper, we
present a new Hamilton-Jacobi equation in Wasserstein space. It is the Ekional equation
in Wasserstein space as shown in proposition 3. The new proposed equation has naturally
the double characteristics properties as the ones in Mean field games. Here we demonstrate
experimentally that the double characteristics property is very suitable for training GANs.

Geometric deep learning and Wasserstein metric on graphs. In geometric deep learning one
considers mappings where the input space has a rich geometric structure (Bronstein et al.,
2017). In particular one considers the case where the input space consists of functions
defined on a graph (Raster images are examples, where the graphs are grids). One reason
for doing this is that one can then define convolutions based on the group structures of
these graphs.

Here we propose to formulate the graph structure into the weighted Laplacian matrix.
This matrix is connected to the Wasserstein metric tensor on discrete space (Chow et al.,
2012; Maas, 2011; Mielke, 2011). A systemic geometry study is provided by (Li, 2018).
The discrete Wasserstein metric tensor gives analytic formulas for proposing the graph
structure in sample space into learning loss function. The Wasserstein of Wasserstein loss
function is one of examples in this direction.

Wasserstein natural gradients. Recent work has also investigated the notion of natural
gradients based on the Riemannian structures derived from optimal transport (Li and
Montúfar, 2018). In this case, optimal transport serves to define an optimization method,
rather than a loss function as in the present paper. This approach has also been applied to
training of GANs, where it leads to an iterative regularizer for the generator (Lin et al.,
2018).

6. Discussion

We proposed a Wasserstein loss function with Wasserstein ground metric for learning
generative models. The Wasserstein ground metric introduces a graph / manifold structure
into the sample space of the model and allows us to introduce meaningful priors to the
learning model. Experiments demonstrate that this approach can contribute to making the
generator and discriminator in GANs more stable with respect to noise and the natural
variability of image data.
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We consider the Wasserstein of Wasserstein loss an important advance at a conceptual
level. It has a physical intuition. Consider a physical motion or translation in pixel space.
It corresponds to a change or motion in image space, and it further changes the distribution
over images accordingly. The double characteristic property of the Wasserstein Eikonal
equation reflects this intuition analytically. We regard it as surprising that this high level
approach can be translated to practical computational methods. Remarkably, our approach
has no additional computational cost over the standard Wasserstein loss function with L

2

(Euclidean) ground metric.

In the future, we suggest to explore the consequences of our approach from the statistical
and optimization point of view. Also, to continue exploring the role of the graph structure
that is chosen to define the Wasserstein ground metric in relation to specific data types.
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Appendix A. Wasserstein metrics in continuous sample space

In this section, we briefly review the duality structures of Wasserstein-p in continuous
sample space. More details are provided in (Villani, 2009). When p = 1, a particular
duality structure is shown. When p = 2, a metric tensor property will be discussed. These
properties will be used intensively throughout the paper.

Given a sample space ⌦ ⇢ Rd, Wasserstein-p metric introduces the distance between
probability density functions ⇢0, ⇢1 2 P(⌦) as follows.

Wp(⇢
0
, ⇢

1)p = inf
⇡

Z

⌦⇥⌦

c(x, y)⇡(x, y)dxdy

where the infimum is taken over all joint measures ⇡ � 0, with marginals
Z

⌦

⇡(x, y)dx = ⇢
0(y),

Z

⌦

⇡(x, y)dy = ⇢
1(x).

Here c(x, y) is the homogenous of degree p function. E.g. c(x, y) = kx� yk
p, k · k is the

Euclidean norm.

The dual problem of the linear programming has the form

Wp(⇢
0
, ⇢

1)p = sup
�0,�12C(⌦)

nZ

⌦

�1(x)⇢1(x)� �0(x)⇢0(x)dx : �1(y)� �0(x)  c(x, y)
o
,

where �0, �1 : ⌦! R are the Lagrangian multiplier variables for the constraint of linear
programming involving ⇢

0, ⇢1. Here �0, �1 are the so-called Kantorovich dual variables.

The Wasserstein metric exhibits special structures for p = 1 and p = 2.

A.1. Wasserstein-1 metric. If p = 1, one can check that �1(x) = �0(x). Denote
f(x) = �1(x) the constraint condition for duality problem has the form

f(x)� f(y)  c(x, y), for any x, y 2 ⌦.

This gives the 1-Lipscthiz condition with respect to the norm of metric c(x, y), i.e.

k grad f(x)kc  1.

We can apply this condition into the dual problem. We then derive the dual of dual
problem as follows:

inf
m

nZ

⌦

km(x)kdx : div(m) + ⇢
1
� ⇢

0 = 0
o

where m is the flux function, and div is the divergence operator depending on the ground
metric c. Here the minimizer of Wasserstein function satisfies8

><

>:

div(m(x)) = ⇢
0(x)� ⇢

1(x)

m(x)

km(x)kc
= grad f(x), when km(x)kc > 0

where div and grad are divergence and gradient operators with respect to the ground metric
c. As we can see, the second formula in above system satisfies the Lipschitz-1 condition,
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i.e. the Eikonal equation

k grad f(x)kc = k
m(x)

km(x)kc
kc = 1.

Following the direction of flux function m(x) by the direction of grad f(x), one transports
⇢
0 to ⇢

1. The transport direction follows the characteristic of Eikonal equation, i.e. the
geodesic curve in (⌦, d).

A.2. Wasserstein-2 metric. If p = 2, one can relate the duality formula of �1, �0 with
the solution of Hamilton-Jacobi equation by the Hopf-Lax formula (Villani, 2009). In other
words, �0(x), �1(x) are the solution of Hamilton-Jacobi equation at time t = 0, t = 1:

@t�(t, x) +
1

2
k grad�(t, x)k2c = 0.

The minimizer of optimal transport has a form
8
><

>:

@t⇢(t, x) + div
⇣
⇢(t, x) grad�(t, x)

⌘
= 0

@t�(t, x) +
1

2
k grad�(t, x)k2c = 0

with the time zero and one density solution ⇢(0, x) = ⇢
0(x), ⇢(1, x) = ⇢

1(x). We notice the
fact that the characteristic of continuity equation and Hamilton-Jacobi equation is again
the geodesics in pixel space ⌦.

Proof of Proposition 1. Combining the properties of Wasserstein-1 and Wasserstein-2
metric, we obtain that the Lipschitz-1 condition w.r.t. Wasserstein-2 metric gives the
following fact. The characteristic of characteristic in probability of probability space gives
the geodesic in the pixel space.

A.3. Wasserstein-2 gradient. In the last, we formally derive the Wasserstein-2 gradient
operator.

Consider ⌦ is a compact region with the set of smooth and strictly positive densities:

P+(⌦) =
n
⇢ 2 C

1(⌦) : ⇢(x) > 0,

Z

⌦

⇢(x)dx = 1
o
.

Denote by F(⌦) := C
1(⌦) the set of smooth real valued functions on ⌦. The tangent

space of P+(⌦) is given by

T⇢P+(⌦) =
n
� 2 F(⌦) :

Z

⌦

�(x)dx = 0
o
.

Given � 2 F(⌦) and ⇢ 2 P+(⌦), define

V�(x) := �r · (⇢(x)r�(x)) 2 T⇢P+(⌦).

Here the elliptic operator identifies the function � on ⌦ modulo additive constants with
the tangent vector V� in P+(⌦):

F(⌦)/R! T⇢P+(⌦), � 7! V�.

Denote T
⇤
⇢P+(⌦) = F(⌦)/R as the smooth cotangent space of P+(⌦). Then the L

2-
Wasserstein metric tensor on density space is defined as follows:
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Definition 5 (Wasserstein-2 metric tensor). Define the inner product on the tangent space
of positive densities g⇢ : T⇢P+(⌦)⇥ T⇢P+(⌦)! R by

g
W
⇢ (�1,�2) =

Z

⌦

r�1(x) ·r�2(x)⇢(x)dx,

where �1 = V�1, �2 = V�2 with �1(x), �2(x) 2 F(⌦)/R.

La↵erty (1988) calls (P+(⌦), g⇢) density manifold. Following the Riemannian calculus,
the gradient operator with respect to the Wasserstein-2 metric (Otto, 2001) has the
following form.

Proposition 6 (Wasserstein-2 gradient).

gradF(⇢)(x) = �r · (⇢r
�

�⇢(x)
F(⇢)),

and

k gradF(⇢)kW =

Z
kr

�

�⇢(x)
F(⇢)k2⇢(x)dx.

This proposition is one of the motivation in Theorem 2. We next present the Wasserstein-
2 gradient operator defined in a discrete sample space.

Appendix B. Wasserstein-2 gradient on discrete sample space

We recall the definition of discrete probability simplex with Wasserstein-2 Riemannian
metric. Consider the discrete pixel space I = {1, · · · , n}. The probability simplex on I is
the set

P(I) =
n
(p1, · · · , pn) 2 Rn :

nX

i=i

pi = 1, pi � 0
o
.

Here p = (p1, . . . , pn) is a probability vector with coordinates pi corresponding to the
probabilities assigned to each node i 2 I. The probability simplex P(I) is a manifold
with boundary. We denote the interior by P+(I). This consists of the strictly positive
probability distributions, with pi > 0 for all i 2 I. To simplify the discussion, we will focus
on the interior P+(I).

We next define the Wasserstein-2 metric tensor on P+(I), which also encodes the metric
tensor of discrete states I. We need to give a ground metric notion on sample space. We
do this in terms of a undirected graph with weighted edges, G = (I, E,!), where I is the
vertex set, E ✓

�I
2

�
is the edge set, and ! = (!ij)i,j2I 2 Rn⇥n is a matrix of edge weights

satisfying

!ij =

(
!ji > 0, if (i, j) 2 E

0, otherwise
.

The set of neighbors (adjacent vertices) of i is denoted by N(i) = {j 2 V : (i, j) 2 E}. The

normalized volume form on node i 2 I is given by di =
P

j2N(i) !ijPn
i=1

P
i02N(i) !ii0

.

The graph structure G = (I, E,!) induces a graph Laplacian matrix function.
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Definition 7 (Weighted Laplacian matrix). Given an undirected weighted graph G =
(I, E,!), with I = {1, . . . , n}, the matrix function L(·) : Rn

! Rn⇥n is defined by

L(p) = D
T⇤(p)D, p = (pi)

n
i=1 2 Rn

,

where

• D 2 R|E|⇥n is the discrete gradient operator defined by

D(i,j)2E,k2V =

8
><

>:

p
!ij , if i = k, i > j

�
p
!ij , if j = k, i > j

0, otherwise

,

• �D
T
2 Rn⇥|E| is the oriented incidence matrix, and

• ⇤(p) 2 R|E|⇥|E| is a weight matrix depending on p,

⇤(p)(i,j)2E,(k,l)2E =

(
1

2
( 1

di
pi +

1

dj
pj) if (i, j) = (k, l) 2 E

0 otherwise
.

The Laplacian matrix function L(p) is the discrete analog of the weighted Laplacian
operator �r · (⇢r) from Definition 5.

We are now ready to present the Wasserstein-2 metric tensor. Consider the tangent
space of P+(I) at p,

TpP+(I) =
n
(�i)

n
i=1 2 Rn :

nX

i=1

�i = 0
o
.

Denote the space of potential functions on I by F(I) = Rn, and consider the quotient space

F(I)/R = {[�] | (�i)
n
i=1 2 Rn

},

where [�] = {(�1+ c, · · · ,�n+ c) : c 2 R} are functions defined up to addition of constants.

We introduce an identification map via the weighted Laplacian matrix L(p):

V : F(I)/R! TpP+(I), V� = L(p)�.

We know that L(p) has only one simple zero eigenvalue with eigenvector c(1, 1, · · · , 1), for
any c 2 R. This is true since for (�i)ni=1

2 Rn,

�T
L(p)� = (D�)T⇤(p)(D�)

=
X

(i,j)2E

!ij(�i � �j)
2(
1

2
(
1

di
pi +

1

dj
pj)) = 0,

implies �i = �j , (i, j) 2 E. It the graph is connected, as we assume, then (�i)ni=1
is

a constant vector. Thus V� : F(I)/R ! TpP+(I) is a well defined map, linear, and one
to one. I.e., F(I)/R ⇠= T

⇤
pP+(I), where T

⇤
pP+(I) is the cotangent space of P+(I). This

identification induces the following inner product on TpP+(I).

Definition 8 (Wasserstein-2 metric tensor). The inner product gp : TpP+(I)⇥TpP+(I)!
R takes any two tangent vectors �1 = V�1 and �2 = V�2 2 TpP+(I) to

gp(�1,�2) = �
T
1 �2 = �

T
2 �1 = �T

1L(p)�2. (9)
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In other words,

gp(�1,�2) := �1
T
L(p)†�2, for any �1,�2 2 TpP+(I),

where L(p)† is the pseudo inverse of L(p).

Following the inner product (9), the Wasserstein-2 metric on imagesW : P+(I)⇥P+(I)!
R is defined by

W (p0, p1)2 := inf
p(t),�(t)

nZ
1

0

�(t)TL(p(t))�(t)dt
o
. (10)

Here the infimum is taken over pairs (p(t),�(t)) with p 2 H
1((0, 1),Rn) and � : [0, 1]! Rn

measurable, satisfying

d

dt
p(t)� L(p(t))�(t) = 0, p(0) = p

0
, p(1) = p

1
.

The Wasserstein-2 metric on graph introduces the following gradient operator.

Theorem 9 (Wasserstein gradient on graphs). Given F 2 C
1(P+(I)), the gradient operator

in Riemannian manifold (P+(I), g) satisfies

gradF(p) = L(p)d⇢F(p),

where d is the Euclidean gradient operator.

Proof. As in the definition of Riemannian gradient, we have

gradF(p) = (L(p)†)†dpF(p) = L(p)dpF(p),

which finishes the proof. ⇤

Proof of Proposition 4. Following the proof of Theorem 2, we prove Proposition 4. ⇤

We last illustrate the Wasserstein metric tensor in unnormalized density space. The new
metric tensor induces the gradient operator in unnormalized density space.

In other words, consider

M+(I) =
n
µ = (µ1, · · · , µn) 2 Rn : µi � 0

o
.

The tangent space of M+(I) at µ forms

TµM+(I) = Rn
.

Definition 10 (Unnormalized Wasserstein-2 metric tensor). The inner product g̃µ :
TµM+(I)⇥ TµM+(I)! R forms

g̃µ(�1,�2) := �1
T
⇣
L(p)† +

1

↵
11

T
⌘
�2,

for any �1,�2 2 TpP+(I).

It is clear that (M+(I), g̃) is a well defined metric in positive octant. In this case, the
unnormalized Wasserstein-2 gradient is given by the following theorem.
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Theorem 11 (Unnormalized Wasserstein-2 gradient on graphs). Given F 2 C
1(M+(I)),

the gradient operator in Riemannian manifold (M+(I), g̃) satisfies

gradF(µ) =
⇣
L(µ) + ↵11

T
⌘
dµF(µ).

In other words,

gradF(µ)i =
1

2

X

j2N(i)

!ij

⇣
@

@µi
F �

@

@µj
F

⌘
(
µi

di
+

µj

dj
)

+ ↵

nX

i=1

@

@µi
F(µ).

Proof. Notice the fact that

L(µ) = T

0

BBB@

0
�sec(L(µ))

. . .
�max(L(µ))

1

CCCA
T
�1

,

where 0 < �sec(L(µ))  · · ·  �max(L(µ)) are eigenvalues of L(⇢) arranged in ascending
order, and T is its corresponding eigenvector matrix. Here the zero eigenvalue correspond
to the eigenvector 1. Thus

⇣
L(µ)† +

1

↵
11

T
⌘�1

= L(µ) + ↵11
T
.

Then

gradF(µ) =
⇣
L(µ)† +

1

↵
11

†

⌘�1

dµF(µ)

= L(µ)dµF(µ) + ↵11
T
dµF(µ),

which finishes the proof. ⇤

Appendix C. Detailed description of the experiments

We run experiments on the CIFAR-10 and CelebA (aligned, cropped, 64⇥ 64) datasets.

For the experiment measuring discriminator robustness to noise, or hyperparameters for
WGAN-GP is,

• DCGAN Architecture, with 3 convolutional layers, and no batch-normalization in
the discriminator.

• Adam optimizer, with learning rate 0.0003, and �1 = 0.5, and �2 = 0.9
• Batch size of 64, and noise vector of dimension 128.

For the WWGAN loss, we use the same hyperparameters as WGAN-GP, and for the
WWGAN, we set ↵ = 1.0 and � = 50.

For the noise model, we used RGB salt and pepper noise, which firs transforms the
3⇥N ⇥N into a 3N2 vector, and runs through each vector and provides a probability of
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changing any coordinate into 1.0 (the max pixel value) or 0.0 (once a change is decided,
the probability of choosing 0.0 or 1.0 is equal.

Then the discriminator is evaluated on 64 noisy and clean images. And we see that the
discriminator trained with WWGAN is more robust to noise.

We compare the WWGAN loss function with the WGAN-GP loss For both losses, we
use a DCGAN architecture, removing the batch-normalization layer in the discriminator.
We also train with the Adam optimizer with learning rate 1e� 4 and �1 = 0.9, �2 = 0.
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