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Abstract. We revisit the natural gradient method for learning in sta-
tistical manifolds. We consider the proximal formulation and obtain a
closed form approximation of the proximity term over an affine subspace
of functions in the Legendre dual formulation. We consider two impor-
tant types of statistical metrics, namely the Wasserstein and Fisher-Rao
metrics, and introduce numerical methods for high dimensional param-
eter spaces.
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1 Introduction

Learning algorithms usually proceed by minimizing a loss function that measures
the discrepancy between a data distribution and a model distribution. Given a
parametric model and a metric in probability space, the loss can be minimized
by the Riemannian gradient descent method, also known as the natural gradient
method. An important metric in this context is the Fisher-Rao information met-
ric [4,17], which induces the Fisher-Rao natural gradient [1]. Another important
metric is the Wasserstein metric [14,18], which induces the Wasserstein natural
gradient [7,8,11,13]. Natural gradient methods have numerous applications in
learning; see, e.g., [2,3,9,12,15,16].

In spite of having numerous theoretical advantages, applying natural gradient
methods is often challenging. In particular, machine learning models usually have
many parameters, making the direct computation of the parameter updates too
costly. Each update requires to compute the Jacobi matrix of the model and the
inverse of the metric tensor in parameter space. An alternative, implicit, way to
formulate the update is via a proximal operator. Recently [10] proposed proximal
methods as an approach to natural gradients and demonstrated their viability
in state of the art generative modeling. The idea is to compute the proximity
penalty in closed form over an approximation space. This results in a tractable
iterative regularization for the parameter updates.

We develop this idea to obtain a general natural proximal method, and pro-
vide explicit formulas for the Fisher-Rao and the Wasserstein metrics. These
serve three purposes: (i) The proximal operator and its approximation can en-
able efficient and effective expressions for the time discretized parameter updates
of the natural gradient flow. (ii) The proximal method, as an implicit method,
naturally regularizes the objective function, and can be used to optimize non-
smooth objective functions. (iii) The metric regularization is expressed in terms
of statistics, such as mean and variance, and can be estimated from samples.



2 Natural proximal gradient

We review the natural gradient flow in a statistical manifold with Wasserstein
and Fisher-Rao metrics, present the natural proximal operators, and introduce
a systematic approximation which is suitable for estimation from samples.

2.1 Natural gradients flows

Learning problems are often formulated as the minimization of a loss func-
tion, as minθPΘ F pθq, where Θ P Rd is the parameter of the hypothesis class,
and F : Θ Ñ R is the loss function. As the hypothesis class, we consider a
parametrized probability model ρ : Θ Ñ PpΩq, where Ω the sample space, which
is a discrete or continuous set on which the distributions are supported. The loss
is usually a divergence (sometimes distance) function between the empirical data
distribution ρ̂data and the model distribution ρθ.

To find a minimizer, the gradient flow approach is often considered. This flow
follows the steepest descent direction of the loss function with respect to a given
Riemannian metric. In general, this is defined by

9θptq “ ´Gpθptqq´1∇θF pθptqq, (1)

where Gpθq P Rdˆd is the matrix representation of the Riemannian metric tensor
(for our choice of coordinates), and ∇θ “ p

B
Bθ1
, . . . , B

Bθd
qJ is the standard (Eu-

clidean) gradient operator. In the context of probability distributions, the metric
Gpθq is pulled back from a natural metric structure on probability space. This
implies that for any choice of the parametrization, (1) defines the same flow of
probability distributions. Hence it is said to be parametrization invariant.

We will focus on two important statistical metrics on probability space: the
Wasserstein metric and the Fisher-Rao metric. These metrics induce the follow-
ing metric tensors in parameter space. We write p¨, ¨q for the Euclidean or L2

inner product on the sample space Ω (which might be continuous or discrete).

Definition 1 (Statistical metric tensor on parameter space). Consider
the probability space pPpΩq, gq with metric tensor g, and a smoothly parametrized
probability model ρθ with parameter θ P Θ. Then the pull-back G of g is given by

Gpθq “
´

∇θρθ, gpρθq∇θρθ

¯

.

(i) If gθ “ ´p∆ρθ q
´1, with ∆ρθ “ ∇ ¨ pρθ∇q being the weighted elliptic operator,

then Gpθq is the Wasserstein metric tensor, given by

GW pθqij “
´

∇θiρθ, p´∆ρθ q
´1∇θjρθ

¯

,

(ii) If gθ “
1
ρθ

, then Gpθq is the Fisher-Rao metric tensor, given by

GFRpθqij “
´

∇θiρθ,
1

ρθ
∇θjρθ

¯

.



Given a metric tensor on parameter space, the standard approach for numerical
computation of the gradient flow (1) is the forward Euler method, i.e.,

θk`1 “ θk ´ hGpθkq´1∇θF pθ
kq,

where h ą 0 is a step-size. This is known as the natural gradient descent
method [2]. In practice, we need to compute the matrix Gpθq and its inverse at
each parameter update, which is difficult in high dimensional parameter spaces.

2.2 Natural proximal operators

We next present another way to approximate the gradient flow, known as the
backward Euler or proximal operator method. The proximal operator refers to

θk`1 “ ProxhF pθ
kq “ arg min

θ
F pθq `

Dpθ, θkq

2h
, (2)

where D is a proximity term that penalizes the distance from the current point,
and h adjusts the strength. When h is infinity, the proximal operator returns
the global minimizer of F . The proximity term is given by the metric function:

Dpθ, θkq “ inf
θptq

!

ż 1

0

9θptqJGpθptqq 9θptqdt : θ0 “ θ, θ1 “ θk
)

“ inf
θptq

!

ż 1

0

pBtρθptq, gpρθptqqBtρθptqqdt : θ0 “ θ, θ1 “ θk
)

.

(3)

In rare cases, the proximal operator (2) can be written explicitly.
We shall approximate D in a way that allows for a more friendly computation

of the proximal operator. Consider the iterative proximal update

θk`1 “ arg min
θ

F pθq `
1

2h

´

ρθ ´ ρθk , gpρθ̃qpρθ ´ ρθkq
¯

, (4)

where θ̃ “ θ`θk

2 . Here the D term in (2) is replaced by a mid-point expression,
which is exact up to the order op}θ ´ θk}2q. This new proximal operator corre-
sponds to a numerical method known as the semi-backward Euler method. Both
(2) and (4) are time discretizations of (1) with first order accuracy. We shall
focus on (4), and derive a tractable approximation of the regularization term.

3 Affine space approximation of the metric

Consider the proximity term

D̃pθ, θkq “
´

ρθ ´ ρθk , gpρθ̃qpρθ ´ ρθkq
¯

. (5)

In the following we derive an explicit and computer friendly approximation. To
this end, we first consider

1

2
D̃pθ, θkq “ sup

Φ : ΩÑR
pΦ, ρθ ´ ρθkq ´

1

2

´

Φ, gpρθ̃q
:Φ

¯

, (6)



where the maximizer Φ “ gpρθ̃qpρθ ´ ρθkq recovers the previous formula. This
corresponds to a expressing (5) in terms of its Legendre dual between tangent
space and cotangent space in probability space; for a discussion see [6].

Now we restrict the optimization domain (i.e., the set of functions Φ : Ω Ñ R)
to an affine space of functions of the form

FΨ “
!

Φpxq “
n
ÿ

j“1

ξjψjpxq “ ξJΨpxq : ξ P Rn
)

,

where ξ “ pξjq
n
j“1 is a parameter vector and Ψ “ pψjq

n
j“1 collects a choice of

basis functions ψj : Ω Ñ R. This results in following optimization problems:

(i) For the Wasserstein metric, we have

1

2
D̃W
Ψ pθ, θ

kq “ sup
Φ“ξJΨ

EθrΦs ´ Eθk rΦs ´
1

2
Eθ̃r}∇Φ}

2s;

(ii) For the Fisher-Rao metric, we have

1

2
D̃FR
Ψ pθ, θkq “ sup

Φ“ξJΨ

EθrΦs ´ Eθk rΦs ´
1

2
Eθ̃

”

pΦ´ Eθ̃rΦsq
2
ı

.

These are quadratic semi-definite programs in ξ. In practice, if using small sample
estimates for the expectations, one can add a regularization ´λ}ξ}2, with a small
λ ą 0, to ensure strict definiteness and existence of a solution. We proceed to
solve these problems. We write Eθrψs “ Ex„ρθ rψpxqs and Bl “

B
Bxl

for the partial

derivative w.r.t. the lth sample space variable.1

Theorem 1 (Affine space approximation). Given a basis Ψ , the proximity
term D̃ within the affine function space FΨ “ tξJΨ : ξ P Rnu is given by

D̃Ψ pθ, θ
kq “ pEθrΨ s ´ Eθk rΨ sqJ

´

Ψ, gpρθq
:Ψ

¯:

pEθrΨ s ´ Eθk rΨ sq.

(i) For the Wasserstein metric, we have

D̃W
Ψ pθ, θ

kq “ pEθrΨ s ´ Eθk rΨ sqJ
´

CW pθ̃q
¯´1

pEθrΨ s ´ Eθk rΨ sq,

where CW pθ̃q “ Eθ̃r
ř

l

´

BlΨ
¯´

BlΨ
¯J

s.

(ii) For the Fisher-Rao metric, we have

D̃FR
Ψ pθ, θkq “ pEθrΨ s ´ Eθk rΨ sqJ

´

CFRpθ̃q
¯´1

pEθrΨ s ´ Eθk rΨ sq,

where CFRpθ̃q “ Eθ̃r
´

Ψpxq ´ Eθ̃rΨ s
¯´

Ψpxq ´ Eθ̃rΨ s
¯J

s.



ρθ ρθ1

EθrΨ s

Eθ1 rΨ s

Fig. 1. Illustration of the proximity term over an affine space. Intuitively, the metric
between two distributions is measured along a chosen set of statistics.

Remark 1. The matrix C has size nˆn, corresponding to the dimension of Ψ . For
the Fisher-Rao metric, it is the covariance of the basis functions Ψ w.r.t. ρθ̃. This
corresponds to the Fisher-Rao matrix when the basis is a sufficient statistics of
the model. See Fig. 1. Similar observations apply for the Wasserstein metric.

Remark 2. In the case of implicit generative models (used in GANs), where ρθ is
expressed as the push-forward measure of a latent variable z by a parametrized
family of functions gθ, we obtain

D̃pθ, θkq “ pEzrΨpgθpzqqs´EzrΨpgθkpzqqsqJEzrCpgθ̃pzqqs
´1pEzrΨpgθpzqqs´EzrΨpgθkpzqqsq,

where C is the corresponding term inside the expectation in Theorem 1.

Proof. (i) For the constrained Wasserstein metric, the gradient of Φ w.r.t. the
sample space variable x is ∇Φpxq “ p

řn
i“1 ξiBlψipxqql. The squared norm is then

}∇Φpxq}2 “
ÿ

l

p
ÿ

i

ξiBlψipxqq
2 “

ÿ

l

ÿ

i

ξiBlψipxq
ÿ

j

ξjBlψjpxq “ ξJCW pxqξ,

where CWij pxq “
ř

l BlψipxqBlψjpxq. Now we consider the distance

1

2
D̃W
Ψ pθ, θ

kq “ sup
Φ“ξJΨ

´

Φ, ρθ ´ ρθk
¯

´
1

2

´

p∇Φq2, ρθ̃
¯

“ sup
ξ
ξJpEθrΨ s ´ Eθk rΨ sq ´

1

2
ξJEθ̃rC

W sξ.

In turn, by first order optimality conditions, at the maximizer we have

ξ˚ “ pEθ̃rC
W sq´1pEθrΨ s ´ Eθk rΨ sq.

Thus D̃W
Ψ pθ, θ

kq “ pEθrΨ s ´ Eθk rΨ sqpEθ̃rC
W sq´1pEθrΨ s ´ Eθk rΨ sq.

1 If the sample space is discrete, we use the discrete differential operator. For an edge
weighted graphG “ pV,E, ωq, the gradient of Φ P R|V | is ∇Φ “ pωijpΦi´Φjqqpi,jqPE P
R|E|, and Eθr}∇Φ}2s “ 1

2

ř

iPV pipθq
ř

jPV ωijpΦi ´ Φjq
2. For details see [7].



(ii) For the Fisher-Rao metric, the term }Φpzq ´ Eθ̃rΦs}
2 equals

}ξJΨpzq ´ ξJEθ̃rΨ s}
2 “ ξJpΨpzq ´ Eθ̃rΨ sqpΨpzq ´ Eθ̃rΨ sq

Jξ “ ξJCFRpzqξ,

where CFRpzq “ pΨpzq ´ Eθ̃rΨ sqpΨpzq ´ Eθ̃rΨ sq
J. ˝

Example 1 (Order-1 approximation). For the metric approximation with the

space of linear functions, F1 “

!

Φpxq “ aJx` b : a P Rm, b P R
)

, we have:

(i)
D̃W

1 pθ, θ
kq “ pEθrxs ´ Eθk rxsqJpEθrxs ´ Eθk rxsq.

(ii)
D̃FR

1 pθ, θkq “ pEθrxs´Eθk rxsqJ
´

Eθ̃
”

px´Eθ̃xqpx´Eθ̃xq
J
ı¯´1

pEθrxs´Eθk rxsq.

Example 2 (Order-2 approximation). For the space of quadratic functions, F2 “
!

Φpxq “ 1
2x
JQx` aJx` b : Q P Rmˆm, a P Rm, b P R

)

, we have:

(i)

D̃W
2 pθ, θ

kq “

´

Eθ
”

x
xbx
2

ı

´Eθk
”

x
xbx
2

ı ¯J

Eθ̃
”

Im xJ
bIm

xbIm Imbxx
J

ı´1 ´

Eθ
”

x
xbx
2

ı

´Eθk
”

x
xbx
2

ı ¯

.

(ii)

D̃FR
2 pθ, θkq “

´

Eθ
”

x
xbx
2

ı

´Eθk
”

x
xbx
2

ı ¯J´

CFRpθ̃q
¯´1´

Eθ
”

x
xbx
2

ı

´Eθk
”

x
xbx
2

ı ¯

,

where b is the Kronecker product (e.g., xb x is an m2 ˆ 1 vector), and

CFR “ Eθ̃

„

´ ”

x
xbx
2

ı

´ Eθ̃
”

x
xbx
2

ı ¯´ ”

x
xbx
2

ı

´ Eθ̃
”

x
xbx
2

ı ¯J


.

4 Numerical examples

The optimization loop can be implemented as shown in Algorithm 1. Here the
proximal operator is computed by a short gradient iteration. In practice we
can replace the expectations by sample averages, Eθrf s « 1

N

řN
i“1 fpx

piqq, with

xpiq i.i.d. from ρθ. For the basis Ψ we can choose low order polynomials, as in
Examples 1 and 2, but even random functions worked well in our experiments.
The optimal choice will balance low dimension and relevant statistics for the
model under consideration. Orthogonality tends to be beneficial.

4.1 Maximum likelihood estimation for hierarchical models

We consider binary k-interaction models, which are exponential families ρθpxq “
exppθJApxqq{Zpθq, x P t0, 1um, with sufficient statistics Aλpxq “

ś

iPλp´1qxi ,
for λ Ď t1, . . . ,mu, |λ| ď k. We use Ψjpxq “ p´1qxj , j P t1, . . . ,mu, which are
sufficient statistics for the 1-interaction model (independence model). We draw
target distributions uniformly from the simplex and compute the MLEs. We
compare Euclidean, Fisher-Rao, Wasserstein, and proximals. For each problem
and method we run grid search over the step size α and proximal strength h,
which are kept fixed during optimization. The results are shown in Fig. 2.



Algorithm 1 Natural gradient with affine space proximal approximation.

Require: Loss F , basis of affine space Ψ , proximal step-size h, step-size α
for t “ 0 to max outer iterations do

Cpθq “ covθrΨ s
´1 (Fisher-Rao); Cpθq “ Eθr

ř

l

`

BlΨ
˘`

BlΨ
˘J
s
´1 (Wasserstein)

for t1 “ 0 to max inner iterations do
∇θ1Dpθ, θ1q Ð 1

2
∇θ1Eθ1 rΨJsCpθqpEθ1 rΨ s ´ EθrΨ sq

θ1 Ð θ1 ´ αp∇θ1F pθ1q ` 1
2h

∇Dθ1pθ, θ1qq
θ Ð θ1

4.2 Classification on CIFAR-10

Here we present an image classification task on the CIFAR-10 dataset [5] using
the Wasserstein proximal method. We use a simple CNN with two convolutional
layers followed by two fully-connected layers, with ReLU activations. In this
experiment F is the categorical cross-entropy loss and D “ D̃W

Ψ is the Order 1
or Order 2 Wasserstein approximation. The specific details of our experiments
can be found in Appendix A (online). Fig. 2 provides the results, where we give
curves for the validation error per epoch. As a baseline, we also give results when
performing SGD many times per epoch, but without regularization. We see that
the best result comes from the Order 2 Wasserstein distance approximation.
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Fig. 2. Left: MLE wall-clock computation times until the KL-divergence is within
10´9 of optimal, for 4 binary variables and Ψ the independence model, and typical
optimization curves. Right: The learning curves for the image classification task on
CIFAR-10. Each experiment was averaged over 5 runs. The bold lines represent the
average, and the envelopes are the minimum and maximum achieved.

5 Discussion

We studied sampling–friendly implementations of the natural gradient based
on the proximal operator. We approximate the proximity penalty by an affine
space restriction in the Legendre dual formulation. This gives rise to a lower

https://www.researchgate.net/publication/331162910_Affine_Natural_Proximal_Learning


dimensional metric, expressed in expectation parameters, which can be estimated
from samples. We cover both Fisher-Rao and Wasserstein metrics. Especially for
the Wasserstein proximal, our method offers significant savings in computation
time and provide improvement in validation error (in CIFAR-10 classification).
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Appendix for image classification on CIFAR-10

Here is the detailed version of our experiments, for image classification on CIFAR-
10. We use a simple CNN with two convolutional layers (each with 32 filters, with a
kernel size of 3 ˆ 3, a stride of 1, and zero padding), followed by two fully-connected
layers eaching having 512 nodes. For the optimizer, we use standard stochastic gradient
descent (SGD) with momentum value 0.95 and learning rate of 0.001.

For the Wasserstein distance, if we denote the (deterministic) output of our neural
network as fpx, θq (the log probability vector), the loss function as Lpy, fpx, θqq where
x is the image and y the label, and the dataset as D, then the Order 1 and Order 2
approximations for the Wasserstein distance on image classification on CIFAR-10 are:
Order 1 approximation:

D̃W
1 pθ, θ

k
q “ }Ex„Drfpx, θqs ´ Ex„Drfpx, θ

k
qs}

2, (7)

and the Order 2 approximation:

D̃W
2 pθ, θ

k
q “ }Ex„Drfpx, θqs ´ Ex„Drfpx, θ

k
qs}

2

` Tr

ˆ

Varx„Drfpx, θqs `Varx„Drfpx, θ
k
qs

´ 2
´

Varx„Drfpx, θ
k
qs

1{2Varx„Drfpx, θqsVarx„Drfpx, θ
k
qs

1{2
¯

˙

(8)

We present our experiments on 5 different settings: (1) Standard learning with no
regularization, (2) performing SGD 3 times per batch, (3) performing SGD 5 times
per batch, (4) using the Order 1 Wasserstein Proximal (with m “ 3 and h “ 2), (5)
and using the Order 2 Wasserstein proximal (with m “ 5 and h “ 1). From Fig. 2,
we see that using the Order 2 Wasserstein proximal provides the best results. We note
that performing SGD a number of times per batch is presented as a baseline, as we
experimentally found that they also provided improvements in validation error per
epoch (but they are not the best as we can see from Fig. 2).

Algorithm 2 Wasserstein Proximal Natural Gradient for Neural Networks

Require: Loss function L, neural network fpx, θq, Order 1 or 2 Wasserstein distance
approximation D, and data-label pairs tpx, yqu from dataset D.

Require: m number of gradient descent steps, and h strength of the proximal term
while stopping criteria not met do

Sample a mini-batch of image-label pairs tpxb, ybqu
B
b“1 P D

Approximately solve (by performing SGD m times)

θk`1
Ð argminθ

#

1

B

B
ÿ

b“1

Lpy, fpx, θqq `
1

2h
Dpθ, θkq

+
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