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Abstract.5
Conformal surface parameterization is useful in graphics, imaging and visualization, with applications6

to texture mapping, atlas construction, registration, remeshing and so on. With the increasing capability7
in scanning and storing data, dense 3D surface meshes are common nowadays. While meshes with higher8
resolution better resemble smooth surfaces, they pose computational difficulties for the existing parameterization9
algorithms. In this work, we propose a novel parallelizable algorithm for computing the global conformal10
parameterization of simply-connected surfaces via partial welding maps. A given simply-connected surface11
is first partitioned into smaller subdomains. The local conformal parameterizations of all subdomains are12
then computed in parallel. The boundaries of the parameterized subdomains are subsequently integrated13
consistently using a novel technique called partial welding, which is developed based on conformal welding14
theory. Finally, by solving the Laplace equation for each subdomain using the updated boundary conditions, we15
obtain a global conformal parameterization of the given surface, with bijectivity guaranteed by quasi-conformal16
theory. By including additional shape constraints, our method can be easily extended to achieve disk conformal17
parameterization for simply-connected open surfaces and spherical conformal parameterization for genus-018
closed surfaces. Experimental results are presented to demonstrate the effectiveness of our proposed algorithm.19
When compared to the state-of-the-art conformal parameterization methods, our method achieves a significant20
improvement in both computational time and accuracy.21
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1. Introduction. From mobile games to high-resolution movies, from small 3D printed24

desk toys to large aircraft engines, 3D geometric models are everywhere nowadays. With25

the advancement of computing technologies and scanning devices, 3D geometric data can be26

created or acquired easily. However, at the same time, the scale of the data grows rapidly. In27

many situations, it is necessary to handle dense geometric data with hundreds of thousands,28

or even millions of vertices.29

In geometry processing, a common representation of 3D objects is triangulated 3D surfaces.30

To simplify various tasks that are to be performed on the 3D surfaces, one possible way is to31

transform the 3D surfaces into a simpler 3D shape or a 2D shape. This process is known as32

surface parameterization. With the aid of surface parameterization, we can perform the tasks33

on the simpler domain and transform the results back to the original 3D surfaces instead of34

working on them directly. For instance, under surface parameterization, PDEs on complicated35
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Figure 1. An overview of our proposed parallelizable global conformal parameterization (PGCP) algorithm.
A simply-connected surface is first partitioned into small subdomains. The subdomains are then conformally
flattened onto the plane in parallel. The flattened subdomains are subsequently stitched seamlessly by a novel
partial welding technique along the common boundary arcs, thereby producing a global conformal parameterization
of the surface. Note that the partial welding step only involves the boundary points of the subdomains but not
their interior. The mesh structures of the subdomains are shown only for visualization purpose.

surfaces can be reduced to PDEs on the parameter domain, which are much easier to solve.36

Also, texture mapping on a 3D surface can be done by parameterizing it onto the 2D plane, in37

which textures can be easily designed. Among all surface parameterizations, one special type38

of parameterization is called conformal parameterization, which preserves angle and hence39

the local geometry of the surfaces. This is particularly important for applications such as40

texture mapping and remeshing, in which the angle structure plays an important role in the41

computation. To avoid creating computational burdens or introducing distortions, a fast and42

accurate method for computing conformal parameterization of surfaces is desired.43

In this work, we propose a novel parallelizable global conformal parameterization method44

(abbreviated as PGCP) for simply-connected surfaces. Unlike the existing methods, our method45

uses a divide and conquer approach and exploits the nature of conformal parameterization,46

making the computation highly parallelizable. Figure 1 gives an overview of our proposed47
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method. We begin with partitioning a given surface into smaller subdomains. Then, the48

local conformal parameterizations of the subdomains are computed in parallel. Note that the49

local parameterization results are not necessarily consistent along their boundaries. Motivated50

by the theory of conformal welding in complex analysis, we develop a method called partial51

welding to update the boundaries of the flattened subdomains for enforcing the consistency52

between them. Finally, we solve the Laplace equation with the updated boundary constraints53

to find conformal parameterizations of the subdomains such that all of them can be glued54

seamlessly, ultimately forming a global conformal parameterization of the given dense surface.55

The bijectivity of the parameterization is guaranteed by quasi-conformal theory.56

The rest of the paper is organized as follows. In Section 2, we review the related works in57

surface parameterization. In Section 3, we introduce the mathematical concepts involved in58

our work. In Section 4, we describe our proposed method for computing a global conformal59

parameterization of simply-connected surfaces via partial welding. Experimental results and60

applications are presented in Section 5 for demonstrating the effectiveness of our proposed61

method. We conclude our work and discuss possible future works in Section 6.62

2. Related works. Surface parameterization has been widely studied in geometry process-63

ing. For an overview of the subject, readers are referred to the surveys [1–3]. It is well-known64

that only developable surfaces can be isometrically flattened without any distortions in area and65

angle. For general surfaces, it is unavoidable to introduce distortions in area or angle (or both)66

under parameterization. This limitation leads to two major classes of surface parameterization67

algorithms, namely the area-preserving parameterizations and angle-preserving (conformal)68

parameterizations.69

Existing methods for area-preserving parameterizations include the locally authalic map [4],70

Lie advection [5], optimal mass transport (OMT) [6,7], density-equalizing map (DEM) [8,9]71

and stretch energy minimization (SEM) [10]. While the area elements can be preserved under72

area-preserving parameterizations, the angular distortion is uncontrolled. Since the angular73

distortion is related to the local geometry of the surfaces, it is important to minimize the74

angular distortion in many applications such as remeshing, texture mapping and cartography.75

In those cases, it is preferable to use conformal parameterization.76

Existing conformal parameterization methods for simply-connected open surfaces include77

the discrete natural conformal parameterization (DNCP) [4]/least-square conformal mapping78

(LSCM) [11], Yamabe flow [12], angle-based flattening (ABF) [13–15], circle patterns [16],79

spectral conformal mapping (SCP) [17], conformal equivalence of triangle meshes (CETM) [18],80

discrete Ricci flow [19–21], quasi-conformal compositions [22–25] and conformal energy min-81

imization (CEM) [26]. There are also some notable works on the spherical conformal pa-82

rameterization of genus-0 closed surfaces, including linearization of Laplace equation [27,28],83

Dirichlet energy minimization [29], folding-free global conformal mapping [30], FLASH [31]84

and north-south iterative scheme [32].85

Note that all the above-mentioned methods compute a global conformal parameterization86

of a given surface by handling the entire surface directly. In case the given surface mesh is87

dense, the computation may be expensive. Also, in case the geometry of the input mesh88

is complicated, performing a global computation may lead to inaccuracy. Our work aims89

to overcome these problems by decomposing the input surface mesh into smaller domains90
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and parameterizing them in parallel. The consistency between the domains is ensured by a91

novel technique called partial welding, thereby forming a global conformal parameterization92

efficiently.93

3. Mathematical background.94

3.1. Harmonic map and conformal map. Following [33,34], we introduce the following95

definitions of harmonic map and conformal map. Let D and Ω be simply-connected regions in96

R2.97

Definition 3.1 (Harmonic map). A map ϕ : D → Ω is said to be harmonic if it minimizes98

the Dirichlet energy99

(3.1) ED(ϕ) =
1

2

∫
D
|∇ϕ|2.100

Definition 3.2 (Conformal map). A map ϕ : D → Ω is said to be conformal if it satisfies101

(3.2) J
∂ϕ

∂x
=
∂ϕ

∂y
,102

where J is a rotation by π
2 in the tangent plane. If we write ϕ = (ϕx, ϕy), the above equation103

can be reformulated as the following equations, known as the Cauchy-Riemann equations:104

(3.3)

{
∂ϕx
∂x −

∂ϕy
∂y = 0,

∂ϕx
∂y +

∂ϕy
∂x = 0.

105

To achieve conformality, we could minimize the conformal energy106

(3.4) EC(ϕ) =
1

2

∫
D

[(
∂ϕx
∂x
− ∂ϕy

∂y

)2

+

(
∂ϕx
∂y

+
∂ϕy
∂x

)2
]
.107

As shown by Hutchinson [33], if we define the area A(ϕ) by108

(3.5) A(ϕ) =

∫
D

∥∥∥∥∂ϕ∂x × ∂ϕ

∂y

∥∥∥∥ ,109

then the conformal energy can be expressed in terms of the Dirichlet energy and area:110

(3.6) EC(ϕ) = ED(ϕ)−A(ϕ).111

Since the conformal energy is nonnegative, it follows that the Dirichlet energy is always112

bounded below by the area. In particular, the equality holds if and only if ϕ is conformal.113

Moreover, given the area term A(ϕ), minimizing the conformal energy is equivalent to114

minimizing the Dirichlet energy. Note that the area depends on how ϕ maps the boundary. In115

other words, given a “good” boundary condition, a conformal map can be obtained by simply116

finding the harmonic map under the given boundary condition.117
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Figure 2. An illustration of the closed welding problem. The entire boundaries of the two parts are glued
consistently.

3.2. Möbius transformation. A special type of conformal maps on the extended complex118

plane C are the Möbius transformations, also known as the linear fractional transformations:119

Definition 3.3 (Möbius transformation). A function f : C→ C is said to be Möbius trans-120

formation if it is of the form121

(3.7) f(z) =
az + b

cz + d
,122

where a, b, c, d are complex numbers with ab− bc 6= 0.123

Given two sets of distinct points {z1, z2, z3} and {w1, w2, w3}, there exists a unique Möbius124

transformation satisfying f(zi) = wi, i = 1, 2, 3. Therefore, Möbius transformations provides125

us with a simple way of fixing three points conformally.126

3.3. Conformal welding. Conformal welding, also known as sewing or simply welding, is127

a problem in complex analysis which concerns with gluing two surfaces in a conformal way so128

that they fit together consistently according to certain correspondence.129

Given a diffeomorphism f from a curve (e.g. the unit circle) to itself, we want to find two130

Jordan domains D,Ω ⊂ C and two conformal maps φ : D → Ω and φ∗ : D∗ → Ω∗ such that131

φ = φ∗ ◦ f on the curve [35]. Here, D∗ and Ω∗ are the exterior of D and Ω respectively. Since132

C ∼= S2, the two domains D,Ω can be regarded as two disk-like surfaces on S2. Intuitively,133

given a correspondence between the boundaries of the two surfaces, the problem of conformal134

welding is to find two conformal deformations such that the surfaces are stitched together135

seamlessly (see Figure 2). We refer this classical welding problem as a closed welding problem.136

For a general homeomorphism f , the closed welding problem may not have any solution.137

However, if f satisfies certain conditions, the problem is solvable. We introduce the concept of138

quasisymmetric function below:139

Definition 3.4 (Quasisymmetric function [36]). Let f be a continuous, strictly increasing140

function defined on an interval I of the x-axis. We call f k-quasisymmetric (or simply141
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Figure 3. An illustration of the opening map and the closing map. The top part shows the processes involved
in the opening map z 7→

√
z2 − 1, which ultimately map {0, 1} to {i, 0} or {−i, 0}, depending on the choice of

branching. The closing map z 7→
√
z2 + 1 reverses the processes such that ±i will be mapped back to 0.

quasisymetric) on I if there exists a positive constant k such that142

(3.8)
1

k
≤ f(x+ t)− f(x)

f(x)− f(x− t)
≤ k143

for all x, x− t, x+ t ∈ I with t > 0.144

One can show that the closed welding problem is solvable if f is a quasisymmetric function145

from the real axis to itself:146

Theorem 3.5 (Sewing theorem [36]). Let f be a quasisymmetric function on the real axis.147

Then the upper and lower half-planes can be mapped conformally onto disjoint Jordan domains148

D,Ω by two maps φ, φ∗, with φ(x) = φ∗(f(x)) for all x ∈ R.149

The theorem was first proven by Pfluger based on the existence of solutions to the Beltrami150

equation [37]. Another way to prove the result is to use some approximation techniques on the151

quasisymmetric function [36].152

3.4. Geodesic algorithm. A conformal mapping method called the zipper algorithm was153

proposed independently by Kühnau [38] and Marshall and Morrow [39] in the 1980s. In154

particular, Marshall and Rohde [40] proved the convergence of a variant of it called the geodesic155

algorithm. The geodesic algorithm computes a conformal map from a region in the complex156

plane to the upper half-plane H. Below, we briefly describe the geodesic algorithm.157

The key ingredients of the geodesic algorithm are two maps: the opening map z 7→
√
z2 − 1158

and the closing map z 7→
√
z2 + 1. Intuitively, they are operations analogous to opening and159

closing a slit, behaving like a zipper (see Figure 3). Suppose we have a simple closed region160

Ω, and a sequence of boundary points {z0, z1, . . . , zk} on ∂Ω. To initiate the process, define a161

map g1 : Ω→ C by162

(3.9) g1(z) =

√
z − z1
z − z0

,163
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Figure 4. In the geodesic algorithm, the first map g1 maps z0 to ∞ and z1 to 0. It initiates the process so
that we can apply the opening maps for the remaining data points.

assuming the branching (−1)1/2 = i. This maps Ω to the right half-plane. In particular, the164

line segment between z0 and z1 is mapped onto the imaginary axis, with z0 mapped to ∞ and165

z1 mapped to 0 (see Figure 4).166

Analogously, one can define a map g2 such that the line segment between g1(z1) = 0 and167

ξ2 := g1(z2) is mapped to the imaginary axis, while the remaining points are still in the right168

half-plane. By further repeating the above process, all the boundary points can be pushed169

onto the imaginary axis one by one. More explicitly, suppose the point zj has already been170

transformed to the position ξj after applying the opening maps g1, g2, . . . , gj−1, i.e.171

(3.10) ξj = gj−1 ◦ gj−2 ◦ · · · ◦ g1(zj).172

Consider a Möbius transformation173

(3.11) Lξj (z) :=

Re(ξj)
|ξj |2 z

1 +
Im(ξj)
|ξj |2 zi

.174

It can be easily checked that Lξj maps {0, ξj , ρ} to {0, 1,∞}, where ρ is a point on the imaginary175

axis at which the orthogonal circular arc from 0 to ξk extends to. Now, as Lξj (ξj) = 1, we176

can map the segment between Lξj (gj−1 ◦ gj−2 ◦ · · · ◦ g1(zj−1)) = 0 and Lξj (ξj) = 1 onto the177

imaginary axis as illustrated in Figure 3. Define gj as the composition of Lξj with the opening178

map f(z) =
√
z2 − 1:179

(3.12) gj(z) :=
√
Lξj (z)

2 − 1.180

Note that gj((gj−1 ◦ · · · ◦ g1(zj−1)) =
√

0− 1 = i (assuming the branching (−1)1/2 = i),181

gj(ξj) =
√
Lξj (ξj)

2 − 1 =
√

1− 1 = 0, and the entire region will remain in the right half-plane.182

Therefore, the requirements for gj are satisfied.183

After obtaining the maps g1, g2, . . . , gk such that gk ◦ gk−1 ◦ · · · ◦ g1 maps all boundary184

points {z0, z1, . . . , zk} onto the imaginary axis, define a final map185

(3.13) gk+1(z) =

(
z

1− z
gk◦gk−1◦···◦g1(z0)

)2

.186
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gk+1 maps the transformed region gk ◦ gk−1 ◦ · · · ◦ g1(Ω) onto the upper half-plane H. Since all187

the above maps are analytic and, in particular, a square and a square root map are applied in188

each step, the composition map (gk+1 ◦ gk ◦ · · · ◦ g1) : Ω→ H is conformal.189

3.5. Quasi-conformal map. Quasi-conformal map is an extension of conformal map in190

the sense that it allows for bounded conformal distortion. Intuitively, conformal maps map191

infinitesimal circles to infinitesimal circles , while quasi-conformal maps map infinitesimal circles192

to infinitesimal ellipses with bounded eccentricity. The formal definition of quasi-conformal193

map is given below.194

Definition 3.6 (Quasi-conformal map [41]). A map ϕ : D → Ω is said to be quasi-conformal195

if it satisfies the Beltrami equation196

(3.14)
∂ϕ

∂z̄
= µϕ(z)

∂ϕ

∂z
197

for some complex-valued function µϕ with ‖µϕ‖∞ < 1. µϕ is said to be the Beltrami coefficient198

of ϕ.199

The Beltrami coefficient µϕ captures the conformal distortion of ϕ. In particular, if µϕ = 0,200

then the Beltrami equation becomes the Cauchy-Riemann equations and hence ϕ is conformal.201

Also, the Jacobian Jϕ of ϕ is given by202

(3.15) Jϕ =

∣∣∣∣∂ϕ∂z
∣∣∣∣2 (1− |µϕ|2).203

Therefore, a map is folding-free if and only if its Beltrami coefficient is with sup norm less204

than 1.205

Moreover, one can correct the conformal distortion and non-bijectivity of a map by206

composing it with another map. If ϕ1 : C→ C and ϕ2 : C→ C are two maps with Beltrami207

coefficients µϕ1 and µϕ2 , then ϕ2 ◦ ϕ1 is a quasi-conformal map with Beltrami coefficient208

(3.16) µϕ2◦ϕ1(z) =
µϕ1(z) + ϕ1z

ϕ1z
µϕ2(ϕ1(z))

1 + ϕ1z
ϕ1z

µϕ1(z)µϕ2(ϕ1(z))
.209

In particular, if µϕ2 = µϕ−1
1

, then µϕ2◦ϕ1 = 0 and hence the composition map ϕ2◦ϕ1 is conformal210

and folding-free. This idea of quasi-conformal composition has been used in [24,25,31], and211

the details of the theory and computation of it can be found therein.212

4. Proposed method. Let S be a simply-connected surface in R3, with a triangle mesh213

representation (V,F) where V is the vertex set and F is the face set. Our goal is to compute214

a global conformal parameterization of S = (V,F) in an efficient and accurate way.215

4.1. Surface partition. The first step is to partition S into submeshes based on a prescribed216

set of edges Ẽ . More specifically, denote the edge set of S by E , and the set of boundary edges217

of S by Ebdy. Consider the set E = E \
(
Ẽ ∪ Ebdy

)
. We construct a graph G using E and find218

all connected components in G. Suppose there are K connected components in G, where each219

of them consists of a sub-face set Fi, i = 1, . . . ,K. By tracking all vertices that are contained220
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in Fi, we obtain a sub-vertex set Vi. In other words, we have obtained K simply-connected221

open submeshes S1 = (V1,F1),S2 = (V2,F2), . . . ,SK = (Vk,FK) that satisfy the following222

properties:223

(i) The union of the vertex sets of all submeshes is exactly V:224

(4.1)
K⋃
i=1

Vi = V.225

(ii) The union of the face sets of all submeshes is exactly F :226

(4.2)
K⋃
i=1

Fi = F .227

(iii) The intersection of any two different sub-vertex sets is the intersection of the boundary228

sets, which is either an empty set or a boundary segment:229

(4.3) Vi ∩ Vj = ∂Si ∩ ∂Sj for all i, j.230

(iv) The intersection of any two different sub-face sets is empty:231

(4.4) Fi ∩ Fj = ∅ for all i 6= j.232

4.2. Local conformal parameterization of submeshes. The next step is to compute a233

conformal parameterization of every Si. To find a conformal parameterization ϕi : Si → R2,234

the DNCP method [4] is used. In short, DNCP minimizes the Dirichlet energy ED(ϕ) and235

maximizes the area A(ϕ), based on the fact that the Dirichlet energy is bounded below by the236

area and conformality is attained when equality holds. We briefly describe the method below.237

Let Vi = {vi1 , vi2 , . . . , vini} be the vertices in Si, and ϕi : Si → R2 be a flattening238

map. Denote u = [u1,u2, . . . ,uni ]
t =

[
ϕi(vi1), ϕi(vi2), . . . , ϕi(vini )

]t
. The Dirichlet energy is239

discretized using the cotangent formula [34]:240

(4.5) ED(u) =
1

2

∑
(vip ,viq ) adjacent

(cotαpq + cotβpq)|up − uq|2 = utLcotanu,241

where αpq, βpq are the two angles opposite to the edge [vip , viq ] in Si, and Lcotan is a |Vi| × |Vi|242

sparse symmetric positive definite matrix also known as the cotangent Laplacian:243

(4.6) Lcotan
p,q =


1
2(cotαpq + cotβpq) if (vip , viq) are adjacent,
−
∑

r 6=p L
cotan
p,r if p = q,

0 otherwise.

244

The area is discretized using the boundary vertices of Si:245

(4.7) A(u) =
1

2

∑
[vip ,viq ]⊂∂Si

(xpyq − ypxq) =
(
xt yt

)
Marea

(
x
y

)
,246
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where uj = (xj , yj) for all j, x = [x1, x2, . . . , xni ]
t is the collection of all x-coordinates of u,247

x = [y1, y2, . . . , yni ]
t is the collection of all y-coordinates of u, and Marea is a 2|Vi| × 2|Vi|248

sparse symmetric matrix. More explicitly, if [vip , viq ] ⊂ ∂Si, we have249

(4.8) Marea
p,q+|V|i = Marea

q+|V|i,p = 1 and Marea
q,p+|V|i = Marea

p+|V|i,q = −1.250

DNCP minimizes the discrete conformal energy251

(4.9) EC(u) = ED(u)−A(u)252

subject to the prescribed positions of two boundary vertices that remove the freedom of rigid253

motion and scaling. It suffices to solve a 2|Vi| × 2|Vi| sparse linear system254

(4.10)

((
Lcotan 0

0 Lcotan

)
−Marea

)(
x
y

)
= 0255

subject to four boundary constraints (two in x and two in y for the two pinned boundary256

vertices). The resultant map ϕi satisfying ϕi(Vi) = u = [x,y] is the desired conformal257

parameterization of Si.258

DNCP is suitable for our framework since it is a free-boundary linear method. As discussed259

above, obtaining each ϕi only requires solving a 2|Vi| × 2|Vi| sparse matrix equation, which260

is highly efficient. Also, the free-boundary condition ensures that no additional conformal261

distortion will be introduced at the boundaries. This is particularly important in our subsequent262

welding step.263

It is noteworthy that the parameterization of each submesh is independent, and hence this264

step of computing local conformal parameterizations is highly parallelizable.265

4.3. Partial welding. Note that the local parameterizations we obtained via DNCP are266

not necessarily consistent along the boundaries. Therefore, we need a step for gluing the267

boundaries of them consistently. To preserve the conformality of the parameterization, the268

gluing step should be conformal. This problem of gluing subdomains is different from the closed269

welding problem introduced in Section 3. More explicitly, the closed welding problem considers270

gluing the entire boundaries of two domains, while in general only a portion of the boundaries271

of two neighboring subdomains in our case should be glued. In other words, the problem that272

we need to tackle is a partial welding problem that involves gluing two subdomains along only273

a pair of boundary arcs.274

Below, we first rigorously derive a theoretical construction for solving the partial welding275

problem. Then, we devise an efficient algorithm for solving it.276

4.3.1. Theoretical construction. We formulate the problem mathematically. Given two277

Jordan regions A,B ⊂ C, let γA ⊂ ∂A and γB ⊂ ∂B be some arcs of the boundaries of A and278

B respectively. Suppose we have a correspondence function f : γA → γB that relates points on279

γA and points on γB . The partial welding problem is to find two conformal maps ΦA : A→ A′280

and ΦB : B → B′, with A′ and B′ being disjoint, such that281

(4.11) ΦA(γA) = (ΦB ◦ f)(γA).282

Recall that the closed welding problem is solvable for quasisymmetric function on the real283

axis. For the partial welding problem, we make use of the following lemma.284
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Figure 5. Construction of Â and the mapping from it to the upper half plane.

Lemma 4.1 (Lehto and Virtanen [36]). Every function f which is k-quasisymmetric on an285

interval I = [a, b] can be extended to a k̃-quasisymmetric function on the entire x-axis, where286

the constant k̃ is less than a number depending only on k.287

To make use of the above lemma, we further suppose that Â is a larger domain that288

contains A while sharing the boundary segment γA, i.e. A ⊂ Â and γA ⊂ ∂Â (see Figure 5289

left). Denote the endpoints of γA by xA and yA. Similarly, let B̂ be a domain such that B ⊂ B̂290

and γB ⊂ ∂B̂, and denote the endpoints of γB by xB and yB.291

By the Riemann mapping theorem, Â and B̂ can be mapped to the upper and lower292

half plane respectively by some conformal maps ψA and ψB. Now, we fix xA and yA at the293

endpoints of some interval I on the x-axis. For simplicity, we take I = [−1, 1] and fix xA and294

yA at −1 and 1 respectively (see Figure 5 right). Similarly, we fix xB at −1 and yB at 1. The295

homeomorphic extensions to the closures define a map g : I → I by g = ψB ◦ f ◦ ψ−1A . In296

other words, we have f = ψ−1B ◦ g ◦ ψA by construction. Assuming that g is a quasisymmetric297

function from I to itself, we get a quasisymmetric extension ĝ : R→ R of g using Lemma 4.1.298

Then, we apply Theorem 3.5 with this ĝ, which gives us two conformal maps φA : Â→ Â′299

and φB : B̂ → B̂′ with Â′ and B̂′ being disjoint, such that the boundary values satisfy300

φA(x) = φB(ĝ(x)) for all x ∈ R. In particular, φA(x) = φB(g(x)) for all x ∈ I. Figure 6 shows301

an illustration of the construction.302

Since the composition of conformal maps is conformal, we have constructed two conformal303

maps ΦA = φA ◦ ψA and ΦB = φB ◦ ψB, which respectively map A to some A′ ⊂ Â′ and B to304

some B′ ⊂ B̂′. Note that f = ψ−1B ◦ g ◦ ψA when we restrict f on γA. Also,305

(4.12) (φB ◦ ψB) ◦ f = φB ◦ ψB ◦ ψ−1B ◦ g ◦ ψA = φB ◦ g ◦ ψA = φA ◦ ψA,306

where the last equality follows from Theorem 3.5. This solves the partial welding problem.307

4.3.2. Algorithmic construction. The theoretical construction above provides us with308

a continuous approach for solving the partial welding problem. We proceed to develop309

an algorithm to solve the problem over discrete boundary data points. Suppose we have310

two sequences of boundary points ∂A = {a0, . . . , ak, . . . , am} and ∂B = {b0, . . . , bk, . . . , bn},311

where aj corresponds to bj (i.e. aj should be glued with bj) for j = 0, . . . , k. This gives312

a correspondence function f : γA ⊂ ∂A → γB ⊂ ∂B, where γA = {a0, . . . , ak} and γB =313
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Figure 6. The construction of conformal maps for solving the partial welding problem.

{b0, . . . , bk}, with f(aj) = bj for j = 0, . . . , k. Our goal is to construct the two maps ΦA,ΦB314

for gluing the two boundary curves conformally along the corresponding points. As discussed315

in the theoretical construction, a good way for the construction of ΦA,ΦB is to make use316

of two maps ψA, ψB that map A,B onto the upper and lower half-planes respectively. We317

propose an algorithm that makes use of a variant of the geodesic algorithm [40].318

We begin with designing an algorithm that maps a sequence of boundary points to a319

standard shape. The algorithm is based on a key observation that the geodesic algorithm can be320

paused halfway. Suppose we have a sequence of boundary points {z0, . . . , zk, . . . , zn}. Consider321

applying the first k maps g1, g2, . . . , gk in the geodesic algorithm on {z0, . . . , zk, . . . , zn} with322

branching (−1)1/2 = i. The composition gk ◦ · · · ◦ g1 maps the first k + 1 points {z0, . . . , zk}323

onto the imaginary axis, with zk mapped to 0, while the remaining boundary data points324

{zk+1, . . . , zn} are all mapped onto the right half-plane. Note that each of g2, . . . , gk is a325

composition of a Möbius transformation, a square map and a square root map. Therefore,326

they are all conformal.327

Now, instead of the final map (3.13) in the geodesic algorithm, we apply the following328

Möbius transformation:329

(4.13) gk+1(z) =
z

1− z
gk◦gk−1◦···◦g1(z0)

.330

It is easy to check that gk+1(gk ◦ · · · ◦ g1(z0)) = ∞ and g(0) = 0. In other words, the new331

composition gk+1 ◦ gk ◦ · · · g1 maps the first data point z0 to ∞ and the (k + 1)-th data point332

zk to 0. Note that the first k + 1 data points are on the upper half of the imaginary axis, and333

the remaining boundary data points {zk+1, . . . , zn} are on the right half-plane. We call such334

a half-opened (i.e. half-unzipped) shape an intermediate form. Note that by using another335

branching (−1)1/2 = −i throughout the maps above, we have an alternative way to transform336

a sequence of boundary data points onto the right half-plane, with the first k + 1 data points337

mapped onto the lower half of the imaginary axis. Algorithm 1 summarizes the proposed338

intermediate form transformation procedure.339
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Algorithm 1: Intermediate form transformation

Input: A sequence of boundary points {z0, . . . , zk, . . . , zn} and a choice of branching.
Output: A sequence of transformed boundary points {Z0, . . . , Zk, . . . , Zn}, where

Z0, . . . , Zk are on the imaginary axis.

1 Set g1(z) =
√

z−z1
z−z0 with the choice of branching;

2 for j = 2, . . . , k do
3 Compute ξj = (gj−1 ◦ · · · ◦ g1)(zj);

4 Set gj(z) =
√
Lξj (z)

2 − 1 with the choice of branching, where Lξj (z) :=

Re(ξj)

|ξj |2
z

1+
Im(ξj)

|ξj |2
zi

;

5 Set gk+1(z) = z
1− z

gk◦gk−1◦···◦g1(z0)
;

6 Compute Pl = (gk+1 ◦ · · · ◦ g1)(zl) for l = 0, . . . , k, . . . , n;

Coming back to the problem of aligning the two sequences of boundary points ∂A =340

{a0, . . . , ak, . . . , am} and ∂B = {b0, . . . , bk, . . . , bn}, we define auxiliary data points am+1 =341

bn+1 = 0, am+2 = bn+2 = ∞ to keep track of the transformation. Now, using Algo-342

rithm 1 with two different choices of branching (−1)1/2 = i and (−1)1/2 = −i, we map343

{a0, . . . , ak, . . . , am, am+1, am+2} and {b0, . . . , bk, . . . , bn, bn+1, bn+2} onto the right half-plane.344

Denote the transformed data points by {A0, . . . , Ak, . . . , Am, Am+1, Am+2} and {B0, . . . , Bk, . . .345

, Bn, Bn+1, Bn+2}. Note that {A0, . . . , Ak} are all on the upper half of the imaginary axis with346

A0 =∞ and Ak = 0, while {B0, . . . , Bk} are all on the lower half of the imaginary axis with347

B0 = ∞ and Bk = 0. The next step is to align Aj with Bj for all j = 0, . . . , k conformally,348

such that the two boundary curves ∂A and ∂B are welded based on the partial correspondence349

between γA and γB.350

Suppose α = ai and β = bi are two corresponding points originally on γA and γB under351

the intermediate form transformations, where a > 0 > b. A Möbius transformation that takes352

{α, 0, β} to {i, 0,−i} is explicitly given by353

(4.14) Tαβ (z) =
z

−2ab
a−b −

a+b
a−bzi

.354

This transformation provides us with a simple way to align each pair of corresponding points.355

Note that Ak = 0 = Bk is automatically aligned, and so we start with aligning Ak−1 and Bk−1.356

Applying the Möbius transformation T
Ak−1

Bk−1
onto the two sets of boundary data points, we map357

Ak−1 to i and Bk−1 to −i. Then, we compose the map with the closing map z 7→
√
z2 + 1 so358

that i and −i are both mapped to 0. More explicitly, we define359

(4.15) hk−1(z) :=
√
T
Ak−1

Bk−1
(z)2 + 1360

and apply it to all data points. The branching for the computation of each point is determined361

using the previous choice in the intermediate form transformation. Then, we repeat the above362
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process for j = k − 2, . . . , 1 by defining363

(4.16) hj(z) :=
√
T
αj
βj

(z)2 + 1,364

where365

(4.17) αj = (hj+1 ◦ · · · ◦ hk−1)(Aj)366

and367

(4.18) βj = (hj+1 ◦ · · · ◦ hk−1)(Bj).368

Now, all pairs of corresponding points (A1, B1), . . . , (Ak, Bk) have been consistently aligned369

under the composition map h1 ◦ h2 ◦ · · · ◦ hk−1. The first pair of corresponding points370

A0 =∞ = B0 are also automatically aligned. Note that each of hk−1, · · · , h1 is a composition371

of a Möbius transformation, a square map and a square root map. Hence, they are all372

conformal.373

Then, we define a closing map h0 similar to (3.13) in the geodesic algorithm:374

(4.19) h0(z) :=

(
z

1− z
(h1◦···◦hk)(∞)

)2

.375

Note that h0 maps all points onto the upper half plane H, with 0 mapped to 0 and (h1 ◦ · · · ◦376

hk−1)(∞) (i.e. (h1 ◦ · · · ◦ hk−1)(A0)) mapped to ∞. We obtain the transformed data points377

(4.20) ãl = (h0 ◦ · · · ◦ hk−1)(Al)378

for l = 0, . . . ,m+ 2 with branching (−1)1/2 = i, and379

(4.21) b̃l = (h0 ◦ · · · ◦ hk−1)(Bl)380

for l = 0, . . . , n+ 2 with branching (−1)1/2 = −i.381

Considering the entire composition h0◦h1◦· · ·hk−1◦gk+1◦· · · g1 starting from the beginning382

to here, it can be observed that g2, · · · , gk+1, hk−1, · · · , h2 are all conformal, while g2 is a383

square root map and h0 is a square map. Therefore, the entire composition is conformal. In384

other words, we have conformally transformed the two sequences of boundary data points385

{a0, . . . , ak, . . . , am} and {b0, . . . , bk, . . . , bn} into {ã0, . . . , ãk, . . . , ãm} and {b̃0, . . . , b̃k, . . . , b̃n}386

such that the partial correspondence between them is satisfied, i.e. ãj = b̃j for j = 0, . . . , k.387

Finally, we perform a normalization by tracking the transformation of the auxiliary data388

points am+1 = bn+1 = 0, am+2 = bn+2 =∞. More explicitly, we apply a Möbius transformation389

T that takes {ãm+1, b̃n+1,
1
2(ãm+2 + ãn+2)} to {−1, 1,∞} on all the transformed points. This390

regularizes the transformation and prevents the boundary data points from being mapped391

far away. Note that Möbius transformations are conformal and hence the conformality of the392

composition map is preserved. This completes the process of gluing two boundary curves based393

on a partial correspondence between them. Algorithm 2 summarizes the proposed partial394

welding algorithm.395
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Algorithm 2: Partial welding

Input: Two sequences of boundary data points {a0, . . . , ak, . . . , am} and
{b0, . . . , bk, . . . , bn}, where aj should be glued with bj for j = 0, . . . , k.

Output: Conformally transformed data points {ã0, . . . , ãk, . . . , ãm} and
{b̃0, . . . , b̃k, . . . , b̃n} such that ãj = b̃j for j = 0, . . . , k.

1 Define auxiliary points am+1 = bn+1 = 0, am+2 = bn+2 =∞;

2 Apply Algorithm 1 on {a0, . . . , ak, . . . , am, am+1, am+2} with branching (−1)1/2 = i and
obtain the transformed boundary data points {A0, . . . , Ak, . . . , Am, Am+1, Am+2};

3 Apply Algorithm 1 on {b0, . . . , bk, . . . , bn, bn+1, bn+2} with branching (−1)1/2 = −i and
obtain the transformed boundary data points {B0, . . . , Bk, . . . , Bn, Bn+1, Bn+2};

4 Set hk−1(z) :=
√
T
Ak−1

Bk−1
(z)2 + 1;

5 for j = k − 2, . . . , 1 do

6 Compute αj = (hj+1 ◦ · · · ◦ hk−1)(Aj) with branching (−1)1/2 = i;

7 Compute βj = (hj+1 ◦ · · · ◦ hk−1)(Bj) with branching (−1)1/2 = −i;
8 Set hj(z) :=

√
T
αj
βj

(z)2 + 1;

9 Set h0(z) :=

(
z

1− z
(h1◦···◦hk−1)(∞)

)2

;

10 Compute ãl = (h0 ◦ · · · ◦ hk−1)(Al) for l = 0, . . . ,m+ 2, with branching (−1)1/2 = i;

11 Compute b̃l = (h0 ◦ · · · ◦ hk−1)(Bl) for l = 0, . . . , n+ 2, with branching (−1)1/2 = −i;
12 Apply a Möbius transformation T that takes {ãm+1, b̃n+1,

1
2(ãm+2 + ãn+2)} to

{−1, 1,∞} on all the transformed points;

An illustration of the partial welding algorithm is given in Figure 7. As a remark, to396

weld two subdomains obtained by the local parameterization step partially, we only need to397

extract their boundary points on C and apply Algorithm 2. The interior points of the two398

flattened subdomains are not needed. With the updated coordinates of the boundary points of399

the subdomains, we can then easily obtain the desired global conformal parameterization by400

solving a number of sparse linear systems. The details will be described in Section 4.5.401

4.4. Enforcing additional constraints. Before moving on to the step of obtaining the final402

global parameterization, it is possible for us to include an optional step here and enforce403

additional constraints for achieving disk conformal parameterization and spherical conformal404

parameterization.405

4.4.1. Constraints for disk conformal parameterization. If the input simply-connected406

surface S is open, one can further restrict the target parameter domain to be the unit disk407

in the proposed method, thereby achieving a disk conformal parameterization. This is done408

by adding an extra step of applying the geodesic algorithm introduced in Section 3.4 to the409

global boundary ∂S. Note that the points on ∂S are distributed into various subdomains.410

Therefore, we first extract the coordinates of those boundary points from the partial welding411

result. Once the mapping that takes those points to the unit circle is determined, we apply412
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Figure 7. An illustration of partial welding. Suppose we are given a pyramid-like surface with three triangular
faces (colored in blue, red, yellow). Each of them have been flattened onto the plane. In order to weld the
boundaries of the three triangles, we apply Algorithm 2 twice. First, we glue the common boundaries of the
blue and red triangles via partial welding. Then, we glue the common boundaries of the yellow triangle and the
other two triangles via partial welding. Note that the interior points and the mesh structure of each triangle are
plotted for a better visualization only. In the actual computation of partial welding, only the boundary points are
involved.

the map for transforming the boundary coordinates of every flattened subdomain onto the413

unit disk. This results in boundary coordinates for the subdomains that yield a disk conformal414

parameterization upon solving the Laplace equation (details to be described in Section 4.5).415

4.4.2. Constraints for spherical conformal parameterization. For genus-0 closed surfaces,416

one common choice of the parameter domain is the unit sphere S2. In case the input surface S417

is a genus-0 closed surface, we can modify our framework so that the partial welding procedure418

is repeated until two large components are left. Then, for the last welding, we use a closed419

welding instead of a partial welding to glue the entire boundaries of the two large components.420

As all boundaries are glued, the resulting boundary coordinates of the subdomains on the421

extended complex plane yield a spherical conformal parameterization upon solving the Laplace422

equation (details to be described in Section 4.5).423

4.5. Obtaining the global conformal parameterization. After obtaining the new bound-424

ary constraints that satisfy the consistency condition, we can compute the global conformal425

parameterization of the input surface S by finding a harmonic map ϕ̃i : Si → R2 for each426

submesh with the new boundary constraints. More explicitly, it suffices to solve the Laplace427

equation428

(4.22) ∆ϕ̃i = 0429

subject to the new boundary constraints. Again, note that the computations for the K430

submeshes are independent and so this step is parallelizable. Because of the consistency431

between the boundaries of all subdomains, the new local parameterization results can be glued432
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seamlessly, thereby forming a global conformal parameterization. One can further ensure the433

bijectivity of each subdomain using the idea of quasi-conformal composition (see Section 3.5).434

More specifically, we compute the Beltrami coefficient of the inverse mapping ϕ̃−1i (denoted by435

µϕ̃−1
i

). We can then determine whether ϕ̃i is folding-free by checking if ‖µϕ̃−1
i
‖∞ > 1 (or close436

to 1 in the discrete case). If so, we compose ϕ̃i with another mapping that is associated with437

the Beltrami coefficient µϕ̃−1
i

to fix the fold-overs as guaranteed by quasi-conformal theory.438

With this additional step, we can ensure the bijectivity of the resulting global conformal439

parameterization.440

Note that the resulting global parameterization lies in the extended complex plane. In441

case S is a genus-0 closed surface, we add a stereographic projection step to convert it to a442

spherical parameterization. Algorithm 3 summarizes the proposed method.443

Algorithm 3: Parallelizable global conformal parameterization of simply-connected
surfaces (PGCP)

Input: A simply-connected surface mesh S = (V,F), a set of edges Ẽ for the partition.
Output: A global conformal parameterization ϕ : S → R2 or S2.

1 Partition the mesh into K submeshes based on Ẽ ;
2 for i = 1, . . . ,K do
3 Compute a conformal parameterization of Si = (Vi,Fi) using DNCP. Only the

boundary coordinates of the parameterization are kept;

4 Perform partial welding as described in Algorithm 2 to update the boundary coordinates;
5 (Optional) To achieve disk conformal parameterization, further apply the geodesic

algorithm [40]. To achieve spherical conformal parameterization, perform conformal
welding on the last two components obtained by partial welding;

6 for i = 1, . . . ,K do
7 Solve the Laplace equation ∆ϕ̃i = 0 with the new boundary constraints for each Si;
8 Compute the Beltrami coefficient µϕ̃−1

i
to check whether ϕ̃i is folding-free. If not, fix

the fold-overs in ϕ̃i using quasi-conformal composition;

9 The solutions ϕ̃i for all Si together form a global conformal parameterization ϕ. For
spherical conformal parameterization, further apply the stenographic projection to map
the result onto S2;

As a remark, the novel combination of local parameterization and partial welding in444

our proposed method significantly improves the computational efficiency of global conformal445

parameterization. For a direct solver of global conformal parameterization, a computation in446

at least O(|V|2) is needed (as a 2|V| × 2|V| linear system is involved). By contrast, one can447

see that the interior parts of the submeshes are not used in the partial welding step in our448

method. Therefore, the heaviest computation involved in our proposed method only takes449

O(|B|2), where B is the collection of boundary points of the subdomains. The computation450

of the local parameterizations at the beginning and the harmonic maps at the end of our451

proposed method can both be parallelized, so that each computation runs in O(|Vi|2).452
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Figure 8. A gallery of simply-connected surface meshes used in our experiments. Our PGCP method
is capable of handling a wide range of simply-connected surfaces with different geometry, mesh quality and
resolution.

5. Experiments. Our proposed PGCP method is implemented in MATLAB, with the453

Parallel Computing Toolbox utilized for achieving parallelization. The sparse linear systems454

are solved using the backslash operator in MATLAB. All experiments are performed on a PC455

with Intel i7-6700K quad-core CPU and 16 GB RAM. To evaluate the performance of our456

proposed method, we adapt various simply-connected surface meshes from multiple free 3D457

model repositories [46–49] (see Figure 8). As for the distortion measure, we define the angular458

distortion of an angle [vi, vj , vk] (in degree) under the conformal parameterization ϕ by459

(5.1) d([vi, vj , vk]) = ∠[ϕ(vi), ϕ(vj), ϕ(vk)]− ∠[vi, vj , vk].460
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Figure 9. Free-boundary conformal parameterizations of simply-connected open surfaces obtained by our
proposed PGCP method, rendered with normal map shader.

Surface # vertices
SCP [17] CETM [18] PGCP

Time (s) mean(|d|) Time (s) mean(|d|) Time (s) mean(|d|)
Sophie 21K 1.1 0.2 1.2 0.2 0.6 0.2

Niccolò da
Uzzano

25K 1.3 0.6 Failed 0.7 0.6

Mask 32K 1.6 0.2 7.3 0.2 0.9 0.2
Max Planck 50K 2.6 0.5 5.5 0.5 1.5 0.5

Bunny 85K 4.4 0.5 18.8 0.5 2.0 0.5
Julius 220K 14.2 0.1 19.5 0.1 6.6 0.1

Buddha 240K 13.7 0.6 49.0 0.6 9.2 0.6
Face 1M 85.2 < 0.1 98.1 < 0.1 47.6 < 0.1

Table 1
The performance of spectral conformal parameterization (SCP) [17], conformal equivalence of triangle

meshes (CETM) [18] and PGCP for free-boundary conformal parameterization of simply-connected open surfaces.

5.1. Free-boundary conformal parameterization of simply-connected open surfaces.461

We first consider computing free-boundary global conformal parameterization of simply-462

connected open surfaces using our proposed PGCP method (see Figure 9 for examples). To463

assess the performance of our method, we compare it with the spectral conformal parameteri-464

zation (SCP) [17] and conformal equivalence of triangle meshes (CETM) [18] in terms of the465

computation time and the angular distortion (see Table 1). The MATLAB version of SCP is466
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implemented by the authors, and the MATLAB version of CETM can be found at [50]. The467

experimental results show that our proposed method is significantly faster than both SCP and468

CETM by over 40% and 70% respectively on average, while maintaining comparable accuracy469

in terms of the average angular distortion. This demonstrates the effectiveness of our method470

for free-boundary global conformal parameterization.471

5.2. Disk conformal parameterization of simply-connected open surfaces. Besides free-472

boundary global conformal parameterization, our proposed PGCP method can also achieve disk473

conformal parameterization of simply-connected open surfaces (see Figure 10 for examples).474

To evaluate the performance of our method, we compare it with the state-of-the-art linear disk475

conformal map (LDM) method [25] and the conformal energy minimization (CEM) method [26]476

(see Table 2). The MATLAB version of LDM can be found at [51], and the MATLAB version477

of CEM can be found at [52]. It can be observed that our method is significantly faster than478

LDM and CEM by over 50% and 30% on average respectively. Also, our method achieves479

comparable or smaller angular distortion when compared to the two other methods. This480

shows that our method is advantageous for disk conformal parameterization.481

5.3. Spherical conformal parameterization of simply-connected closed surfaces. We482

then consider computing spherical conformal parameterization of genus-0 closed surfaces using483

our proposed PGCP method (see Figure 11 for examples). To evaluate the performance, we484

compare our proposed method with the state-of-the-art folding-free global conformal mapping485

(FFGCM) algorithm [30] and the FLASH algorithm [31] (see Table 3). The MATLAB version486

of FFGCM is kindly provided by the authors, and the MATLAB version of FLASH can be487

found at [53]. Because of the “divide-and-conquer” nature of our method, our method is488

capable of producing spherical conformal parameterizations with a smaller angular distortion489

when compared to the two state-of-the-art algorithms. In particular, the FLASH algorithm490

involves puncturing a triangle from the input surface and flattening the punctured surface onto491

a big triangular domain. This step unavoidably creates squeezed regions and produces certain492

angular distortions. While the distortions are alleviated in the subsequent step using quasi-493

conformal composition, the step again involves a domain where most vertices are squeezed at494

the interior, which leads to some distortions. By contrast, our proposed PGCP method flattens495

each submesh naturally, with the shape of the submesh boundary taken into consideration.496

This effectively reduces the angular distortions, thereby producing a spherical conformal497

parameterization with a better accuracy. Moreover, because of the ability of exploiting498

parallelism, our method achieves a significant reduction in computational time by over 90%499

on average when compared to FFGCM. When compared to FLASH, our method achieves500

comparable efficiency for moderate meshes and a notable reduction in computational time501

by around 25% for dense meshes. This shows the advantages of our method for spherical502

conformal parameterization.503

5.4. Applications. The above experiments demonstrate the improvement of our proposed504

PGCP method over the state-of-the-art conformal parameterization algorithms. In this section,505

we discuss the applications of it.506

5.4.1. Texture mapping. One application of our proposed PGCP method is texture507

mapping. After conformally flattening a surface onto the plane using our method, we can508
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Figure 10. Disk conformal parameterizations of simply-connected open surfaces obtained by our proposed
PGCP method, rendered with normal map shader.

Surface # vertices
LDM [25] CEM [26] PGCP

Time (s) mean(|d|) Time (s) mean(|d|) Time (s) mean(|d|)
Ogre 20K 1.1 1.5 0.3 2.6 0.5 1.5

Niccolò da
Uzzano

25K 1.6 0.8 1.4 1.3 0.8 0.8

Brain 48K 2.9 1.6 2.9 1.5 1.3 1.5
Gargoyle 50K 3.1 1.9 2.8 2.1 1.4 1.9

Hand 53K 3.4 1.2 3.4 1.2 1.4 1.2
Octopus 150K 15.4 7.2 10.4 24.0 8.9 5.6
Buddha 240K 22.4 0.7 25.1 0.7 11.4 0.7
Nefertiti 1M 87.9 2.9 83.2 4.2 52.7 2.9

Table 2
The performance of linear disk conformal map (LDM) [25], conformal energy minimization (CEM) [26]

and PGCP for disk conformal parameterization of simply-connected open surfaces.

design a texture on the parameter domain. Since there is a 1-1 correspondence between the509

input surface and the parameter domain, we can then use the inverse mapping to map the510

texture back onto the surface, thereby obtaining a surface with the desired texture on it.511

Several examples are shown in Figure 12. It is noteworthy that our method is conformal512
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Figure 11. Spherical conformal parameterizations of genus-0 closed surfaces obtained by our proposed PGCP
method, rendered with normal map shader.

Surface # vertices
FFGCM [30] FLASH [31] PGCP

Time (s) mean(d) Time (s) mean(d) Time (s) mean(d)
Horse 20K 12.1 11.0 0.4 3.0 0.4 2.7

Bulldog 50K 22.0 1.0 0.9 1.1 1.0 1.0
Chinese Lion 50K 29.3 1.3 1.1 1.3 1.1 1.3

Duck 100K 100.4 1.1 2.2 0.4 2.4 0.3
David 130K 46.6 0.2 3.5 0.2 3.4 0.2

Octopus 150K 112.3 37.2 10.1 6.9 7.1 2.6
Lion Vase 210K 222.7 14.4 4.5 0.8 4.7 0.7

Asian Dragon 1M Failed 64.4 1.3 48.5 0.9
Table 3

The performance of folding-free global conformal mapping (FFGCM) [30], FLASH [31] and PGCP for
spherical conformal parameterization of genus-0 closed surfaces.

and hence the local geometry of the texture pattern is well preserved. For instance, the513

checkerboard texture shown in Figure 12 can maintain its orthogonality on the Ogre surface.514
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Figure 12. Texture mapping via our proposed PGCP method. Left: the input mesh. Middle: the pa-
rameterization achieved by PGCP rendered with normal map shader, overlaid with a texture (colored checker-
board/hair/stone). Right: the texture mapping result.

5.4.2. Surface remeshing. Our proposed PGCP method can also be applied to surface515

remeshing, which aims at improving the mesh quality of a given surface. By conformally516

parameterizing the surface and constructing a regular mesh structure on the parameter517

domain, we can use the inverse mapping to map the mesh structure back onto the surface,518
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Figure 13. Surface remeshing via our proposed PGCP method. Left: the input surface. Right: the remeshed
surface with improved mesh quality.

thereby remeshing the surface (see Figure 13 for example). It is noteworthy that since the519

parameterization is conformal, the regularity of the mesh structure defined on the parameter520

domain is well-preserved on the surface.521

5.4.3. Solving PDEs on surfaces. Another notable application of our proposed PGCP522

method is solving PDEs on surfaces [42]. While solving PDEs on a general surface is difficult,523

solving them on a standard parameter domain such as the unit sphere or the unit disk524

is relatively easy. Figure 14 shows an example of patterns formed on the genus-0 David525

surface by solving the time-dependent Ginzburg-Landau equation on the spherical conformal526

parameterization obtained by our proposed PGCP method. The PDE on the sphere is solved527

using Chebfun [54]. The example demonstrates the use of our method for PDE-based surface528

decoration.529

5.4.4. Other applications. Some other possible applications of conformal parameteriza-530

tions include surface registration [31], medical visualization [24] and surface morphing [26].531

As our proposed PGCP method is advantageous over the state-of-the-art algorithms in both532

the computational time and the conformal distortion, these tasks can be done with higher533

efficiency and accuracy using our method.534

6. Conclusion. In this work, we have proposed a novel parallelizable global conformal535

parameterization method called PGCP for simply-connected surfaces. Given a triangle mesh,536

we partition it into submeshes and conformally flatten each of them using DNCP. As the local537

parameterization results do not yield a consistent global parameterization, we extract their538

boundary points to integrate them using a novel technique called partial welding. Using the539

modified boundaries for all submeshes, harmonic maps can be computed to yield a global540

conformal parameterization, with bijectivity guaranteed by quasi-conformal theory. Additional541

steps can be included to produce disk conformal parameterizations for surfaces with boundary,542
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Figure 14. Patterns formed on the genus-0 David surface by solving the Ginzburg-Landau equation on the
spherical conformal parameterization. The leftmost is the initialization, and the rightmost is the final result.

and spherical conformal parameterizations for genus-0 closed surfaces.543

Most parts of our proposed method, such as the initial local conformal parameterization544

step and the last harmonic mapping step, can be computed independently in a distributed545

manner. The only global computation involved in our algorithm takes merely boundary546

data points of the submeshes, which are much fewer than the vertices of the entire mesh.547

Experimental results have demonstrated the significant improvement in efficiency and accuracy548

achieved by our proposed method when compared to the state-of-the-art approaches for549

free-boundary conformal parameterization, disk conformal parameterization and spherical550

conformal parameterization.551

For future work, we plan to explore the possibility of extending our method for quasi-552

conformal parameterizations and mappings [43–45]. More specifically, note that the partial553

welding step in our proposed method is conformal, and the quasi-conformal dilatation of a554

map is preserved under the composition with conformal maps. Therefore, it should be possible555

for us to compute quasi-conformal parameterizations and mappings for dense meshes by a556

combination of local quasi-conformal maps of submeshes and partial welding. Another possible557

future work is the extension of our method for point clouds. As the partial welding approach558

uses only the boundary data points of the flattened submeshes but not the mesh structure of559

them, it should also be applicable for subdomains of a point cloud. Combining the partial560

welding approach with some existing conformal parameterization methods for disk-type point561

clouds will then yield a parallelizable global conformal parameterization method for point562

clouds.563
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