
DP-LSSGD: A Stochastic Optimization Method to Lift the Utility
in Privacy-Preserving ERM

Bao Wang
Department of Mathematics

University of California, Los Angeles
wangbaonj@gmail.com

Quanquan Gu
Department of Computer Science

University of California, Los Angeles
qgu@cs.ucla.edu

March Boedihardjo
Department of Mathematics

University of California, Los Angeles
march@math.ucla.edu

Farzin Barekat
Department of Mathematics

University of California, Los Angeles
fbarekat@math.ucla.edu

Stanley J. Osher
Department of Mathematics

University of California, Los Angeles
sjo@math.ucla.edu

June 28, 2019

Abstract

Machine learning (ML) models trained by differentially private stochastic gradient descent (DP-
SGD) has much lower utility than the non-private ones. To mitigate this degradation, we propose a
DP Laplacian smoothing SGD (DP-LSSGD) for privacy-preserving ML. At the core of DP-LSSGD is
the Laplace smoothing operator, which smooths out the Gaussian noise vector used in the Gaussian
mechanism. Under the same amount of noise used in the Gaussian mechanism, DP-LSSGD attains the
same differential privacy guarantee, but a strictly better utility guarantee, excluding an intrinsic term
which is usually dominated by the other terms, for convex optimization than DP-SGD by a factor which
is much less than one. In practice, DP-LSSGD makes training both convex and nonconvex ML models
more efficient and enables the trained models to generalize better. For ResNet20, under the same strong
differential privacy guarantee, DP-LSSGD can lift the testing accuracy of the trained private model by
more than 8% compared with DP-SGD. The proposed algorithm is simple to implement and the extra
computational complexity and memory overhead compared with DP-SGD are negligible. DP-LSSGD is
applicable to train a large variety of ML models, including deep neural nets. The code is available at
https://github.com/BaoWangMath/DP-LSSGD.

1 Introduction
Many released machine learning (ML) models are trained on sensitive data that are often crowdsourced or
contains personal private information [42, 14, 25]. With a large number of parameters, deep neural nets
(DNNs) can memorize the sensitive training data, and it is possible to recover the sensitive data and break the
privacy by attacking the released models [33]. For example, Fredrikson et al. demonstrated a model-inversion
attack can recover training images from a facial recognition system [15]. Protecting the privacy of sensitive
training data is one of the most critical tasks in ML.

Differential privacy (DP) [11, 10] is a theoretically rigorous tool for designing algorithms on aggregated
databases with a privacy guarantee. The basic idea is to add a certain amount of noise to randomize the
output of a given algorithm such that the attackers cannot distinguish outputs of any two adjacent input
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datasets that differ in only one entry. Two types of noises are typically injected to the algorithm for DP
guarantee: Laplace noise and Gaussian noise [11].

For repeated applications of additive noise based mechanisms, many tools are invented to analyze the
DP guarantee for the model obtained at the final stage. These include the basic composition theorem
[9, 8], the strong composition theorem and their refinements [13, 23], the momentum-accountant [1], etc.
Beyond the original definition of DP, there are also many other ways to define the privacy, e.g., local DP [7],
concentrated/zero-concentrated DP [12, 4], and Rényi-DP (RDP) [26].

Differentially private stochastic gradient descent (DP-SGD) reduces the utility of the trained model
severely compared with SGD. As shown in Fig. 1, the training and validation loss of the logistic regression
increase when the DP guarantee becomes stronger. The ResNet20 trained by DP-SGD has much lower testing
accuracy than non-private ResNet20 on the CIFAR10. A natural question is:

Can we improve DP-SGD, with negligible extra computational complexity and memory cost, such that it
can be used to train general ML models with better utility?

We answer the above question affirmatively by proposing differentially private Laplacian smoothing SGD
(DP-LSSGD). It gives both theoretical and empirical advantages compared with DP-SGD.

Figure 1: Training (left) and validation (middle) loss of the logistic regression on the MNIST trained by
DP-SGD with (ε, δ = 2× 10−5)-DP guarantee. (right): testing accuracy of ResNet20 on the CIFAR10 trained
by DP-SGD with (ε, δ = 10−5)-DP guarantee.

1.1 Our Contributions
The main contributions of our work are highlighted as follows:
• We propose DP-LSSGD and prove its privacy and utility guarantees for convex/nonconvex optimizations.

We prove that under the same privacy budget, DP-LSSGD achieves better utility, excluding an intrinsic
term that usually dominated by the other terms, than DP-SGD by a factor that is much less than one
for convex optimization.

• We perform a large number of experiments on logistic regression, SVM, and ResNet to verify the utility
improvement by using DP-LSSGD. These results show that DP-LSSGD remarkably reduces training
and validation loss and improves the generalization of the trained private models.

In Table 1, we compare the privacy and utility guarantees of DP-LSSGD and DP-SGD. For the utility,
the notation Õ(·) hides the same constant and log factors for each bound. The constants d and n denote the
dimension of the model’s parameters and the number of training points, respectively. The numbers γ and β
are positive constants that are strictly less than one, and D0, Dσ, G are positive constants, which will be
defined later.

1.2 Additional Related Work
There is a massive volume of research over the past decade on designing algorithms for privacy-preserving
ML. Objective perturbation, output perturbation, and gradient perturbation are the three major approaches
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Table 1: Utility and Privacy Guarantees.

Algorithm DP Guarantee Assumption Utility Measurement Reference

DP-SGD (ε, δ) convex Õ
(√

(D0 +G2)d/(εn)
)

optimality gap [3]

DP-SGD (ε, δ) nonconvex Õ
(√

d/(εn)
)

`2-norm of gradient [43]

DP-LSSGD (ε, δ) convex Õ
(√

γ(Dσ +G2)d/(εn)
)

optimality gap This Work
DP-LSSGD (ε, δ) nonconvex Õ

(√
βd/(εn)

) 1 `2-norm of gradient This Work
1 Measured in the norm induced by A−1

σ , we will discuss this in detail in Section 4.

to perform empirical risk minimization (ERM) with DP guarantee. We discuss some related works in this
part. There are many more exciting works that cannot be discussed here.

Chaudhuri et al. considered both output and objective perturbations for privacy-preserving ERM, and
gave theoretical guarantees for both privacy and utility for logistic regression and SVM [5, 6]. Song et al.
numerically studied the effects of learning rate and batch size in DP-ERM [34]. Wang et al. studied stability,
learnability and other properties of DP-ERM [39]. Lee et al. proposed an adaptive per-iteration privacy
budget in concentrated DP gradient descent [24]. Variance reduction techniques, e.g., SVRG, have also been
introduced to DP-ERM [37]. The utility bound of DP-SGD has also been analyzed for both convex and
nonconvex smooth objectives [3, 43]. Jayaraman et al. analyzed the excess empirical risk of DP-ERM under
the distributed setting [21]. Besides ERM, many other ML models have been made differentially private.
These include: clustering [35, 41, 2], matrix completion [20], online learning [19], sparse learning [36, 38], and
topic modeling [30]. Gilbert et al. exploited the ill-conditionedness of inverse problems to design algorithms
to release differentially private measurements of the physical system [17].

Shokri et al. proposed distributed selective SGD to train deep neural nets (DNNs) with a DP guarantee
in a distributed system; they achieved quite a successful trade-off between privacy and utility [32]. Abadi et
al. considered applying DP-SGD to train DNNs in a centralized setting. They clipped the gradient to bound
the sensitivity and invented the momentum accountant to get better privacy loss estimation [1]. Papernot et
al. proposed Private Aggregation of Teacher Ensembles/PATE based on the semi-supervised transfer learning
to train DNNs and to protect the privacy of the private data [28]. Recently Papernot et al. introduced new
noisy aggregation mechanisms for teacher ensembles that enable a tighter theoretical DP guarantee. The
modified PATE is scalable to the large dataset and applicable to more diversified ML tasks [29]. Geyer et
al. considered general ML with a DP guarantee under federated settings [16]. Rahman et al. numerically
studied the vulnerability and privacy-utility trade-off of DNNs trained with a DP guarantee to adversarial
attacks [31].

1.3 Notation
We use boldface upper-case letters A, B to denote matrices and boldface lower-case letters x, y to denote
vectors. For vectors x and y and positive definite matrix A, we use ‖x‖2 and ‖x‖A to denote the `2-norm
and the induced norm by A, respectively; 〈x,y〉 denotes the inner product of x and y; and λi(A) denotes
the i-th largest eigenvalue of A. We denote the set of numbers from 1 to n by [n].

1.4 Organization
This paper is organized in the following way: In Section 2, we introduce the DP-LSSGD algorithm, which
merely injects an appropriate Gaussian noise to guarantee the privacy of LSSGD. In Section 3, we analyze the
privacy and utility guarantees of DP-LSSGD for both convex and nonconvex optimizations. We numerically
verify the efficiency of DP-LSSGD in Section 4. We conclude this work and point out some future directions
in Section 5.
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Algorithm 1 DP-LSSGD
Input: fi(w) is G-Lipschitz for i = 1, 2, · · · , n.
w0: initial guess of w, (ε, δ): the privacy budget, η: the step size, T : the total number of iterations.
Output: (ε, δ)-differentially private classifier wpriv.
for k = 0, 1, · · · , T − 1 do

wk+1 = wk − ηA−1
σ

(
∇fik(wk) + n

)
, where n ∼ N (0, ν2I) and ν is defined in Theorem 1.

return wT

2 Problem Setup and Algorithm
2.1 Laplacian Smoothing Stochastic Gradient Descent (LSSGD)
Consider the following finite-sum optimization

min
w

F (w) := 1
n

n∑
i=1

fi(w), (1)

where fi(w) .= f(w,xi, yi) is the loss of a given ML model on the training data {xi, yi}. This finite-sum
optimization problem is the mathematical formulation for training many ML models that are mentioned
above. The LSSGD [27] for solving this finite-sum optimization is given by

wk+1 = wk − ηA−1
σ ∇fik(wk), (2)

where η is the learning rate, and ik is a random sample from [n]. Let Aσ = I − σL where I ∈ Rd×d and
L ∈ Rd×d are the identity and the discrete one-dimensional Laplacian matrix, respectively. Therefore,

Aσ :=


1 + 2σ −σ 0 . . . 0 −σ
−σ 1 + 2σ −σ . . . 0 0
0 −σ 1 + 2σ . . . 0 0
. . . . . . . . . . . . . . . . . .
−σ 0 0 . . . −σ 1 + 2σ

 (3)

for σ ≥ 0 being a constant. When σ = 0, LSSGD reduces to SGD.
This Laplacian smoothing can help to avoid spurious minima, reduce the variance of SGD on-the-fly, and

lead to better generalization in training many ML models including DNNs. Computationally, we use the fast
Fourier transform (FFT) to perform gradient smoothing in the following way

A−1
σ v = ifft

(
fft(v)

1− σ · fft(d)

)
,

where v is any stochastic gradient vector and d = [−2, 1, 0, · · · , 0, 1]T .

2.2 DP-LSSGD
We propose the following DP-LSSGD algorithm to resolve the finite-sum optimization in Eq. (1)

wk+1 = wk − ηA−1
σ

(
∇fik(wk) + n

)
, (4)

where ∇fik denotes the gradient of the total loss function F evaluated from the database {xik , yik} and n is
the injected Gaussian noise. In this scheme, we first add the noise n to the stochastic gradient vector ∇fik(wk),
and then apply the operator A−1

σ to smooth the noisy stochastic gradient on-the-fly. We assume that each
component function fi in Eq. (1) is G-Lipschitz. The DP-LSSGD algorithm for finite-sum optimization is
summarized in Algorithm 1.

4



3 Main Theory
In this section, we present the privacy and utility guarantees for DP-LSSGD. The technical proofs are provided
in the appendix.

Definition 1 ((ε, δ)-DP). ([11]) A randomized mechanism M : SN → R satisfies (ε, δ)-differential privacy
if for any two adjacent data sets S, S′ ∈ SN differing by one element, and any output subset O ⊆ R, it holds
that

P[M(S) ∈ O] ≤ eε · P[M(S′) ∈ O] + δ.

Theorem 1 (Privacy Guarantee). Suppose that each component function fi is G-Lipschitz. Given the total
number of iterations T , for any δ > 0 and privacy budget ε2 ≤ 20T log(1/δ)G2/n2, DP-LSSGD, with injected
Gaussian noise N (0, ν2) for each coordinate, satisfies (ε, δ)-differential privacy with ν2 = 8TαG2/(n2ε), where
α = 2 log(1/δ)/ε+ 1.

Remark 1. It is straightforward to show that the noise in Theorem 1 is in fact also tight to guarantee
the (ε, δ)-differential privacy for DP-SGD, since the same amount of Gaussian noise guarantees the same
differential privacy for both DP-SGD and DP-LSSGD.

For convex ERM, DP-LSSGD guarantees the following utility bound in terms of the gap between the
ergodic average of the points along the DP-LSSGD path and the optimal solution w∗.

Theorem 2 (Utility Guarantee for convex optimization). Suppose F is convex and each component function
fi is G-Lipschitz. Given any ε2 ≤ 20T log(1/δ)G2/n2 and δ > 0, if we choose ηk = 1/

√
T and T =

(Dσ + G2)n2ε2/
(
24dG2 log(1/δ)

)
, where Dσ = ‖w0 − w∗‖2

Aσ
and w∗ is the global minimizer of F , the

DP-LSSGD output w̃ =
∑T−1
k=0 ηk/

(∑T−1
i=0 ηi

)
wk satisfies the following utility

E
(
F (w̃)− F (w∗)

)
≤

2G
√

6γ(Dσ +G2)d log(1/δ)
nε

,

where γ = 1/d
∑d
i=1 1/[1 + 2σ − 2σ cos(2πi/d)].

Proposition 1. In Theorem 2, γ = 1+αd
(1−αd)

√
4σ+1 , where α = 2σ+1−

√
4σ+1

2σ .

Remark 2. Compared with the extra utility bound of DP-SGD O
(
G
√
G2d log(1/δ)

(nε)

)
, DP-LSSGD has a strictly

better extra utility bound O
(
G
√
γG2d log(1/δ)

nε

)
by a factor of √γ, except for the term O

(
G
√
γDσd log(1/δ)

nε

)
.

In practice, for both logistic regression and SVM, O
(
G
√
γDσd log(1/δ)

nε

)
is dominated by O

(
G
√
γG2d log(1/δ)

nε

)
,

and DP-LSSGD improves the utility of both models.

For nonconvex ERM, DP-LSSGD has the following utility bound measured in gradient norm.

Theorem 3 (Utility Guarantee for nonconvex optimization). Suppose that F is nonconvex and each component
function fi is G-Lipschitz and has L-Lipschitz continuous gradient. Given any ε2 ≤ 20T log(1/δ)G2/n2 and δ >
0, if we choose η = 1/

√
T and T = (DF + Lν2)n2ε2/

(
12dLG2 log(1/δ)

)
, where DF = F (w0)− F (w∗) with

w∗ being the global minimum of F , then the DP-LSSGD output w̃ =
∑T−1
k=0 wk/T satisfies the following

utility

E‖∇F (w̃)‖2
A−1
σ
≤ 4

G
√

6βdL(2DF + LG2) log(1/δ)
nε

,

where β = 1/d
∑d
i=1 1/[1 + 2σ − 2σ cos(2πi/d)]2.

Proposition 2. In Theorem 3, β = 2α2d+1−ξα2d+2ξdαd−2α+ξ
σ2ξ3(1−αd)2 , where α = 2σ+1−

√
4σ+1

2σ and ξ = −
√

1+4σ
σ .
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The number β is also strictly between 0 and and 1. It is worth noting that if we use the `2-norm instead
of the induced norm, we have the following utility guarantee

E‖∇F (w̃)‖2
2 ≤

E‖∇F (w̃)‖2
A−1
σ

λmin(A−1
σ )

≤ (1 + 4σ)E‖∇F (w̃)‖2
A−1
σ
≤ 4ζ

G
√

6dL(2DF + LG2) log(1/δ)
nε

where ζ =
√

1
d

∑d
i=1

(1+4σ)2

(1+2σ−2σ cos(2πi/d))2 > 1. In the `2-norm, DP-LSSGD has a bigger utility upper bound
than DP-SGD (set σ = 0 in ζ). However, this does not mean that DP-LSSGD has worse performance. To see
this point, let us consider the following simple nonconvex function

f(x, y) =
{
x2

4 + y2, for x2

4 + y2 ≤ 1
sin
(
π
2

(
x2

4 + y2
))

, for x2

4 + y2 > 1
(5)

For two points a1 = (2, 0) and a2 = (1,
√

3
2 ), the distance to the local minima a∗ = (0, 0) are 2 and

√
7

2 , while
‖∇f(a1)‖2 = 1 and ‖∇f(a2)‖2 =

√
13
2 . So a2 is closer to the local minima a∗ than a1 while its gradient has

a larger `2-norm. This example shows ‖∇F‖2 is not the optimal measure in comparing the utility bound for
nonconvex optimization. We will further verify this in Section 4.

4 Numerical Results
In this section, we verify the efficiency of the proposed DP-LSSGD in training multi-class logistic regression,
SVM, and ResNet20. We perform ResNet20 experiments on the CIFAR10 dataset with standard data
augmentation [18], logistic regression and SVM experiments on the benchmark MNIST classification. Based
on the range of gradient values of each model, we use the formula v← v

max (1,‖v‖2/C) [1] to clip the gradient
`2-norms of logistic regression and ResNet20 to 3 and clip the SVM’s gradient `2-norm to 1. These gradient
clippings guarantee the Lipschitz condition for the objective functions. For all experiments, we train both
logistic regression and SVM with (ε, 2× 10−5)-DP guarantee, and ResNet20 with (ε, 10−5)-DP guarantee.
We regard the DP-SGD as the benchmark.

4.1 Multi-class Logistic Regression and SVM
For MNIST classification, we ran 50 epochs of DP-LSSGD with learning rate scheduled as 1

t with t being
the index of the iteration to train the `2-regularized multi-class logistic regression and SVM (the objective
function of both models are strongly convex), using an `2 penalty with regularization coefficient λ = 1e− 4.
We split the training data into 50K/10K for cross-validation. The models with best validation accuracy are
used for testing. The batch size is set to 128.

First, we show that DP-LSSGD converges faster than DP-SGD and makes the training and validation
loss much smaller than DP-SGD. We plot the evolution of training and validation loss over iterations for
logistic regression (Fig. 2) and SVM (Fig. 3) with DP guarantee. Figures 2 and 3 show that the training loss
curve of DP-SGD (σ = 0) is much higher and more oscillatory (due to the log-scale in y-axis) than that of
DP-LSSGD (σ = 1, 3). The validation loss of both logistic regression and SVM trained by both DP-SGD
and DP-LSSGD decrease as iteration goes. The validation loss of the model trained by DP-LSSGD decays
faster and has a much smaller loss value than that of the model trained by DP-SGD. For both training and
validation, DP-LSSGD with σ = 3 gives better results than σ = 1.

Second, consider the validation accuracy of the models trained by DP-SGD and DP-LSSGD. Figure 4
depicts the evolution of the validation accuracy of the trained logistic regression and SVM by DP-SGD and
DP-LSSGD. We plot validation accuracy after every training epoch. It shows that DP-LSSGD is almost
always better than DP-SGD in the sense that DP-LSSGD gives better validation accuracy. Different σ in
DP-LSSGD give different level of improvement. For these experiments, larger σ is usually better than the
smaller one.

Third, consider the testing accuracy of logistic regression and SVM trained in different scenarios. The
corresponding testing accuracy are listed in Tables. 2, and 3. All the numbers reported in the above tables

6



(a) (b)

(c) (d)

Figure 2: Training and validation losses of the multi-class logistic regression model trained by SGD with
different noise injection. (a) and (b): training and validation curves with (0.5, 2× 10−5)-DP guarantee; (c)
and (d): training and validation curves with (0.25, 2× 10−5)-DP guarantee.

and the tables below are the results averaged over three independent experiments. These results reveal
that the multi-class logistic regression model is remarkably more accurate than SVM for various levels of
DP-guarantee. Both logistic regression and SVM trained by DP-LSSGD with σ = 1, 2, 3 are more accurate
than that trained by DP-SGD over different levels of DP-guarantee.

7



(a) (b)

(c) (d)

Figure 3: Training and validation losses of the SVM trained by SGD with different noise injection. (a) and
(b): training and validation curves with (0.5, 2× 10−5)-DP guarantee; (c) and (d): training and validation
curves with (0.25, 2× 10−5)-DP guarantee.

4.1.1 The Choice of σ

Table 5 lists the testing accuracy (averaged over three runs) of both private logistic regression and SVM
trained by DP-LSSGD with different σ. It shows that accuracy improvement is stable to σ. As σ increases,
the testing accuracy increases initially and then decays. In practice, DP-LSSGD is as fast as DP-SGD, so for
a given objective function we might try a few different σ to find the optimal one.
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Table 2: Testing accuracy of multi-class logistic regression (λ = 1e − 4) trained by DP-LSSGD with
(ε, δ = 2× 10−5)-DP guarantee and smoothing parameter σ. Unit: %.

ε 0.50 0.45 0.40 0.35 0.30 0.25 0.20
σ = 0 81.59 81.52 80.07 79.30 78.71 77.80 76.02
σ = 1 83.64 83.70 82.91 82.33 82.25 79.53 78.01
σ = 2 84.41 83.45 81.88 83.06 81.39 79.03 78.86
σ = 3 84.14 83.99 82.17 82.08 81.74 80.90 80.21

Table 3: Testing accuracy of SVM (λ = 1e− 4) trained by DP-LSSGD with (ε, δ = 2× 10−5)-DP guarantee
and smoothing parameter σ. Unit: %.

ε 0.50 0.45 0.40 0.35 0.30 0.25 0.20
σ = 0 78.28 77.41 76.07 74.09 72.98 72.47 70.25
σ = 1 80.53 79.53 77.77 77.09 75.37 75.89 72.94
σ = 2 81.72 79.69 79.59 77.99 77.09 76.19 73.94
σ = 3 80.57 80.11 78.85 77.44 76.92 75.97 73.97

Table 4: Testing accuracy of the ResNet20 trained by DP-LSSGD with different (ε, δ = 10−5)-DP
guarantee and smoothing parameter σ. Unit: %.

ε 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
σ = 0 70.08 67.41 65.19 61.13 56.27 51.41 37.92 25.12
σ = 1 72.20 71.25 68.42 65.32 62.70 58.32 45.05 31.35
σ = 2 72.06 70.66 68.97 65.59 61.30 58.62 46.28 32.11
σ = 3 73.61 70.06 68.33 66.96 60.77 57.37 45.14 32.07

Table 5: Testing accuracy of different models trained by DP-LSSGD with different σ. Unit: %.
σ 0 2 4 6 8 10 12 15

Logistic Regression (0.5, 2 × 10−5)-DP 81.59 84.41 84.17 84.15 85.20 83.71 83.63 83.26
Logistic Regression (0.3, 2 × 10−5)-DP 78.71 81.39 80.97 82.75 82.02 81.01 80.94 80.89

SVM (0.5, 2 × 10−5)-DP 78.28 81.72 80.97 81.11 81.67 81.35 80.80 80.56
SVM (0.3, 2 × 10−5)-DP 72.98 77.09 77.18 77.02 77.54 77.01 76.05 75.82
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(a) (b)

(c) (d)

Figure 4: Epoch v.s. validation accuracy. (a): multi-class logistic regression with (0.5, 2× 10−5)-DP; (b):
multi-class logistic regression with (0.25, 2× 10−5)-DP; (c): SVM with (0.5, 2× 10−5)-DP; (d): SVM with
(0.25, 2× 10−5)-DP.

4.2 Deep Learning
We run 100 epochs of DP-LSSGD with batch size 128 to train ResNet20 on the CIFAR10. To justify our
theoretical results, we apply DP-LSSGD without momentum, and no weight decay is used during the training.
It is known that Nesterov momentum and weight decay, i.e., the `2 regularization, are helpful to accelerate
the convergence and improve the generalization of the trained model. In our future work, we will integrate
these techniques into DP-LSSGD. We split the training data into 45K/5K for crosss validation. During
training, we decay the learning rate by a factor of 10 at the 40th and 80th epoch, respectively. Figure 5
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shows the evolution of epoch v.s. training (Fig. 5(a)) and validation losses (Fig. 5(b)) of ResNet20 trained by
DP-LSSGD with different Laplacian smoothing parameters σ = 0, 1, 2, 3, and with (1.5, 10−5)-DP guarantee.
We conclude from these two plots that: (i) learning rate decay is still very helpful for DP-LSSGD in training
DNNs which is well-known in SGD, as we see that there is a sharp training and validation loss decay at the
40th epoch; (ii) the Laplacian smoothing can reduce both the training and validation losses significantly.

We plot the evolution of epoch v.s. validation accuracy in Fig. 5 (c) which is generally consistent with the
evolution of epoch v.s. validation loss. In Fig. 5 (d) we plot the testing accuracy of the trained model by
DP-LSSGD with different Laplacian smoothing parameters σ and different ε with fixed δ = 10−5, where the
corresponding values of the testing accuracy are listed in Table 4. DP-LSSGD can improve testing accuracy
up to ∼ 8% when the strong DP is guaranteed. The accuracy improvement is much more significant than
that of convex optimization scenario.

DP-LSSGD is a complement to the privacy mechanisms proposed in [1] and [29]. In future work, we will
integrate DP-LSSGD into the algorithms proposed in [1] and [29] to further boost private model’s utility.

4.2.1 Is Gradient Norm the Right Metric for Measuring Utility?

In Section 3 we gave a simple nonconvex function and showed that a point having a smaller gradient `2-norm
does not indicate it is closer to the local minima. Now, we will show experimentally that for ResNet20, a
smaller gradient norm does not indicate more proximity to the local minima. Figure 6 depicts the epoch (k)
v.s. ‖∇F (wk)‖2 (a), validation accuracy (b), training (c) and validation (d) losses. These plots show that
during evolution, though DP-LSSGD has a larger gradient norm than DP-SGD, it has much better utility in
terms of validation accuracy, and training and validation losses.

5 Conclusions
In this paper, we proposed a new differentially private stochastic optimization algorithm, DP-LSSGD, inspired
by the recently proposed LSSGD. The algorithm is simple to implement and the extra computational cost
compared with the DP-SGD is almost negligible. We show that DP-LSSGD can lift the utility of the trained
private ML models both numerically and theoretically. It is straightforward to combine LS with other variance
reduction technique, e.g., SVRG [22].

A Proof of the Main Theorems
A.1 Privacy Guarantee
To prove the privacy guarantee in Theorem 1, we first introduce the following `2-sensitivity.

Definition 2 (`2-Sensitivity). For any given function f(·), the `2-sensitivity of f is defined by

∆(f) = max
‖S−S′‖1=1

‖f(S)− f(S′)‖2,

where ‖S − S′‖1 = 1 means the data sets S and S′ differ in only one entry.

We will adapt the concepts and techniques of Rényi differential privacy (RDP) to prove the DP-guarantee
of the proposed DP-LSSGD.

Definition 3 (RDP). For α > 1 and ρ > 0, a randomized mechanism M : Sn → R satisfies (α, ρ)-Rényi
differential privacy, i.e., (α, ρ)-RDP, if for all adjacent datasets S, S′ ∈ Sn differing by one element, we have

Dα

(
M(S)||M(S′)

)
:= 1

α− 1 logE
(
M(S)
M(S′)

)α
≤ ρ,

where the expectation is taken over M(S′).
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(a) (b)

(c) (d)

Figure 5: Training (a) and validation (b) losses of ResNet20 trained by DP-LSSGD with (1.5, 10−5)-DP
guarantee and different Laplacian smoothing parameter σ. (c): epoch v.s. validation of the ResNet20 trained
by DP-LSSGD with (1.5, 10−5)-DP guarantee and different σ. (d): Testing accuracy of ResNet20 trained by
DP-LSSGD with different (ε, 10−5)-DP guarantee.

Lemma 1. [40] Given a function q : Sn → R, the Gaussian Mechanism M = q(S)+n, where n ∼ N(0, ν2I),
satisfies (α, α∆2(q)/(2ν2))-RDP. In addition, if we apply the mechanism M to a subset of samples using
uniform sampling without replacement, M satisfies (α, τ2∆2

2(q)α/ν2)-RDP when ν2 ≥ 1/1.25, with τ denoting
the subsample rate.

Lemma 2. [26] If k randomized mechanisms Mi : Sn → R, for i ∈ [k], satisfy (α, ρi)-RDP, then their
composition

(
M1(S), . . . ,Mk(S)

)
satisfies (α,

∑k
i=1 ρi)-RDP. Moreover, the input of the i-th mechanism can

12



(a) (b)

(c) (d)

Figure 6: Comparisons between DP-SGD and DP-LSSGD σ = 1) on ResNet20 with (1.5, 10−5)-DP guarantee.
Epoch v.s. ‖∇F (wk)‖2 (a), validation accuracy (b), training loss (c), validation loss (d).

be based on outputs of the previous (i− 1) mechanisms.

Lemma 3. If a randomized mechanismM : Sn → R satisfies (α, ρ)-RDP, thenM satisfies (ρ+log(1/δ)/(α−
1), δ)-DP for all δ ∈ (0, 1).

With the definition (Def. 3) and guarantees of RDP (Lemmas 1 and 2), and the connection between RDP
and (ε, δ)-DP (Lemma 3), we can prove the following DP-guarantee for DP-LSSGD.

Proof of Theorem 1. Let us denote the update of DP-SGD and DP-LSSGD at the k-th iteration starting

13



from any given points wk and w̃k, respectively, as

wk+1 = wk − ηk(∇fik(wk) + n), (6)

and
w̃k+1 = w̃k − ηkA−1

σ (∇fik(w̃k) + n), (7)

where ik are drawn uniformly from [n].
We will show that with the aforementioned Gaussian noise N (0, ν2) for each coordinate of n, the output

of DP-SGD, w̃, after T iterations is (ε, δ)-DP. Let us consider the mechanism M̂k = ∇F (wk) + n with the
query qk = ∇F (wk). We have the `2-sensitivity of qk as ∆(qk) = ‖∇fik(wk) − ∇fi′

k
(wk)‖2/n ≤ 2G/n.

According to Lemma 1, if we add noise with variance

ν2 = Tα(α− 1)∆2(qk)
log(1/δ) = 4Tα(α− 1)G2

n2 log(1/δ) ,

the mechanism M̂k will satisfy
(
α, n2 log(1/δ)/

(
2(α−1)T

))
-RDP. By post-processing theorem, we immediately

have that under the same noise, Mk = A−1
σ (∇F (wk) + n) also satisfies

(
α, n2 log(1/δ)/

(
2(α− 1)T

))
-RDP.

According to Lemma 1, Mk will satisfy
(
α, log(1/δ)/(α − 1)T

)
-RDP provided that ν2 ≥ 1/1.25. Let

α = 2 log(1/δ)/ε+ 1, we obtain that Mk satisfies
(
2 log(1/δ)/ε+ 1, ε/(2T )

)
-RDP as long as we have

ν2 = 4Tα(α− 1)G2

n2 log(1/δ) =
4T
(
2 log(1/δ) + ε

)
2 log(1/δ)G2

n2 log(1/δ)ε2 ≥ 1
1.25 ,

which implies that

ε2 ≤ 20TG2 log(1/δ)
n2 .

Therefore, according to Lemma 2, we have wk satisfies
(
2 log(1/δ)/ε+ 1, kε/(2T )

)
-RDP. Finally, by Lemma

3, we have wk satisfies
(
kε/(2T ) + ε/2, δ

)
-DP. Therefore, the output of DP-SGD, w̃, is (ε, δ)-DP.

Remark 3. In the above proof, we used the following estimate of the `2 sensitivity

∆(qk) = ‖A−1
σ ∇fi(wk)−A−1

σ ∇fi′(wk)‖2/n ≤ 2G/n.

Indeed, let g = ∇fi(wk)−∇fi′(wk) and d = A−1
σ g, then according to [27] we have

‖d‖2 + 2σ ‖D+d‖2
2

d
+ σ2 ‖Ld‖2

2
d

= ‖g‖2,

where d is the dimension of d, and

D+ =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
1 0 0 . . . 0 −1

 .
Moreover, if we assume the g is randomly sampled from a unit ball in a high dimensional space, then a high
probability estimation of the compression ratio of the `2 norm can be derived from Lemma. 5.

Numerical experiments show that ‖A−1
σ ∇fi(wk)−A−1

σ ∇fi′(wk)‖2 is much less than ‖∇fi(wk)−∇fi′(wk)‖2,
so for the above noise, it can give much stronger privacy guarantee.
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A.2 Utility Guarantee – Convex Optimization
To prove the utility guarantee for convex optimization, we first show that the Laplacian smoothing operator
compresses the `2 norm of any given Gaussian random vector with a specific ratio in expectation.

Lemma 4. Let x ∈ Rd be the standard Gaussian random vector. Then

E‖x‖2
A−1
σ

=
d∑
i=1

1
1 + 2σ − 2σ cos(2πi/d) ,

where ‖x‖2
A−1
σ

.= 〈x,A−1
σ x〉 is the square of the induced norm of x by the matrix A−1

σ .

Proof of Lemma 4. Let the eigenvalue decomposition of A−1
σ be A−1

σ = UΛUT , where Λ is a diagonal matrix
with Λii = 1

1+2σ−2σ cos(2πi/d) We have

E‖x‖2
A−1
σ

= E[Tr(x>UΛU>x)]

=
d∑
i=1

Λii

=
d∑
i=1

1
1 + 2σ − 2σ cos(2πi/d) .

Proof of Theorem 2. Recall that we have the following update rule wk+1 = wk − ηkA−1
σ (∇fik(wk) + n),

where ik are drawn uniformly from [n], and n ∼ N (0, ν2I). Observe that

‖wk+1 −w∗‖2
Aσ

= ‖wk − ηkA−1
σ (∇fik(wk) + n)−w∗‖2

Aσ

= ‖wk −w∗‖2
Aσ

+ η2
k

(
‖A−1

σ ∇fik(wk)‖2
Aσ

+ ‖A−1
σ n‖2

Aσ
+ 2〈A−1

σ ∇fik(wk),n〉
)

− 2ηk〈∇fik(wk) + n,wk −w∗〉.

Taking expectation with respect to ik and n given wk, we have

E‖wk+1 −w∗‖2
Aσ

= E‖wk −w∗‖2
Aσ
− 2ηkE〈∇F (wk),wk −w∗〉+ η2

kE‖∇fik(wk)‖2
A−1
σ

+ η2
kE‖n‖2

A−1
σ

≤ E‖wk −w∗‖2
Aσ
− 2ηkE

(
F (wk)− F (w∗)

)
+ η2

k

(
G2 + γdν2),

where the second inequality is due to the convexity of F , and Lemma 4. It implies that

2ηkE
(
F (wk)− F (w∗)

)
≤
(
E‖wk −w∗‖2

Aσ
− E‖wk+1 −w∗‖2

Aσ

)
+ η2

k(G2 + γdν2).

Now taking the full expectation and summing up over T iterations, we have
T−1∑
k=0

2ηkE
(
F (wk)− F (w∗)

)
≤ Dσ +

T−1∑
k=0

η2
k(G2 + γdν2),

where Dσ = ‖w0 −w∗‖2
Aσ

. Let vk = ηk/
(∑T−1

k=0 ηk
)
, we have

T−1∑
k=0

vkE
(
F (wk)− F (w∗)

)
≤
Dσ +

∑T−1
k=0 η

2
k(G2 + γdν2)

2
∑T−1
k=0 ηk

.

According to the definition of w̃ and the convexity of F , we obtain

E
(
F (w̃)− F (w∗)

)
≤
Dσ +

∑T−1
k=0 η

2
k(G2 + γdν2)

2
∑T−1
k=0 ηk

≤
Dσ +

∑T−1
k=0 η

2
kG

2

2
∑T−1
k=0 ηk

+
∑T−1
k=0 η

2
k

2
∑T−1
k=0 ηk

· 24γdTG2 log(1/δ)
n2ε2

.
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Let η = 1/
√
T and T = (Dσ +G2)n2ε2/

(
24γdG2 log(1/δ)

)
, we can obtain that

E
(
F (w̃)− F (w∗)

)
≤

2G
√

6γ(Dσ +G2)d log(1/δ)
nε

.

A.3 Utility Guarantee – Nonconvex Optimization
To prove the utility guarantee for nonconvex optimization, we need the following lemma, which shows that
the Laplacian smoothing operator compresses the `2 norms of any given Gaussian random vector with a
specific ratio in expectation.

Lemma 5. Let x ∈ Rd be the standard Gaussian random vector. Then

E‖A−1
σ x‖2

2 =
d∑
i=1

1
(1 + 2σ − 2σ cos(2πi/d))2 .

Proof of Lemma 5. Let the eigenvalue decomposition of A−1
σ be A−1

σ = UΛUT , where Λ is a diagonal matrix
with Λii = 1

1+2σ−2σ cos(2πi/n) We have

E‖A−1
σ x‖2

2 = E[Tr(x>UΛU>UΛU>x)]
= E[Tr(x>UΛ2U>x)]

=
d∑
i=1

Λ2
ii

=
d∑
i=1

1
(1 + 2σ − 2σ cos(2πi/d))2 .

Proof of Theorem 3. Recall that we have the following update rule wt+1 = wk − ηkA−1
σ (∇fik(wk) + n),

where ik are drawn uniformly from [n], and n ∼ N (0, ν2I). Since F is L-smooth, we have

F (wk+1) ≤ F (wk) + 〈∇F (wk),wk+1 −wk〉+ L

2 ‖w
k+1 −wk‖2

2

= F (wk)− ηk〈∇F (wk),A−1
σ (∇fik(wk) + n)〉

+ η2
kL

2

(
‖A−1

σ ∇fik(wk)‖2
2 + ‖A−1

σ n‖2
2 + 2〈A−1

σ ∇fik(wk),A−1
σ n〉

)
.

Taking expectation with respect to ik and n given wk, we have

EF (wk+1) ≤ EF (wk)− ηkE〈∇F (wk),A−1
σ ∇fik(wk)〉+ η2

kL

2

(
E‖A−1

σ ∇fik(wk)‖2
2 + E‖A−1

σ n‖2
2

)
≤ EF (wk)− ηk

(
1− ηkL

2

)
E‖∇F (wk)‖2

A−1
σ

+ η2
kL

2 (G2 + dβν2)

≤ EF (wk)− ηk
2 E‖∇F (wk)‖2

A−1
σ

+ η2
kL(G2 + dβν2)

2 ,

where the second inequality uses Lemma 5 and the last inequality is due to 1− ηkL/2 > 1/2. Now taking the
full expectation and summing up over T iterations, we have

EF (wT ) ≤ F (w0)−
T−1∑
k=1

ηk
2 E‖∇F (wk)‖2

A−1
σ

+
T−1∑
k=1

η2
kL(G2 + dβν2)

2 .
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If we choose fix step size, i.e., ηk = η, and rearranging the above inequality, and using F (w0)− EF (wT ) ≤
F (w0)− F (w∗), we get

1
T

T−1∑
k=1

E‖∇F (wk)‖2
A−1
σ
≤ 2
ηT

(
F (w0)− F (w∗)

)
+ ηL(G2 + dβν2),

which implies that

E‖∇F (w̃)‖2
A−1
σ
≤ 2DF

ηT
+ ηL(G2 + dβν2)

≤ 2DF

ηT
+ ηL

(
G2 + 24dβTG2 log(1/δ)

n2ε2

)
.

Let η = 1/
√
T and T = (2DF + LG2)n2ε2/

(
24dLβG2 log(1/δ)

)
, where DF = F (w0)− F (w∗), we obtain

E‖∇F (w̃)‖2
A−1
σ
≤ 4

G
√

6βdL(2DF + LG2) log(1/δ)
nε

.

B β and γ

B.1 γ

To prove Proposition 1, we need the following two lemmas.

Lemma 6 (Residue Theorem). Let f(z) be a complex function defined on C, then the residue of f around
the pole z = c can be computed by the formula

Res(f, c) = 1
(n− 1)! lim

z→c

dn−1

dzz−1 ((z − c)nf(z)) . (8)

where the order of the pole c is n. Moreover,∮
f(z)dz = 2πi

∑
ci

Res(f, ci), (9)

where {ci} be the set of pole(s) of f(z) inside {z||z| < 1}.

The proof of Lemma 6 can be found in any complex analysis textbook.

Lemma 7. For 0 ≤ θ ≤ 2π, suppose

F (θ) = 1
1 + 2σ(1− cos(θ)) ,

has the discrete-time Fourier transform of series f [k]. Then, for integer k,

f [k] = α|k|√
4σ + 1

where
α = 2σ + 1−

√
4σ + 1

2σ
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Proof. By definition,

f [k] = 1
2π

∫ 2π

0
F (θ)eikθ dθ = 1

2π

∫ 2π

0

eikθ

1 + 2σ(1− cos(θ)) dθ. (10)

We compute Eq. (10) by using Residue theorem. First, note that because F (θ) is real valued, f [k] = f [−k];
therefore, it suffices to compute Eq. (10) for nonnegative k. Set z = eiθ. Observe that cos(θ) = 0.5(z + 1/z)
and dz = izdθ. Substituting in Eq. (10) and simplifying yields that

f [k] = −1
2πiσ

∮
zk

(z − α−)(z − α+) dz, (11)

where the integral is taken around the unit circle, and α± = 2σ+1±
√

4σ+1
2σ are the roots of quadratic

−σz2 + (2σ + 1)z − σ. Note that α− lies within the unit circle; whereas, α+ lies outside of the unit circle.
Therefore, because k is nonnegative, α− is the only singularity of the integrand in Eq. (11) within the unit
circle. A straightforward application of the Residue Theorem, i.e., Lemma 6, yields that

f [k] =
−αk−

σ(α− − α+) = αk√
4σ + 1

.

This completes the proof.

Proof of Proposition 1. First observe that we can re-write γ as

1
d

d−1∑
j=0

1
1 + 2σ(1− cos( 2πj

d ))
. (12)

It remains to show that the above summation is equal to 1+αd
(1−αd)

√
4σ+1 . This follows by lemmas 7 and standard

sampling results in Fourier analysis (i.e. sampling θ at points {2πj/d}d−1
j=0). Nevertheless, we provide the

details here for completeness: Observe that that the inverse discrete-time Fourier transform of

G(θ) =
d−1∑
j=0

δ(θ − 2πj
d

).

is given by

g[k] =
{
d/2π if k divides d,
0 otherwise.

Furthermore, let
F (θ) = 1

1 + 2σ(1− cos(θ)) ,

and use f [k] to denote its inverse discrete-time Fourier transform. Now,

1
d

d−1∑
j=0

1
1 + 2σ(1− cos( 2πj

d ))
= 1
d

∫ 2π

0
F (θ)G(θ)

= 2π
d

DTFT−1[F ·G][0]

= 2π
d

(DTFT−1[F ] ∗DTFT−1[G])[0]

= 2π
d

∞∑
r=−∞

f [−r]g[r]

= 2π
d

∞∑
`=−∞

f [−`d] d2π

=
∞∑

`=−∞
f [−`d].

18



The proof is completed by substituting the result of lemma 7 in the above sum and simplifying.

We list some typical values of γ in Table 1.

Table 6: The values of γ corresponding to some σ and d.

σ 1 2 3 4 5
d = 1000 0.447 0.333 0.277 0.243 0.218
d = 10000 0.447 0.333 0.277 0.243 0.218
d = 100000 0.447 0.333 0.277 0.243 0.218

B.2 β

The proof of Proposition 2 is similar as the proof of Proposition 1. The only difference is that we need to
compute

f [k] = 1
2π

∫ 2π

0

eikθ

(1 + 2σ(1− cos θ))2 dθ. (13)

By Residue theorem, for k > 0 (note that f [−k] = f [k] ), we have

f [k] = 1
2π

∫ 2π

0

eikθ

(1 + 2σ(1− cos θ))2 dθ

= 1
2πi

∮
zk+1

(z + σ(2z − z2 − 1))2 dz

= lim
z→α−

d

dz

(
(z − α−)2 zk+1

(z + σ(2z − z2 − 1))2

)
= lim

z→α−
d

dz

(
zk+1

σ2(z − α+)2

)
= (k + 1)αk

4σ + 1 + 2σαk+1

(4σ + 1)3/2 ,

where α− = 2σ+1−
√

4σ+1
2σ . Therefore, we have

β = 2α2d+1 − ξα2d + 2ξdαd − 2α+ ξ

σ2ξ3(1− αd)2 .

We list some typical values of β in Table 2.

Table 7: The values of β corresponding to some σ and d.

σ 1 2 3 4 5
d = 1000 0.268 0.185 0.149 0.128 0.114
d = 10000 0.268 0.185 0.149 0.128 0.114
d = 100000 0.268 0.185 0.149 0.128 0.114
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