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Abstract

In this paper we investigate when it makes sense for portfolio managers to imple-
ment factor timing in their quantitative investing, that is we outline necessary cir-
cumstances under which the benefits of factor timing (measured by the improvement
in Sharpe ratio and the skewness of the returns) outweighs the challenges associated
with development and implementation of factor timing. In particular, we mathe-
matically show that factor timing for a single strategy does not yield substantial
improvements unless either (1) the Sharpe ratio of the strategy is orders of magni-
tude different across states, or (2) the signal used for factor timing can accurately
predict when the strategy will deliver negative returns (and the portfolio manager is
willing to go short the strategy at that time). On the other hand, using simulation,
we provide evidence that for a multi-factor portfolio (containing more than 10 fac-
tors) allocating risk based on instantaneous correlations between the factors at the
beginning of each time period improves performance above the passive approach of
allocating risk based on the long-term factor correlations.

1 Introduction

In the world of portfolio management, there is a constant desire to improve upon existing
strategies. One popular belief among practitioners is that factor timing, or developing
signals to predict a strategy’s return, can significantly enhance performance of a strategy.
In this paper, we show that this belief is typically wrong: we demonstrate that unless the
signal can flag situations when (1) the Sharpe ratio of the strategy is orders of magnitude
different across states, or (2) the strategy is expected to deliver negative returns (and the
investor is willing to go short the strategy at that time), the improvement from actively
changing the risk allocated to a single strategy is marginal, despite perfect foresight on
the Sharpe ratio of that strategy over each time period. Therefore, rather than trying to
enhance the performance of a strategy by developing signals that predict its Sharpe ratio
over each time period, the portfolio manager (PM) is better off investing her resources
to develop new, low or negatively correlated strategies and include them with the current
strategy.
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However, if the PM is running a multi-factor portfolio, we provide evidence that it
might be beneficial to do factor timing: allocating risk based on instantaneous correlations
between the factors at the beginning of each time period helps improve performance above
the passive approach of allocating risk based on the long-term factor correlations. The
improvement becomes more significant with the number of factors in the portfolio, as well
as with the variation in pairwise correlations among the factors. The benefits of factor
timing for a multi-factor portfolio become apparent when it consists of more than circa 10
factors. Moreover, note that in the context of multi-factor portfolio, factor timing mitigates
concentration of risk in particular sector/asset class.

The results of this paper have practical consequences for portfolio managers. To provide
a concrete example consider the following situation: Suppose a PM has established that
the spread between two securities (with a given hedge ratio) exhibits mean reversion.
Therefore, she decides to go short the spread whenever its current z-score (calculated over
a rolling or a expanding window) is above say +1. Alternatively, she might consider to
go short when the z-score is above +1, but double the size of the position whenever the
z-score becomes above +2 (because when z-score becomes +2 her conviction in the position
is doubled). Based on the results of this paper, the latter strategy is only marginally better
than the former strategy. This is even before taking into account that the latter strategy
will incur higher transaction costs than the former strategy, because it has higher turnover.

2 Factor Timing for a Single Strategy

2.1 General results

In this section we present the inefficacy of factor timing for a single strategy, except in
certain specific scenarios that we outline below. In particular, we establish a theoretical
upper bound on the amount of improvement in the long-run ex-post Sharpe ratio that an
investor can achieve even when she has perfect foresight on the Sharpe of the strategy at
the beginning of each time interval.

Suppose the investor is running a strategy and she is allowed to change the risk allocated
to the strategy only at a specific time ti, where ti = i∆t and ∆t is a constant time period
(e.g. ∆t = 1/52 for weekly re-balancing). For 1 ≤ i ≤ T , denote the return and the
prevailing Sharpe ratio and the ex-ante Sharpe ratio of the strategy for time interval of
[ti−1, ti] by r(i), S(i), and Ŝ(i) respectively. Note that Ŝ(i) is known at time ti−1, whereas,
r(i) becomes known at time ti. The next theorem provides an upper bound on the ex-post
Sharpe that the investor can achieve over the entire time period (and not just a particular
time interval) using any risk allocation policy as long as the strategy is run over a long
time.

Theorem 2.1 Suppose the Sharpe ratio, S(i), for 1 ≤ i ≤ T , is sampled independently
from a fix distribution µ, and the risk allocated to the strategy at the beginning of each
time period is a function of S(i). Furthermore, assume the associated return is normally
distributed and is independent for each time period. Then, for a sufficiently large T , the
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(ex-post) Sharpe ratio of the strategy over the time period [0, tT ] is bounded above by√
Eµ[S2], (1)

where Eµ[·] denotes the expectation with respect to the distribution µ.

Proof: See appendix A.
Throughout this section, we refer to an investor who maintains the same amount of

risk in the strategy at all times as the passive investor 1. On the other hand, an investor
who has perfect foresight on the Sharpe ratio of the strategy during each interval (i.e.
Ŝ(i) = S(i) for 1 ≤ i ≤ T ) and implements the optimal risk allocation (i.e. risk allocation
is proportional to the ex-ante Sharpe ratio) is referred to as the clairvoyant investor 2.

Theorem 2.2 Under the assumptions of theorem 2.1, over a long time period, the Sharpe
ratio of the passive investor is slightly less than

SRpassive = Eµ[S]. (2)

On the other hand, over a long time period, the clairvoyant investor achieves Sharpe ratio
slightly less than

SRclairvoyant =
√

Eµ[S2]. (3)

Proof: See appendix A.
It is easy to show that equation (3) is greater than or equal to (2) by using the Cauchy–

Schwarz inequality.
Some might argue that the purpose of factor timing for a single strategy is not neces-

sarily to improve its Sharpe ratio but to improve other aspects of the strategy’s returns,
for example improving skewness of its returns. Here skewness of the returns refers to the
following quantity

m3(r(t))

(Var[r(t)])3/2
,

where m3(r(t)) denotes the third central moment of the returns. The next theorem provides
estimates on the skewness of returns for a single strategy with and without factor timing.

Theorem 2.3 Under the assumptions of theorem 2.1, over a long time period, the skew-
ness of the returns for the passive investor is

SKpassive =
m3(S)

(1 + ∆tVar[S])3/2
∆t3/2. (4)

On the other hand, over a long time period, the skewness of the returns for the clairvoyant
investor is

SKclairvoyant =
3 Var[S2] + ∆t m3(S2)

(E[S2] + ∆tVar[S2])3/2
∆t1/2. (5)

1By ”passive”, we mean the investor is not readjusting risk allocation to the strategy at the beginning
of each sub-interval.

2Note that the ”clairvoyant” investor has perfect foresight on the Sharpe ratio of the strategy, not its
return, over each time period.
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Proof: See appendix A.

Remark 2.4 Note that in theorem 2.3, E[·], Var[·], and m3(·) are taken with respect to
distribution µ. To avoid cluttering the notation, we have dropped µ from equations (4) and
(5).

In the next subsection, using a simple toy example, we will investigate the scenarios under
which the improvement of SRclairvoyant over SRpassive justifies the challenges of actively
adjusting the risk allocated to the strategy.

2.2 Simple example of two state Sharpe

This subsection uses a simple example to elucidate the ideas presented in the previous
subsection. Suppose the Sharpe of a strategy over each time interval is given by the
following two-state random variable

S =

{
SA when state A occurs with probability pA,
SB when state B occurs with probability pB = 1− pA.

(6)

Next, suppose an investor is able to create a signal that perfectly predicts the state of the
Sharpe for each time interval, and decides to allocate kA and kB units of risk to states A
and B respectively. By equation (A.7), over the long run, the investor achieves the Sharpe
ratio slightly lower than the following:

Eµ[kS]√
Eµ[k2]

=
pAkASA + pBkBSB√

pAk2
A + pBk2

B

. (7)

The plot in figure 1 shows the ex-post Sharpe ratio (7) for different values of kB/kA
when pA = pB = 0.5, SA = 1, and SB = 2. As mentioned in theorem 2.2, the Sharpe ratio
is maximized when the investor allocates double the risk to state B than state A (because
in this example, we have set SB/SA = 2).

Figure 2 shows the Sharpe ratios of the passive and clairvoyant investors for different
values of SB. Here we assume again that pA = pB = 0.5 and SA = 1. The Sharpe ratios
for these investors are given by equations (2) and (3), which in the context of this example
simplifies to

SRpassive = pASA + pBSB and SRclairvoyant =
√
pAS2

A + pBS2
B.

Of course, the clairvoyant investor achieves higher Sharpe ratio than the passive investor;
however, the amount of improvement gained is underwhelming considering the
challenges that the clairvoyant investor faces (e.g. developing an accurate tim-
ing signal, dynamically changing the size of the strategy, related transaction
costs as well as costs associated with technology and infrastructure).

Figure 3 exhibits improvement in Sharpe ratio of the clairvoyant investor over the
passive investor (dashed-blue line over solid-red line in figure 2). As can be seen, even
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Figure 1: Investor’s ex-post Sharpe ratio over long run for different values of kB/kA. Here
pA = pB = 0.5, SA = 1, and SB = 2.
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Figure 2: Ex-post Sharpe ratio of the passive and clairvoyant investor over a long time
for different values of SB. The passive investor maintains a constant amount of risk in the
strategy at all time. The clairvoyant investor has perfect foresight on the state of Sharpe
ratio at the beginning of each time period and implements optimal risk allocation. Here
pA = pB = 0.5 and SA = 1.
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Figure 3: Long-term Sharpe ratio improvement of the clairvoyant investor over the passive
investor for different values of SB (i.e. SRclairvoyant/SRpassive − 1). The passive investor
maintains a constant amount of risk in the strategy at all time. The clairvoyant investor
has perfect foresight on the state of Sharpe ratio at the beginning of each time period and
implements optimal risk allocation. Here pA = pB = 0.5 and SA = 1.
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when SB is ten times greater than SA, the improvement that the clairvoyant investor
achieves is below 30%.

Figure 4 complements Figure 3 by considering two additional cases when pB = 0.1 and
pB = 0.25. Note that we only need to consider cases where pB ≤ 0.5 because by symmetry
without loss of generality we may assume that state A represents the state with higher
probability.
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Figure 4: Long-term Sharpe ratio improvement of the clairvoyant investor over the passive
for different values of SB (i.e. SRclairvoyant/SRpassive − 1). The passive investor maintains
a constant amount of risk in the strategy at all time. The clairvoyant investor has perfect
foresight on the state of Sharpe ratio at the beginning of each time period and implements
optimal risk allocation. Here SA = 1 and the plots for three cases pB = 0.1, pB = 0.25,
and pB = 0.5 are shown.

Typically, a strategy that has low overall Sharpe ratio SRpassive, say below 0.5, would
not be implemented, let alone be considered for factor timing. For that reason, in figure 5
we hold SRpassive constant at 0.5 and show the improvement achieved from factor timing.
Unsurprisingly, it shows that if the signal can accurately predict huge draw downs
in the strategy and the investor is willing to go short the strategy in those
cases, then the improvement from factor timing can be significant.
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Figure 5: The left-axis shows the long-term Sharpe ratio improvement of the clairvoyant
investor over the passive for different values of SB (i.e. SRclairvoyant/SRpassive − 1). The
passive investor maintains a constant amount of risk in the strategy at all time. The
clairvoyant investor has perfect foresight on the state of Sharpe ratio at the beginning of
each time period and implements optimal risk allocation. Here SA = 1 and pB (shown on
the right-axis) is chosen so that the Sharpe ratio of the passive investor SRpassive is equal
to 0.5.
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Finally, some might argue that even though factor timing for a single strategy might not
improve the Sharpe ratio it has other benefits: for example it would improve the skewness
of the strategy’s returns. Using the results of theorem 2.3, figure 6 plots the difference in
the long-term skewness of the weekly returns of the clairvoyant and passive investors. As
it can be seen there is an improvement to the skewness of the returns, but it
is not substantial unless SB is at least 4x the value of SA. To provide some context
on the magnitude of the skewness metric, note that the skewness of the weekly returns for
S&P500 and AAPL from 2000 to 2019 is around -0.5 and -1, respectively.
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Figure 6: Difference in the long-term skewness of the returns of the clairvoyant and passive
investors for different values of SB (i.e. SKclairvoyant − SKpassive). The passive investor
maintains a constant amount of risk in the strategy at all time. The clairvoyant investor
has perfect foresight on the state of Sharpe ratio at the beginning of each time period and
implements optimal risk allocation. Here ∆t = 1/52 and SA = 1. The plots for three cases
pB = 0.1, pB = 0.25, and pB = 0.5 are shown.

3 Factor timing for multi-factor portfolio

In this section we provide evidence that if the investor is running a multi-factor portfo-
lio, then it might be beneficial to do factor timing: actively and periodically adjust risk
allocation across factors. Using simulation, we show that when the portfolio consists of
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many factors (e.g. around 10 factors or above; see figure 7), risk allocation based on
instantaneous pair-wise correlations between the factors for each time interval improves
performance above and beyond the passive approach of allocating risk based on long-term
correlations between the factors. This magnitude of improvement grows with the number
of factors in the portfolio.

Suppose the investor is running a portfolio of N factors. For simplicity of exposition
assume each factor has an Sharpe ratio of 1. Furthermore, suppose over a long time
period, any two factors are uncorrelated. More precisely, let λ(N, ρ) denote the uniform
distribution over the space of N ×N correlation matrices whose off-diagonal entries are in
[−ρ, ρ] 3. Assume the correlation matrices Ω(i) of the N factors for time period (ti−1, ti],
with 1 ≤ i ≤ T , are sampled independently from λ. For information on generating random
correlation matrices and their properties see for example [2] and [3].

In this context, because the factors are uncorrelated over a long time period and have
equal Sharpe ratios, the passive investor allocates equal amount of risk to each factor and
does not change it over time (i.e. risk-parity allocation). Therefore, the ex-post Sharpe
ratio of the passive investor after a long time has passed is given by

SRpassive
N,ρ =

√
N. (8)

On the other hand, suppose the clairvoyant investor has perfect foresight on the value
of the correlation matrix for each time interval and optimally allocates risk to factors at
the beginning of each interval based on the prevailing correlation matrix. Explicitly, for
1 ≤ i ≤ T , let ~k(i) denote the N -dimensional vector of risk allocated to factors at the

beginning of time period (ti−1, ti]. The clairvoyant investor determines ~k(i) by solving for
the allocation that maximizes the ex-ante Sharpe ratio of her portfolio for each time period,
that is,

~k(i) = argmax
~k

~k′1√
~k′Ω(i)~k

subject to ~k ≥ 0. (9)

Remark 3.1 The constraint in (9) indicates that the investor does not go short any of the
factors. This is to avoid corner situations where for some correlation matrices the optimal
allocation is to be long (with a very high leverage) a group of factors and be short with
(very high leverage) the remaining factors, which is not practical. If we do not impose the
constraint in (9), the Sharpe ratio improvement of the clairvoyant investor over the passive
investor would be exorbitant but not realistic.

Now, the following theorem provides an expression for the long-term ex-post Sharpe
ratio of the multi-factor portfolio when the risk allocated to factors at the beginning of
each time period is a function of the prevailing correlation matrix between the factors. In
particular, ex-post Sharpe ratio of the clairvoyant investor over a long time period is given
as a corollary of the next theorem.

3For the sake of notation, we use λ in place of λ(N, ρ) when it is clear from the context.
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Theorem 3.2 Using the above notation, suppose the correlation matrices Ω(i), for 1 ≤
i ≤ T , are sampled independently from distribution λ, and the risk allocated to factors at
the beginning of each time period is a function of Ω(i). Furthermore, assume the returns
of the factors over each time period are jointly normally distributed and independent of the
returns over the other time periods. Then, for sufficiently large T , the (ex-post) Sharpe
ratio of the portfolio over the time period [0, tT ] is given by

Eλ[~k′1]√
Eλ[~k′Ω~k] + ∆tVarλ[~k′1]

, (10)

where ~k = ~k(Ω) denote the N-dimensional vector of risk allocated to factors based on
correlation matrix Ω.

Proof: See appendix A.

Corollary 3.3 Using the above assumptions, the ex-post Sharpe ratio of the clairvoyant
investor over long time period is given by

SRclairvoyant
N,ρ =

Eλ[~k′1]√
Eλ[~k′Ω~k] + ∆tVarλ[~k′1]

, (11)

where ~k = ~k(Ω) is the solution to the optimization problem (9) for given correlation matrix
Ω.

Figure 7 shows the improvement of SRclairvoyant
N,ρ over SRpassive

N,ρ for several values of N
and ρ. To calculate expression (11), we use Monte Carlo simulation, where the acceptance-
rejection method is used to independently sample correlation matrix Ω according to distri-
bution λ (see, for example, [1] for information on the acceptance-rejection method). As it
can be seen, for small ρ the improvement is negligible: this is intuitive, because when ρ is
small, the correlation matrix for each time period is close to identity; therefore, portfolio
allocation of the clairvoyant investor becomes very similar to the passive investor. On the
other hand, for moderate values of ρ (say circa 0.3-0.4), the performance improvement that
the clairvoyant investor achieves over the passive investor grows quickly with N . Moreover,
figure 7 indicates that for typical values of ρ, when the number of factors is less than 8, the
improvement is below 30%. Therefore, benefits of factor timing for a multi-factor portfolio
become apparent when it consists of many factors.
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Figure 7: Improvement in the long-term Sharpe ratio of the multi-factor portfolio for the
clairvoyant investor over the passive investor (i.e. SRclairvoyant

N,ρ /SRpassive
N,ρ − 1). Here the

clairvoyant investor dynamically adjusts risk allocation to factors based on instantaneous
correlation matrix; whereas, the passive investor maintains constant risk allocation to fac-
tors over time. Here ∆t = 1/52 and Monte Carlo simulation is used to calculate expression
(11) where correlation matrix Ω is sampled uniformly from the space of N ×N correlation
matrices whose off-diagonal entries are in [−ρ, ρ].
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A Derivation of Theorems

Proof of Theorem 2.1: Let k(i), for 1 ≤ i ≤ T , denote the amount of risk that the
investor allocates to the strategy at the beginning of time period (ti−1, ti]. Given the
assumption of the theorem, the strategy’s return over time period (ti−1, ti] (conditioned on
the period’s Sharpe S(i)) is given by normal distribution

r(i)|S(i) ∼ N(k(i)S(i)∆t, k(i)2∆t).

With a slight abuse of the notation, write the above expression as

r|S ∼ N(kS∆t, k2∆t), (A.1)

where k is determined by the value of S.
In particular,

E[r|S] = kS∆t and Var[r|S] = k2∆t. (A.2)

Let ν denote the empirical distribution for {ti}i=Ti=1 . Observe that over the time period
[0, tT ], the annualized average return is given by

1

∆t

T∑
i=1

r(i)/T =
1

∆t
Eν [r], (A.3)

and the annualized standard deviation is given by√√√√ 1

∆t

T∑
i=1

(r(i)− r̄)2/T =
1√
∆t

√
Varν [r]. (A.4)

Denote the distribution of S by µ, and taking expectation with respect to µ by Eµ[·].
Note that by the law of large numbers, when T is sufficiently large, Eν|µ[r|S] and Varν|µ[r|S]
converge to the values in (A.2), respectively. Therefore, when T is sufficiently large,

Eν [r] = Eµ[Eν|µ[r|S]] = ∆tEµ[kS], (A.5)

where we used the law of total expectation for the first equality. Similarly, for sufficiently
large T ,

Varν [r] = Eµ
[
Varν|µ[r|S]

]
+ Varµ

[
Eν|µ[r|S]

]
= ∆tEµ[k2] + ∆t2 Varµ[kS], (A.6)

where we used the law of total variance for the first equality.
Let SR denote the ex-post Sharpe ratio of the strategy over the time period [0, tT ].

When T is large enough, combining (A.3), (A.4), (A.5), and (A.6) yields that

SR =
Eµ[kS]√

Eµ[k2] + ∆tVarµ[kS]

≤ Eµ[kS]√
Eµ[k2]

(A.7)

≤
√
Eµ[S2], (A.8)
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where we used the positivity variance for the first inequality, and Cauchy–Schwarz Inequal-
ity for the second inequality. The result follows.

Proof of Theorem 2.2: In the proof of theorem 2.1, note that typically ∆t is small
(e.g. 1/52 for weekly re-balance); therefore, in most practical situations line (A.7) is close
to an equality. In particular, when the investor takes a passive approach and allocates a
constant amount of risk to the strategy at all time periods (i.e. k = c for some constant
c), her Sharpe ratio is slightly less than

SRpassive = Eµ[S].

Next, by the equality conditions of Cauchy–Schwarz Inequality, line (A.8) is an equality if
and only if k = cS for some constant c. In other words, the optimal risk allocation policy
for the investor is to allocate k(i) = cS(i) amount of risk to the strategy at time ti−1. Of
course, this requires the investor to have a precise estimate of the Sharpe of the strategy
at time period ti−1, that is the ex-ante Sharpe ratio Ŝ(i) must match the prevailing Sharpe
ratio S(i). And yet, even with the benefit of perfect foresight for knowing the Sharpe ratio
of the strategy over each time period, the Sharpe ratio of this investor is slightly less than

SRclairvoyant =
√

Eµ[S2].

Proof of Theorem 2.3: The proof follows a similar logic to the proof of theorem 2.1
and we utilize the notations described therein. Let m3,ν(·) denote the third central moment
with respect to the empirical distribution ν. For T sufficiently large,

m3,ν(r) = Eµ[m3,ν|µ(r|S)] +m3,µ(Eν|µ[r|S]) + 3 Covµ(Eν|µ(r|S),Varν|µ(r|S))

= Eµ[0] +m3,µ(kS∆t) + 3 Covµ(kS∆t, k2∆t)

= ∆t3m3,µ(kS) + 3∆t2 Covµ(kS, k2), (A.9)

where we used the law of total cumulance (the special case for the third moment) for the
first equality, and (A.2) for the second equality (because T is sufficiently large).

Let SK denote the skewness of the returns of the strategy over the time period [0, tT ].
When T is large enough, combining (A.6) and (A.9) yields that

SK =
m3,ν(r)

(Varν [r])3/2
=

3 Covµ(kS, k2) + ∆t m3,µ(kS)

(Eµ[k2] + ∆tVarµ[kS])3/2

√
∆t (A.10)

Substituting k = c in (A.10) for the passive investor and simplifying yields equation (4).
Substituting k = cS in (A.10) for the clairvoyant investor and simplifying yields equation
(5). This completes the proof.

Proof of Theorem 3.2: The idea of the proof is very similar to the proof of theorem
2.1; however, here instead of conditioning on the value of the Sharpe ratio, we condition
on the value of the correlation matrix. Let ~k(i) denote the N -dimensional vector of risk
allocated to factors at the beginning of time period (ti−1, ti]. By the assumption of the

theorem, ~k(i) is a function of correlation matrix Ω(i). Let rΠ(i) denote the portfolio’s
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return over time period (ti−1, ti]. Given the assumption of the theorem, rΠ(i) (conditioned
on the periods correlation matrix Ω(i)) is given by the normal distribution

rΠ(i)|Ω(i) ∼ N(~k(i)1∆t,~k(i)′Ω(i)~k(i)∆t)

With a slight abuse of the notation, write the above expression as

rΠ|Ω ∼ N(~k′1∆t,~k′Ω~k∆t), (A.11)

where ~k is a function of Ω.
In particular,

E[rΠ|Ω] = ~k′1∆t and Var[rΠ|Ω] = ~k′Ω~k∆t. (A.12)

Let ν denote the empirical distribution for {ti}i=Ti=1 . Observe that over the time period
[0, tT ], the annualized average return is given by

1

∆t

T∑
i=1

rΠ(i)/T =
1

∆t
Eν [rΠ], (A.13)

and the annualized standard deviation is given by√√√√ 1

∆t

T∑
i=1

(rΠ(i)− r̄Π)2/T =
1√
∆t

√
Varν [rΠ]. (A.14)

Note that by the law of large numbers, when T is sufficiently large, Eν|λ[rΠ|Ω] and
Varν|λ[rΠ|Ω] converge to the values in (A.12), respectively. Therefore, when T is sufficiently
large,

Eν [rΠ] = Eλ[Eν|λ[rΠ|Ω]] = ∆tEλ[~k′1], (A.15)

where we used the law of total expectation for the first equality. Similarly, for sufficiently
large T ,

Varν [rΠ] = Eλ
[
Varν|λ[rΠ|Ω]

]
+ Varλ

[
Eν|λ[rΠ|Ω]

]
= ∆tEλ[~k′Ω~k] + ∆t2 Varλ[~k

′
1], (A.16)

where we used the law of total variance for the first equality.
Let SR denote the ex-post Sharpe ratio of the multi-factor portfolio over time period

[0, tT ]. When T is large enough, combining (A.13), (A.14), (A.15), and (A.16) yields that

SR =
Eλ[~k′1]√

Eλ[~k′Ω~k] + ∆tVarλ[~k′1]

This completes the proof.
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