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Abstract. In the field of swarm robotics, the design and implementa-
tion of spatial density control laws has received much attention, with less
emphasis being placed on performance evaluation. This work fills that
gap by introducing an error metric that provides a quantitative measure
of coverage for use with any control scheme. The proposed error met-
ric is continuously sensitive to changes in the swarm distribution, unlike
commonly used discretization methods. We analyze the theoretical and
computational properties of the error metric and propose two bench-
marks to which error metric values can be compared. The first uses the
realizable extrema of the error metric to compute the relative error of an
observed swarm distribution. We also show that the error metric extrema
can be used to help choose the swarm size and effective radius of each
robot required to achieve a desired level of coverage. The second bench-
mark compares the observed distribution of error metric values to the
probability density function of the error metric when robot positions are
randomly sampled from the target distribution. We demonstrate the util-
ity of this benchmark in assessing the performance of stochastic control
algorithms. We prove that the error metric obeys a central limit theorem,
develop a streamlined method for performing computations, and place
the standard statistical tests used here on a firm theoretical footing. We
provide rigorous theoretical development, computational methodologies,
numerical examples, and MATLAB code for both benchmarks.

Keywords: Swarm robotics, multi-agent systems, coverage, optimiza-
tion, central limit theorem.

1 INTRODUCTION

Much of the research in swarm robotics has focused on determining con-
trol laws that elicit a desired group behavior from a swarm [6], and less
attention has been placed on methods for evaluating the performance



2 Anderson et al.

of these controllers quantitatively. Both [6] and [9] point out the lack
of developed performance metrics for assessing and comparing swarm
behavior, and [6] notes that existing performance metrics are often too
specific to the task being studied to be useful in comparing performance
across controllers.
This extended version of the authors’ paper [1] studies an error metric
that evaluates one common desired swarm behavior: distributing the
swarm according to a prescribed spatial density. Here, we delve deeper
into the analysis of the properties of the error metric. Further, we include
new examples, including a continuous target distribution to complement
the original piecewise constant distribution, in order to better illustrate
the utility of our methods.
In many applications of swarm robotics, the swarm must spread across
a domain according to a target distribution in order to achieve its goal.
Some examples are in surveillance and area coverage [8,20,23,31], achiev-
ing a heterogeneous target distribution [4, 10, 14, 16, 17, 34, 41], and ag-
gregation and pattern formation [28–30, 36–38]. Despite the importance
of assessing performance, some studies such as [28,29,34,38,41] rely only
on qualitative methods such as visual comparison. Others present per-
formance metrics that are too specific to be used outside of the specific
application, such as measuring cluster size in [36], distance to a pre-
computed target location in [10, 31], and area coverage by tracking the
path of each agent in [8]. Ergodicity has also been used as a notion of
coverage error [2,26], but it quantifies only the time-average statistics of
the robot trajectories rather than the effective coverage of the swarm at
an instant in time. In [30] an L2 norm of the difference between the target
and achieved swarm densities is considered, but the notion of achieved
swarm density is particular to the controllers under study. These existing
works do not provide methodology for carrying out computations with
the notions they introduce. Moreover, they do not give guidance on how
to interpret the values produced by the error metrics they define. Our
work seeks to fill these gaps.
We develop and analyze an error metric that quantifies how well a swarm
achieves a prescribed spatial distribution. Our method is independent of
the controller used to generate the swarm distribution, and thus has
the potential to be used in a diverse range of robotics applications. In
[18, 25, 40], error metrics similar to the one presented here are used,
but their properties are not discussed in sufficient detail for them to be
widely adopted. In particular, although the error metric that we study
always takes values somewhere between 0 and 2, these values are, in
general, not achievable for an arbitrary desired distribution and a fixed
number of robots. Therefore, one needs a better understanding of the
finer properties of the error metric in order to judge whether its values
(and hence the performance of the underlying controller) are “good” or
not. We address this by studying two benchmarks,
1. the extrema of the error metric, and
2. the probability density function (PDF) of the error metric when robot

positions are sampled from the target distribution,
which were first proposed in [25]. Using tools from nonlinear program-
ming for (1) and rigorous probability results for (2), we put each of
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these benchmarks on a firm foundation. In addition, we provide MAT-
LAB code for performing all calculations at https://git.io/v5ytf. Thus,
by using the methods developed here, one can assess the performance
of a given controller for any target distribution by comparing the error
metric value of robot configurations produced by the controller against
benchmarks (1) and (2).
Our paper is organized as follows. Our main definition, its basic prop-
erties, and a comparison to common discretization methods is presented
in Section 2. Then, Section 3 and Section 4 are devoted to studying (1)
and (2), respectively. We suggest future work in Section 5 and conclude
in Section 6.

2 QUANTIFYING COVERAGE

One difficulty in quantifying swarm coverage is that the target density
within the domain is often prescribed as a continuous (or piecewise con-
tinuous) function, yet the swarm is actually composed of a finite number
of robots at discrete locations. The approach we take here is to use the
robot positions to construct a continuous function that represents cover-
age (e.g. [2,18,24,29,42]). It is also possible to use a combination of the
two methods, as in [11].
The method we present and analyze is inspired by vortex blob numerical
methods for the Euler equation and the aggregation equation (see [12]
and the references therein). There are also similarities between our ap-
proach and the numerical methods known as smoothed particle hydro-
dynamics (SPH), which have also been applied in robotics [28, 29, 41].
One main idea behind vortex methods and SPH is to use particles to
approximate a continuous function that represents the fluid. We apply
this idea but with the opposite aim: namely, we represent discrete points
(the robots’ positions) with a continuous function. A similar strategy
was alluded to in [18] and used in [25, 40] to measure the effectiveness
of a certain robotic control law, but to our knowledge, our work here
and in [1] is the first to develop any such method in a form sufficiently
general for common use.
This section is devoted to our definition of the error metric and to its
basic properties and computational considerations. We also provide a
contrast between our method and another common way to measure error,
namely, by discretizing the domain (e.g. [4,14]) in Subsection 2.3. Finally,
in Subsection 2.4, we present the setup for the two main examples that
we will use throughout the paper.

2.1 Preliminaries

We are given a bounded region9 Ω ⊂ Rd, a desired robot distribu-
tion ρ : Ω → (0,∞) satisfying

∫
Ω
ρ(z) dz = 1, and N robot positions

9 We present our definitions for any number of dimensions d ≥ 1 to demonstrate their
generality. However, in the latter sections of the paper, we restrict ourselves to d = 2,
a common setting in ground-based applications.
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x1, . . . , xN ∈ Ω. To compare the discrete points x1, . . . , xN to the func-
tion ρ, we place a “blob” of some shape and size at each point xi. The
blob or robot blob function can be any function K : Rd → R that is non-
negative on Ω and satisfies

∫
Rd K(z)dz = 1. In other contexts the blob

function is referred to as a “kernel” [28, 39, 41]. Although more general
blob shapes may be useful to represent properties of a robot’s sensing
and/or manipulation capabilities, it is often natural to use a K that is
radially symmetric, decreases along radial directions, and enjoys certain
integrability properties. We discuss these issues further in Subsection 4.1.

One choice of K could be a scaled indicator function, for instance, a
function of constant value within a disc of radius 1 and 0 elsewhere. This
is an appropriate choice when a robot is considered to either perform its
task at a point or not, and where there is no notion of the degree of its
effectiveness. For the remainder of this paper, however, we usually take
K to be the Gaussian

G(z) =
1

2π
exp

(
−|z|

2

2

)
,

which is useful when the robot is most effective at its task locally and
to a lesser degree some distance away. A list of other common choices
of K and different ways of constructing multivariate blobs from single
variable functions can be found in [39, Chapter 2, Chapter 4].

To formulate our definition, we need one more parameter, a positive
number δ, which we call blob radius. We then define Kδ as,

Kδ(z) =
1

δd
K
(z
δ

)
. (1)

We point out that this rescaling preserves the L1 norm of K, so that∫
Rd K

δ(z) dz = 1 holds for all δ > 0.

The shape of K and the blob radius δ have two physical interpretations
as:

– the area in which an individual robot performs its task, or

– inherent uncertainty in the robot’s position.

Either of these interpretations (or a combination of the two) can be
invoked to make a meaningful choice of these parameters.

To define the swarm blob function ρδN , we place a blob Gδ at each robot
position xi, sum over i and renormalize, yielding,

ρδN (z;x1, ..., xN ) =

∑N
i=1G

δ(z − xi)∑N
i=1

∫
Ω
Gδ(z − xi) dz

. (2)

For brevity, we usually write ρδN (z) to mean ρδN (z;x1, ..., xN ). This swarm
blob function gives a continuous representation of how the discrete robots
are distributed. Note that each integral in the denominator of (2) ap-
proaches 1 if δ is small or all robots are far from the boundary, so that
we have,

ρδN (z) ≈ 1

N

N∑
i=1

Gδ(z − xi). (3)
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Moreover, ρδN (z;x1, ..., xN ) is a smoothed version of

N∑
i=1

δxi(z), which

represents the physical robot positions (here, δxi(z) denotes the Dirac
mass at xi). Indeed,

lim
δ→0

ρδN (z;x1, ..., xN ) =
1

N

N∑
i=1

δxi(z) (4)

in the sense of distributions [7]. This point of view gives yet another
interpretation of ρδN .
We now introduce our notion of error:

Definition 1. The error metric eδN is defined as:

eδN (x1, ..., xN ) =

∫
Ω

∣∣∣ρδN (z)− ρ(z)
∣∣∣ dz. (5)

This definition, including the definitions of Kδ and ρδN , was introduced
in this context by the authors in [1]. The relation (3) appeared there as
well.

Remarks and Basic Properties Our error is defined as the L1

norm of the difference between the swarm blob function ρδN and the
desired robot distribution ρ. One could use another Lp norm; however,
p = 1 is a standard choice in applications that involve particle trans-
portation and coverage such as [18,40]. Moreover, the L1 norm has a key
property: for any two integrable functions f and g,∫

Ω

|f − g| dz = 2 sup
B⊂Ω

∣∣∣∣∫
B

f dz −
∫
B

g dz

∣∣∣∣ .
The other Lp norms do not enjoy this property [15, Chapter 1]. Con-
sequently, by measuring L1 norm on Ω, we are also bounding the error
we make on any particular subset, and, moreover, knowing the error on
“many” subsets gives an estimate of the total error. This means that by
using the L1 norm we capture the idea that discretizing the domain pro-
vides a measure of error, but avoid the pitfalls of discretization methods
described in Subsection 2.3.
Studies in optimal control of swarms often use the L2 norm due to the
favorable inner product structure [40]. We point out that the L1 norm is
bounded from above by the L2 norm: indeed, according to the Cauchy-
Schwarz inequality, for any function f we have,∫

Ω

f dz ≤ |Ω|
(∫

Ω

f2 dz

)1/2

,

where |Ω| denotes the area of the bounded region Ω. Thus, if an optimal
control strategy controls the L2 norm, then it will also control the error
metric we present here.
Last, we note that for any Ω, ρ, δ, N , and (x1, ..., xN ), we have 0 ≤
eδN ≤ 2. This was established in Proposition 2.1 of [1]. The theoretical
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minimum of eδN can only be approached for a general target distribution
when δ is small and N is large, or in the trivial special case when the
target distribution is exactly the sum of N Gaussians of the given δ,
motivating the need to develop benchmarks (1) and (2).

Variants of the Error Metric The notion of error in Definition 1
is suitable for tasks that require good instantaneous coverage. For tasks
that involve tracking average coverage over some period of time (and in
which the robot positions are functions of time t), an alternative “cumu-
lative” version of the error metric is∫

Ω

∣∣∣∣∣ 1

M

M∑
j=1

ρδN (z, tj)− ρ(z)

∣∣∣∣∣ dz (6)

for time points j = 1, . . . ,M . This was defined in the authors’ [1], and is
similar to the metric used in [40]. It may also be likened to the approach
of [2], which expresses the average over time using an integral rather than
finite sum and measures the difference from the target distribution using
the Kullback-Leibler divergence and Bhattacharyya distance instead of
an L1 norm. Although the cumulative error metric (6) is, in general,
distinct from the instantaneous version of (5), note that the extrema
and PDF of this cumulative version can be calculated in the same way
as the extrema and PDF of the instantaneous error metric with MN
robots. Therefore, in subsequent sections we restrict our attention to
the extrema and PDF of the instantaneous formulation without loss of
generality.
In addition, [40] considers a one-sided notion of error, in which a scarcity
of robots is penalized but an excess is not, that is,

êδN =

∫
Ω−

∣∣∣ρδN (z)− ρ(z)
∣∣∣ dz,

where Ω− := {z|ρδN (z) ≤ ρ(z)}. The definition of êδN , which appears in
[1], is particularly useful in conjunction with the choice of Kδ as a scaled
indicator function, as êδN becomes a direct measure of the deficiency in
coverage of a robotic swarm. For instance, given a swarm of surveillance
robots, each with observational radius δ, êδN is the percentage of the
domain not observed by the swarm.10

Remarkably, êδN and eδN are related by eδN = 2êδN . This was established
by the authors in Proposition 2.2 of [1]. This relationship implies that
eδN enjoys the interpretation of being a measure of deficiency, and also
allows the techniques introduced here to be directly applied to êδN .

2.2 Calculating eδN

In practice, the integral in (5) can rarely be carried out analytically, pri-
marily because the integral needs to be separated into regions for which

10 The notion of “coverage” in [8] might be interpreted as êδN with δ as the width of the
robot. There, only the time to complete coverage (t such that êδN (z;x1(t), ..., xn(t)) =
0) was considered.
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the quantity ρδN (z) − ρ(z) is positive and regions for which it is neg-
ative, the boundaries between which are usually difficult to express in
closed form. Hence we must rely on numerical integration, or quadra-
ture. Here we study the magnitude Em of the difference between the
true value of the error metric eδN and an approximation ẽδN as the num-
ber of grid points per axis m increases for three elementary quadrature
rules: the rectangle rule, the trapezoidal rule, and Simpson’s rule. As
quadrature convergence rate proofs typically depend on smoothness of
the integrand [13], we did not expect all of these rules to achieve their
nominal rates of convergence. Indeed, in Figure 1 we see that the trape-
zoidal rule converges as O(m−1.58) instead of O(m−2) and Simpson’s
rule converges as O(m−1) instead of O(m−4). As our applications do
not require extremely accurate estimates of the error metric, other er-
ror metric values reported throughout the paper have been calculated
using the rectangle rule with a moderate number of grid points. For ap-
plications that demand increased accuracy, we recommend an adaptive
scheme such as that employed by MATLAB’s integral2 function.

Fig. 1. Estimated error Em =
∣∣eδN − ẽδN ∣∣ as the number of grid points per axis m

increases. As the exact value of eδN is unknown, we use the estimate provided by the
MATLAB function integral2 using the 'iterated' method and a relative tolerance
of 10−8. The solid line is a best fit function of the form 10amb for the trapezoidal rule,
where a = 0.2782 and b = 1.577 were found using the MATLAB Curve Fit app. The
particular configuration of robots is the optimal arrangement found (see Section 3.2)
for the ring distribution from Definition 2 with N = 200 robots and δ = 2in.
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2.3 The Pitfalls of Discretization

Before concluding this section, we analyze a measure of error that in-
volves discretizing the domain and show that the values produced by this
method are strongly dependent on a choice of discretization. In particu-
lar, this error approaches its theoretical minimum when the discretization
is too coarse and its theoretical maximum when the discretization is too
fine, regardless of robot positions.

Discretizing the domain means dividing Ω into M disjoint regions Ωi ⊂
Ω such that

⋃M
i=1Ωi = Ω. Within each region, the desired proportion

of robots is the integral of the target density function within the region∫
Ωi
ρ(z)dz. Using Ni to denote the observed number of robots in Ωi, we

can define an error metric as

µ =
M∑
i=1

∣∣∣∣∫
Ωi

ρ(z) dz − Ni
N

∣∣∣∣ . (7)

This exact definition appeared in the authors’ [1], and is based on discrete
error metrics used in practice, for instance in [4, 14]. It is easy to check
that 0 ≤ µ ≤ 2 always holds. One advantage of this approach is that µ
is very easy to compute, but there are two major drawbacks.

First, the choice for domain discretization is not unique, and this choice
can dramatically affect the value of µ. Indeed, if M = 1 then µ = 0. This
follows directly from the definition of µ and appears in [1] as Proposition
2.3. On the other hand, as the discretization becomes finer, the error
approaches its maximum value 2, regardless of the robot positions. More
precisely:

Proposition 1. Suppose the robot positions are distinct11 and the re-
gions Ωi are sufficiently small such that, for each i, Ωi contains at most
one robot and

∫
Ωi
ρ(z) dz ≤ 1/N holds. Then µ→ 2 as |Ωi| → 0.

This proposition and its proof appear in [1] as Proposition 2.4.

Note that the shape of each region is also a choice that will affect the
calculated value of µ. Although our approach also requires the choice of
some size and shape (namely, δ and K), these parameters have much
more immediate physical interpretations, making appropriate choices
easier to make.

The second, and perhaps more significant, drawback, is that by discretiz-
ing the domain we also discretize the range of values that the error metric
can assume. This means that we have simultaneously desensitized the er-
ror metric to changes in robot distribution within each region. That is, so
long as the number of robots Ni within each region Ωi does not change,
the distribution of robots within any and all Ωi may be changed arbi-
trarily without affecting the value of µ. On the other hand, the error
metric eδN is continuously sensitive to differences in distribution.

11 This is reasonable in practice as two physical robots cannot occupy the same point
in space. In addition, the proof can be modified to produce the same result even if
the robot positions coincide.
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2.4 Setup for Main Examples

We will perform computations with the following two desired distribu-
tions. We have purposefully chosen one that is piecewise continuous,
ρring, and one that is smooth, ρripple.

Definition 2. The ring distribution ρring is defined on the Cartesian
plane with coordinates z = (z1, z2) as follows. Let inner radius r1 =
11.4in, outer radius r2 = 20.6in, width w = 48in, height h = 70in,
domain Ω = {z : z1 ∈ [0, w], z2 ∈ [0, h]}, and region Γ = {z : r21 <
(z1 − w

2
)2 + (z2 − h

2
)2 < r22}. Define the non-normalized ρ′ring(z) to be

36 if z ∈ Ω ∩ Γ and 1 if z ∈ Ω \ Γ . Then let C =
∫
Ω
ρ′ring(z) dz and

ρring(z) = C−1ρ′ring(z) for z ∈ Ω.

Definition 3. The ripple distribution ρripple is defined on the Cartesian
plane with coordinates z = (z1, z2) as follows. Let width w = 48in, height
h = 70in, domain Ω = {z : z1 ∈ [0, w], z2 ∈ [0, h]}, non-normalized

ρ′ripple(z) = 2 + sin[3π(z21 + z22)
1
2 ] + 2

z21
w2 +

z32
h3 , and normalization factor

C =
∫
Ω
ρ′ripple(z) dz. Then ρripple(z) = C−1ρ′ripple(z) for z ∈ Ω.

3 ERROR METRIC EXTREMA

In the rest of the paper, we provide tools for determining whether or
not the values of eδN produced by a controller in a given situation are
“good”. As mentioned in Section 2.1, it is not possible to achieve eδN = 0
for every combination of target distribution ρ, number of robots N , and
blob radius δ . Therefore, we would like to compare the achieved value
of eδN against its realizable extrema given ρ, N , and δ. Unfortunately, eδN
is a nonlinear and moreover non-convex function of the robot positions
(x1, ..., xN ), and thus its extrema may elude analytical expression. Thus,
we approach this problem with nonlinear programming.

3.1 Extrema Bounds via Nonlinear Programming

Let x = (x1, ..., xN ) represent a vector of N robot coordinates. The
optimization problem, first introduced in the authors’ [1], is

minimize eδN (x1, ..., xN ), (8)

subject to xi ∈ Ω for i ∈ {1, 2, . . . , N}.

Note that the same problem structure can be used to find the maximum
of the error metric by minimizing −eδN . Given ρ, N , and δ, we approach
these problems using a standard nonlinear programming solver, MAT-
LAB’s fmincon.
A limitation of all general nonlinear programming algorithms is that suc-
cessful termination produces only a local minimum, which is not guaran-
teed to be the global minimum. Since there is no obvious formulation of
this problem for which a global solution is guaranteed, we use the local
minimum as an upper bound for the global minimum of the error met-
ric. Heuristics such as multi-start (running the optimization many times
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from several initial guesses and taking the minimum of the local minima)
can be used to make this bound tighter. We use e− to denote the best
local minimum found and e+ to denote the best local maximum found.
The bounds e− and e+ serve as benchmarks against which we can com-
pare a value of the error metric achieved by a given control law. This is
reasonable, because if a configuration of robots with a lower value of the
error metric exists but eludes numerical optimization, it is probably not
a fair standard against which to compare the performance of a general
controller.
Examples of extremal swarm blob functions found using this approach
are shown in Figures 2, 3, and 4.

Fig. 2. Swarm blob function ρδ=2in
N=200 corresponding with the robot distribution that

yields a locally minimal value of the error metric for the ring distribution, 0.28205.
This figure appears in [1] as Figure 1.

Relative Error We introduce the notion of relative error, a quantita-
tive way of assessing the performance of a robot distribution controller.
This notion first appeared in the authors’ [1].

Definition 4. Let eobserved denote the error value of a robot configura-
tion. The relative error is defined as,

erel =
eobserved − e−

e+ − e− . (9)

In order to apply this definition, we need to specify how to find eobserved.
If the robot positions x1, ..., xN produced by a given controller are con-
stant, then eobserved can simply be taken as eδN (x1, ..., xN ). In general,
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Fig. 3. Swarm blob function ρδ=2.5in
N=178 corresponding with the robot distribution that

yields a locally minimal value of the error metric for the ripple distribution, 0.06376.

however, the positions x1, ..., xN may change over time, and it is natural
to define eobserved based on the steady state value of eδN . We suggest
defining the steady state settling time ts to be the time at which the
error has settled to within 2% of its asymptotic value. Then, we propose
taking eobserved to be the third-quartile value observed for t > ts, which
we denote eQ3.

We suggest that if erel is less than 10%, the performance of the controller
is quite close to the best possible, and if this ratio is 30% or higher, the
performance of the controller is rather poor.

We summarize the procedure described in this section:

– Step 1: Given ρ, N and δ, compute e− and e+.

– Step 2: Compute eobserved for the desired swarm controller. That is,

• Step 2.a: Calculate eδN (t) from robot trajectories x1(t), ..., xN (t)
produced by the controller.

• Step 2.b: Find the steady state settling time ts.
• Step 2.c: Measure the third quartile value of the error metric
eQ3 for t > ts. This is eobserved.

– Step 3: Evaluate erel according to Definition 4.

We emphasize that e− and e+ are independent of the particular con-
troller; therefore, Step 1 has to be completed only once when comparing
different controllers or different outcomes of running one controller.

Example We apply this method to assess the performance of the con-
troller in [25], which guides a swarm of N = 200 robots with δ = 2in (the
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Fig. 4. Swarm blob function ρδ=2in
N=200 corresponding with the robot distribution that

yields a locally maximal value of the error metric for the ring distribution, 1.9867. This
occurs when all robots coincide outside the ring. This figure appears in [1] as Figure 2.

physical radius of the robots) to achieve the ring distribution from Defi-
nition 2. These calculations were originally performed in the authors’ [1].
Step 1: Compute e− and e+. To determine an upper bound on
the global minimum of the error metric, we computed 50 local minima
of the error metric starting with random initial guesses, then took the
lowest of these to be e− = 0.28205. An equivalent procedure bounds
the global maximum as e+ = 1.9867, produced when all robot positions
coincide near a corner of the domain. The corresponding swarm blob
functions are depicted in Figures 2 and 4. Note that the minimum of
the error metric is significantly higher than zero for this finite number
of robots of nonzero radius, emphasizing the importance of performing
this benchmark calculation rather than using zero as a reference.
Step 2: Find eobserved. Under the stochastic control law of [25], the
behavior of the error metric over time appears to be a noisy decaying
exponential. Therefore, we fit to the data shown in Figure 7 of [25] a
function of the form f(t) = α + β exp(− t

τ
) by finding error asymptote

α, error range β, and time constant τ that minimize the sum of squares
of residuals between f(t) and the data. By convention, the steady state
settling time is taken to be ts = 4τ , which can be interpreted as the time
at which the error has settled to within 2% of its asymptotic value [3].
The third quartile value of the error metric for t > ts is eQ3 = 0.5157.
Step 3: Find erel. Using these values for eQ3, e−, and e+, we calculate
erel according to Equation 9 as 13.71%.

Remark 1. Although the sentiment of the erel benchmark is found in [25],
we have formalized the calculation and made three important improve-
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ments to make it suitable for general use. First, we have placed the
calculation of e− and e+ into a framework appropriate for nonlinear
programming, so that the calculation is objective and repeatable. On
the other hand, in [25], values analogous to e− and e+ were found by
“manual placement” of robots. Second, we suggest a general way of eval-
uating error in time-dependent controllers. In particular, although [25]
refers to steady state, a definition is not suggested there. Adopting the
2% settling time convention allows for an unambiguous calculation of
eQ3 and other steady state error metric statistics. It also provides a met-
ric for assessing the speed with which the control law effects the desired
distribution. Finally, we suggest using the third quartile value eQ3 in
the calculation, in contrast to the minimum observed value of the error
metric used in [25]. Since eQ3 better represents the distribution of error
metric values achieved by a controller, our notion of relative error is more
representative of the controller’s overall performance.
These changes account for the difference between our calculated value
of erel = 13.71% and the report in [25] that the error is “7.2% of the
range between the minimum error value. . . and maximum error value”.
Our substantially higher value of erel indicates that the performance of
this controller is not very close the best possible. We emphasize this to
motivate the need for our second benchmark in Section 4, which may be
more appropriate for a stochastic controller like the one presented in [25].

3.2 Error Metric for Optimal Swarm Design

So far we have taken N and δ to be fixed; we have assumed that the
robotic agents and size of the swarm have already been chosen. Now, we
briefly consider the use of the error metric as an objective function for
the design of a swarm. Adding δ > 0 as a decision variable to (8) yields
the minimization problem,

minimize eδN (x1, ..., xN ), (10)

subject to xi ∈ Ω for i ∈ {1, 2, . . . , N}, δ > 0.

Solving (10) for several fixed values of N provides insight into the number
of robots and what effective working radius are needed to achieve a given
level of coverage for a particular target distribution. Visualizations of
such calculations are provided in Figure 5 and 6, and Figure 7 shows the
optimal value of δ as a function of swarm size.
Note that “breakthroughs”, or relatively rapid decreases in the error
metric, can occur once a critical number of robots is available; these
correspond with a qualitative change in the distribution of robots. For
example, at N = 22 in Figure 5 the robots are arranged in a single ring;
beginning with N = 25 we see the robots start to be arranged in two
separate concentric rings of different radii and the error metric begins to
drop sharply. On a related note, there are also “lulls” in which increasing
the number of robots has little effect on the minimum value of the error
metric, such as between N = 44 and N = 79. We leave for future work
the task of finding a theoretical explanation for these breakthroughs and
lulls. In the meantime, computations like these can help a swarm designer
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Fig. 5. Swarm blob functions ρδN corresponding with the robot distributions and values
of δ that yield the minimum value of the error metric for the ring distribution target.
These plots appear in Figure 3 of [1]. Inset graph shows the relationship between N and
the minimum value of the error metric observed from repeated numerical optimization.
For N < 256, the initial guess provided to the optimizer had robots uniformly randomly
distributed within the domain. For N = 256 in [1], such a guess resulted in local
minima with error values greater than those for smaller swarms, inconsistent with
the intuitive notion that a larger swarm should be able to more accurately achieve the
target distribution. To remedy this here, the initial guesses for N = 256 and higher (not
shown) were taken with all robots between the inner and outer radius of the ring (i.e.
within the region Γ from Definition 2). With these the plot decreases monotonically
for all values of N tested (including 300, 350, 400, 450, and 500), but progress appears
slow beyond N = 256; doubling the number of robots decreases the error metric by
only 10%.
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Fig. 6. Swarm blob functions ρδN corresponding with the robot distributions and values
of δ that yield the minimum value of the error metric for the ripple distribution target.
Inset graph shows the relationship between N and the minimum value of the error
metric observed from repeated numerical optimization.

determine the best number of robots N and effective radius of each δ to
achieve the required coverage.

4 ERROR METRIC PROBABILITY
DENSITY FUNCTION

In the previous section, we described how to find bounds on the minimum
and maximum values for error and use these as benchmarks against which
to measure the performance of a given control law. However, stochastic
control laws may tend to produce robot positions with observed error
eobserved well above the minimum e−. For these controllers, erel may be
too stringent of a measure for assessing whether the controller’s perfor-
mance is “good” or “bad”, and so we propose an alternative.
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Fig. 7. Optimal blob radius δ to minimize error eδN along with best fit lines (log-
log scale). Note that for both target distributions the optimal blob radius seems to
scale with Np where p ≈ −0.4. This relationship may be useful for approximating
the effective radius of robot sensing/manipulation capabilities in order to maximize
effectiveness for a given swarm size.

According to the setup of our problem, the goal of any control law is
for the robots to achieve the desired distribution ρ. Thus, it is natural
to compare the outcome of a given control law to simply picking the
robot positions at random from the target distribution ρ. We take the
robots’ positions X1, . . . , XN , to be independent, identically distributed
bivariate random vectors in Ω ⊂ R2 with probability density function ρ.
We place a blob of shape K at each of the Xi (previously we took K to
be the Gaussian G), so that the swarm blob function is,

ρδN (z) =
1

N

N∑
i=1

Kδ (z −Xi) , (11)

where Kδ is defined by (1). Equation (11) appears in the authors’ [1].
We point out that the right-hand sides of (11) and (3) agree upon taking
K to be the Gaussian G in (11) and the robot locations xi to be the
randomly selected Xi in (3). Moreover, we have the relationship,

ρδN = Kδ ∗

(
1

N

N∑
i=1

δXi

)
, (12)

where ∗ denotes convolution. This equality is the reason (4) holds.
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In this context, the error eδN is a random variable, the value of which
depends on the particular realization of the robot positions X1, . . . ,
XN , and thus has a well-defined probability density function (PDF) and
cumulative distribution function (CDF). We denote the PDF and CDF
by feδ

N
and Feδ

N
, respectively. The performance of a stochastic robot

distribution controller can be quantitatively assessed by calculating the
error values it produces in steady state and comparing their distribution
to feδ

N
. We introduce this benchmark in Subsection 4.4.

4.1 Kernel Density Estimation

The approach we take in this section is closely linked to the statistical
theory of kernel density estimation (KDE). For an overview, see, for
example, the book [32]. Broadly, the aim of this area of study is to find the
underlying density ρ from the values of identically distributed random
variables sampled from this density. The expression (11) is the so-called
kernel density estimator of ρ, and ρδN is considered as an approximation
to ρ. In a sense, this is the reverse point of view from the one we take,
since we are given ρ and seek to learn about the distribution of the Xis.
Nevertheless, we are able to apply ideas from this well-developed field of
study to our context.
There are many notions of error that are used in the context of KDE.
We refer the reader to [39, Chapter 2] for a summary. Our notion eδN
corresponds to integrated absolute error (IAE). The use of IAE instead
of other notions, particularly ones involving the L2 norm, was advocated
for in [15].
We conclude this subsection by applying two results from KDE theory to
ideas we’ve presented so far. Then, in Subsection 4.2 we present rigorous
results that show that the error metric has an approximately normal dis-
tribution when the Xi are sampled from ρ. As a corollary we obtain that
the limit of this error is zero as N approaches infinity and δ approaches
0. Subsections 4.3 and 4.4 include a numerical demonstration of these
results.
The theoretical results presented in the next subsection not only support
our numerical findings, but they also allow for faster computation. In-
deed, if one did not already know that the error when robots are sampled
randomly from ρ has a normal distribution for large N , tremendous com-
putation may be needed to get an accurate estimate of this probability
density function. On the other hand, since the results we present prove
that the error metric has a normal distribution for large N , we need only
fit a Gaussian function to the results of relatively little computation.
In Subsection 4.4 we present an example calculation demonstrating the
utility of this approach.

Optimal δ(N) In Subsection 3.2, we included δ as a parameter in the
optimization problem (8) and numerically obtained an estimate for the
optimal δ given a swarm size N . This problem has also been studied in
the context of KDE. In [33] it was found that the optimal choice is,

δ∗(N) = CN−1/6,
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where C is a constant that does not depend on N . This is equation
(2.3) of [33] in the 2-dimensional case. Here, “optimal” means that this
choice of δ minimizes the expectation of the L1 error between ρ and ρδN .
This result holds under the hypotheses that K satisfies (13) and ρ has
bounded second derivatives.
We remark that the optimal δ(N) minimizing (10) that was found in Sub-
section 3.2 and shown in Figure 7 scales withNp where p ≈ −0.4 6= −1/6.
Despite the difference in exponent, these computations do not contradict
the results of [33] as the latter considers the radius δ that minimizes the
expected error value, and hence takes into account robot positions that
are not optimal. On the other hand, the values of δ(N) computed in Sub-
section 3.2 are optimal only in concert with the optimal robot positions.
The contrast between the two situations suggests that for the design of
a swarm as described in Subsection 3.2, the sensing/manipulation radius
required to maximize coverage may depend on whether the controller is
stochastic or deterministic.

Choice of K In the context of KDE, there is a notion of how efficient a
given kernel K is. This notion is formulated in terms of L2 error between
ρ and ρδN , and therefore the precise details do not directly apply to our
situation. However, we point out that it is known [39, Section 2.7] that,
so long as the kernel K is non-negative, has integral 1, and satisfies∫

zK(z) dz = 0,

∫
z2K(z) dz <∞, (13)

then the particular choice of K has only a marginal effect on efficiency.
We leave to future work the extension of this concept to our context.

4.2 Theoretical Central Limit Theorem

It turns out that, under appropriate hypotheses, the L1 error between ρ
and ρδN has a normal distribution with mean and variance that approach
zero as N approaches infinity. In other words, a central limit theorem
holds for the error. The first such result was obtained in [15] in the one-
dimensional case. Previously, similar results, such as those in [5], were
available only for L2 notions of error, which are easier to analyze.
For any result of central limit theorem type to hold, δ and N have to be
compatible. Thus, for the remainder of this subsection δ will depend on
N , and we display this as δ(N). We have,

Theorem 1. Suppose ρ is twice continuously differentiable, and K is
zero outside of some bounded region and radially symmetric. Then, for
δ(N) satisfying

δ(N) = O(N−1/6) and lim
N→∞

δ(N)N1/4 =∞, (14)

we have

e
δ(N)
N ≈ N

(
e(N)

N1/2
,
σ(N)2δ(N)2

N

)
,
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where σ2(N) and e(N) are deterministic quantities that are bounded uni-
formly in N .12

From Theorem 1 it is easy to deduce:

Corollary 1. Under the hypotheses of Theorem 1, the error e
δ(N)
N con-

verges in distribution to zero as N →∞.

Corollary 1, Theorem 1, and the proof of Theorem 1 (which follows
from [22, Theorem, page 1935]) appear in the authors’ [1].

Remark 2. There are a few ways in which practical situations may not
align perfectly with the assumptions of Theorem 1. However, we posit
that in all of these cases, the differences are numerically insignificant.
Moreover, we believe that a stronger version of Theorem 1 may hold,
one which applies in our situation. We now briefly summarize these three
discrepancies and indicate how to resolve them.
First, we defined our density ρδN by (2), but in this section we use a
version with denominator N . However, as explained above, the two ex-
pressions approach each other for small δ, and this is the situation we
are interested in here. We believe that the result of Theorem 1 should
hold with (2) instead of (11).
Second, in one of the two examples we consider here, the desired density
ρ is only piecewise continuous but not twice differentiable. We point out
that an arbitrary density ρ may be approximated to arbitrary precision
by a smoothed out version, for example by convolution with a mollifier (a
standard reference is [7, Section 4.4]). Moreover, the main results of [19]
give a version of Theorem 1 that require that ρ is only Lebesgue measur-
able (piecewise continuous functions satisfy this hypothesis). However,
the results of [19] only apply in 1 dimension. Generalizing the results
of [19] to several spatial dimensions is an interesting open problem in
KDE, but is beyond the scope of our work here.
Third, in our computations we use the kernel G, which is not compactly
supported, for the sake of simplicity. Similarly, this kernel can be ap-
proximated, with arbitrary accuracy, by a compactly supported version.
Making these changes to the kernel or target density would not affect
the conclusions of numerical results.

4.3 Numerical Approximation of the Error Metric PDF

In this subsection we describe how to numerically find feδ
N

and Feδ
N

.

According to Theorem 1, for sufficiently large N , one could simply use
random sampling to estimate the mean and standard deviation, then
take these as the parameters of the normal PDF and CDF. However,
for moderate N , we choose to begin by estimating the entire CDF and
confirming that it is approximately normal. To this end, we apply:

12 Here N (µ, σ2) denotes the normal random variable of mean µ and variance σ2, and
we use the notation ≈ to mean that the difference of the quantity on the left-hand
side and on the right-hand side converges to zero in the sense of distributions as
N →∞.
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Proposition 2. We have,

Feδ
N

(z) =

∫
ΩN

1{x|eδ
N

(x)≤z}

N∏
i=1

ρ(xi)dx. (15)

Here 1 denotes the indicator function. Proposition 2 and its proof appear
in the authors’ [1].
Notice that, since each of the xi is itself a 2-dimensional vector as the
Xi are random points in the plane, the integral defining the cumulative
distribution function of the error metric is of dimension 2N . Finding an-
alytical representations for the CDF quickly becomes infeasible for large
swarms. Therefore, we approximate (15) using Monte Carlo integration,
which is well-suited for high-dimensional integration [35]13. Next, we fit
a Gauss error function (erf(·), the integral of a Gaussian G) to the data.
If the fitted curve matches the data well, we differentiate to obtain the
PDF. We remark that we express the integral in (15) in terms of an
indicator function in order to express the quantity of interest in a way
that is easily approximated with Monte Carlo integration.

Computation We apply Proposition 2 to numerically find the PDF
feδ
N

and the CDF Feδ
N

for ρ = ρring (see Definition 2), N = 200, and

δ = 2in.
We approximate Feδ

N
using M = 1000 Monte Carlo evaluation points;

this is shown by a solid gray line in Figure 8. The numerical approxi-
mation appears to closely match a Gauss error function as theory pre-
dicts. Therefore an analytical erf(·) curve, represented by the dashed
line, is fit to the data using MATLAB’s least squares curve fitting rou-
tine lsqcurvefit. To obtain feδ

N
, the analytical curve fit for Feδ

N
is

differentiated, and the result is also shown in Figure 8.
In addition, we calculate the mean and standard deviation of eδN to be,
respectively, 0.4933 and 0.02484.

4.4 Benchmark for Stochastic Controllers

In this subsection we describe how to use the tools developed so far
to assess the performance of a given stochastic controller for a given
desired distribution ρ, number of robots N , and blob radius δ. We then
demonstrate the method via an example.
We propose using two standard statistical tests, the two-sample t- and
F- tests [27], to assess whether the performance of the control law is
comparable to sampling robot positions from the target distribution.
More precisely, these tests provide criteria for the rejection of the null
hypothesis that the mean and variance of the steady state values of the

13 Quasi-Monte Carlo techniques, which use a low-discrepancy sequence rather than
truly random evaluation points, promise somewhat faster convergence but require
considerably greater effort to implement. The difficulty is in generating a low-
discrepancy sequence from the desired distribution, which is possible using the
Hlawka-Mück method, but computationally expensive [21].
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Fig. 8. The CDF of the error metric when robot positions are sampled from ρ is
approximated by Monte Carlo integration, an erf(·) curve fit matches closely, and the
PDF is taken as the derivative of the fitted erf(·). This figure appears as Figure 4 in
the authors’ [1].

error metric produced by a given control law are indistinguishable from
mean and variance of feδ

N
. This is summarized in the following procedure,

which assumes that feδ
N

is approximately normal. This assumption is

reasonable due to Theorem 1.

– Step 1: Numerically find the mean and variance of feδ
N

using either

of the methods described in Subsection 4.3.
– Step 2: Find the mean and variance of the steady state error metric

values produced by the controller.
– Step 3: Perform two-sample t- and F-tests to compare the means

and variances, respectively.
– Step 4: Assess the results.
• Step 4.a: If the tests fail to refute the null hypotheses, the per-

formance of the controller is consistent with sampling robot po-
sitions from the target distribution.

• Step 4.b: If the two-sample t-test suggests that the means are sig-
nificantly different, find the 95% confidence interval of their dif-
ference to assess the magnitude of the controller’s performance
surplus or deficiency.

Just as for the benchmark erel defined in Section 3, the first step is
independent of choice of controller. Thus, if the goal is to compare several
controllers, the computations of Step 1 need to be performed only once.

Example We apply this method to assess the performance of the con-
troller in [25], where the desired distribution is ρ = ρring (see Definition
2), there are N = 200 robots, and the radius is δ = 2in. These calcula-
tions were originally performed in the authors’ [1].
Step 1, the computation of the mean and variance of eδN when robot
positions are sampled at random from ρring, was completed in Subsection
4.3. For Step 2, we use the data presented as Figure 7 of [25] to calculate
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that the distribution of steady state error metric values produced by their
controller has a mean of 0.5026 with a standard deviation of 0.02586.
These values are summarized in Table 1.

Table 1. Summary of mean and standard deviation of error metric values for the
example in Subsection 4.4.

Mean Standard deviation

positions sampled from ρring 0.4933 0.02484

steady state error values 0.5026 0.02586

Next we perform the two-sample F-test and two-sample t-test. We take
the null hypothesis to be that the distribution of these error metric values
is the same as feδ

N
. The results are summarized in Table 2.

Table 2. Summary of statistical tests for the example in Subsection 4.4.

F-statistic 1.0831

t-statistic 8.5888

The F-statistic of 1.0831 fails to refute the null hypothesis, indicating
that there is no significant difference in the standard deviations. On
the other hand, a two-sample t-test rejects the null hypothesis with a t-
statistic of 8.5888, indicating that the steady state error is not distributed
with the same population mean as feδ

N
. Nonetheless, the 95% confidence

interval for the true difference between population means is computed
to be merely (0.00717, 0.01141). This shows that the mean steady state
error achieved by this controller is unlikely to exceed that of feδ

N
by more

than 2.31%. Therefore, we find the performance of the controller in [25]
to be acceptable given its stochastic nature, as the error metric values
it realizes are only slightly different from those produced by sampling
robot positions from the target distribution.

Remark 3. As with erel of Section 3, the sentiment of this benchmark is
preceded by [25]. However, here we have presented a concrete, repeat-
able, and objective approach that makes this benchmark suitable for
general use. In particular, we have introduced into this context the use
of appropriate statistical tests for comparing two approximately normal
distributions. On the other hand, [25] relies on visual inspection, noting,
“the error values [from simulation] mostly lie between . . . the 25th and
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75th percentile error values when robot configurations are randomly sam-
pled from the target distribution”. The fact that feδ

N
is approximately

Gaussian (according to Theorem 1) not only allows for the use of these
statistical tests, but also provides a way to greatly speed up computa-
tion. Indeed, the calculations in [25]14 took two orders of magnitude more
computation than we perform in Subsection 4.3.

5 FUTURE WORK

Several open problems remain regarding the computational and theo-
retical aspects of our proposed performance assessment methods. For
instance, the benchmark calculations scale quickly with the size of the
swarm, and therefore they become unfeasible for a standard personal
computer with swarms on the order of 1000 robots. To extend our pro-
posed methods to larger swarms, computational techniques should be
improved. Possibilities include the derivation of an analytical represen-
tation of the error metric PDF in terms of the target distribution, more
sophisticated optimization algorithms to compute the extrema, and al-
ternate formulations of the optimization problem that reduce the number
of variables or introduce guarantees on the global optimality of a result-
ing solution. As for theoretical extensions, analysis of the shape and
size of the robot blob function, as well as a rigorous understanding of
the optimal radius, are intriguing topics for further study. Specifically,
if a certain control law were characterized as “good” with one choice
of blob function, would the same conclusion be reached with a different
blob function? These questions were raised by the authors’ [1], and here
we provide possible routes to answering them, as well as connections to
known results in the theory (see Subsection 4.1).

6 CONCLUSION

This work deals with the performance assessment of spatial density con-
trol of robotic swarms. We introduce a sensitive error metric and two
corresponding benchmarks, one based on the realizable extrema of the
error metric and one based on its probability density function, which
provide methods for evaluating the performance of control algorithms.
The parameters of the error metric correspond to physical properties
such as robot shape and size, and can therefore be tailored to the partic-
ular system under study. The benchmark calculations then provide refer-
ence points to which the performance of different control schemes can be
compared. The error metric and these benchmarks were first carefully
defined in the authors’ [1]; here, we have made these definitions more
transparent, and, in Subsections 3.1 and 4.4, we have added step-by-
step methods for performing the relevant computations. This will allow
swarm designers and practitioners to more easily use these benchmarks

14 According to the caption of Figure 2 of [25], the figure was generated as a histogram
from 100,000 Monte Carlo samples.
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to quantitatively decide which control scheme best fits their application.
As demonstrated by the examples, including the new example featured
in Subsections 3.1 and 3.2, these evaluation methods work well for a va-
riety of target distributions and can be applied to judge the performance
of both deterministic and stochastic control algorithms.
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15. Devroye, L., Győrfi, L.: Nonparametric density estimation: the L1

view. Wiley (1985)
16. Elamvazhuthi, K., Adams, C., Berman, S.: Coverage and field es-

timation on bounded domains by diffusive swarms. In: Decision
and Control (CDC), 2016 IEEE 55th Conference on, pp. 2867–2874.
IEEE (2016)

17. Elamvazhuthi, K., Berman, S.: Optimal control of stochastic cover-
age strategies for robotic swarms. In: Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pp. 1822–1829.
IEEE (2015)

18. Eren, U., Akmee, B.: Velocity field generation for density con-
trol of swarms using heat equation and smoothing kernels. IFAC-
PapersOnLine 50(1), 9405 – 9411 (2017). DOI https://doi.org/10.
1016/j.ifacol.2017.08.1454. 20th IFAC World Congress
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