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In this thesis we consider the solution of inverse problems, especially the components of a nu-

merical inversion, and detection of forward operator error by the use of an extension optimal

transport that accepts unnormalized arguments. We improve the inversion in [42] in both

speed and quality of reconstruction and motivated by the desire to improve reconstruction

on experimental data we propose a method for fixing forward operator error. We introduce

a new tool called the structure, based on the Wasserstein distance, and propose the use of

this to diagnose and remedy forward operator error. Finally we extend the work of [5] and

develop an Unnormalized Wasserstein distance measures the distance between two functions

of possibly different integral.
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CHAPTER 1

Introduction and Overview

Inverse problems are some of the most well studies subdisciplines of applied math. The core

of every inverse problem is to recover the state of some physical quantity or system given

observable measurements of that system. Such problems are encountered by physicists doing

X-ray crystallography, doctors who take CT scans or oil firms that search for oil underground.

The operation that takes as input the state of the system and produces a measurements is

called the forward operator and it is this operator whose inversion is required. Often the

forward operator does not have a direct inverse or else said inverse if not (feasibly) computable

or is otherwise not useful. These problems are often overcome by finding and approximate

inverse that exhibits desirable mathematical properties.

Given a discrete forward operator L · Rn → Rm, a noise contaminated measurement

b+ η ∈ Rm the task is to recover an approximate reconstruction ũ ∈ Rn. One way to do this

is to solve for

ũ = argmin
v∈Rn

‖L(v)− (b+ η)‖2 + Φ(v) (1.1)

where Φ: Rn → Rm is some regularizer chosen so that when v exhibits undesirable properties

(perhaps e.g. large norm, sharp corners or large support) Φ(v) is large. This work begins

with the solution of Eq. 1.1 for the specific problem of Tokamak imaging, specifically the

efficient solution of the system and choice of regularizer.

We investigate consider Eq. 1.1 when the forward operator may not be given accurately.

We introduce a new tool called the structure, based on the Wasserstein-1 distance, and

propose the use of this to diagnose and remedy forward operator error. Computing the

structure turns out to use an easy calculation for a Euclidean homogeneous degree one
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distance, the Earth Mover’s Distance, based on recently developed algorithms. The structure

is proven to distinguish between noise and signals in the residual and gives a plan to help

recover the true direct operator in some interesting cases. We expect to use this technique

not only to diagnose the error, but also to correct it, which we do in some simple cases

presented below.

Finally we take this work and propose an extension of the computational fluid mechan-

ics approach to the Monge-Kantorovich mass transfer problem, which was developed by

Benamou-Brenier in [5]. Our extension allows optimal transfer of unnormalized and unequal

masses. We obtain a one-parameter family of simple modifications of the formulation in

[5]. This leads us to a new Monge-Ampére type equation and a new Kantorovich duality

formula. These can be solved efficiently by, for example, the Chambolle-Pock primal-dual

algorithm [8]. This solution to the extended mass transfer problem gives us a simple metric

for computing the distance between two unnormalized densities.

1.1 The GSVD and Tokamak imaging

The purpose of this project was to improve upon the work on done in [42]. In broad terms,

the task was to find a way to improve the quality of reconstruction of an inverse problem

in Tokamak imaging. Specifically to reconstruct a three dimensional plasma bulk using two

dimensional measurements from a pin-hole camera. On its surface this problem is at least

difficult or perhaps intractable because one has to reconstruct the three dimensional bulk

using a two dimensional measurement. This problem is saved by the physical symmetry of

the plasma bulk within the Tokamak. In accordance with plasma physics, one can deduce

that the bulk is symmetric along magnetic field lines. This implies that the bulk is uniquely

determined from a set of unknowns living on a two dimensional manifold. Therefore, the

original problem is indeed tractable.

For this problem the forward operator has two components. The first is derived from the

geometry and optics of the measurement apparatus. The other is given by the assumption

that plasma is symmetric about prescribed magnetic field lines. We did not work on the
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construction of the forward operator, my task was to treat this operator opaquely and

improve reconstruction of this problem by applying different regularizations.

We found that we were able to improve both the quality of the reconstruction by a fair

bit, and the speed of the reconstruction by an extremely large amount (a factor of over

100 times). Further we rediscovered a number of useful properties about the Generalized

Singular Value Decomposition (GSVD) and also discovered a new role for it in non-linear

regularization. We improved the quality of reconstruction by changing the regularizer. We

replaced a Laplacian regularizer with Dirichlet boundary conditions with one with both

Dirichlet and Neumann boundary conditions. The speed improvement came from respecting

the sparsity of the forward operator and regularizer. The previous state-of-the-art method

used the GSVD to take a dense factorization of a sparse linear system to solve said system.

We replaced this factorization with an iterative procedure to solve said system. This alone

speeds up the reconstruction by a factor of over 100 times. The reconstruction speed and

quality results are several steps ahead of the previous state-of-the-art however they are as

of yet unpublished. In Chapter 2, we describe all of the particulars of the problem and

my improvements. Furthermore we, explain how the GSVD can be used to great effect in

modern inverse problems.

During the course of solving this Tokamak problem we discovered that the main thing

that was standing in the way of great experimental reconstruction was forward operator

error. We discovered that the experimentalists had mismodeled their forward operator! If

there is even a modest error in the forward operator, then even the most powerful inverse

procedures falter. This problem occurs not only in Tokamak imaging but any kind of inverse

problems that are prone to miscalibration or other kinds of mismodeling. This realization

led me to shift my focus from solving specific inverse problems to trying to devise a scheme

that could be used to diagnose forward operator error.
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1.2 Optimal Transport and Inverse Problems

Suppose that one is solving an inverse problem where the forward operator present in the

measurement is unknown, but one has a parameterization of candidate forward operators

{Lθ}θ∈Θ for some parameter set Θ. For a given model (i.e. choice of θ ∈ Θ) the reconstruction

is given as the solution to the variational problem

ũθ = L̃−1
θ b ≡ argmin

v
‖Lθv − b‖2

2 + Φ(v) (1.2)

where Lθ̂u = b where u is the ground truth, and some regularizing functional Φ. For almost

all inverse problems there is some noise in the measurement, so typically b+η is given where

η is some corrupting noise. In that case, the problem becomes

ũθ,η = L̃−1
θ (b+ η) ≡ argmin

v
‖Lθv − b− η‖2

2 + Φ(v). (1.3)

We denote the residual in the reconstruction as

rθ,η = (b+ η)− Lθ(ũθ,η). (1.4)

In Chapter 3 we show that the residual is made up of two distinct components. The first

is due to operator error (i.e. a mismatch between θ and θ̂) and the second is due to noise and

regularization. Chapter 3 details the development of a functional that we call the structure

and its implications for forward operator error detection. The structure is defined as

struc [f ] = EMD
(

max
(
f −

∫
fdx, 0

)
,max

(∫
fdx− f, 0

))
(1.5)

where the Earth Mover’s Distance (a.k.a. Wasserstein-1 distance) is defined as

4



EMD(ρ1, ρ2) = min
m

∫
Ω
‖m(x)‖2 dx,

subject to: ∇ ·m(x) + ρ2(x)− ρ1(x) = 0,

m(x) · n(x) = 0 ∀x ∈ ∂Ω

(1.6)

when
∫
ρ0dx =

∫
ρ1dx. The structure satisfies many theoretically important properties, the

most important of which are

1. The structure of i.i.d. discrete noise is asymptotically small

2. The structure of a non-constant piecewise continuous function (of note, smooth arti-

facts introduced through forward operator mismatch) is not small, and is asymptoti-

cally bounded away from zero.

These two facts together with the observation concerning the two components of the

residual of an inverse problem suggest that the structure could be a useful tool for measuring

only the part of the residual that comes from mismodeling the forward operator. Therefore,

it is reasonable to expect that the structure of the residual of an inverse problem can be used

as a proxy for the correctness of a forward operator. In other words that

θ̂ ≈ argmin
θ∈Θ

struc [rθ,η] . (1.7)

Chapter 3 contains the further development of this idea as well as the proofs of all necessary

facts and a battery of numerical experiments to show that this conclusion is numerically valid.

Further, although it is not proven in Chapter 3, it is also true that struc [f ] is differentiable

w.r.t. f .

Through the definition of the structure we have extended the utility of the Wasserstein-1

distance to the unnormalized case when
∫

Ω ρ0dx 6=
∫

Ω ρ1dx and when ρ0(x), ρ1(x) 6≥ 0 for all

x ∈ Ω. That is

W1(ρ0, ρ1) = struc [ρ0 − ρ1] when
∫

Ω
ρ0dx =

∫
Ω
ρ1dx and ρ0, ρ1 ≥ 0. (1.8)

Note that the l.h.s. of Eq. 1.8 is defined even when the constraints are violated. Leveraging

this we define an unbalanced Wasserstein-1 with no constraints in the inputs as
5



UW1(ρ0, ρ1) = struc [ρ0 − ρ1] +
∣∣∣∣∫

Ω
ρ0 − ρ1dx

∣∣∣∣ . (1.9)

We realized that in this way the structure was a nice extension of the Wasserstein-1 distance,

and further a similar trick one could generalize the Wasserstein-p distance in a similar way

to get a similarly natural generalization. Additionally this generalization preserves many

of the desirable theoretical properties of the Wasserstein-p distances including a Lagrange

formulation, a Monge-Ampére equation and Kantorovich duality. Finally this distance can

actually be easily computed as well.

1.3 Unbalanced Wasserstein Distance

Building off of the developments in the [36], we propose an extension of the Wasserstein

distance to an unnormalized case. In the Benamou-Brenier [5] formulation of the W2(ρ0, ρ1)

distance,

W2(ρ0, ρ1) = min
u,m

(∫
Ω

∫ 1

0

‖m‖2
2

µ
dtdx

)1/2

(1.10)

where the minimum is taken w.r.t. all µ and m which satisfy

µt(t, x) +∇ ·m(t, x) = 0, (1.11)

µ(0, x) = ρ0(x), µ(1, x) = ρ1(x) on Ω (1.12)

m · n = 0 on ∂Ω (1.13)

where n is the unit normal vector on ∂Ω. Integrating Eqn. 1.11 in space and time in time

yields

∫
Ω
ρ0dx =

∫
Ω
ρ1dx (1.14)
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and so any choice of µ or m that satisfies the constraints must necessarily conserve mass.

Thus, to extend the W2 distance to be well defined when
∫

Ω ρ0dx 6=
∫

Ω ρ1dx, we must change

the constraint. One natural thing to change is to add another term f on the right side of

1.11 so that it becomes

µt(t, x) +∇ ·m(t, x) = f. (1.15)

For our extension, we choose to add an f such that f = f(t). Finally, we also modify

Eqn. 1.10 to minimize over all f which satisfy the constraint, as well as bias the objective

functional to prefer f which are close to zero. Putting it all together our Unnormalized

Wasserstein-2 distance is

UW2ρ0, ρ1) = min
µ,m,f

(∫
Ω

∫ 1

0

‖m‖2
2

µ
dtdx+ |Ω|

α

∫ 1

0
|f(t)|2

)1/2

(1.16)

where µ,m and f must satisfy

µt(t, x) +∇ ·m(t, x) = f(t), (1.17)

µ(0, x) = ρ0(x), µ(1, x) = ρ1(x) on Ω (1.18)

m · n = 0 on ∂Ω. (1.19)

Let’s note a few things about this extension of the W2 distance.

1. If
∫

Ω ρ0dx =
∫

Ω ρ1dx and µ,m satisfy the constraints in Eqn. 1.11 - 1.13 then µ and m

also satisfy Eqn. 1.17 - 1.19. In other words, when W2(ρ0, ρ1) are defined then

UW2(ρ0, ρ1) ≤ W2(ρ0, ρ1). (1.20)

2. The W2 distance is sometimes motivated with use of the following analogy. A certain

quantity of sand is distributed according to ρ0. The goal is to move the sand to a

7



new configuration ρ1 while doing the minimal possible work, where work is defined

as the sum of sand moved times the distance that it is moved. W2(ρ0, ρ1) is the

minimum amount of work that must be done to move the sand. UW2(ρ0, ρ1) has a

similar physical intuition involving snow. Suppose instead that one wanted to move

snow from one place to another, but with the additional flexibility of the weather. At

any time snow can fall from the sky (i.e. f(t) > 0) uniformly or melt (i.e. f(t) < 0) on

the ground. The question then becomes how could you move about snow if you could

also control the snowfall for a cost.

3. As a function of α, UW2(ρ0, ρ1) is monotone decreasing, and (formally) one can easily

see that for all ρ0, ρ1 ∈ L1(Ω) if
∫

Ω ρ0dx =
∫

Ω ρ1dx then. Further, we have found

numerically that as α → ∞, UW2(ρ0, ρ1) does converge, and converges to a non-zero

value provided that ρ0 − ρ1 is not identically constant.

4. The W2 has a bevy of formulations which make it possible to analyze it from any

number of possible angles. UW2 also has many of those formulations, and thus many

of the theoretical results about the formulations extend to out unbalanced formulation

as well. Examples include a Lagrange formulation, a Monge-Ampére equation and

Kantorovich duality.
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CHAPTER 2

The Generalized Singular Value Decomposition and

Split Bregman

2.1 Introduction

The purpose of this chapter is to expand upon the work described in [42]. In that work,

the authors solve an inverse problem arising in the field of plasma imaging by the use of

Tikhonov regularization. My work is concerned with improving the quality of reconstruction

on that problem by using different regularizers. We find that one can achieve higher quality

reconstructions by using Tikhonov regularization with Laplace regularization with special

boundary conditions. We rediscovered an important application of the Generalized Singular

Value Decomposition (GSVD) when solving both linearly and non-linearly regularized inverse

problems. Specifically we show that when one is solving an inverse problems with a dense

forward operator and dense regularization, the GSVD can be used to quickly solve the

resulting systems. Finally we explain how we were able to increase the speed of reconstruction

in the case of [42] by over a hundredfold by using iterative methods.

2.2 The problem

In [42], the authors analysed the inverse problem which arises from imaging plasma within a

DIII-D Tokamak. The plasma itself occupies a three dimensional volume (called the plasma

bulk) within a toroidal reactor chamber. The bulk is imaged using a pinhole camera. By us-

ing plasma physics one can exploit symmetries of the plasma within the chamber and reduce

the dimension of the problem of computing the entire three dimensional bulk to the problem

9



of a two dimensional cross section. From there, the problem becomes a standard inverse

problem. Given an operator L which represents the projection of the plasma’s emission onto

the pinhole camera s, recover the underlying emission ε subject to

Lu = b (2.1)

L ∈ Rm×n where m > n, and rank(L) < n. In order to solve this problem we must regu-

larize it in some way. The state-of-the-art approach as described in [42] is to use Tikhonov

regularization in order to regularize the minimization problem where the choice of regularizer

is a discrete differential operator C. Wingen et al. minimize the problem

Jw(v) = ‖Lv − b‖2
2 + 1

λ
‖Cv‖2

2 (2.2)

where λ ∈ R+, is a parameter that controls the strength of the regularization and C ∈ Ro×n is

a regularizing matrix. The authors choose C to be a discrete approximation to the Laplacian,

so o = n. The minimizer of Jw(v) is given by the normal equations

(λ2L∗L+ C∗C)v = λL∗b. (2.3)

These are then solved to obtain the actual reconstruction, the minimizer of Eqn. 2.2. One

can use the GSVD (which is defined & described in section 2.4.1) to great effect on this

problem to speed up the inversion. Further, one can also use the GSVD combined with

L-curve theory to choose a value of λ which is optimal. This avoids the difficult process of

manual calibration.

2.3 Non-linear Regularization

Motivated by the ROF model [37] our approach is to regularize J with an L1 type term, so

our functional to minimize becomes
10



JP (v) = ‖Lv − b‖2
2 + 1

λ
‖Cv‖1 (2.4)

The L1 norm is sparsity inducing, and so a minimizer to this problem will produce a v

such that Cv is mostly zero. This in turn may produce desirable effects on the final picture,

such as preserving sharp edges (if C is gradient like) or linear changes changes in v (if C is

Laplacian like).

The cost of this approach is that this minimization problem eq. (2.4) is harder to solve

than eq. (2.2). We also don’t have L-curve theory to guide the choice of λ, the analogous

split Bregman ‘step size’ parameter. Determining a good choice of λ necessitates either good

heuristics or computationally expensive calibration. Later in this report we show how one

can reuse work from run to run via the GSVD, which mitigates the cost of doing many runs

with different values of λ. In order to compute a minimizer of eq. (2.4), we used the split

Bregman method introduced in [20].

2.4 The Generalized Singular Value Decomposition (GSVD)

2.4.1 Definition

Introduced in [33], the GSVD is defined as follows. Given two matrices A ∈ Rm×n, B ∈ Ro×n

such that ker(A) ∩ ker(B) = ∅, then there exists matrices U ∈ Rm×n, V ∈ Ro×n S,C,X ∈

Rn×n such that X is invertable and the following properties hold:

• A = UCXT

• B = V SXT

• UTU = V TV = I

• C =diag(c1, c2, . . . , cn) where 1 ≥ c1 ≥ c2 ≥ · · · ≥ cn ≥ 0

• S =diag(s1, s2, . . . , sn) where 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ 1

11



• STS + CTC = I.

Even if the kernals do not have trivial intersection, one can still define the GSVD

differently so that it exists [3], but for simplicity we use this definition. Requiring that

ker(A) ∩ ker(B) = ∅ is the same as assuming that J(x) = ‖Ax− b‖p + ‖Bx− c‖q is strictly

convex where b ∈ Rm, c ∈ Ro and 1 ≤ p, q <∞.

The authors of [33] point out that the GSVD could be useful for computing a solution of

AB−1x = b where B is square. The utility here is that S is a diagonal matrix, so as long as

B is non-singular, one can solve the AB−1x = UCS−1V ∗x = b without having to actually

invert B directly. Another use of the GSVD which is very useful in our application is that

if one has precomputed the GSVD of a (A,B), then one can solve the system:

(λ2A∗A+B∗B)x = b (2.5)

very quickly, as (λ2A∗A+ B∗B) = X(λ2C2 + S2)X∗. This trick is also useful whenever one

is solving a system of the form

(λ2F +G)x = b (2.6)

provided that F and G are symmetric positive definite by computing the matrix square root

of F and G.

2.4.2 Scaling property

Given that the matrix pair (A,B) has GSVD A = UCXT and B = V SXT , then for any

λ ∈ R > 0 the matrix pair λA,B has a GSVD A = UCλX
T
λ , B = V SλX

T
λ . where

Dλ = diag(
√
s2

1 + λ2c2
1,
√
s2

2 + λ2c2
2, . . . ,

√
s2
n + λ2c2

n) (2.7)

Cλ = λCD−1 (2.8)

Sλ = SD−1 (2.9)

Xλ = DX (2.10)
12



2.5 GSVD and Split Bregman

One can also leverage the GSVD in an interesting way in order to speed up one of the

intermediate steps of split Bregman as the cost of some precomputation. Let A ∈ Rm×n and

B ∈ Ro×n have a GSVD given by A = UCX∗, B = V SX∗ as described in section 2.4.1, then

the solution to the equation:

(λ2A∗A+B∗B)u = b (2.11)

is

u = X−∗(λ2C∗C + S∗S)−1X−1b. (2.12)

In order to implement split Bregman, one has to repeatedly solve

(λ2L∗L+ C∗C)uk+1 = λL∗s+ C∗(dk − bk). (2.13)

. If we apply the observation in eq. (2.12), and expand the left hand side in terms of the

GSVD of (L,C) then we obtain

uk+1 = γ +B(dk − bk) (2.14)

where

γ = λX−∗(λ2C∗C + S∗S)−1CU∗s (2.15)

B = X−∗(λ2C∗C + S∗S)−1SV ∗. (2.16)

Note that for any choice of λ, once can reuse the same GSVD of (L,C) by exploiting the

scaling property of the GSVD in Section 2.4.2

For a given Bregman run γ can always be computed ahead of time at the cost of 2 dense

matrix by vector multiplies (N.B. C and S are diagonal matrices). If one intends to do
13



large number of Bregman iterations, then one can also compute B ahead of time at the cost

of 2 dense matrix by matrix multiplications. If one is doing a small number of Bregman

iterations, then it is probably favorable to avoid computing B ahead of time.

This will also work in solving systems of the form (λF + G)u = b quickly whenever one

can find a way to factor F = A∗A,G = B∗B. This includes cases where F,C are positive

semi-definite using the matrix square root, and also certain differential operators such as the

Laplacian and Biharmonic operators which can be factorized analytically.

Finally, in section section 2.4.2 we state a scaling property of the GSVD which can be

used to derive the GSVD of the matrix pair (λA,B) from the pair (A,B). This fact was

first shown in [23] this fact could potentially be very useful in applications where one must

compute the GSVD of families matrices.

2.6 Results

To generate out results, we used both the observation operator (L) and simulated emission

(u) given to us by the authors of [42]. A plot of the emission is shown in section 2.6. Notice

that the left boundary of the emission is highly irregular. These irregularities preclude one

from using techniques like the FFT that rely on the regularity of the domain.

For all of these numerical experiments, we will use the purely additive noise model. Let

u be the true emission, and b = Lu be the exact measurement by the pinhole camera. The

problem we will be solving is computing ũ given b+ cη where n is white noise and c = ‖b‖2
‖η‖2

.

For the first few plots, we will use a SNR of 10. Below each reconstruction are the weights

used to generate the reconstruction and the errors. For each reconstruction, a rudimentary

search for optimal parameters was done. The L1 error is ‖ũ− u‖1 = 1
dx·dy

∑
i,j |ũi,j−ui,j|, and

the L2 error is ‖ũ− u‖2 = 1
dx·dy

√∑
i,j(ũi,j − ui,j)2 where dx and dy are the distance between

the pixels in the x and y dimension respectively. For all of the following plots, I did exactly

100 Bregman iterations; regardless of convergence.

The below table compares the quality of the reconstruction between the four regularizers.
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Figure 2.1: The simulated data which was use throughout the numerical experiments.

Notice that for large SNRs, using the L1 of the Laplacian or total variation both outperform

the regularizer used in [42]. As the SNR decreases, the difference between the regularizers

decreases. For the true solution, ‖u‖1 = 4.63e+ 01, ‖u‖2 = 5.23e− 01

Regularizer SNR 100 SNR 10 SNR 5.6

L1 error L2 error L1 error L2 error L1 error L2 error

L2 Dirichlet 4.61e+00 9.20e-02 5.91e+00 1.03e-01 8.55e+00 1.20e-01

L2 Mixed 2.17e+00 4.27e-02 3.41e+00 5.18e-02 7.21e+00 9.55e-02

L1 Laplacian 2.00e+00 3.79e-02 3.41e+00 5.01e-02 9.08e+00 1.19e-01

TV 3.22e+00 6.40e-02 4.90e+00 8.47e-02 7.85e+00 1.05e-01

2.7 Failure of GSVD for Sparse Problems

In spite of the useful properties of the GSVD, the GSVD is still not a good fit for problems

that are highly sparse. Like the SVD, the GSVD does not respect sparsity. If A and B is

sparse the various matrices produced by the GSVD are usually not sparse. This presents

two problems for both time and computer memory. Consider the case when we solve
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(a) The reconstruction using Tikhonov reg-

ularization with Dirichlet boundary condi-

tions. This is the technique used in [42].

Notice that the right boundary does not

match very well, especially around the cusp

at (2.1,−0.5).

(b) The difference between the above graph

and the true solution. When λ = 10, L1 error

= 5.91e+ 00, L2 error = 1.03e− 01

(c) The reconstruction using Tikhonov regu-

larization with Mixed boundary conditions.

Using homogeneous Neaumann conditions

on the right side of the boundary resulted

in considerably better reconstruction on that

edge.

(d) The difference between the above graph

and the true solution. When λ = 10, L1 error

= 3.41e+ 00, L2 error = 5.18e− 02

Figure 2.2: Reconstructions with Tikhonov regularization

(A∗A+B∗B)x = b. (2.17)
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(a) The reconstruction using ‖∆u‖1 as a reg-

ularizer where ∆ is the Laplacian with ho-

mogeneous Neaumann boundary conditions

on the right edge, and Dirichlet conditions

everywhere else.

(b) The difference between the above graph

and the true solution. When λ = 21.54 L1

error = 3.41e+ 00, L2 error = 5.01e− 02

(c) The reconstruction using TV(u).

(d) The difference between the above graph

and the true solution. When µ = 46.42 L1

error = 4.90e+ 00, L2 error = 8.47e− 02

Figure 2.3: Reconstructions with L1 regularization

when A∗A+B∗B has 5% non-zero elements.

1. The time that it takes to compute U, V,X,C and S can be orders of magnitude larger

then the cost of solving the system Eq. 2.17 using existing sparse linear solvers. For

example, for a A ∈ R128×128 Line Integral Operator (the construction is discussed in

Section 3.7) where C is the numerical Laplacian solving the system 2.17 using Matlab’s

build in backslash operator takes 3 seconds, whereas computing the GSVD of A and
17



B takes about 20 minutes. A factor of about 300. Therefore, one has to solve a lot of

linear systems before it is worth paying the amortized cost of one GSVD factorization.

2. If A and B are both square, then the computer memory needed to store U, V and X

is 30 times larger. Thus if they are large enough just storing U, V and X can be a real

challenge even if A and B are not too large. In the case of [42] the GSVD occupies

140 times more memory than the forward operator and regularizer alone.

For the Tokamak problem in [42] both the forward operator and the differential regularizer

were sparse, and so I was able to speed up the reconstruction by a factor of over 100 by

replacing the GSVD solve with an iterative solve.

Still, the GSVD is still a useful factorization in the following cases:

1. Either the forward operator or the regularizer is dense. In this case, neither of the above

two considerations apply. An example of this would be when the forward operator or

regularizer is given as an integral equation.

2. When one particular forward operator and regularizer pair is used many times. Even-

tually, the amortized cost of computing one GSVD becomes less than many iterative

solves.

3. The GSVD can not only be used to do an inversion. It can also be used to regularize

‘optimally’ [25]. Thus, the GSVD can still be worth using when finding the optimal

regularization is difficult.
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CHAPTER 3

Diagnosing Forward Operator Error Using Optimal

Transport

3.1 Introduction

3.1.1 Motivation

From medical imaging [2] to petroleum engineering [32] to meteorology [7], inverse problems

are ubiquitous in science, engineering and mathematics. The goal of such problems is to

recover an unknown quantity u given a known forward operator L and measurement b such

that L(u) = b. In this work we consider the case where L is a linear operator and write

L(u) ≡ Lu. While this choice facilitates a simple analysis in some places, the computational

techniques developed here can be extended to consider non-linear operators.

A considerable amount of work has been dedicated to solving inverse problems for a

variety of forward operators, especially when L is linear. Powerful techniques have been

developed that perform well in the presence of noise in b, singularities in L and various

constraints on the solution u [28].

Despite some great successes in the field of inverse problems, there are still mathematical

challenges that are difficult to address. One of these, which is important in a bevy of

applications, is the calibration of forward operators. For example, computed tomography

(CT) machines are calibrated using known phantoms for which the desired reconstruction

is known exactly [39]; in synthetic aperture radar, reflectors provide a known ground truth

on which devices and reconstruction algorithms are tuned [17]; and in some plasma imaging

problems, the forward model has unknown parameters, and the model itself is possibly
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incomplete [42].

Often the calibration problem can be formulated mathematically by considering a family

of forward operators Lθ, parameterized by θ ∈ Θ ⊂ Rp, with a unique θ̂ such that Lθ̂ best

represents the underlying physical system. In other words, there exists a θ̂ such that L = Lθ̂

[15, 42]. If θ̂ is estimated poorly, then an accurate approximation of u is often impossible,

even with very sophisticated inverse procedures.

The problem of detecting forward operator error is similar to that of blind deconvolution

in image processing [9], where the task is to identify a blurring kernel and recover an image

from a given blurry signal. The application of the blurring operator with the image can

also be represented in the form Lu = b where the action of L gives the convolution with

the blurring kernel. One important difference between the calibration problem considered

here and the problem of blind deconvolution is that we will be considering overdetermined

problems. By overdetermined we mean that in the reconstruction process there are more

knowns than unknowns, even if the forward operator has a non-zero nullspace.

3.1.2 Prior Work

Methods for detecting and correcting for errors within the forward operator exist. One

approach is total least squares [22], which generalizes the standard least squares method by

allowing for error in L. This is expressed by the minimization problem

min
v,J
‖L− J‖2

F + ‖b− Jv‖2
2 , (3.1)

where L is the matrix representations of L, b is the vector representation of b, and ‖ · ‖F is

the Frobenius norm.

This approach has the advantage of being relatively easy to analyze, robust under noise in

the entries of L and solvable using standard linear algebra software. However, for calibration

problems, the goal is not to remove entry-wise error in Lθ. Instead we seek a value of θ ≈ θ̂.

Total least squares provides good reconstructions when L is a matrix whose entries are
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corrupted by noise. However it requires modification in order to be applied to the parametric

calibration problem. In particular, adding the requirement J = Lθ for θ ∈ Θ to Eq. 3.1

make the resulting minimization problem more difficult to solve, and so may require code

beyond standard linear algebra software.

Another common approach for calibration is based on Bayesian techniques [27]. In this

setting measured data (possibly noisy) is assumed to be the sum of model output and a

discrepancy function, both of which are modeled as Gaussian processes. We do not go into

details of the Bayesian approach in this paper but intend to make comparisons with the

EMD approach in future work. However, it is worth noting that the results in this paper do

not rely on a Gaussian noise model.

Our work is motivated in part by [11, 12, 43], where the authors use the quadratic

Wasserstein metric to solve Full-Waveform Inversion (FWI) problems. In particular, it is

demonstrated that the quadratic Wasserstein metric, as opposed to the L2 norm, provides

an effective measure of the misfit between given data and computed solution.

3.1.3 Our contribution

In this paper we introduce a new tool, called the structure, that is based on the Earth

Mover’s Distance (EMD) from optimal transport. We show that the structure is sensitive

to modeling errors in L, but insensitive to noise in b. For simple functional forms of Lθ,

we demonstrate that the structure can successfully recover the correct parameter θ̂. The

method can be implemented as a wrapper around existing inverse problem solvers and thus

can be easily integrated into preexisting work flows for solving inverse problems with minimal

modifications to existing code bases. Moreover, due to recent advancements in the calculation

of the EMD [29, 30], the additional cost is reasonable.

Our work extends that of [11, 12, 43] by considering different inverse problems, a more

general noise model, and we use a different Wasserstein metric. See section 3.3.4 for more

detail. We also show that new algorithms for computing the EMD can be combined with

inverse problem solvers to diagnose forward operator error in general inverse problems.
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3.2 Background

3.2.1 Inverse Problems

Let U ⊂ L∞(X) and B ⊂ L∞(Y ) be function spaces defined over bounded rectangular

domains X ⊂ Rdx and Y ⊂ Rdy , respectively. We consider problems which come from the

discretization of the linear equation

Lf = g (3.2)

where f ∈ U , g ∈ B, and L : U → B is a bounded linear operator.

To discretize Eq. 3.2, we assume that for some ∆x > 0 and ∆y > 0, X and Y can be

partitioned into hypercubes Kx and Ky, respectively, of size = ∆xdy and ∆ydy , respectively,

such that X = ∪iKx
i and Y = ∪jKy

j . We then let

U∆x = {f∆x ∈ U : f∆x|Kx is constant for all Kx ⊂ X} (3.3)

B∆y = {g∆y ∈ B : g∆y|Ky is constant for all Ky ⊂ Y }. (3.4)

The discrete version of Eq. 3.2 takes the form

Lu = b, (3.5)

where u ∈ U∆x, b ∈ B∆y, and L : U∆x → B∆y is a bounded linear operator that approximates

L. The exact forms of L, u, and b depend on the discretization. In the appendix, we present

a discretization based on the assumption that L is generated by line integrals over paths

Py ⊂ X that are parameterized by elements y ∈ Y .

Solving Eq. 3.5 directly may not be practical if the condition number of L is large, as

noise in b can be strongly amplified in the inversion process. A variational approach to

address this difficulty is instead to solve

ũ = L̃−1b ≡ argmin
v∈U∆x

‖Lv − b‖2
2 + Φ(v;λ), (3.6)

where Φ: U∆x → R+ is a regularizing functional with parameter λ ∈ R+. If Φ = 0, then Eq.

3.6 gives the least squares solution of Eq. 3.5. Nontrivial examples of Φ (which may require

more regularity than L∞(X)) include
22
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(c) uθ when θ = 2.4 6≈ θ̂

Figure 3.1: Demonstration of the sensitivity in the reconstruction in Eq. 3.6 to errors in

the forward operator. In this example L = Lθ̂ is the ‘academic operator’ from [15], θ is the

parameter R in [15, Table 1], and θ̂ = 2.3. In this problem Tikhonov regularization was used

to define the approximate inverse in Eq. 3.6.

1. Φ(v;λ) = λ ‖Cv‖2
2, where the linear operator C approximates a differential operator

(Generalized Tikhonov regularization);

2. Φ(v;λ) = λTV(()v) (Total Variation regularization [37]);

3. Φ(v;λ) = λ ‖Cv‖1, where C is a transformation to a space in which u is known to be

sparse (Basis Pursuit in Compressed Sensing [20]);

4. a weighted sum of the coefficients in some basis of U (such as a wavelet basis [31, 10]

or singular vectors [25]).

These regularization methods are able to stably invert the operator L, at least approx-

imately in the sense that Lũ = LL̃−1b ≈ b. Moreover, solutions of Eq. 3.6 are able to

mitigate the effect of error within b; that is, even if b is corrupted (e.g. by noise), ũ will be

a reasonable reconstruction. In contrast, a modest error in L will likely result in a terrible

reconstruction, regardless of the choice of Φ. An example of this behavior is given in Fig.

3.1.

For the purposes of this paper, we assume that there exists a family {Lθ}θ∈Θ of forward

operators parameterized by θ ∈ Θ, and a unique θ̂ ∈ Θ such that Lθ̂ = L. Given a

noisy measurement b + η, where η is the noise, and a model parameter θ, the approximate
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reconstruction of u, based on the regularization in Eq. 3.6 with operator Lθ, is given by

ũθ,η = L̃−1
θ (b+ η). (3.7)

where the tilde denotes the solution to a regularized problem of the form in Eq. 3.6 (where

the choice of Φ is understood). This notation will be used throughout the remainder of the

paper.

We define the residual as

rθ,η = (b+ η)− Lũθ,η = (I − LθL̃−1
θ )(b+ η) (3.8)

where I is the identity operator. The residual is the main object that we study to determine

when the parameter θ is poorly chosen.

3.2.2 Earth Mover’s Distance

A key tool in the analysis of forward operator error is the Earth Mover’s Distance. Below

we summarize the presentation in [30].

Definition 1 (Wasserstein Distance). Let Ω ⊂ Rd be convex and compact, and let c : Ω×Ω→

[0,+∞) be a distance. Given two non-negative distributions ρ1 : Ω→ R+, ρ2 : Ω→ R+ such

that
∫

Ω ρ1 =
∫

Ω ρ2. For a given p ∈ N the p’th Wasserstein distance is

Wp(ρ1, ρ2) =
(

min
π≥0

∫
Ω×Ω

c(x(1), x(2))pπ(x(1), x(2))dx(1)dx(2)
)1/p

,

subject to:
∫

Ω
π(x(1), x(2))dx(2) = ρ1(x(1)),∫

Ω
π(x(1), x(2))dx(1) = ρ2(x(2)).

(3.9)

The function c is called the ground metric and each feasible function π is referred to as a

transport plan. In this work we set c(x(1), x(2)) =
∥∥∥x(1) − x(2)

∥∥∥
2
. The Earth Mover’s Distance

we define here is a special case of the Wasserstein distance where p = 1.

Definition 2 (Earth Mover’s Distance). Let Ω ⊂ Rd be convex and compact, and let c : Ω×

Ω→ [0,+∞) be a distance. Given two non-negative distributions ρ1 : Ω→ R+, ρ2 : Ω→ R+

such that
∫

Ω ρ1 =
∫

Ω ρ2. The Earth Mover’s Distance (EMD) between ρ1 and ρ2 is

EMD(ρ1, ρ2) = W1(ρ1, ρ2). (3.10)
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The EMD can also be written in the equivalent form [14]

EMD(ρ1, ρ2) = min
m

∫
Ω
‖m(x)‖2 dx,

subject to: ∇ ·m(x) + ρ2(x)− ρ1(x) = 0,

m(x) · n(x) = 0 ∀x ∈ ∂Ω,

(3.11)

where n(x) is the normal vector at x ∈ ∂Ω. This formulation is the basis for recently

developed algorithms in [29, 30].

3.3 Applying EMD to inverse problems

3.3.1 Residual and operator correctness

In a variational reconstruction procedure, the quality of the fit can be investigated by an

analysis of rθ,η and Φ(ũθ,η). Generally, the larger λ the larger the first term and the smaller

the second and vice-versa. Typically the value of λ is chosen in an attempt to balance these

contributions [24, 25]. However if an incorrect forward operator is used, rθ,η will have an

additional contribution that does not depend on λ.

The characterization above can be made precise in the case of Tikhonov regularization

by introducing a matrix notation and using Generalized Singular Value Decomposition [21,

Chapter 8.7.3]. To this end, let n = dim(U∆x) and m = dim(B∆y), and expand u and b in

terms of characteristic basis functions:

u(x) =
n∑
j=1

ujχKx
j
(x) and b(y) =

m∑
i=1

biχKy
i
(y). (3.12)

Then Eq. 3.5 becomes

Lu = b. (3.13)

where u = (u1, . . . , un), b = (b1, . . . , bm), and L has components

Li,j = 1
∆ydy

∫
Y
χKy

i
LχKx

j
dy. (3.14)

Definition 3 (GSVD). Let A ∈ Rm×n and B ∈ Ro×n be two matrices such that null(A) ∩

null(B) = ∅. The Generalized Singular Value Decomposition (GSVD) of the matrix pair
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(A,B) is given by

A = UΣZT and B = VΓZT , (3.15)

where U ∈ Rm×n and V ∈ Ro×n are semi-orthogonal; Z ∈ Rn×n is invertible; and

Σ = diag(σ1, . . . , σn) ∈ Rn×n and Γ = diag(γ1, . . . , γn) ∈ Rn×n (3.16)

are diagonal matrices such that

1 ≥ σ1 ≥ · · · ≥ σn ≥ 0 and 0 ≤ γ1 ≤ · · · ≤ γn ≤ 1, (3.17)

with Σ2 + Γ2 = I.

Using the GSVD, we obtain the following proposition that is proven in the appendix:

Proposition 1 (Residual with Tikhonov regularization). Suppose Lu = b, where L ∈ Rm×n

and m > n. Let ũθ,η be defined by Eq. 3.7 with Φ(v;λ) = λ ‖Cv‖2
2, where C ∈ Ro×n, and a

noise vector η ∈ Rm whose elements are independent and spherically symmetric—that is, η

and Qη have the same probability distribution function for any orthogonal matrix Q ∈ Rm×m.

Assume that null(Lθ) ∩ null(C) = ∅ so that the GSVD

Lθ = UθΣθZT
θ C = VθΓθZT

θ (3.18)

for the matrix pair (Lθ,C) is well-defined. Then the residual rθ,η associated to ũθ,η satisfies

the bound

‖rθ,η‖2
2 ≤

∥∥∥(I−UθUT
θ )b

∥∥∥2

2
+ ‖(b− Lθu)‖2

2

+ 1
4λ

∥∥∥ZT
θ u
∥∥∥2

2
+
m− n+ Tr(D̂2

θ,λ))
m

E
[
‖η‖2

2

]
. (3.19)

where

D̂θ,λ := λΓ2
θ

Σ2
θ + λΓ2

θ

. (3.20)

This result shows how calibration error can induce O(1) terms (with respect to the

regularization parameter λ) into the residual, the first two terms in Eq. 3.19. The noise that
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is orthogonal to the image of Lθ also induces O(1) terms, even if θ = θ̂. Thus it is important

to develop tools that can differentiate between these two contributions. For completeness,

one should also consider regularization with more general forms of Φ. Unfortunately in many

situations, the operator L̃−1
θ is nonlinear, and a rigorous analysis in this vein is much more

difficult.

3.3.2 Introduction to the structure

We introduce a mathematical tool to detect contributions to rθ,η that are due to errors in

the operator L, i.e., when θ 6= θ̂, and is insensitive to noise in the residual. This tool, which

we call the structure, is a functional built using the Earth Mover’s Distance (EMD).

Definition 4 (Structure). For any f ∈ L1(Ω), the structure of f is

struc [f ] = EMD(f+, f−), (3.21)

where

f+(x) = max(f(x)− µ, 0) and f−(x) = max(µ− f(x), 0) (3.22)

and µ = 1
‖Ω‖

∫
Ω f(x)dx.

The following proposition is proven in the appendix.

Proposition 2 (Basic Properties of Structure). The operator struc [·] satisfies the following

properties:

1. it is a semi-norm on L1(Ω);

2. for all g ∈ L1(Ω) and c ∈ R,

struc [g] = struc [g + c] ; (3.23)

3. struc [c] = 0 for any constant c ∈ R;
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4. if ρ1 : Ω→ R+, ρ2 : Ω→ R+ and
∫

Ω ρ1 =
∫

Ω ρ2,

struc [ρ2 − ρ1] = EMD(ρ1, ρ2). (3.24)

Using struc [·] is a good strategy for detecting operator error for several reasons:

• The struc [·] is small when applied to piecewise noise and large when applied to a (non-

constant) smooth function. (Rigorous statements this effect are made in Section 3.3.3

below). Thus struc [rθ,η] will be small when the forward operator is correct and large

when it is not. Although the struc [·] of a constant is zero, any such contribution to

the residual can be discerned by applying a standard norm to its spatial average.

• With recent algorithmic advances [26, 29, 30], the underlying EMD calculation for

computing struc [·] can be performed quickly. If b ∈ R256 × R256, then struc [b] can

be computed in less than a second using an intel i7-4770 processor. In general, the

limiting factor in computing the struc [·] is the fast Fourier transform. Hence if b ∈

Rd1 × · · · × Rdj then struc [b] is computed in O
(∏j

i=1 di log(di)
)

time [26].

• Because its evaluation does not affect the actual inverse procedure, the structure cal-

culation can be incorporated into existing work flows without altering old code. Thus

it can be quickly integrated into an existing toolbox for solving inverse problems.

• The struc [rθ,η] calculation produces not only a number, but also outputs a transport

plan (see Figs. 3.4b, 3.4d). For certain classes of forward operators this additional

information can be leveraged to correct forward operators with minimal tuning. This

idea will be explored in future work.

3.3.3 Theoretical Results

In this section we establish some theoretical results which support the use of the structure

as a tool for diagnosing structural errors in the forward operator of an inverse problem. The

proofs of Theorems 1–2 are given in Appendix. 3.6.
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Theorem 1 (Characterization of noise by structure). Given non-negative integers d and `,

let Ω = [0, 1)d and let O` =
{
ω`,1, . . . , ω`,2`d

}
partition Ω into 2`d hypercubes of volume 2−`d.

Define h` : Ω→ R by

h`(y) = η`,1χ`,1(y) + · · ·+ η`,2`dχ`,2`d(y) (3.25)

where

χ`,i(y) =


1, x ∈ ω`,i,

0, x 6∈ ω`,i,
(3.26)

and {η`,i}2`d
i=1 is a set i.i.d. random variables with mean µ and variance σ2 (See Fig. 3.2 for

a visualization of h`). If ε` = 2−`,

E [struc [h`]] ≤ σ


−ε` log ε`, d = 2,

2
√
dε`, d > 2,

(3.27)

where the expectation is with respect to the weights η`,i.

(a) h1 (b) h2 (c) h3 (d) h4

Figure 3.2: Example of h` when d = 2, µ = 0, and σ = 1.

Lemma 1 (L2 norm of Noise). Given the assumptions of Thm. 1, suppose further that

µ = 0. Then

E
[
‖h`‖2

2

]
= σ2, (3.28)

where the expectation is with respect to the weights η`,i.

Theorem 2 (Characterization of a smooth function by structure). Given the assumptions

of Thm. 1, let R` : B → Bε`. If

R`φ(y) = 1
ω`,i

∫
ω`,i

φ(z)dz, ∀y ∈ ω`,i. (3.29)
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where φ ∈ C1
(
Y
)

then

|struc [R`φ]− struc [φ]| ≤ C(|∇φ|) dε2` , (3.30)

where the constant C depends on the maximum of ∇φ on Y . In particular,

struc [R`φ]→ struc [φ] as `→ +∞. (3.31)

3.3.4 Comparison with prior work

The work here is inspired, in part, by the study of seismic imaging inverse problems in

[11, 12, 43]. There the authors measure the misfit between simulated and measured data

using the Wasserstein distance squared W 2
2 (ρ1, ρ2) = (W2(ρ1, ρ2))2. To handle the possibly

negative distributions, the authors in [11, 12, 43] introduce the misfit function

d(f, g) = W 2
2

(
max(f, 0)∫
max(f, 0)dx,

max(g, 0)∫
max(g, 0)dx

)

+W 2
2

(
max(−f, 0)∫
max(−f, 0)dx,

max(−g, 0)∫
max(−g, 0)dx

)
(3.32)

which plays a similar role to struc [f − g] in this work. In [11, Section 2.6] the authors

show that d is insensitive to noise, with a scaling result that is similar to Thm. 1 up to a

logarithmic factor. Specifically, if f and g are two non-negative functions such that f − g

has the form of h`, defined in Eq. 3.25), with uniformly distributed noise, then

d(f, g) = O(ε`). (3.33)

The approach taken in [11, 12, 43] differs from the approach in this paper in at least two

key ways. First is the choice of W 2
2 rather than W1. This has the following consequences:

• W2 and W 2
2 have the property of cyclic monotonicity (see [13, Sec. 2.1] for a definition

and proof), which can be used to show convexity of d with respect to shifts, dilation

and partial amplitude loss. In this work we make no such claims about the convexity

of struc [·].
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• As a semi-norm, the EMD (like all Wp for p ∈ [1,∞)) is a degree-one homogeneous

functional and satisfies a triangle inequality (see [41, p. 94]. The functional W 2
2 has

neither property. For example of the latter, let f = 2χ0,1/2, h = 2χ1/2,1 and g = 2χ1,3/2.

Then W 2
2 (f, h) = 1

4 , W 2
2 (h, g) = 1

4 but W 2
2 (f, g) = 1, then

W 2
2 (f, g) > W 2

2 (f, h) +W 2
2 (h, g). (3.34)

• Redefining d with W2 instead of W 2
2 would recover a triangle inequality and degree-

one homogeneity. However, the cost of such a modification would be to increase the

sensitivity of d to noise. Indeed, the scaling in Eq. 3.33 would change from O(ε`) to

O(ε1/2` ), which is significantly slower than the scaling in Thm. 1.

• Finally, W1 is more directly analogous to the definition of work used throughout

physics, distance times effort. Consider the case when

f(x) = 1
2χ[0,2](x) g(x) = 1

2χ[1,3](x) (3.35)

and the two transport plans

π1(x1, x2) =


1/2 if x2 = 1 + x1 and x1 ∈ [0, 2]

0 otherwise
(3.36)

π2(x1, x2) =


1/2 if x2 = 2 + x1 and x1 ∈ [0, 1]

0 otherwise
(3.37)

The cost of π1 as measured by W2 is twice that of π2. Both plans cost the same as

measured by W1. In words W2 ‘prefers’ to make many smaller movements as opposed

to fewer larger movements, while W1 is agnostic to such differences.

The second key difference between the approach in [11, 12, 43] and the approach taken

here lies in the definition of d and struc [·], both of which are used to address the fact that

the Wasserstein metric is only defined for non-negative distributions with the same mass.

It is worth noting that d(f, g) and struc [·] could be defined using any Wassterstein metric.

However, d introduces several undesirable artifacts.
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• The normalization in the definition means that

d(λf, λg) = d(f, g), ∀λ ∈ R+. (3.38)

In particular, unlike struc [·], it is not degree-one homogeneous.

• Special care is required in the case that max(f, 0) ≡ 0 but max(g, 0) 6≡ 0. Indeed one

of the reasons that the results in Eq. 3.33 require f and g to be positive and differ only

by uniform noise is that small changes is the noise can alter the support of max(f, 0)

and max(g, 0). The struc [·] has no such restrictions on the noise model.

• The struc [·] is continuous w.r.t. the L1(Ω) norm provided that Ω is bounded (see

Lemma 5). d(f, g), however, is not. For example consider, the functions

fε = χ[ε,1−ε] − εχ(1−ε,1], gε = −εχ[0,ε) + χ[ε,1−ε] − εχ(1−ε,1]. (3.39)

Clearly fε − gε → 0 in L1(Ω) as ε→ 0; however,

lim
ε→0

d(fε, gε) ≥ lim
ε→0

1
2

(
1 + ε

4

)2
= 1

2 . (3.40)

This lack of continuity due to sign changes is one of the reasons for having restrictions

on the noise model for d(f, g).

• The kernel of struc [·] consists of constant functions, and so struc [f − g] = 0 ⇐⇒

f = g + c for some constant c. This c is easily recovered by computing the difference

between the averages if f and g.On the other hand, the kernel of d is

Ker(d) =


(f, g) ∈ L1 × L1 : max(f, 0) = λ+ max(g, 0) and

max(−f, 0) = λ−max(−g, 0) for λ+, λ− ∈ R+


(3.41)

It is more difficult to account for such a kernel.

3.4 Numerical Results

In this section we present the results of several numerical experiments. We make two sim-

plying assumptions. First, we let X and Y be two dimensional domains. This choice is
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motivated by ease of visualization as well as the availability of code to quickly compute

the EMD in two dimensions. We, however, believe that the results generalize well to high

dimensional problems. Second, we assume that Lθ is linear in θ. This choice is for simplicity,

but it also is a reasonable approximation for finding a local optimum. Indeed, if Lθ smoothly

depends on θ, then L is locally linear:

Lθ̂+δθ = Lθ̂ +∇θL(θ̂) · δθ +O(δθ2). (3.42)

For each experiment, we provide with a known signal u and a family of operators {Lθ}θ∈Θ.

We then set L = Lθ̂ for some θ̂ ∈ Θ, generate a measurement b = Lθ̂u, and examine the

behavior of struc [rθ,η] as a function of θ. The expectation is that

θ̂ ≈ θ∗ := argmin
θ∈Θ

struc [rθ,η] . (3.43)

The first two experiments show that indeed θ∗ ≈ θ̂ even with relatively high noise. The

final experiment illustrates that the method performs better as the problem becomes more

overdetermined or more regularized (i.e. λ in Eqn. 3.6 increases). We report a figure of

merit, the contrast, defined as:

cont(F ) = max(F )−min(F )
max(F ) + min(F ) (3.44)

for any F : Θ → R+ that is not identically zero. The contrast measures the depth of a

minimum, and the greater the contrast, the less the location of the minimum changes in the

presence of additive noise in F . In all three experiments we compare the contrast of struc [·]

with the discrete norms ‖·‖1 and ‖·‖2. For any z ∈ B∆y these norms are given by,

‖z‖1 = ∆y2 ∑
i1,i2

|zi1,i2| and ‖z‖2 = ∆y
∑
i1,i2

z2
i1,i2

1/2

(3.45)

We also generate plots of all three (semi-) norms as a function of the parameter θ.

3.4.1 Implementation Details

The implementation of each of these experiments involves four basic steps: (i) the generation

of the random forward operators Lθ; (ii) generation of the signal u, measurement b and noise
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Parameter Value Parameter Value Ref. Parameter Value Ref.

Discretization1 Inversion struc [·]

∆x 1/64 Φ(·, λ) λTV(()u) [37] Max Iter 8000 [30]

∆y 1/100 λ 10 [37] EMDµ 7e-6 [30]

µ 100 [20] EMDτ 3 [30]

Bregman Iterations 10 [20]

Table 3.1: Numerical parameters for Experiments 1 - 3.

η; (iii) calculation of ũθ,η; and (iv) computation of the struc [·]. The specific values of

parameters needed to recreate the results are given in Table 3.1.

1. Generation of the random forward operators. Recall the definitions in Section 3.2.1. A

forward operator Lθ, even an academic one, is a discretization of an operator L : U →

B. In applications, Lθ models the action of some physical process which produces a

measurement. For example in seismic imaging the forward operator is the propagation

of a seismic wave [11], and in plasma imaging in tokamaks the forward operator couples

the optics of the camera with the symmetries of the plasma [42].

For the experiments, we presume that L is a Line Integral Operator (LIO). (See Ap-

pendix 3.7 for details.) If f : X → R and g : Y → R, then for each y ∈ Y, g(y)

represents the integral of f over some path p(y). Some examples of common LIO are

the Radon, Abel and Helical Abel transforms [15].

2. Generation of the signal, measurement and noise. The underlying signal u ∈ U∆x is a

series of concentric rings (see Fig. 3.3a). Then we apply Lθ̂ to u to obtain a noiseless

measurement b ∈ B∆y (see Fig. 3.3b). The noisy signal (see Fig. 3.3c) is generated by

adding independent white noise η with mean zero and variance σ to each element of b

so that

SNR = ‖b‖2
‖η‖2

(3.46)

1∆x and ∆y both change for Experiment 3, however the other parameters are fixed.

34



is at a specified level.

0

100

200

(a) u.

100

150

200

(b) b = Lθ̂u.

100

150

200

(c) b+ η.

Figure 3.3: The signal u, measurement b, and noisy measure b+ η for Experiment 1.

3. Computation of ũθ,η. Throughout these experiments, we use the inversion procedure

of the form of Eq. 3.6 with Φ(v;λ) = λ ‖Cv‖1 where C is a one-sided discrete approx-

imation of the gradient operator:

(Cv)2i,j = 1
dx

(vi,j − v`−1,j)

(Cv)2i+1,j = 1
dy

(vi,j − vi,j−1) (3.47)

where vi,j is the i’th x and j’th y component of the vector v, and likewise for (Cv)i,j.This

is TV regularization and has found wide success within image processing, especially

when the underlying signal to be recovered is piecewise constant [20, 37]. Finally for

experiments 1 and 2 we fix λ = 1. For experiment 3 we study how the results change

as λ does.

To solve the resulting non-linear variational problem, we use the Split-Bregman al-

gorithm, specifically the Generalized Split-Bregman Algorithm (GSBA) of [20], which

requires specification of a step size parameter µ (called λ in [20]). GSBA requires the re-

peated solution of the linear system (LTL+λ2CTC)x = y. The matrix (LTL+λ2CTC)

is sparse and so we solve it using the L-BFGS [4, 44] method (limited memory Broyden-

Fletcher-Goldfarb-Shanno[6, 16, 19, 40]).

4. Computation of the struc [·]. Computing struc [·] requires computing EMD. The algo-

rithm that we use is given in [29, 30, 38].
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(a) r0.04,η (b) m̂0.04
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0

100

(c) r0.20,η (d) m̂0.20

Figure 3.4: Results from Experiment 1. The residual and flow m̂θ that minimizes Eq. 3.11

for a given θ. In Figs. 3.4b and 3.4d, the orientation of the arrows represents the direction

m̂θ, and the length of the arrows is proportional to the magnitude.

3.4.2 Experiment 1

This experiment is based on a normalized Eq. 3.42 where p = 1. Let L0 and L1 be two

operators generated as described in Appendix 3.7. We define θ ∈ [0, 1] and

Lθ = (1− θ)L0 + θL1. (3.48)

Fig. 3.4 is a plot of the residual for different values of θ. In Fig. 3.4a, θ = 0.04, and in Fig.

3.4c θ = 0.20. Upon close inspection, one can see that from Fig. 3.4a that when θ is small the

residual visually looks like white noise, whereas from Fig. 3.4c when θ is large the residual

has underlying structure in addition to the noise. It is, however, difficult to see. Despite

these two plots appearing similar they have very different structures, struc [r0.04,η] ≈ 0.06 and

struc [r0.20,η] ≈ 0.54. The structure is also evident by looking at Figs. 3.4b, 3.4d, which are

m from Eq. 3.11. Note that when θ = 0.04, m is higgledy-piggledy, whereas when θ = 0.20,

m appears much more orderly.

A plot of struc [rθ,η] vs θ is given in Fig. 3.5. Clearly, struc [rθ,η] is minimized when θ ≈ 0.

Further, we note that struc [rθ,η] is increasing as a function of θ when θ ∈ [0, 0.5], however

then decreases. This is expected behavior around the minimum, however the problem is

evidently not convex away from θ̂. This is important to keep in mind for future work.
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(a) struc [rθ,η] vs θ.
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(c) ‖rθ,η‖2 vs θ.

Figure 3.5: Results from Experiment 1. The value of rθ,η as measured by struc [·] , ‖·‖1 and

‖·‖2. In all examples the minimum occurs when θ = 0 however the contrast is greatest for

struc [·].

3.4.3 Experiment 2

Experiment 2 is also based on a normalized Eq. 3.42, however in this case p = 2 and

θ̂ =
(

1
2 ,

1
2

)
. The true signal used in Experiment 2 is the same as in Experiment 1 (see Fig.

3.3a). This experiment studies the change in the contrast for struc [·] , ‖·‖1 and ‖·‖2 as the

SNR decreases. The results are summarized in Table 3.2.

0 0.5 1

0

0.5

1 0

0.5

1

(a) struc [rθ,η] vs θ

0 0.5 1

0

0.5

1 0

5

10

15

(b) ‖rθ,η‖1 vs θ

0 0.5 1

0

0.5

1 0

0.1

0.2

(c) ‖rθ,η‖2 vs θ

Figure 3.6: Results from Experiment 2. In these plots SNR = 25.

In all cases, the contrast of struc [·] is greatest, and the contrast of struc [·] relative to

‖·‖1 of ‖·‖2 increases as the problem becomes more noisy. This suggests that struc [·] is a

more robust choice of semi-norm for measuring the level of miscalibration of Lθ, especially

when noise levels are high.
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Figure 3.7: Results from Experiment 2. In these plots SNR = 5.

Contrast struc [rθ,η] ‖rθ,η‖1 ‖rθ,η‖2

SNR = 25 0.7547 0.3493 0.3544

SNR = 5 0.5917 0.0398 0.0404

Table 3.2: Results from Experiment 2. The contrast for different choices of (semi)norms.

Larger is better.

3.4.4 Experiment 3

The final experiment examines the necessity of the overdetermined assumption of Lθ as well

as the role of λ. We repeat the setup of Experiment 2; however we fix the SNR = 25 and

adjust ∆y so that Lθ : U∆x → B∆y becomes a square operator and independently let λ = 0.1,

1 and 10. We start with a fixed reference ∆y0, and consider

B∆y0
∼= R100×100 B4/3∆y0

∼= R75×75 B2∆y0
∼= R50×50 B4∆y0

∼= R25×25. (3.49)

In all cases, U∆x ∼= R25×25 is fixed. Each of the B in Eq. 3.49 are plotted in Fig. 3.8.

θs = argmin
θ∈Θ

struc [rθ,η] θ1 = argmin
θ∈Θ

‖rθ,η‖1 θ2 = argmin
θ∈Θ

‖rθ,η‖2 (3.50)

The contrast is recorded in Tables 3.3 - 3.5. Finally for λ = 1, plots of struc [rθ,η], ‖rθ,η‖1,

and ‖rθ,η‖2 vs θ as ∆y changes are given in Figs. 3.9 - 3.12.

Below we give some more numerical results, when λ = 0.1 and λ = 10 for completeness.

From Tables 3.3 - 3.5 we observe two things. First as the problem becomes more overde-

termined, the contrast improves for all three metrics, but especially for the struc [·]. Indeed
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Figure 3.8: Plot of b for various choices of ∆y (see Eq. 3.49).
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Figure 3.9: Results from Experiment 3 when λ = 1. In these plots L : R25×25 → R100×100.

See Table 3.4 for the contrast.
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Figure 3.10: Results from Experiment 3 when λ = 1. In these plots L : R25×25 → R75×75.

See Table 3.4 for the contrast.

the more overdetemined the problem the more struc [·] outperforms the L1 or L2 discrete

norms. These results are consistent with Thms. 1 - 2, which together suggest that as ∆y

decreases, the ability of struc [·] to distinguish between noise and structure increases. Second

the contrast is higher for all three metrics when λ increases. This observation suggests that
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Figure 3.11: Results from Experiment 3 when λ = 1. In these plots L : R25×25 → R50×50.

See Table 3.4 for the contrast.
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Figure 3.12: Results from Experiment 3 when λ = 1. In these plots L : R25×25 → R25×25.

See Table 3.4 for the contrast.

it is easier to identify the correct operator when an inverse problem is heavily regularized.

However this topic is beyond the scope of this manuscript and will be the subject of future

work.

3.5 Conclusion

In this work we have developed a new functional called the structure, which is suitable for

detecting forward operator error as it arises in inverse problems. The structure is defined by

use of the Earth Mover’s Distance (EMD), using a very rapid algorithm and a homogeneous

degree one distance. The structure takes as input the residual from an existing inverse

procedure, and can be computed quickly. We prove some apparently new results concerning
40



Contrast, λ = 0.1 struc [rθ,η] ‖rθ,η‖1 ‖rθ,η‖2

b ∈ R100×100 0.6715 0.5414 0.5450

b ∈ R75×75 0.6099 0.5184 0.5217

b ∈ R50×50 0.4777 0.4738 0.4734

b ∈ R25×25 0.3261 0.3713 0.3741

Table 3.3: Results from Experiment 3. when λ = 0.1, which indicate the contrast. The

larger the contrast the better.

Contrast, λ = 1 struc [rθ,η] ‖rθ,η‖1 ‖rθ,η‖2

b ∈ R100×100 0.8598 0.5607 0.5645

b ∈ R75×75 0.8259 0.5604 0.5630

b ∈ R50×50 0.7809 0.5520 0.5567

b ∈ R25×25 0.5930 0.5068 0.5180

Table 3.4: Results from Experiment 3. when λ = 1, which indicate the contrast. The larger

the contrast the better.

Contrast, λ = 10 struc [rθ,η] ‖rθ,η‖1 ‖rθ,η‖2

b ∈ R100×100 0.8908 0.5543 0.5567

b ∈ R75×75 0.8357 0.5559 0.5568

b ∈ R50×50 0.8018 0.5558 0.5599

b ∈ R25×25 0.7717 0.5498 0.5568

Table 3.5: Results from Experiment 3. when λ = 10, which indicate the contrast. The larger

the contrast the better.

the treatment of noise by EMD. Further, we consistent with these theoretical results we

perform numerical experiments and show that the structure is able to distinguish between

error in the modeling of a forward operator, and noise in the signal of an inverse problem.

The numerical results concern a model linear forward operator. On these problems the

structure of the residual is indeed minimized when the correct forward operator is used. The
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L1 or L2 norms of the residual are also minimized around the correct forward operator, the

structure, however, is more localized and has better contrast around the minimum. Further,

we observe that the degree to which the inverse problem is overdetermined and degree of

regularization is critical to the success of the procedure. The more over determined the

problem, the more useful the structure. This is borne out by the analysis in the case of

linear regularization, as well as the numerical results on more sophisticated problem.

In the future, we will extend our work to more sophisticated non-linear operators and also

use the struc [·] to not only diagnose, but also to correct forward operator error. Assuming

that the minimizer of the struc [·] gives the correct model parameter θ̂ (as in Eq. 3.43), the

next step is to actually solve the minimization to correct for operator error. By computing

both struc [rθ,η] and ∇θ struc [rθ,η] given ∇θLθ, one can do so using optimization methods

such as gradient descent and BFGS [6]

3.6 Proofs

Proof of Proposition 1. Given Φ(v;λ) = λ ‖Cv‖2
2, the normal equations for Eq. 3.6 are

(LT
θ Lθ + λCTC)ũθ,η = LT

θ (b + η). (3.51)

Therefore L̃−1
θ = (LT

θ Lθ + λCTCT )−1LT
θ . Using the GSVD in Eq. 3.18, a direct calculation

gives

LθL̃−1
θ = UθDθ,λUT

θ , where Dθ,λ := Σ2
θ

Σ2
θ + λΓ2

θ

∈ Rn×n. (3.52)

Thus according to the definition of the residual in Eq. 3.8,

rθ,η = (I− LL̃−1)(b + η) = UθD̂θ,λUT
θ (b + η) + (I−UθUT

θ )(b + η) (3.53)

where

D̂θ,λ := (I−Dθ,λ) = λΓ2
θ

Σ2
θ + λΓ2

θ

> 0. (3.54)

We first bound two of the deterministic components of the residual. Using the GSVD,

UθD̂θ,λUT
θ b = UθD̂θ,λUT

θ Lθu + UθD̂θ,λUT
θ (b− Lθu)

= UθD̂θ,λΣθZT
θ u + UθD̂θ,λUT

θ (b− Lθu). (3.55)
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Since
∥∥∥D̂θ,λ

∥∥∥
2
≤ 1 and Uθ is orthogonal, it follows that

∥∥∥UθD̂θ,λUT
θ (b− Lθu)

∥∥∥2

2
≤ ‖(b− Lθu)‖2

2 (3.56)

Furthermore, since

D̂θ,λΣθ = λΓ2
θΣθ

Σ2
θ + λΓ2

θ

≤ 1
2
√
λΓθ ≤

1
2
√
λI (3.57)

(where the inequalities between the diagonal matrices above are interpreted element-wise),

it follows that ∥∥∥UθD̂θ,λΣθZT
θ u
∥∥∥2

2
≤
∥∥∥D̂θ,λΣθ

∥∥∥2

2

∥∥∥ZT
θ u
∥∥∥2

2
≤ 1

4λ
∥∥∥ZT

θ u
∥∥∥2

2
. (3.58)

We next bound the noise component of the residual. Let Wθ ∈ Rm×(m−n) be a matrix such

that Q := (Uθ|Wθ) ∈ Rm×m is orthogonal and set

α =

α‖

α⊥

 := QTη =

UT
θ η

WT
θ η

 . (3.59)

Then
∥∥∥(I− LL̃−1)η

∥∥∥2

2
=
∥∥∥UθD̂θ,λUT

θ η + (I−UθUT
θ )η

∥∥∥2

2
=
∥∥∥UθD̂θ,λα‖

∥∥∥2

2
+ ‖Wθα⊥‖2

2 , (3.60)

where the last equality uses the fact that the columns of Uθ and Wθ are orthogonal and

I−UθUT
θ = WθWT

θ . Due to the spherical symmetry assumption on η, α‖ and α⊥ are spher-

ically symmetric random variables of dimension n and m−n, respectively, with components

that are independent. Therefore

E
[∥∥∥UθD̂θ,λα‖

∥∥∥2

2

]
= E

[∥∥∥D̂θ,λα‖
∥∥∥2

2

]

=
n∑
i=1

(
λγ2

i

σ2
i + λγ2

i

)2

E
[
η2
i

]
= 1
m

Tr(D̂2
θ,λ)E

[
‖η‖2

2

]
(3.61)

and

E
[
Wθ ‖α⊥‖2

2

]
= E

[
‖α⊥‖2

2

]
= m− n

m
E
[
‖η‖2

2

]
. (3.62)

This completes the proof.

Proof of Proposition 2. It is convenient to write Eq. 3.11 in the abstract form

EMD(ρ1, ρ2) = min
m∈C(ρ1,ρ2)

T (m), (3.63)
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where

T (m) =
∫

Ω
‖m‖2 dx (3.64)

C(ρ1, ρ2) =

m :
∇ ·m(x) + ρ2(x)− ρ1(x) = 0 ∀x ∈ Ω,

m(x) · n(x) = 0 ∀x ∈ ∂Ω

 . (3.65)

In addition, for any f ∈ L1(Ω), let mf be a minimizer of T (m) over C(f+, f−) so that

struc [f ] = T (mf ).

1. We check absolute homogeneity, positivity, and the triangle inequality.

(a) To check absolute homogeneity, let λ ∈ R be a nonzero scalar. By linearity,

|λ|m ∈ C(|λ|f, |λ|g) if and only if m ∈ C(f, g). Therefore

EMD(|λ|f, |λ|g) = min
m∈C(|λ|f,|λ|g)

T (m)

= min
m∈C(f,g)

T (|λ|m) = |λ| min
m∈C(f,g)

T (m) = |λ|EMD(f, g), (3.66)

If λ > 0, Eq. 3.66 implies that

struc [λf ] = EMD(λf+, λf−) = |λ|EMD(f+, f−) = |λ| struc [f ] (3.67)

If λ < 0, then (λf)± = |λ|f∓. Again Eq. 3.66 implies that

struc [λf ] = EMD((λf)+, (λf)−) = EMD(|λ|f−, |λ|f+)

= |λ|EMD(f−, f+) = |λ|EMD(f+, f−) = |λ| struc [f ] . (3.68)

Finally, if λ = 0, then the fact that struc [λf ] = λ struc [f ] = 0 is trivial.

(b) Positivity follows immediately from the positivity of EMD.

(c) The triangle inequality follows from the fact that

(f + g)+ − (f + g)− = (f+ − f−) + (g+ − g−) (3.69)

for all f, g ∈ L1(Ω). Thus if mf ∈ C(f+, f−) and mg ∈ C(g+, g−), then mf+mg ∈

C ((f + g)+, (f + g)−). Along with the triangle inequality for T , this implies that

struc [f + g] ≡ T (mf+g) ≤ T (mf +mg) ≤ T (mf ) + T (mg) ≡ struc [f ] + struc [g] .

(3.70)
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2. Because 1
‖Ω‖

∫
Ω(g+c)dx = 1

‖Ω‖
∫

Ω gdx+c, we have that g+ = (g+c)+, and g− = (g+c)−.

Therefore

struc [g + c] = EMD
(
(g + c)+, (g + c)−

)
= EMD(g+, g−) = struc [g] . (3.71)

3. Let g = 0 in Eq. 3.71 above. Then

struc [c] = struc [0] = 0, ∀c ∈ R. (3.72)

4. Because the constraint in Eq. 3.11 involves only the difference of ρ1 and ρ2, it follows

that EMD(ρ1, ρ2) = EMD(ρ1 + f, ρ2 + f) for any non-negative f ∈ L1(Ω). Moreover,

because ρ2 and ρ1 have the same mass, the average of ρ2 − ρ1 is zero. Hence,

struc [ρ2 − ρ1] = EMD(max(ρ2 − ρ1, 0),max(ρ1 − ρ2, 0))

= EMD(max(ρ2 − ρ1, 0) + min(ρ1, ρ2),max(ρ1 − ρ2, 0) + min(ρ1, ρ2))

(3.73)

Since ∀x, y ∈ R,max(x− y, 0) + min(x, y) = x, it follows from Eq. 3.73 that

struc [ρ2 − ρ1] = EMD(ρ2, ρ1) = EMD(ρ1, ρ2) (3.74)

Before proving Thm. 1-2, we will first prove two useful lemmas, which will be used

extensively.

Lemma 2 (EMD triangle inequality). Let Ω ⊂ Rn be a bounded set and f , g, h ∈ L∞(Ω)

and
∫

Ω fdx =
∫
Ω hdx =

∫
Ω gdx. Then

EMD(f, g) ≤ EMD(f, h) + EMD(h, g). (3.75)

Proof. Recall from Prop. 2 that struc [f − g] = EMD(f, g), then by the triangle inequality

of struc [·],

EMD(f, g) = struc [f − g] ≤ struc [f − h] + struc [h− g] = EMD(f, h) + EMD(h, g) (3.76)
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Lemma 3 (struc [·] and EMD of the mean). Ω ⊂ Rn be a bounded set and f ∈ L∞(Ω) and

µ = 1
|Ω|
∫

Ω fdx. Then

struc [f ] = EMD(f, µ). (3.77)

Proof. Recall from Prop. 2 that EMD(f, g) = EMD(f + h, g + h), therefore

struc [f ] = EMD(f+, f−) = EMD(f+ + (µ− f−), f− + (µ− f−)) = EMD(f, µ). (3.78)

Lemma 4 (EMD Subadditivity). If EMD(f1, g1) and EMD(f2, g2) are well defined, then so

too is EMD(f1 + f2, g1 + g2), and

EMD(f1 + f2, g1 + g2) ≤ EMD(f1, g1) + EMD(f2, g2). (3.79)

Proof. We use the Eq. 3.10 of the EMD. Let π1 and π2 satisfy the constraint of Eq. 3.9 for

EMD(f1, g1) and EMD(f2, g2) resp. Then clearly∫
Ω

(π1 + π2)dx(2) = f1 + f2∫
Ω

(π1 + π2)dx(1) = g1 + g2

π1 + π2 ≥ 0, (3.80)

and so by the minimality of the EMD,

EMD(f1, g1) + EMD(f2, g2) =
∫

Ω×Ω
cπ1dx

(1)dx(2) +
∫

Ω×Ω
cπ2dx

(1)dx(2)

=
∫

Ω×Ω
c(π1 + π2)dx(1)dx(2)

≥ min
π≥0

∫
Ω×Ω

cπdx(1)dx(2)

= EMD(f1 + f2, g1 + g2) (3.81)

where π is subject to the constraints of Eq. 3.9 where ρ1 = f1 + f2 and ρ2 = g1 + g2.

Lemma 5 (EMD is bounded by the L1 norm). Let Ω be a bounded set, and l ≥
∥∥∥x(1) − x(2)

∥∥∥
2

for all x(1), x(2) ∈ Ω. If f, g : Ω→ R+ then

EMD(f, g) ≤ l

2 ‖f − g‖L1(Ω) . (3.82)
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Proof. Let γ =
∫

Ω (f − g)+dx and xc be such that ‖xc − x‖2 ≤ l/2 ∀x ∈ Ω then

EMD(f, g) = struc [f − g] ≤ EMD((f − g)+, γδxc) + EMD(γδxc , (f − g)−)

≤ l

2
∥∥∥(f − g)+

∥∥∥
L1(Ω)

+ l

2
∥∥∥(f − g)−

∥∥∥
L1(Ω)

= l

2 ‖f − g‖L1(Ω) (3.83)

The last two lines could use a few details between them.

Lemma 6 (Expectation bound by the standard deviation). Let η be a scalar random variable

with zero mean such that Var[η] is finite. Then E [|η|] ≤
√

Var[η].

Proof. Let ψ be the probability distribution for η. By the Cauchy-Schwarz inequality,

E [|η|] ≡
∫ ∞
−∞
|x|ψ(x)dx ≤

(∫ ∞
−∞

x2ψ(x)dx
) 1

2
(∫ ∞
−∞

ψ(x)dx
) 1

2
=
(
Var[η]

)1/2
. (3.84)

We now proceed to the proof of Theorem 1, but first it is helpful to give a brief summary.

To bound the EMD from above, we give a candidate transport plan that is based on the

multigrid strategy depicted in Fig. 3.13 for the case d = 2. In this case, the strategy is to

divide the domain into square windows with two square panels per side, as shown in Figure

3.13. The mass in each window is then redistributed in such a way that the new distribution

is constant on each window. Each window then becomes a panel in a window that is a factor

a factor of two larger in each dimension, and the process is repeated until the distribution

on the entire square is constant. For d > 2, the plan is the same, except that each window

is a hypercube 2d panels. The cost of the complete transport plan can be bounded by the

sum of the costs of the transport plan for each step. These costs are computed in the proof

below and their sum leads to the bound in Theorem 1.

Proof of Theorem 1. Since struc [h`] = struc [h` − µ] we can assume, without loss of gener-

ality, that h` has zero mean. Consider the case ` = 1, which will be used for the general
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(a) H3 (b) H2 (c) H1

Figure 3.13: The multigrid idea of Theorem 1 when ` = 3. At each step, a transport plan is

computed in each 2x2 window. Then the same problem is solved at the next coarser scale. In

the above figures, the arrow tip area is proportional to the mass transported at each substep.

The function Hi is defined in Eq. 3.94.

setting later. We construct a two-step plan that first moves all of the mass in h+
1 to the point

yc = (1/2, . . . , 1/2) at the center of the domain and then moves the mass from yc to h−1 .2

Let γ =
∫
Ω h

+
1 dy =

∫
Ω h
−
1 dy, µ0 =

∫
Ω h1dy, and γ1,k = |η1,k−µ0||ω1,k|. Then EMD(h+

1 , γδyc)

= EMD(γδyc , h−1 ) and

struc [h1] ≡ EMD(h+
1 , h

−
1 ) ≤ EMD(h+

1 , γδyc) + EMD(γδyc , h−1 )

=
2d∑
k=1

EMD (|η1,k − µ0|χ1,k, γ1,kδyc) . (3.85)

Thus we turn our attention to computing the terms in the sum above. First,

EMD(|η1,k − µ0|χ1,k, γ1,kδyc) = |η1,k − µ0|EMD(χ1,k, |ω1,k| δyc). (3.86)

There is only one one admissible transport plan (see from Eq. 3.10) between χ1,k and |ω1,k|δyc ;

it simply moves the mass around each point of ω1,k to yc:

π
(
x(1), x(2)

)
= χ1,k(x(1))× δyc(x(2)) (3.87)

If we consider the more general case where ω1,k has side length l, then upon a change of

coordinates,

2While the definition of the EMD in Eq. 3.10 is still well-defined for delta function, the formula in Eq.
3.11 is not. Thus while we use Eq. 3.11 for numerical calculations, we often rely on Eq. 3.10 for theoretical
bounds.
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EMD(χ1,k, |ω1,k|δyc) =
∫

Ω

∫
Ω

∥∥∥x(1) − x(2)
∥∥∥

2
χ1,k(x(1))× δyc(x(2))dx(1)dx(2)

=
∫
ω1,k

∫
Ω

∥∥∥x(1) − x(2)
∥∥∥

2
δyc(x(2))dx(1)dx(2)

=
∫
ω1,k

∥∥∥x(1) − yc
∥∥∥

2
dx(1) =

∫
[0,l]d

∥∥∥x(1)
∥∥∥

2
dx(1)

≤
√
d
∫

[0,l]d

∥∥∥x(1)
∥∥∥
∞
dx(1) ≤

√
d
ld+1

2 (3.88)

Substituting Eq. 3.86 and Eq. 3.88 into Eq. 3.85 gives

struc [h1] ≤
2d∑
k=1
|η1,k − µ0|

√
dld+1

2 =
√
d

2d+2

2d∑
k=1
|η1,k − µ0|, (3.89)

where we have used the fact that when ` = 1, l = 2−1. A standard calculation shows that

Var (|η1,k − µ0|) ≤ Var(|η1,k|), i = 1, . . . , 2d. (3.90)

Further E [η1,k] = 0 and so Lemma 6 give:

E [|η1,k − µ0|] ≤ σ (3.91)

with Eq. 3.89 and get

E [struc [h1]] ≤
√
d2d

2(d+2)

2d∑
k=1

E [|n1,k − µ0|] ≤
√
d2d

2(d+2)σ =
√
d

4 σ. (3.92)

Now we consider the case when ` > 1. Define the functions

H`(y) = h`(y) =
2`d∑
k=1

η`,kχ`,k(y) (3.93)

Hi(y) =
2id∑
k=1

µi,kχi,k(y), where µi,k = 1
|ωi,k|

∫
ωi,k

Hi+1(y)dy, i = 0, 1, . . . , `− 1. (3.94)

Instances of Hi are shown in Fig. 3.13. The function h` can be written as the telescoping

sum

h` = H` = (H` −H`−1) + (H`−1 −H`−2) + · · ·+ (H2 −H1) + (H1 −H0) +H0. (3.95)
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Moreover, because Hi = ∑2d(i−1)

k=1 Hiχi−1,k, it follows that

Hi −Hi−1 =
2d(i−1)∑
k=1

si−1,k, where si−1,k(y) = (Hi(y)− µi−1,k)χi−1,k(y). (3.96)

We apply struc [·] to Eq. 3.95, using Eq. 3.96, the triangle inequality, and the fact that

struc [H0] = 0 (because it is a constant). The result is

struc [h`] ≤
∑̀
i=1

struc [Hi −Hi−1] ≤
∑̀
i=1

2d(i−1)∑
k=1

struc [si−1,k] . (3.97)

To evaluate struc [si−1,k], we repeat the argument used to generate Eq. 3.89. This gives

struc [si−1,k] ≡ EMD(s+
i−1,k, s

−
i−1,k) ≤

√
dld+1

2
∑

k′:ωi,k′⊂ωi−1,k

|µi,k′ − µi−1,k|. (3.98)

By construction,

µi−1,k = 2−d
∑

k′:ωi,k′⊂ωi−1,k

µi,k. (3.99)

It follows that the random variable (µi+1,k′ − µi,k) that appears in Eq. 3.98 has zero mean.

Thus Lemma 6 applies and

E [|µi,k′ − µi−1,k|] ≤ (Var[|µi,k′ − µi−1,k|])
1
2 ≤ (Var[|µi,k′|])

1
2 := σi, (3.100)

where the last two inequalities above follows from standard probability theory. Also, because

of Eq. 3.99, another standard probablity result gives

σi = 2− d2σi+1 = · · · = 2− d2 (`−i)σ`, i = 1, . . . , `. (3.101)

We now take the expectation of Eq. 3.98, using the fact that ωi,k′ has side length l = 2−i,

along with the triangle inequality and Eq. 3.101. The result is

E [struc [si−1,k]] ≤
√
d2−i(d+1)−1 ∑

k′:ωi,k′⊂ωi−1,k

2− d2 (`−i)σ` =
√
d2− id2 −i+d− d`2 −1σ` (3.102)

Substituting this bound into Eq. 3.97 gives

E [struc [h`]] ≤
∑̀
i=1

2d(i−1)∑
k=1

√
d2− id2 −i+d− d`2 −1σ` =

√
dσ`

21+ `d
2

∑̀
i=1

(
2 d

2−1
)i

(3.103)
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If d = 2, then 2 d
2−1 = 1 and Eq. 3.103 becomes

E [struc [h`]] = E [struc [H`]] ≤
2σ`
21+i ` = σ``

2` . (3.104)

If d ≥ 3, then 2 d
2−1/(2 d

2−1 − 1) ≤ 4, so the geometric sum in Eq. 3.103 is

∑̀
i=1

(
2 d

2−1
)i

= 2( d2−1)(`+1) − 2 d
2−1

2 d
2−1 − 1

≤ 2 d
2−12( d2−1)`

2 d
2−1 − 1

≤ 2 `d
2 −`+2. (3.105)

Thus for d ≥ 3,

E [struc [h`]] ≤
√
dσ`

2 `
√
d

2 −`+2

21+ `
√
d

2

=
√
dσ`2−`+1 (3.106)

Finally, setting ε` = 2−` gives

E [struc [h`]] ≤ σ


−ε` log(ε`) when d = 2

2
√
dε` when d > 2

(3.107)

This completes the proof.

Proof of Lemma 1. The proof follows directly from the definition of h` in the statement of

Thm. 1:

E
[
‖h`‖2

2

]
= E

[∫
[0,1)d

(h`(y))2 dy

]
=

2`d∑
k=1

E
[
η2
`,k

]
2−`d = 2−`d

2`d∑
k=1

σ2 = σ2. (3.108)

Proof of Theorem 2. Without loss of generality, assume that φ is positive a.e. (If not, simply

replace φ by φ−ess inf φ and use Eq. 3.71.) By construction, φ and R`φ have the same average

over Y , which we denote by µ. Thus by Lemmas 2 and 3,

struc [R`φ] = EMD(R`φ, µ) ≤ EMD(R`φ, φ) + EMD(φ, µ) = EMD(R`φ, φ) + struc [φ] .

(3.109)

Hence

struc [R`φ]− struc [φ] ≤ EMD(R`φ, φ). (3.110)
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One the other hand, switching the roles of R`φ and φ Eq. 3.109 gives

struc [φ]− struc [R`φ] ≤ EMD(R`φ, φ) (3.111)

Together Eq. 3.110 and Eq. 3.110 imply the bound

| struc [R`φ]− struc [R`φ] | ≤ EMD(R`φ, φ). (3.112)

We now bound EMD(R`φ, φ). For any `, i
∫
ω`,i

R`φdy =
∫
ω`,i

φdy. Thus by Lemma 4,

EMD(R`φ, φ) ≤
2`d∑
i=1

EMD(R`φχ`,i, φχ`,i) (3.113)

and further by Lemma 5, for i = 1, . . . , 2`d

EMD(R`φχ`,i, φχ`,i) ≤ ‖R`φ− φ‖L1(ω`,i) d
1/22−` (3.114)

Now we bound ‖R`φ− φ‖L1(ω`,i). Since φ ∈ C1
(
Y
)
, it follows that, for y ∈ ω`,i

|R`φ(y)− φ(y)| = 1
|ω`,i|

∣∣∣∣∣
∫
ω`,i

(φ(y′)− φ(y))dy′
∣∣∣∣∣

≤ sup
y∈ω`,i

|∇φ(y)| sup
y∈ω`,i

|y′ − y| ≤ d1/22−` sup
y∈ω`,i

|∇φ(y)| (3.115)

Therefore

‖R`φ− φ‖L1(ω`,i) ≤ |ω`,i|d
1/22−` sup

y∈ω`,i
|∇φ(y)| = d1/22−(d+1)` sup

y∈ω`,i
|∇φ(y)|. (3.116)

Combining Eq. 3.112, Eq. 3.114, and Eq. 3.116 yields

| struc [R`φ]− struc [φ] | ≤
2`d∑
i=1

d2−(d+2)` sup
y∈ω`,i

|∇φ(y)| ≤ d2−2` sup
y∈Y
|∇φ(y)| ≡ C(|∇φ|)dε2` ,

(3.117)

where C(|∇φ|) = supy∈Y |∇φ(y)| and ε` = 2−`. This completes the proof.

3.7 Line Integral Operators

Recall from Section 3.2 the spaces U and B of functions defined on domains X and Y ,

respectively. An operator L : U → B is a line integral operators (LIO), if ∀f ∈ U ,
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(Lf)(y) =
∫
Py
f(x)d`x =

∫ 1

0
f(x̂(t; y))x̂′(t; y)dt, (3.118)

where for each y ∈ Y , Py = {x̂(t; y) : t ∈ (0, 1)} ⊂ X, and x̂(t; y) is continuous in t and y.

In particular, if f is a continuous on X, then Lf is continuous on Y . Figs. 3.14a and 3.14b

illustrate a LIO in two dimensions. The recipe we used to generate examples of x̂ is given

below.

20 40 60 80 100
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40

60

80

100

(a) The values of y.

0 20 40 60

0

20

40

60

(b) The curves Py. (c) Example of Perlin noise.

Figure 3.14: An example of a LIO. Points on the right are used to generate curves on the

left of the same color. Coefficients for the parameterization in Eq. 3.120 of Py come from

Perlin noise.

To discretize L, we generate a path Py for each hypercube ω ⊂ Y . Line integrals along

these paths are approximated via quadrature. For all LIOs, we use same the quadratures,

and X, and Y .

To construct the LIO for Experiments 1 - 3, we do the following.

1. Construction of numerical grids. In all of the computational examples, the domains

X and Y are unit squares in R2. We discretize these domains with Nx and Ny points,

respectively, on each side and define grid points

xi,j = (i∆x, j∆x) , 0 ≤ i, j ≤ Nx − 1, (3.119a)

yk,l = (k∆y, l∆y) , 0 ≤ k, l ≤ Ny − 1, (3.119b)
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where ∆x = 1/Nx and ∆y = 1/Ny. We then generate values ui,j by sampling a

prescribed function at the points xi,j. An illustrative example is given in Fig. 3.3a,

where piecewise smooth rings have been sampled on a 64× 64 grid.

2. Generation of smooth paths. To form x̂, we first sample coefficients αp,r for p = 0, . . . , 4

and r = 1, 2 from Perlin noise [34, 35] of order four. In Fig. 3.14c, a realization of one

such coefficient as a function of y is shown on a 256×256 grid. Given these coefficients,

we let x̄ = (x(1), x(2)) be polynomials in t:

x̄(r)(t; yk,l) =
4∑
p=0

αp,r(yk,l)
p! tp, r = 1, 2, (3.120)

and then let x̂ be the following normalization of x̄:

x̂(r)(t; yk,l) = x̄(r)(t; yk,l)−mins∈[0,1] x̄
(r)(s; yk,l)

maxs∈[0,1] x̄(r)(s; yk,l)−mins∈[0,1] x̄(r)(s; yk,l)
, r = 1, 2. (3.121)

3. Let the paths be given as

x̂(t; yk,l) =
(
x̂(1)(t; yk,l), x̂(2)(t; yk,l)

)
(3.122a)

Pyk,l = {x̂(t; yk,l) : t ∈ [0, 1]}. (3.122b)

To discretize L we approximate the integral in Eq. 3.118, for each grid point yk,l ⊂ Y ,

using an arc length parameterization of the curve Pyk,l . The resulting quadrature takes

the form

(Lf)(yk,l) ≈
∑
q

wqf(xq) (3.123)

where {xq} ⊂ X and each weight wq > 0. Because this quadrature involves points xq
not on the computational grid, we approximate the value f(xq) by interpolating the

grid function values f(xi,j). The result takes the form

(Lf)(yk,l) ≈
∑
i,j

L(k,l),(i,j)f(xi,j), (3.124)

where the values L(k,l),(i,j) are now the components of the matrix operator L.
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CHAPTER 4

Unnormalized Optimal Transport

4.1 Background

This chapter is taken from the work [18] of which I am a coauthor. Specifically, in this thesis

I will present a brief background of the theoretical properties and the numerics as well as

their interpretation.

Recall first that the Lp Wasserstein distance can be defined as:

Wp (µ0, µ1)2 = inf
v,µ,f

∫ 1

0

∫
Ω
‖v(t, x)‖2µ(t, x)dxdt

subject to ∂tµ(t, x) +∇ · (µ(t, x)v(t, x)) = 0,

µ(0, x) = µ0(x), µ(1, x) = µ1(x).

(4.1)

Based on this definition we define the L2 Unnormalized Wasserstein distance as a modi-

fication of Eqn. 4.1 to be:

UW2 (µ0, µ1)2 = inf
v,µ,f

∫ 1

0

∫
Ω
‖v(t, x)‖2µ(t, x)dxdt+ |Ω|

α

∫ 1

0
|f(t)|2dt

subject to ∂tµ(t, x) +∇ · (µ(t, x)v(t, x)) = f(t),

µ(0, x) = µ0(x), µ(1, x) = µ1(x).

(4.2)

4.1.1 Unnormalized Wasserstein-1 Distance

If we define

m(x) =
∫ 1

0
v(t, x)µ(t, x)dt (4.3)
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then by Jensen’s inequality,

∫ 1

0

∫
Ω
‖v(t, x)‖µ(t, x)dxdt ≥

∫
Ω
‖
∫ 1

0
v(t, x)µ(t, x)dt‖dx =

∫
Ω
‖m(x)‖dx. (4.4)

Thus, the minimizing m is time independent, therefore Eqn. 4.2 becomes:

UW1 (µ0, µ1) =
∫

Ω
‖m(x)‖ dx+ 1

α

∣∣∣∣∫
Ω
µ0(x)− µ1(x)dx

∣∣∣∣
subject to µ1(x)− µ0(x) +∇ ·m(x) = 1

|Ω|

∫
Ω
µ0(x)− µ1(x)dx.

(4.5)

Of note because the problem is symmetric in time, solving for a solution to Eq. 4.5 is

considerably easier numerically. The optimal m is a function of space, and constant in time.

Further, we note that

UW1 (µ0, µ1) = struc [µ0 − µ1] + 1
α

∣∣∣∣∫
Ω
µ0(x)− µ1(x)dx

∣∣∣∣ (4.6)

therefore given code that computes the struc [·] or EMD one can easily compute UW1 (·, ·).

Given the wealth of numerics for computing the EMD quickly (e.g. [38, 26]) we will not the

specific algorithms for computing UW1 (·, ·). We will however, present the results from some

numerics in Fig. 4.1.

In Fig. 4.1 we plot two problems where we compute UW1 (µ0, µ1). Figs. 4.1a and 4.1a

are µ0 and µ1, where both µ0 and µ1 are smooth functions. Fig. 4.1c shows the value of

m(x) from 4.5. Figs. 4.1d - 4.1f are the same, however they show that the numerics work

just as well for non-smooth inputs as smooth ones.

4.1.2 Unnormalized Wasserstein-2 Distance

Now we discuss the p = 2 case. In this case the solution is not constant in time, however it

is still useful to make the substitution m = µv. With this substitution Eq. 4.2 becomes
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Figure 4.1: Plots of the µ0, µ1 and m(x) for UW1(µ0, µ1) for the two Gaussian movement

(A) µ0, (B) µ1, (C) m(x) and two (D) µ0, (E) µ1, (F) m(x).

UW2 (µ0, µ1)2 = inf
m,µ,f

∫ 1

0

∫
Ω

‖m‖2

µ
dxdt+ 1

α

∫ 1

0
|f(t)|2dt

subject to ∂tµ(t, x) +∇ · (m(x, t)) = 0,

µ(0, x) = µ0(x), µ(1, x) = µ1(x).

(4.7)

Further we consider the zero-flux case when m(x, t) ·η = 0 on ∂Ω where η is the boundary

normal vector. Of interest is that just as in the normalized case, there is both a Monge and

Kantorovich formulation of Eqn. 4.7. We will present these alternate formulations without

proof. The interested reader can see [18] for the full details. The Monge formulation of 4.7

is

UW2 (µ0, µ1)2 = inf
M,f(t)

∫
Ω
‖M(x)− x‖2µ0(x)dx+ α

∫ 1

0
f(t)2dt

+
∫ 1

0

∫ t

0
f(s)

∫
Ω
‖M(x)− x‖2Det (s∇M(x) + (1− s)I) dsdtdx,

(4.8)
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where the infimum is among all one to one, invertible mapping functions M : Ω→ Ω and a

source function f : Ω→ R, such that the unnormalized push forward relation holds

µ(1,M(x))Det(∇M(x)) = µ(0, x) +
∫ 1

0
f(t)Det

(
t∇M(x) + (1− t)I

)
dt. (4.9)

The Kantorovich formulation is given implicitly in terms of M(x) = ∇Ψ(x). In this case

the optimal map satisfies

1
2UW2(µ0, µ1)2 = sup

Φ

{ ∫
Ω

Φ(1, x)µ(1, x)dx−
∫

Ω
Φ(0, x)µ(0, x)dx− α

2

∫ 1

0

( ∫
Ω

Φ(t, x)dx
)2
dt
}

where the supremum is taken among all Φ: [0, 1]→ Ω satisfying

∂tΦ(t, x) + 1
2‖∇Φ(t, x)‖2 ≤ 0.

4.2 Numerics

In this section, we propose to apply a primal-dual algorithm to solve unnormalized OT

numerically. We then provide several numerical examples to demonstrate the effectiveness

of this procedure.

4.2.1 Algorithm

We present a primal-dual algorithm for problem Eq. 4.2. In particular, our method is based

on its reformulation Eq. 4.7, named the minimal flux problem. Define the Lagrangian of

Eq. 4.7:

L(m,µ, f,Φ) =
∫ 1

0

∫
Ω

‖m(t, x)‖2

2µ(t, x) dtdx+ 1
2α

∫ 1

0
f(t)2dt

+
∫ 1

0

∫
Ω

Φ(t, x)
(
∂tµ(t, x) +∇ ·m(t, x)− f(t)

)
dxdt,

where Φ(t, x) is the Lagrange multiplier of the unnormalized continuity constraint in Eq.

4.7.

Convex analysis shows that (m∗(t, x), µ∗(t, x), f ∗(t)) is a solution to Eq. 4.7 if and only

if there is a Φ∗ such that (m∗,Φ∗) is a saddle point of L(m,µ, f,Φ). In other words, we can
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compute minimization Eq. 4.7 by solving the following minimax problem

inf
m,µ,f

sup
Φ
L(m,µ, f,Φ),

It is clear that L is convex in m, µ, f and concave in Φ, and the interaction term is a linear

operator. This property allows us to apply the Chambolle-Pock first order primal-dual

algorithm [8], which gives the update as follows.

mk+1(t, x) = arg infm L(m,µk, fk,Φk) + 1
2τ1

∫ 1
0
∫

Ω ‖m(t, x)−mk(t, x)‖2dxdt

µk+1(t, x) = arg infµ L(mk, µ, fk,Φk) + 1
2τ1

∫ 1
0
∫

Ω ‖µ(t, x)− µk(t, x)‖2dxdt

fk+1(t) = arg inff L(mk, µk, f,Φk) + 1
2τ1

∫ 1
0 ‖f(t)− fk(t)‖2dt

Φ̃k+1(t, x) = arg supΦ L(m̃, µ̃, f̃ ,Φ)− 1
2τ2

∫ 1
0
∫

Ω ‖Φ(t, x)− Φk(t, x)‖2dxdt

(m̃, µ̃, f̃) = 2(mk+1, µk+1, fk+1)− (mk, µk, fk)

(4.10)

where τ1, τ2 are given step sizes for primal, dual variables. These steps can be interpreted as

a gradient descent in the primal variable (m,µ, f) and a gradient ascent in the dual variable

Φ.

It turns out that the optimizations in above update Eq. 4.10 have explicit formulas. The

first line becomes

mk+1(t, x) = arg inf
m

{‖m(t, x)‖2

2µk(t, x) −m(t, x) · ∇Φ(t, x) + 1
2τ1
‖m(t, x)−mk(t, x)‖2

}

= µk(t, x)
µk(t, x) + τ1

(
τ1∇Φ(t, x) +mk(t, x)

)
.

The second line of Eq. 4.10 simplifies to

µk+1(t, x) = arg inf
µ

‖mk(t, x)‖2

2µ(t, x) − ∂tΦ(t, x) · µ(t, x) + 1
2τ1
|µ(t, x)− µk(t, x)|2.

The above problem has an analytical solution by solving a cubic equation. The third line of

Eq. 4.10 gives

fk+1(t) = arg inf
f

{ 1
2αf(t)2 − f(t)

∫
Ω

Φ(t, x)dx+ 1
2τ1
‖f(t)− fk(t)‖2

}
= α

α + τ1

(
τ1

∫
Ω

Φ(t, x)dx+ fk(t)
)
.
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The fourth line of Eq. 4.10 gives

Φk+1(t, x) = arg sup
Φ

{
Φ(t, x) · (∂tµ̃(t, x) +∇ · m̃(t, x)− f̃(t))− 1

2τ2
‖Φ(t, x)− Φk(t, x)‖2

}
=Φk(t, x) + τ2

(
∂tµ̃

k+1(t, x) +∇ · m̃(t, x)− f̃(t)
)
.

Combining all above formulas, we are now ready to state the algorithm.

Algorithm: Primal-Dual method for Unnormalized OT
Input: Unnormalized densities µ0, µ1;

Initial guess of m0, µ0, Φ0, f 0, step size τ1, τ2.

Output: Minimizer µ(t, x); Dual variable Φ(t, x); Value UW2(µ0, µ1).

1. For k = 1, 2, · · · Iterate until convergence

2. mk+1(t, x) = µk(t,x)
µk(t,x)+τ1

(
τ1∇Φ(t, x) +mk(t, x)

)
;

3. Solve µk+1(t, x) = arg infµ ‖mk(t,x)‖2
2µ(t,x) − ∂tΦ(t, x) · µ(t, x) + 1

2τ1 |µ(t, x)− µk(t, x)|2;

4. fk+1(t) = α
α+τ1

(
τ1
∫
Ω Φ(t, x)dx+ fk(t)

)
;

5. Φk+1(t, x) = Φk(t, x) + τ2

(
∂tµ̃

k+1(t, x) +∇ · m̃(t, x)− f̃(t)
)

;

6. (m̃, µ̃, f̃) = 2(mk+1, µk+1, fk+1)− (mk, µk, fk);

7. End

4.2.2 Numerical Grid

To apply the algorithm, we first define our numerical grid. For simplicity we consider the

case where the space of interest is Ω = [0, 1]d and time T = [0, 1]. Further, for the following

explanations we consider the problem when d = 2, however, our grid construction can

be constructed on any dimension by extending it in the obvious way. We will use the

same symbol to represent both the continuous µ,m,Φ, f and their respective discretized

counterparts, as the difference between the two should be clear from context alone.

Let nt, nx, and ny be given then notate ∆t = 1
nt−1 , ∆x = 1

nx−1 , and ∆y = 1
ny−1 . Using
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this notation we define the following sets:

Ω(i,j) = [i∆x, (i+ 1)∆x]× [j∆y, (j + 1)∆y]

T(k) = [k∆t, (k + 1)∆t]

Ω(i−1/2,j) = [(i− 1/2)∆x, (i+ 1/2)∆x]× [j∆y, (j + 1)∆y] for i = 0, . . . , nx

Ω(i,j−1/2) = [i∆x, (i+ 1)∆x]× [(j − 1/2)∆y, (j + 1/2)∆y] for j = 0, . . . , ny

where i = 0, . . . , nx − 1, j = 0, . . . , ny − 1, and k = 0 . . . , nt − 1 unless otherwise specified.

For the discretized problem we consider a f(k) that is constant along each T(k), and

consider µ(k,i,j) and Φ(k,i,j) that are constant along each T(k) × Ω(i,j). The vector m(k,i,j) has

two components mx,(k,i−1/2,j) and my,(k,i,j−1/2), that are constant along T(k) × Ω(i−1/2,j) and

T(k) × Ω(i,j−1/2) respectively. Numerically m quantifies the movement of density between

each of the Ω(i,j) and its spacial neighbors (i.e. Ω(i−1,j),Ω(i,j−1),Ω(i+1,j), and Ω(i,j+1)) and so

it is natural to define the components of m not on Ω(i,j) but rather on Ω(i−1/2,j), Ω(i+1/2,j),

Ω(i,j−1/2) and Ω(i,j+1/2).

Using the above notation, we write the steps of the algorithm as:

mx,(k,i−1/2,j) =


µ(k,i−1,j)+µ(k,i−1,j)
µ(k,i,j)+µ(k,i−1,j)+2τ1

(
τ1 +∇xΦ(k,i−1/2,j) +mx,(k,i−1/2,j)

)
if i = 1, . . . , nx − 1

0 if i = 0, nx

my,(k,i,j−1/2) =


µ(k,i,j)+µ(k,i,j−1)

µ(k,i,j)+µ(k,i,j−1)+2τ1

(
τ1 +∇yΦ(k,i,j−1/2) +my,(k,i,j−1/2)

)
if j = 1, . . . , ny − 1

0 if j = 0, ny

µ(k,i,j) = root+(1,−(τ1 ∗ ∂tΦ(k,i,j) + µ(k,i,j)), 0,
−τ1

8
(
(m(k,i+1/2,j) +m(k,i−1/2,j))2 + (m(k,i,j+1/2) +m(k,i,j−1/2))2

)
)

f(k) = α

α + τ1

τ1 +
∑
i

∑
j

Φ(k,i,j)∆x∆y + f(k)


Φ(k,i,j) = τ2 ∗

(
∂tµ̃(k,i,j) +∇ · m̃(k,i,j) − f̃(k)

)
+ Φ(k,i,j)
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where

∇xΦ(k,i−1/2,j) = Φ(k,i,j) − Φ(k,i−1,j)

∆x
∇yΦ(k,i,j−1/2) = Φ(k,i,j) − Φ(k,i,j−1)

∆y ;

∂tΦ(k,i,j) =



1
∆t

(Φ(1,i,j)
2 + Φ(0,i,j)

)
if k = 0

1
∆t

(Φ(2,i,j)
2 − Φ0,i,j

)
if k = 1

1
2∆t

(
Φ(k+1,i,j) − Φ(k−1,i,j)

)
if 1 < k < nt − 2

1
∆t

(
Φ(nt−1,i,j) −

Φ(nt−3,i,j)
2

)
if k = nt − 2

1
∆t

(
−Φ(nt−1,i,j) −

Φ(nt−2,i,j)
2

)
if k = nt − 1

root+(a, b, c, d) = the largest real solution to ax3 + bx2 + cx+ d = 0

∂tµ(k,i,j) =



1
∆t

(
µ(1,i,j) − µ(0,i,j)

)
if k = 0

1
2∆t

(
µ(k+1,i,j) − µ(k−1,i,j)

)
if 0 < k < nt − 1

1
∆t

(
µ(nt−1,i,j) − µ(nt−2,i,j)

)
if k = nt − 1

∇ ·m(k,i,j) = mx,(k,i+1/2,j) −mx,(k,i−1/2,j)

∆x + my,(k,i,j+1/2) −my,(k,i,j−1/2)

∆y .

Note that the unusual boundary conditions of ∂tΦ arise from the need to satisfy

∑
k

Φ(k,i,j)∂tµ(k,i,j)∆t = −
∑
k

∂tΦ(k,i,j)µ(k,i,j)∆t ∀i, j.

4.2.3 Numerical Experiments

Now we present our numerical results. The first two experiments are in one dimension, and

the rest are in two. The numerical parameters for our experiments are given in Table 4.1.

62



Parameter Value Parameter Value

Discretization Optimization

nt 15 Iterations 200,000

nx 35 τ1 10−3

ny 35 τ2 10−1

α 100

Table 4.1: Numerical parameters for our experiments. Note that for our one dimensional

experiments, ny has no value.
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Figure 4.2: A plot of (A) W2(µ0, µ1), (B) UW2(µ0, µ1) and (C) f(t) in the unbalanced case.

4.3 Experimental Results

4.3.1 Experiment 1

Here we consider the problem where µ0 and µ1 are both one dimensional Gaussians of equal

integral, Ω = [0, 1] and

µ0 = N
(
x; 1

3 , 0.1
)

µ1 = N
(
x; 2

3 , 0.1
)

N(x;µx, σ2) = Ce
(x−µx)2

2σ2 where C is such that
∫

Ω
N(x;µx, σ2)dx = 1

We plot the results in Figure 4.2. In this case the input densities are balanced and so

W2(µ0, µ1) and UW2(µ0, µ1) appear similar. Indeed UW2(µ0, µ1) = 0.055 and W2(µ0, µ1) =
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0.056.

Note that even in this simple case the behavior of f(t) is nuanced. In this case, µ0 and

µ1 are smooth, of equal integral and W2(µ0, µ1) is given by a simple analytical formula,

and f(t) is not identically zero. Integrating the constraint in Eq. 4.7 in space and time

yields |Ω|
∫

[0,1] f(t)dt =
∫

Ω µ1dx −
∫

Ω µ0dx, and so for balanced inputs
∫

[0,1] f(t)dt = 0, but

experiment 1 shows that f 6≡ 0.

4.3.2 Experiment 2
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Figure 4.3: A plot of the asymptotic behavior of UW2 in α with balanced and unbalanced

inputs. Balanced: (A) UW2(µ′0, µ1;α), (B) f ′(t;α), (C) Φ′(t, x;α), and unbalanced: (D)

UW2(µ0, µ1;α), (E) f(t;α), (F) Φ(t, x;α).

Again consider Ω = [0, 1], however in this experiment we analyse the asymptotic behavior
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of UW2(µ0, µ1) as a function of α and α→ 0 and α→∞. Here

µ0 = N (x; 0, 0.1) +N
(
x; 1

3 , 0.1
)

µ′0 = 1
2

(
N (x; 0, 0.1) +N

(
x; 1

3 , 0.1
))

µ1 = N
(
x; 2

3 , 0.1
)
.

The balanced case refers to UW2(µ′0, µ1), and the unbalanced refers to UW2(µ0, µ1). In both

cases we compute the unnormalized Wasserstein distance. The results are given in Figure

4.3.

Figures 4.3a - 4.3c show that (at least numerically) UW2(µ0, µ1;α), f(t, α) and Φ(t, x;α)

converge as α → 0+, α → ∞ when
∫

Ω µ0dx =
∫

Ω µ1dx. Further is seems plausible that for

balanced inputs UW2(µ0, µ1;α) → W2(µ0, µ1) as α → 0+. For any α the µ,m and Φ from

W2(µ0, µ1) along with f(t) ≡ 0 satisfy the constraint of Eq. 4.7. Formally sending α → ∞

causes f(t) to 0.

Figures 4.3d - 4.3f illustrate the asymptotic behavior of UW2(µ0, µ1;α) w.r.t. α when the

inputs are unbalanced. In that case we (numerically) see that as α → 0, f(t;α) converges

to a non-zero value, and both UW2(µ0, µ1;α) and Φ(t, x;α) diverge. This too is consistent

with the formal argument that UW2(µ0, µ1;α)→ W2(µ0, µ1) as α→ 0+.

In a predecessor of this work [5] the authors solve for W2(µ1, ρ2) using Lagrange multi-

pliers in a similar formulation to Eq. 4.7. In their work the Lagrange multiplier Φ(t, x) is

given up to an additive constant. If indeed UW2(µ0, µ1;α) → W2(µ0, µ1) as α → 0+ and

Φ(t, x;α) does converge then Φ(t, x; 0+) is given uniquely (as a limit) and there is no issue

of undetermined constants.
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Figure 4.4: Plots of the µ(t, x, y) and f(t) for UW2(µ0, µ1). (A) µ(0.00, x, y), (B) µ(0.21, x, y),

(C) µ(0.50, x, y), (D) µ(0.79, x, y), (E) µ(1.00, x, y), (F) f(t).

4.3.3 Experiment 3

Now consider the two dimensional problem where Ω = [0, 1]2. In this case

µ0(x, y) = N (x, y; 0.3, 0.3, 0.1, 0.1) +N (x, y; 0.7, 0.3, 0.1, 0.1)

µ1(x, y) = N (x, y; 0.7, 0.7, 0.1, 0.1)

N(x, y;µx, µy, σ2
1, σ

2
2) = Ce

(x−µx)2

2σ2
1

+ (y−µy)2

2σ2
2 ,

where C is a normalization constant such that
∫

Ω N(x, y;µx, µy, σ2
1, σ

2
2)dxdy = 1. The results

from our experiments are shown in Figure 4.4. Note that although the mass of µ0 is twice

that of µ1, the optimal f(t) is not non-positive. Indeed from t = 0 to t ≈ 1
4 , f(t) is positive,

before staying non-positive for the rest of the interval. This again illustrates that even in the

case of gaussian movement the behavior of f(t) is nuanced, and violates naive basic intuition.
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Figure 4.5: Plots of the µ(t, x, y) and f(t) for UW2(µ0, µ1). (A) µ(0.00, x, y), (B) µ(0.21, x, y),

(C) µ(0.50, x, y), (D) µ(0.79, x, y), (E) µ(1.00, x, y), (F) f(t).

4.3.4 Experiment 4

Consider again the two dimensional problem, however this time we choose µ0 and µ1 to be

the cats in [38]. Our results are summarized in Figure 4.5. This illustrates that our new

method can be used as a general purpose OT solver for unbalanced inputs, and so can be

used to interpolate between two functions.
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CHAPTER 5

Conclusion

In this thesis we have studied inverse problem from a theoretical and practical perspective.

We have shown that the work done in [42] can be improved both in quality of reconstruction

and speed of reconstruction by careful choice of regularizer as well as algorithm for solving

the resulting inverse problem.

We have also demonstrated that in inverse problems forward operator correctness is

paramount, and even a modest error in modeling said operator can lead to catastrophic

error in reconstruction. To address this problem we have developed a new tool called the

structure. We prove some new results concerning the treatment of noise by the Earth Mover’s

Distance (EMD). Further, consistent with these theoretical results, we perform numerical

experiments and show that the structure is able to distinguish between error in the modeling

of a forward operator, and noise in the signal of an inverse problem. Therefore the structure

of the residual of an inverse procedure can be used as a proxy for the correctness of the

forward operator used.

We also do numerical experiments that concern model linear forward operators. On these

problems the structure of the residual is indeed minimized when the correct forward operator

is used. The L1 or L2 norms of the residual are also minimized around the correct forward

operator, the structure, however, is more localized and has better contrast around the min-

imum. Further, we observe that the degree to which the inverse problem is overdetermined

and degree of regularization is critical to the success of the procedure. The more over deter-

mined the problem, the more useful the structure. This is borne out by the analysis in the

case of linear regularization, as well as the numerical results on more sophisticated problems.

Finally we also propose and solve an unnormalized optimal transport problem, specifically
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we develop the Unnormalized Wasserstein-1 and 2 distances. We show that the proposed dis-

tances are well defined and easily numerically computed. Our generalization is parameterized

by a positive scalar α and reduces to the original Wasserstein-p distance when α→ 0+. For

α > 0 our generalization is a smooth extension of the Wasserstein-p distance but crutially

does not require that the input arguments have equal integral.

The Wasserstein-1 and 2 distances are both common in both pure and applied math

([41, 36, 12, 1]) and to either one must do some bespoke, often heuristic, preprocessing

step to normalize the input data. We believe that our Unnormalized Wasserstein-1 and 2

distances can be used as a drop-in replacement for both this heuristic step and the subsequent

calculation and so can unify many of these desperate approaches.
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