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Abstract

Improving the accuracy and robustness of deep neural nets (DNNs) and adapting them to
small training data are primary tasks in deep learning research. In this paper, we replace
the output activation function of DNNs, typically the data-agnostic softmax function, with
a graph Laplacian-based high dimensional interpolating function which, in the continuum
limit, converges to the solution of a Laplace-Beltrami equation on a high dimensional
manifold. Furthermore, we propose end-to-end training and testing algorithms for this
new architecture. The proposed DNN with graph interpolating activation integrates the
advantages of both deep learning and manifold learning. Compared to the conventional
DNNs with the softmax function as output activation, the new framework demonstrates
the following major advantages: First, it is better applicable to data-efficient learning in
which we train high capacity DNNs without using a large number of training data. Second,
it remarkably improves both natural accuracy on the clean images and robust accuracy on
the adversarial images crafted by both white-box and black-box adversarial attacks. Third,
it is a natural choice for semi-supervised learning. For reproducibility, the code is available
at https://github.com/BaoWangMath/DNN-DataDependentActivation.
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1. Introduction

Deep learning (DL) has achieved tremendous success in both image and speech recognition
and natural language processing, and it has been widely used in industrial production
(LeCun et al., 2015). Improving generalization accuracy and adversarial robustness of deep
neural nets (DNNs) are primary tasks in DL research. Moreover, applying DNNs to data-
efficient machine learning (ML), where we do not have a large number of training instances,
is important to different research communities.

Despite the extraordinary success of DNNs in image and speech perception, their vulnera-
bility to adversarial attacks raises concerns when applying them to security-critical tasks,
e.g., autonomous cars, robotics, and DNN-based malware detection systems (Anonymous,
2019). Since the seminal work of Szegedy et al. (2013), recent research shows that DNNs
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are vulnerable to many kinds of adversarial attacks including physical, poisoning, and in-
ference (evasion) attacks (Chen et al., 2017a; Carlini and Wagner, 2016; Papernot et al.,
2016a; Goodfellow et al., 2014). Physical attacks occur during data acquisition, poisoning
and inference attacks happen during training and testing phases of machine learning (ML),
respectively.

Adversarial attacks have been successful in both white-box and black-box scenarios. In
white-box attacks the adversarial have access to the architecture and weights of DNNs. In
black-box attacks the adversarial have no access to the details of the underlying model.
Black-box attacks are successful because one can perturb an image to cause its misclassi-
fication on one DNN, and the same perturbed image also has a significant chance to be
misclassified by another DNN; this is known as the transferability of adversarial examples
(Papernot et al., 2016c). Due to this transferability, it is straightforward to attack DNNs
in a black-box fashion by attacking an oracle model (Liu et al., 2016; Brendel et al., 2017).
There also exist universal perturbations that can imperceptibly perturb any image and
cause misclassification for any given network (Moosavi-Dezfooli et al., 2017). Dou et al.
(2018) analyzed the efficiency of many adversarial attacks for a large variety of DNNs.

Besides the issue of adversarial vulnerability, the superior accuracy of DNNs depends heavily
on a massive amount of training data. When we do not have sufficient training data, which
is often the case in many real situations, to train a high capacity deep network, performance
degradation becomes a serious problem. As shown in Table 1, when ResNets are trained
on 50K or 10K CIFAR10 images, as the depth of ResNet increases, the test accuracy gains.
However, when ResNets are trained on only 1K images, the test accuracy decays as the
model’s capacity increases. For instance, the test errors of ResNet20 and ResNet110 are
34.90% and 42.94%, respectively.

Table 1: Test errors of DNNs trained on the entire (50K), the first 10K, and the first 1K
instances of the training set of the CIFAR10.

Network # of parameters 50K 10K 1K

ResNet20 0.27M 9.06% (8.75%(He et al., 2016c)) 12.83% 34.90%
ResNet32 0.46M 7.99% (7.51%(He et al., 2016c)) 11.18% 33.41%
ResNet44 0.66M 7.31% (7.17%(He et al., 2016c)) 10.66% 34.58%
ResNet56 0.85M 7.24% (6.97%(He et al., 2016c)) 9.83% 37.83%
ResNet110 1.7M 6.41% (6.43%(He et al., 2016c)) 8.91% 42.94%

1.1 Our Contributions

In this paper, we propose an end-to-end framework to mitigate the aforementioned two
issues of DNNs, i.e., adversarial vulnerability and generalization accuracy degradation in
the small training data scenario. At the core of our framework is to replace the data-
agnostic softmax output activation with a data-dependent graph interpolating function.
To this end, we leverage the weighted nonlocal Laplacian (WNLL) (Shi et al., 2018) to
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interpolate features in the hidden state of DNNs. In back-propagation, we linearize the
WNLL activation function to compute gradient of the loss function approximately. The
major advantages of the proposed framework are summarized below.

• The naturally trained DNNs with the WNLL output activation obtained by solving
the empirical risk minimization (ERM), i.e., Eq. (2), are remarkably more accurate
than the vanilla DNNs with the softmax output activation.

• The robustly trained DNNs with the WNLL activation obtained by solving the em-
pirical adversarial risk minimization (EARM), i.e., Eq. (1), are much more robust to
adversarial attacks than the robustly trained vanilla DNNs. To the best of our knowl-
edge, DNNs with the WNLL activation achieves the current-state-of-the-art result in
adversarial defense on the CIFAR10 and MNIST benchmarks.

• In the small training data situation, the WNLL activation can regularize the training
procedure. The test accuracy of DNNs with the WNLL activation increases as the
network goes deeper.

• DNN with the WNLL output activation is a natural choice for semi-supervised deep
learning.

• The proposed framework is applicable to any off-the-shelf DNNs when use the softmax
as its output activation.

1.2 Related Work

In this subsection, we will discuss related work from the viewpoints of improving generaliz-
ability and adversarially robustness.

1.2.1 Improving Generalizability of DNNs

Generalizability is crucial to DL, and many efforts have been made to improve the test
accuracy of DNNs (Bengio et al., 2007; Hinton et al., 2006). Advances in network archi-
tectures such as VGG networks (Simonyan and Zisserman, 2014), deep residual networks
(ResNets) (He et al., 2016c,b) and recently DenseNets (Huang et al., 2017) and many oth-
ers (Chen et al., 2017b), together with powerful hardware make the training of very deep
networks with good generalization capabilities possible. Effective regularization techniques
such as dropout and maxout (Hinton et al., 2012; Wan et al., 2013; Goodfellow et al., 2013),
as well as data augmentation methods (Krizhevsky et al., 2012; Simonyan and Zisserman,
2014) have also explicitly improved generalization for DNNs. From the optimization point
of view, Laplacian smoothing stochastic gradient descent has been recently proposed to
improve training and generalization of DNNs (Osher et al., 2018).

A key component of DNN is the activation function. Improvements in designing of activation
functions such as the rectified linear unit (ReLU) (Glorot et al., 2011), have led to huge
improvements in performance in computer vision tasks (Nair and Hinton, 2010; Krizhevsky
et al., 2012). More recently, activation functions adaptively trained to the data such as the
adaptive piece-wise linear unit (APLU) (Agostinelli et al., 2014) and parametric rectified
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linear unit (PReLU) (He et al., 2015) have led to further improvements in the performance
of DNNs. For output activation, support vector machine (SVM) has also been successfully
applied in place of softmax (Tang, 2013). Though training DNNs with softmax or SVM
as output activation is effective in many tasks, it is possible that alternative activations
that consider the manifold structure of data by interpolating the output based on both
training and testing data can boost the performance of the deep network. In particular,
ResNets can be modeled as solving control problems of a class of transport equations in the
continuum limit (Li and Shi, 2017; Wang et al., 2018c). Transport equation theory suggests
that using an interpolating function that interpolates terminal values from initial values can
dramatically simplify the control problem compared with an ad-hoc choice. This further
suggests that a fixed and data-agnostic activation for the output layer may be suboptimal.

1.2.2 Adversarial Defense

EARM is one of the most successful mathematical frameworks for certified adversarial
defense. Under the EARM framework, adversarial defense for the `∞-norm based inference
attacks can be formulated as solving the following minimax optimization problem

min
f∈H

1

n

n∑
i=1

max
‖x′

i−xi‖∞≤ε
L(f(x′i,w), yi), (1)

where f(·,w) is a function in the hypothesis class H, e.g., DNNs, parameterized by w.
Here, {(xi, yi)}ni=1 are n i.i.d. data-label pairs drawn from some high dimensional unknown
distribution D, L(f(xi,w), yi) is the loss associated with f on the data-label pair (xi, yi).
For classification, L is typically selected to be the cross-entropy loss; for regression, the
root mean square error is commonly used. The adversarial defense for other measure based
attacks can be formulated similarly. As a comparison, solving ERM is used to train models in
a natural fashion to classify the clean data, where ERM is to solve the following optimization
problem

min
f∈H

1

n

n∑
i=1

L(f(xi,w), yi). (2)

Many of the existing approaches try to defend against the inference attacks by searching for
a good surrogate loss to approximate the loss function in the EARM. Projected gradient
descent (PGD) adversarial training is a representative work along this line that approxi-
mates EARM by replacing x′i with the adversarial data that is obtained by applying the
PGD attack to the clean data (Goodfellow et al., 2014; Madry et al., 2018). Besides finding
an appropriate surrogate to approximate the empirical adversarial risk, under the EARM
framework, we can also improve the hypothesis class to improve adversarial robustness of
the trained robust models (Wang et al., 2018c).

There is a massive volume of research over the past several years on defending against adver-
sarial attacks for DNNs. Randomized smoothing transforms an arbitrary classifier f into a
”smoothed” surrogate classifier g and is certifiably robust to the `2-norm based adversarial
attacks (Lecuyer et al., 2019; Cohen et al., 2019). Among the randomized smoothing tech-
nique, one of the most popular ideas is to inject Gaussian noise to the input image, and the
classification result is based on the probability of noisy image in decision region. Wang et al.
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(2018c) modeled ResNets as a transport equation and interpreted the adversarial vulnera-
bility of DNNs as irregularity of the transport equation’s solution. To enhance its regularity,
i.e., improve adversarial robustness, they added a diffusion term to the transport equation
and solved the resulted convection-diffusion equation by the celebrated Feynman-Kac for-
mula. The resulted algorithm remarkably improves both natural and robust accuracies of
the robustly trained DNNs.

Robust optimization for solving EARM has achieved tremendous success in certified adver-
sarial defense (Madry et al., 2018; Zhang et al., 2019). Regularization in EARM can further
boost the robustness of the adversarially trained robust models (Kurakin et al., 2017; Ross
and Doshi-Velez, 2017; Zheng et al., 2016). The adversarial defense algorithms should learn
a classifier with high test accuracy on both clean and adversarial data. To achieve this goal,
Zhang et al. (2019) developed a new loss function named TRADES that explicitly trades
off between natural and robust generalization.

Besides robust optimization, there are many other approaches for adversarial defense. De-
fensive distillation was proposed to increase the stability of DNN (Papernot et al., 2016b),
and a related approach (Tramr et al., 2018) cleverly modifies the training data to increase
robustness against black-box attacks and adversarial attacks in general. To counter adver-
sarial perturbations, Guo et al. (2018) proposed to use image transformations, e.g., bit-depth
reduction, JPEG compression, total variation minimization, and image quilting. These in-
put transformations are intended to be non-differentiable, thus making adversarial attacks
more difficult, especially for gradient-based attacks. GANs are also used for adversarial
defense (Samangouei et al., 2018). However, adversarial attacks can break these gradient
mask based defenses by circumventing the obfuscated gradient (Athalye et al., 2018).

Instead of using the softmax function as DNN’s output activation, Wang et al. (2018b)
utilized a non-parametric graph interpolating function which provably converges to the so-
lution of a Laplace-Beltrami equation on a high dimensional manifold (Shi et al., 2018).
The proposed data-dependent activation shows a remarkable amount of generalization ac-
curacy improvement, and the results are more stable when one only has a limited amount
of training data. This data-dependent activation is also useful in adversarial defense when
combined with image transformations (Wang et al., 2018a). Verma et al. (2018) simpli-
fied the interpolation procedure and generalized it to more hidden layers to learn better
representations.

1.3 Organization

This paper is structured in the following way: In section 2, we present the generic architec-
ture of DNNs with a graph interpolating function as its output activation. In section 3, we
present training and testing algorithms in both natural and robust fashions for the proposed
DNNs with graph interpolating activation. We verify the performance of the proposed algo-
rithm numerically in section 4 from the lens of natural and robust generalization accuracies
and semi-supervised learning. In section 5, we provide geometric explanations for improving
generalization and robustness by using the proposed new framework. This paper concludes
with a remark in section 6.
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2. Network Architecture

We illustrate the training and testing procedures of a standard DNN in Fig 1, where

• Training (Fig 1 (a)), in the kth iteration, given a mini-batch of training data (X,Y),
we perform:

– Forward propagation: Transform X into features by the DNN block (a combi-
nation of convolutional layers, nonlinearities, etc.), and then feed these features
into the softmax activation to obtain the predictions Ỹ, i.e.,

Ỹ = Softmax(DNN(X,Θk−1),Wk−1),

where (Θk−1,Wk−1) are the temporary values of the trainable weights (Θ,W) at
the (k − 1)th iteration. Then the loss is computed (e.g., cross entropy) between
the ground-truth labels Y and the predicted labels Ỹ: L .

= LLinear = Loss(Y, Ỹ).

– Backpropagation: Update weights (Θk−1, Wk−1) by applying gradient descent
with learning rate γ

Wk = Wk−1 − γ ∂L
∂Ỹ
· ∂Ỹ

∂W
,

Θk = Θk−1 − γ ∂L
∂Ỹ
· ∂Ỹ

∂X̃
· ∂X̃

∂Θ
.

• Testing (Fig 1 (b)): Once the training procedure finishes with the learned parameters
(Θ,W). The predicted labels for the testing data X are

Ỹ = Softmax(DNN(X,Θ),W),

for notational simplicity, we still denote the test set and the learned weights as X, Θ,
and W, respectively.

Even though this deep learning paradigm achieves the current-state-of-the-art success in
many artificial intelligence tasks, the data-agnostic activation (softmax) acts as a linear
model on the space of deep features X̃, which does not take into consideration the underlying
manifold structure of X̃, and has many other problems, e.g., it is less applicable when we
have a small amount of training data and is not robust to adversarial attacks. To this
end, we replace the softmax output activation with a graph interpolating function, WNLL,
which will be introduced in the following subsection. We illustrate the training and testing
data flow in Fig. 2 which will be discussed later.

2.1 Graph-based High Dimensional Interpolating Function – A Harmonic
Extension Approach

Let X = {x1,x2, · · · ,xn} be a set of points located on a high dimensional manifoldM⊂ Rd
and Xte = {xte

1 ,x
te
2 , · · · ,xte

m} (“te” for template) be a subset of X that is labeled with the
label function g(x). We want to interpolate a function u that is defined on the whole
manifold M and can be used to interpolate labels for the entire dataset X. The harmonic
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(a) (b)

Figure 1: Illustration of training and testing procedures of the standard DNN with the
softmax function as output activation layer. (a): Training; (b): Testing.

(a) (b)

Figure 2: Illustration of training and testing procedures of the DNN with the WNLL inter-
polating function as the output activation function. (a): Training; (b): Testing.
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extension is a natural approach to find such a smooth interpolating function which is defined
by minimizing the following Dirichlet energy functional

E(u) =
1

2

∑
x,y∈X

w(x,y) (u(x)− u(y))2 , (3)

with the boundary condition
u(x) = g(x), x ∈ Xte,

where w(x,y) is a weight function, chosen to be Gaussian: w(x,y) = exp(− ||x−y||
2

σ2 ) with
σ being a scaling parameter. By taking the variational derivative of the energy functional
Eq. (3), we get the following Euler-Lagrange equation{∑

y∈X (w(x,y) + w(y,x)) (u(x)− u(y)) = 0 x ∈ X/Xte

u(x) = g(x) x ∈ Xte.
(4)

By solving the linear system Eq. (4), we obtain labels u(x) for the unlabeled data x ∈
X/Xte. The interpolation quality becomes very poor when only a tiny amount of data are
labeled, i.e., |Xte| � |X/Xte|. To alleviate this degradation, the weight of the labeled data
is increased in the above Euler-Lagrange equation (Eq. (4)), which gives

∑
y∈X (w(x,y) + w(y,x)) (u(x)− u(y)) +(
|X|
|Xte| − 1

)∑
y∈Xte w(y,x) (u(x)− u(y)) = 0 x ∈ X/Xte

u(x) = g(x) x ∈ Xte.

(5)

We call the solution to Eq. (5) weighted nonlocal Laplacian (WNLL), and denote it as
WNLL(X,Xte,Yte). Shi et al. (2018), showed that the WNLL graph interpolating function
converges to the solution of the associated high dimensional Laplace-Beltrami equation. For
classification, g(x) is the one-hot label for x.

Remark 1 For a given x, due to the exponential decay of the kernel– w(x,y) = exp(− ||x−y||
2

σ2 ),
we do not need to compute weights for all y in X. In practice, we only consider the contri-
bution from the first m-nearest neighbors of x and let σ be the distance between x and its
nth nearest neighbor. We use the approximate nearest neighbor (Muja and Lowe, 2014) to
search all the m nearest neighbors of any given data x.

2.1.1 Theoretical Guarantees for the WNLL Interpolating Function

To ensure the accuracy of WNLL interpolation, the template data, i.e., the labeled data,
should cover all classes of data in X. We give a necessary condition in Theorem 2.

Theorem 2 (Wang et al. (2018b)) Suppose we have a dataset, X, which consists of N
different classes of data with each instance having the same probability to belong to any of
the N classes. Moreover, suppose the number of instances of each class is sufficiently large.
If we want to guarantee all classes of data to be sampled at least once, on average at least
N
(
1 + 1

2 + 1
3 + · · ·+ 1

N

)
data needs to be sampled from X. In this case, the number of data

being sampled, in expectation for each class, is 1 + 1
2 + 1

3 + · · ·+ 1
N ≈ lnN .
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We consider the convergence of the WNLL for graph interpolation and give a theoretical
interpretation of the special weight selected in Eq. (5). We summarize some results from
Shi et al. (2018). Consider the following generalized WNLL interpolation{∑

y∈XRδ(x,y) (uδ(x)− uδ(y)) + µ
∑

y∈Xte Kδ(x,y)(uδ(x)− g(y)) = 0, x ∈ X,

uδ(x) = g(x), x ∈ Xte.

(6)
where Rδ(x,y), Kδ(x,y) are kernel functions given as

Rδ(x,y) = CδR

(
|x− y|2

4δ2

)
, Kδ(x,y) = CδK

(
|x− y|2

4δ2

)
, (7)

where Cδ = 1
(4πδ2)k/2

is the normalization factor. R,K ∈ C2(R+) are two kernel functions

satisfying the conditions listed in Assumption 1.

Assumption 1

• Assumptions on the manifold: M is a k-dimensional closed C∞ manifold isometri-
cally embedded in a Euclidean space Rd. D and ∂D are smooth submanifolds of Rd.
Moreover, g(x) ∈ C1(D).

• Assumptions on the kernel functions:

(a) Smoothness: K(r), R(r) ∈ C2(R+);

(b) Nonnegativity: R(r),K(r) ≥ 0 for any r ≥ 0.

(c) Compact support: R(r) = 0 for ∀r > 1; K(r) = 0 for ∀r > r0 ≥ 2.

(d) Nondegeneracy: ∃δ0 > 0 such that R(r) ≥ δ0 for 0 ≤ r ≤ 1/2 and K(r) ≥ δ0 for
0 ≤ r ≤ 2.

• Assumptions on the point cloud: Xte and X are uniformly distributed on M and D,
respectively.

As the continuous counterpart, we consider the Laplace-Beltrami equation on a closed
smooth manifold M {

∆Mu(x) = 0, x ∈M,
u(x) = g(x), x ∈ D, (8)

where ∆M = div(∇) is the Laplace-Beltrami operator on M. Let Φ : Ω ⊂ Rk →M ⊂ Rd
be a local parametrization ofM and θ ∈ Ω. For any differentiable function f :M→ R, we
define the gradient on the manifold

∇f(Φ(θ)) =

m∑
i,j=1

gij(θ)
∂Φ

∂θi
(θ)

∂f(Φ(θ))

∂θj
(θ). (9)
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And for the vector field F : M→ TxM on M, where TxM is the tangent space of M at
x ∈M, the divergence is defined as

div(F ) =
1√

detG

d∑
k=1

m∑
i,j=1

∂

∂θi

(√
detGgijF k(Φ(θ))

∂Φk

∂θj

)
(10)

where (gij)i,j=1,··· ,k = G−1, detG is the determinant of matrix G and G(θ) = (gij)i,j=1,··· ,k
is the first fundamental form with

gij(θ) =
d∑

k=1

∂Φk

∂θi
(θ)

∂Φk

∂θj
(θ), i, j = 1, · · · ,m. (11)

and (F 1(x), · · · , F d(x))T is the representation of F in the embedding coordinates.

We have the following high probability guarantee for convergence of the WNLL interpolating
function to the solution of the Laplace-Beltrami equation on the manifold M.

Theorem 3 (Shi et al. (2018)) Let uδ solve (6) and u solve (8). Given Assumption 1,
with probability at least 1− 1/(2n), where n = |X|, we have

|uδ − u| ≤ Cδ,

as long as

µ
∑

y∈Xte

Kδ(x,y) ≥ C
∑
y∈X

Rδ(x,y), x ∈ X ∩ Dδ, (12)

where Dδ = {x ∈ M : dist(x,D) ≤ 2δ}, and C = C(M,D, R,K) > 0 is a constant that is
independent of δ, X and Xte.

In the above theorem, Eq. (12) actually gives a constraint on the weight µ. Note that

1

n

∑
y∈X

Rδ(x,y) ≈ 1

|M|

∫
M
Rδ(x,y)dy = O(1), x ∈ X ∩ Dδ.

Xte samples D, if Xte is dense enough, we have

1

|Xte|
∑

y∈Xte

Kδ(x,y) ≈ 1

|D|

∫
D
Kδ(x,y)dy, x ∈ X ∩ Dδ.

Here, we need the assumption on K such that K(r) ≥ δ0 > 0, ∀ 0 ≤ r ≤ 2. This implies
that ∫

D
Kδ(x,y)dy = O(1), x ∈ X ∩ Dδ.

Hence, from Eq. (12), we have

µ ∼ |X|
|Xte|

,

which explains the scaling of |X|
|Xte| in the WNLL.
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2.2 DNNs with the Graph Interpolating Function as Output Activation

A straightforward approach is to replace the softmax function with the WNLL in Fig. 1.
However, backpropagation is difficult in this case. To resolve this, we consider a new DNN
architecture as shown in Fig. 2 which will be discussed in detail in Section 3.

3. Algorithms

In this section, we will present training and inference algorithms for DNNs with the WNLL
as the output activation in both natural and robust fashions. Natural training means to
solve the ERM problem on the training dataset and robust training stands for training an
adversarially robust deep network by solving the EARM problem. Meanwhile, we will also
adapt DNNs with the WNLL interpolating output activation to semi-supervised learning.

3.1 Natural Training and Inference

We abstract the natural training and testing procedures for DNNs with the WNLL activa-
tion in Fig. 2 (a) and (b), respectively. As a prerequisite of the WNLL interpolation, we
need to reserve a small portion of data-label pairs, denoted as (Xte,Yte), to interpolate la-
bels for the unlabeled data in both training and testing procedures of DNNs with the WNLL
activation. We call (Xte,Yte) as the preserved template. Directly replacing the softmax by
the WNLL in the architecture shown in Fig. 1 (a) causes difficulties in backpropagation,
namely, the gradient ∂L

∂Θ is difficult to compute since WNLL defines a very complex implicit
function. Instead, to train DNNs with the WNLL as the output activation, we propose a
proxy via an auxiliary neural net (Fig. 2 (a)). On top of the original DNNs, we add a buffer
block (a fully connected layer followed by a ReLU) and followed by two parallel branches,
the WNLL and the linear (fully connected) layers. We train the auxiliary DNNs by alter-
nating between the following two steps: training DNNs with linear and WNLL activation,
respectively. In the following, we denote DNN with the WNLL activation as DNN-WNLL,
e.g., we denote ResNet20 with WNLL activation as ResNet20-WNLL.

Train DNN-WNLL with linear activation: Run N1 steps of the following forward
and backward propagation, where in the kth iteration, we have:

• Forward propagation: Transform the training data X, respectively, by DNN, Buffer
and Linear blocks into the predicted labels Ỹ:

Ỹ = Linear(Buffer(DNN(X,Θk−1),Wk−1
B ),Wk−1

L ).

Then compute the loss between the ground truth labels Y and the predicted ones Ỹ,
denoted the loss as LLinear.

• Backpropagation: Update (Θk−1, Wk−1
B , Wk−1

L ) by stochastic gradient descent:

Wk
L = Wk−1

L − γ ∂L
Linear

∂Ỹ
· ∂Ỹ

∂WL
,

Wk
B = Wk−1

B − γ ∂L
Linear

∂Ỹ
· ∂Ỹ

∂X̂
· ∂X̂

∂WB
,
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Θk = Θk−1 − γ ∂L
Linear

∂Ỹ
· ∂Ỹ

∂X̂
· ∂X̂

∂X̃
· ∂X̃

∂Θ
.

Train DNN-WNLL with the WNLL activation: RunN2 steps of the following forward
and backward propagation, where in the kth iteration, we have:

• Forward propagation: The training data X, template Xte and Yte are transformed,
respectively, by DNN, Buffer, and WNLL blocks to get predicted labels Ŷ:

Ŷ = WNLL(Buffer(DNN(X,Θk−1),Wk−1
B ), X̂te,Yte).

Then compute the loss, LWNLL, between the ground truth labels Y and predicted
ones Ŷ.

• Backpropagation: Update weights Wk−1
B only, Wk−1

L and Θk−1 will be tuned in the
next iteration in training DNN-WNLL with the linear activation, by stochastic gra-
dient descent.

Wk
B = Wk−1

B − γ ∂L
WNLL

∂Ŷ
· ∂Ŷ

∂X̂
· ∂X̂

∂WB
(13)

≈ Wk−1
B − γ ∂L

Linear

∂Ỹ
· ∂Ỹ

∂X̂
· ∂X̂

∂WB
.

We use the computational graph of the left branch (linear layer) to compute the approx-
imated gradients for the DNN with WNLL activation. For a given loss value LWNLL, we

adopt the approximation ∂LWNLL

∂Ŷ
· ∂Ŷ
∂X̂
≈ ∂LLinear

∂Ỹ
· ∂Ỹ
∂X̂

where the right hand side is also

evaluated at the value of LWNLL. The heuristic behind this approximation is the following:
WNLL defines a harmonic function implicitly, and the linear function is the simplest non-
trivial explicit harmonic function. Empirically, we observe this simple approximation works
well in training the deep network. The reason why we freeze the network in the DNN block
is mainly because of the stability concerns.

The above alternating scheme is an algorithm of a greedy fashion. During training, the
WNLL activation plays two roles: on the one hand, alternating between the linear and the
WNLL activation benefits both which enables the neural nets to learn features that are
appropriate for both linear classification and the WNLL based manifold interpolation. On
the other hand, in the case when we lack sufficient training data, the training of DNNs
usually gets stuck at some bad local minima which cannot generalize well on the new data.
We use the WNLL interpolation to perturb those learned sub-optimal weights and to help
to arrive at a local minimum with better generalizability. At inference (test) time, we
remove the linear classifier from the neural nets and use the DNN block together with the
WNLL to predict new data (Fig. 2 (b)). The reason for using the WNLL instead of the
linear layer is simply because the WNLL interpolation is superior to the linear classifier
and this superiority is preserved when applied to deep features (which will be confirmed
in Section. 4). Moreover, the WNLL interpolation utilizes both deep learning features and
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the reserved template at the test time to guide the classifier and to enhance adversarial
robustness in classification.

We summarize the training and testing for DNN-WNLL in Algorithms 1 and 2, respectively.
In each round of the alternating procedure, i.e., each outer loop in Algorithm 1, the entire
training dataset (X,Y) is first used to train DNN-WNLL with the linear activation. We
randomly separate a template, e.g., half of the entire data from the training set which will be
used to perform WNLL interpolation in training DNN-WNLL with the WNLL activation.
In practice, for both training and testing, we use mini-batches for both the template and
the interpolated points when the entire dataset is too large. The final predicted labels are
based on a majority voting across interpolation results from all the template mini-batches.

Algorithm 1 DNN with the WNLL Output Activation: Training Procedure.

1: Input: Training set: (data, label) pairs (X,Y). The number of alternating steps N
and the number of epochs for training DNN with WNLL activation M .

2: Output: An optimized DNN with the WNLL activation, denoted as DNN-WNLL.
3: for iter = 1,. . . , N do
4: //Train the left branch: DNN with the linear activation.
5: Train DNN + Linear blocks, and denote the learned model as DNN-Linear.
6: //Train the right branch: DNN with the WNLL activation.
7: Split (X,Y) into training data and template, i.e., (X,Y)

.
= (Xtr,Ytr)

⋃
(Xte,Yte).

8: Partition the training data into M mini-batches, i.e., (Xtr,Ytr) =
⋃M
i=1(Xtr

i ,Y
tr
i ).

9: for i = 1, 2, · · · ,M do
10: Transform Xtr

i

⋃
Xte by DNN-Linear, i.e., X̃tr

⋃
X̃te = DNNLinear(X

tr
i

⋃
Xte).

11: Apply WNLL (Eq.(5)) on {X̃tr
⋃

X̃te,Yte} to interpolate label Ỹtr.
12: Backpropagate the error between Ytr and Ỹtr via Eq.(14) to update WB only.

Remark 4 In Algorithm 1, the WNLL interpolation is also performed in a mini-batch
manner (as shown in the inner iteration). Based on our experiments, this has a very small
influence on reducing interpolation accuracy.

Algorithm 2 DNN with the WNLL Output Activation: Testing Procedure.

1: Input: Testing data X, template (Xte,Yte). The optimized model DNN-WNLL.
2: Output: Predicted label Ỹ for X.
3: Apply the DNN block of the DNN-WNLL to X

⋃
Xte to get the features X̃

⋃
X̃te.

4: Apply the WNLL interpolation (Eq.(5)) on {X̃
⋃

X̃te,Yte} to interpolate label Ỹ.

3.2 Adversarial Training

Adversarial training is one of the most generic frameworks for adversarial defense. The key
idea of adversarial training is to augment the training data with adversarial versions which
can be obtained by applying adversarial attacks to the clean data. In the following, we
adopt the minimax formalism of the adversarial training proposed by Madry et al. (2018).
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3.2.1 Adversarial Attacks

We consider three benchmark attacks: the fast gradient sign method (FGSM) and the
iterative fast gradient sign method (IFGSM) in the `∞-norm (Goodfellow et al., 2014),
and the Carlini and Wagner (2016) attack in the `2-norm (C&W). We denote the classifier
defined by a specific DNN as ỹ = f(Θ,x) for a given instance (x, y). FGSM searches
the adversarial image x′ by maximizing the loss L(x′, y)

.
= L(f(Θ,x′), y) with a maximum

allowed perturbation ε, i.e., ‖x′ − x‖∞ ≤ ε. We can approximately solve this constrained
optimization problem by linearize the objective function, i.e.,

L(x′, y) ≈ L(x, y) +∇xL(x, y)T · (x′ − x).

Under this linear approximation, the optimal adversarial image is

x′ = x + ε sign (∇xL(x, y)) . (14)

IFGSM iterates FGSM to generate the enhanced adversarial images, where the iteration
proceeds as follows

x(m) = x(m−1) + α · sign
(
∇xL(x(m−1), y)

)
, (15)

where m = 1, · · · ,M , x(0) = x and α being the step size. Moreover, let the adversarial image
be x′ = x(M) with M being the number of iterations. To ensure the maximum perturbation
to the clean image is no bigger than ε, in each iteration we clip the intermediate adversarial
images which results in the following attack scheme

x(m) = Clipx,ε

{
x(m−1) + α · sign

(
∇xL(x(m−1), y)

)}
, (16)

where Clipx,ε(x
′) limits the change of the generated adversarial image in each iteration, and

it is defined as
Clipx,ε(x

′) = min
{

1,x + ε,max{0,x− ε,x′}
}
,

where we assume the pixel value of the image is normalized to [0, 1].

Both FGSM and IFGSM belong to the fixed-perturbation attacks. Moreover, we consider
a zero-confidence attack proposed by Carlini and Wagner. For a given image-label pair
(x, y), and for any given label t 6= y, C&W attack searches the adversarial image that will
be classified to class t with minimum perturbation by solving the following optimization
problem

min
δ
||δ||22, (17)

subject to
f(x + δ) = t, x + δ ∈ [0, 1]n,

where δ is the adversarial perturbation (for the sake of simplicity, we ignore the dependence
on Θ in f). The equality constraint in Eq. (17) is hard to tackle, so Carlini and Wagner
considered the following surrogate constraint

g(x) = max

(
max
i 6=t

(Z(x)i)− Z(x)t, 0

)
, (18)

14



where Z(x) is the logit vector for an input x, i.e., output of the neural net before the output
layer, and Z(x)i is the logit value corresponding to class i. It is easy to see that f(x+δ) = t
is equivalent to g(x + δ) ≤ 0. Therefore, the problem in Eq. (17) can be reformulated as

min
δ
||δ||22 + c · g(x + δ), (19)

subject to
x + δ ∈ [0, 1]d,

where c ≥ 0 is the Lagrangian multiplier.

By letting δ = 1
2 (tanh(w) + 1)−x, Eq. (19) can be written as an unconstrained optimization

problem. Moreover, Carlini and Wagner introduced the confidence parameter κ into the
above formulation. In a nutshell, the C&W attack seeks the adversarial image by solving
the following problem

min
w
‖1

2
(tanh(w) + 1)− x‖22 + c· (20)

max

{
−κ,max

i 6=t
(Z(

1

2
(tanh(w)) + 1)i)− Z(

1

2
(tanh(w)) + 1)t

}
.

The Adam optimizer (Kingma and Ba, 2014) can solve the above unconstrained optimization
problem, Eq. (20), efficiently. All three attacks clip the values of each pixel of the adversarial
image x′ to between 0 and 1.

The only difficulty in extending the above three adversarial attacks to DNN-WNLL is again
to compute the gradient in backpropagation. Similar to the training of DNN-WNLL, we
compute the following surrogate gradient by linearizing the WNLL activation. For a given
mini-batch of test image-label pairs (X,Y) and template (Xte,Yte), we denote the DNN-
WNLL as Ỹ = WNLL(Z({X,Xte}),Yte), where Z({X,Xte}) is the composition of the
DNN and buffer blocks as shown in Fig. 2 (a). By ignoring dependence of the loss function
on the parameters, the loss function for DNN-WNLL can be written as L̃(X,Y,Xte,Yte)

.
=

Loss(Ŷ,Y). The above three attacks for DNN-WNLL are summarized below.

• FGSM

X′ = X + ε · sign
(
∇XL̃(X,Y,Xte,Yte)

)
. (21)

• IFGSM

X(m) = ClipX,ε[X
(m−1) + α · sign

(
∇XL̃(X(m−1),Y,Xte,Yte)

)
], (22)

where m = 1, 2, · · · ,M ; X(0) = X and X′ = X(M).

• C&W

min
W
||1

2
(tanh(W) + 1)−X||22+ (23)

c ·max[−κ,max
i6=t

(Z(
1

2
(tanh(W)) + 1)i)− Z(

1

2
(tanh(W)) + 1)t],

where i are the logit values of the input images X, t are the target labels.
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In the above attacks, ∇XL̃ is required to generate the adversarial images. In the DNN-
WNLL, this gradient is difficult to compute. As shown in Fig. 2 (b), we approximate ∇XL̃
in the following way

∇XL̃ =
∂LWNLL

∂Ŷ
· ∂Ŷ

∂X̂
· ∂X̂

∂X̃
· ∂X̃

∂X
(24)

≈ ∂LLinear

∂Ỹ
· ∂Ỹ

∂X̂
· ∂X̂

∂X̃
· ∂X̃

∂X
,

again, in the above approximation, we set the value of LLinear to that of L̃.

Based on our numerical experiments, the batch size of X has a negligible influence on
the adversarial attack and defense. In all of our experiments, we choose the size of both
mini-batches X and the template to be 500.

3.2.2 Adversarial Training

We apply the projected gradient descent (PGD) adversarial training (Madry et al., 2018) to
train the adversarially robust DNNs, where we approximately solve the EARM (Eq. (1) by
using the PGD adversarial images, i.e., IFGSM attacks with an initial random perturbation
on the clean images, to approximate the solution of the inner maximization problem. We
summarize the PGD adversarial training for DNNs with the WNLL activation, as shown in
Fig. 2 (a), in Algorithm 3.

3.3 Semi-supervised Learning

Semi-supervised learning is another fundamental learning paradigm, where we have access
to a large amount of training data. However, most of the training data is unlabeled. Semi-
supervised learning is of particular importance in e.g., medical applications (Chapelle et al.,
2006). It is straightforward to extend DNNs with the WNLL activation to semi-supervised
learning. Let the labeled and unlabeled training data be {Xl,Yl} and {Xul,Yul}, respec-
tively. There are two approaches to semi-supervised learning by using DNN-WNLL.

• Approach I: Train DNN-WNLL on only labeled data {Xl,Yl}. During testing, we
feed the unlabeled data together with the labeled template data to predict labels for
the testing data. This is essentially similar to the classical graph Laplacian-based
semi-supervised learning on the deep learning features.

• Approach II: Train DNNs with the WNLL activation by using both labeled {Xl,Yl}
and unlabeled {Xul,Yul} data. During training, we use both labeled and unlabeled
data to build a graph for WNLL interpolation, and then we backpropagate loss be-
tween predicted and true labels of the labeled data. The testing phase is the same as
that in Approach I.

In this work, we focus on the Approach I.

4. Numerical Results

In this section, we will numerically verify the accuracy and robustness of DNN-WNLL.
Moreover, we show that DNN-WNLL is suitable for data-efficient learning. We also provide
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Algorithm 3 DNN with the WNLL Output Activation: PGD Adversarial Training

1: Input: Training set: (data, label) pairs (X,Y), the number of PGD iterations M ,
PGD attack step size α, maximum PGD perturbation ε. The number of alternating
iterations N , and the number of epochs used to train DNN with the linear activation
N1 and the WNLL activation N2.

2: Output: An optimized DNN-WNLL.
3: for iter = 1, . . . , N do
4: //PGD adversarial training of the left branch: DNN with linear activation.
5: Train DNN + Linear blocks.
6: Partition the training data into M1 mini-batches, i.e., (X,Y) =

⋃M1
i=1(Xi,Yi).

7: for epoch1 = 1,. . . , N1 do
8: for i = 1,. . . ,M1 do
9: //Attack the input images by PGD attack.

10: Xi = Xi + U(−ε, ε) with U(−ε, ε) be a uniform random vector.
11: for iter1 = 1, . . . ,M do
12: Attack Xi according to Eq. (16).

13: Backpropagate the classification error of the adversarial images.

14: //PGD adversarial training of the right branch: DNN with WNLL activation.
15: Split (X,Y) into training data and template, i.e., (X,Y)

.
= (Xtr,Ytr)

⋃
(Xte,Yte).

16: Partition the training data into M2 mini-batches, i.e., (Xtr,Ytr) =
⋃M2
i=1(Xtr

i ,Y
tr
i ).

17: for epoch2 = 1,. . . , N2 do
18: for i = 1, . . . ,M2 do
19: //Attack the input training images by PGD attack.
20: Xtr

i = Xtr
i + U(−ε, ε).

21: for iter1 = 1, . . . ,M do
22: Attack Xtr

i according to Eq. (22).

23: Backpropagate the classification error of the adversarial images.

results of semi-supervised learning by using DNN-WNLL. We implement our algorithm on
the PyTorch platform (Paszke and et al, 2017). All the computations are carried out on a
machine with a single Nvidia Titan Xp graphics card.

To validate the classification accuracy, efficiency, and robustness of the proposed framework,
we test the new architecture and algorithm on the CIFAR10, CIFAR100 (Krizhevsky, 2009),
MNIST (LeCun, 1998) and SVHN datasets (Netzer et al., 2011). In all the experiments
below, we apply the standard data augmentation that is used for the CIFAR datasets (He
et al., 2016c; Huang et al., 2017; Zagoruyko and Komodakis, 2016). For MNIST and SVHN,
we use the raw data without any data augmentation.

Before diving into the performance of DNNs with different output activation functions, we
first compare the performance of the WNLL with the softmax on the raw input images for
various datasets. The training sets are used to train the softmax classifier and interpolate
labels for the test set in the WNLL interpolation, respectively. Table 2 lists the classification
accuracies of the WNLL and the softmax on three datasets. For the WNLL interpolation,
we only use the top 30 nearest neighbors to ensure sparsity of the weight matrix to speed up

17



the computation, and the 15th neighbor’s distance is used to normalize the weight matrix.
WNLL outperforms softmax remarkably in all the three benchmark tasks especially for
the MNIST (Test accuracy: 92.65% v.s. 97.74%) and SVHN (Test accuracy: 24.66% v.s.
56.17%) classification. These results indicate potential benefits of using the WNLL instead
of the softmax as the output activation in DNNs.

Table 2: Accuracies of the softmax and the WNLL classifiers in clas-
sifying some benchmark datasets.

Dataset CIFAR10 MNIST SVHN

softmax 39.91% 92.65% 24.66%
WNLL 40.73% 97.74% 56.17%

For natural training of the DNN-WNLL: We take two passes of the alternating step, i.e.,
set N = 2 in Algorithm 1. For training of the linear activation stage (Stage 1), we train the
network for n = 400 epochs with stochastic gradient descent. For the training of the WNLL
activation stage (Stage 2) we train for n = 5 epochs. In the first pass, the initial learning
rate is 0.05 and halved after every 50 epoch in training DNNs with linear activation, and
a fixed learning rate 0.0005 is used to train DNNs with the WNLL activation. The same
Nesterov momentum and weight decay as that used in (He et al., 2016c; Huang et al., 2016)
are employed for the CIFAR and the SVHN experiments, respectively, in our work. In the
second pass, the learning rate is set to be one-fifth of the corresponding epochs in the first
pass. The batch sizes are 128 and 2000 when training softmax/linear and WNLL activated
DNNs, respectively. For a fair comparison, we train the vanilla DNNs with the softmax
output activation for 810 epochs with the same optimizer used in the WNLL activated ones.

4.1 Data Efficient Learning – Small Training Data Case

When we do not have a sufficient amount of labeled training data to train a high capacity
deep network, the generalization accuracy of the trained model typically decays as the
network goes deeper. We illustrate this in Fig. 3. The WNLL activated DNNs, with
its superior regularization power and perturbation capability on bad local minima, can
overcome this generalization degradation. The left and right panels of Fig. 3 plot the results
of DNNs with the softmax and the WNLL activation that are trained on 1K and 10K images,
respectively. These results show that the generalization error rate decays consistently as
the network goes deeper in DNN-WNLL. Moreover, the generalization accuracy between
the vanilla and the WNLL activated DNNs can differ up to 10 percent within our testing
regime.

Figure 4 plots the evolution of generalization accuracy during training. We compute the
test accuracy per epoch. Panels (a) and (b) plot the test accuracies for the ResNet50 with
the softmax and the WNLL activation (1-400 and 406-805 epochs corresponds to linear
activation), respectively, with only the first 1K instances in the training set of CIFAR10, are
used to train the models. Charts (c) and (d) are the corresponding plots with 10K training
instances, using a pre-activated ResNet50. After around 300 epochs, the accuracies of the
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(a) (b)

Figure 3: Plots of test errors when 1K (a) and 10K (b) training data are used to train the
vanilla and the WNLL activated DNNs. In each plot, we test three different deep
networks: PreActResNet18, PreActResNet34, and PreActResNet50. All tests are
done on the CIFAR10 dataset.

vanilla DNNs plateau and cannot improve anymore. However, the test accuracy for WNLL
jumps at the beginning of Stage 2 in the first pass; during the Stage 1 of the second pass,
even though initially there is an accuracy reduction, the accuracy continues to climb and
eventually surpasses that of the WNLL activation in Stage 2 of the first pass. The jumps
in accuracy at epoch 400 and 800 are due to switching from linear activation to WNLL
for predictions on the test set. The initial decay when alternating back to the softmax is
caused partially by the final layer WL not being tuned with respect to the deep features
X̃, and partially due to predictions on the test set being made by the softmax instead of
the WNLL. Nevertheless, the perturbation via the WNLL activation quickly results in the
accuracy increasing beyond the linear stage in the previous pass.

4.2 Generalization of Naturally Trained DNN-WNLL

We next show the superiority of the DNN-WNLL in terms of generalization accuracies when
compared to their surrogates with the softmax or the SVM output activation functions.
Besides ResNets, we also test the WNLL surrogate on the VGG networks. In table 3,
we list the generalization errors for 15 different DNNs from VGG, ResNet, Pre-activated
ResNet families trained on the entire, first 10K and first 1K instances of the CIFAR10
training set. We observe that WNLL, in general, improves more for ResNets and pre-
activated ResNets, with less but still remarkable improvements for the VGGs. Except
for VGGs, we can achieve a relatively 20% to 30% testing error rate reduction across all
neural nets. All results presented here and in the rest of this paper are the median of 5
independent trials. We also compare with SVM as an alternative output activation and
observe that the performance are still inferior to the DNN-WNLL. Note that the bigger
batch-size is to ensure the interpolation quality of the WNLL. A reasonable concern is that
the performance increase comes from the variance reduction due to increasing the batch size.
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(a) (b)

(c) (d)

Figure 4: Evolution of the generation accuracy over the training procedure. Charts (a) and
(b) plot the accuracy evolution of ResNet50 with the softmax and the WNLL
activation trained with 1K training data, respectively. Panels (c) and (d) corre-
spond to the case of 10K training data for PreActResNet50. All tests are done
on the CIFAR10 dataset.

However, experiments were done with a batch size of 2000 for vanilla networks deteriorates
the test accuracy.

We list the error rates of the 15 different DNNs with either the softmax or the WNLL
activation on the CIFAR10 and CIFAR100 in Tables 3 and 4, respectively. On the CIFAR10,
DNN-WNLL outperforms the vanilla ones with around 1.5% to 2.0% absolute, or 20% to
30% relative error rate reduction. The improvements on the CIFAR100 by using the WNLL
activation are more remarkable than that on the CIFAR10. We independently ran the vanilla
DNNs on both datasets, and our results are consistent with the original reports and other
researchers’ reproductions He et al. (2016c,a); Huang et al. (2017). We provide experimental
results of DNNs’ performance on SVHN data in Table 5. Interestingly, the improvement
is more significant on more challenge tasks which suggest a potential for our methods to
succeed on other tasks/datasets.
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Table 3: Test errors of the vanilla DNNs, SVM and WNLL activated ones trained on the
entire, the first 10K, and the first 1K instances of the training set of the CIFAR10
dataset. (Median of 5 independent trials)

Network Whole 10000 1000

Vanilla WNLL SVM Vanilla WNLL Vanilla WNLL

VGG11 9.23% 7.35% 9.28% 10.37% 8.88% 26.75% 24.10%
VGG13 6.66% 5.58% 7.47% 9.12% 7.64% 24.85% 22.56%
VGG16 6.72% 5.69% 7.29% 9.01% 7.54% 25.41% 22.23%
VGG19 6.95% 5.92% 7.99% 9.62% 8.09% 25.70% 22.87%

ResNet20 9.06% 7.09% 9.60% 12.83% 9.96% 34.90% 29.91%
ResNet32 7.99% 5.95% 8.73% 11.18% 8.15% 33.41% 28.78%
ResNet44 7.31% 5.70% 8.67% 10.66% 7.96% 34.58% 27.94%
ResNet56 7.24% 5.61% 8.58% 9.83% 7.61% 37.83% 28.18%
ResNet110 6.41% 4.98% 8.06% 8.91% 7.13% 42.94% 28.29%
ResNet18 6.16% 4.65% 6.00% 8.26% 6.29% 27.02% 22.48%
ResNet34 5.93% 4.26% 6.32% 8.31% 6.11% 26.47% 20.27%
ResNet50 6.24% 4.17% 6.63% 9.64% 6.49% 29.69% 20.19%

PreActResNet18 6.21% 4.74% 6.38% 8.20% 6.61% 27.36% 21.88%
PreActResNet34 6.08% 4.40% 5.88% 8.52% 6.34% 23.56% 19.02%
PreActResNet50 6.05% 4.27% 5.91% 9.18% 6.05% 25.05% 18.61%

4.3 Adversarial Robustness

We carry out experiments on the benchmark MNIST and CIFAR10 datasets to show the
efficiency of using the graph interpolating activation for adversarial defense. For MNIST,
we train the Small-CNN that is used in (Zhang et al., 2019) by running 100 epochs of PGD
adversarial training with ε = 0.3, α = 0.01, and M = 40. We let the initial learning rate
be 0.1 and decay by a factor of 10 at the 50th epoch. For CIFAR10, we consider three
benchmark models: ResNet20, ResNet56, and WideResNet34. We train these models on
the CIFAR10 dataset by running 120 epochs of PGD adversarial training with ε = 8/255,
α = 2/255, and M = 10. The initial learning rate is set to be 0.1 and decays by a factor
of 10 at the 80th, 100th, and 110th epochs, respectively. After the robust models have
been trained by the PGD adversarial training, we test their natural accuracies on the clean
images and robust accuracies on the adversarial images crafted by attacking these robustly
trained models by the aforementioned three adversarial attacks, where the parameters are
set as follows

• FGSM: In Eqs.. (14) and (21), we let ε = 8/255 and 0.3 to attack DNNs for CIFAR10
and MNIST classification, respectively.

• IFGSM: We denote the n-step IFGSM attack as IFGSMn. To attack DNNs for
CIFAR10 classification, we let ε = 8/255 and α = 1/255 in Eqs. (16) and (22) for
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Table 4: Test errors of the vanilla DNNs v.s. the WNLL activated DNNs on the CIFAR100
dataset. (Median of 5 independent trials)

Network Vanilla DNNs WNLL DNNs

VGG11 32.68% 28.80%
VGG13 29.03% 25.21%
VGG16 28.59% 25.72%
VGG19 28.55% 25.07%

ResNet20 35.79% 31.53%
ResNet32 32.01% 28.04%
ResNet44 31.07% 26.32%
ResNet56 30.03% 25.36%
ResNet110 28.86% 23.74%
ResNet18 27.57% 22.89%
ResNet34 25.55% 20.78%
ResNet50 25.09% 20.45%

PreActResNet18 28.62% 23.45%
PreActResNet34 26.84% 21.97%
PreActResNet50 25.95% 21.51%

Table 5: Test errors of the vanilla DNNs v.s. the WNLL activated DNNs on the SVHN
dataset. (Median of 5 independent trials)

Network Vanilla DNNs WNLL DNNs

ResNet20 3.76% 3.44%
ResNet32 3.28% 2.96%
ResNet44 2.84% 2.56%
ResNet56 2.64% 2.32%
ResNet110 2.55% 2.26%
ResNet18 3.96% 3.65%
ResNet34 3.81% 3.54%

PreActResNet18 4.03% 3.70%
PreActResNet34 3.66% 3.32%

both IFGSM10 and IFGSM20 attacks. For MNIST, we let ε = 0.3 and α = 0.01 in
Eqs. (16) and (22) for IFGSM40 and IFGSM100 attacks.

• C&W: For adversarial attack on the CIFAR10 dataset, we let κ = 0 and c = 10 in
Eqs. (20) and (23), and we run 50 iterations of the Adam optimizer with learning rate
0.006 to find the optimal C&W attack in `2-norm on the clean images. To search for
the optimal C&W attack in `2-norm on the MNIST data, we run 100 iterations of the
Adam optimizer with learning rate 0.003 with κ = 0 and c = 10 in Eqs. (20) and (23).
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We consider both white-box and black-box attacks. In the black-box attack, we apply the
given adversarial attack to attack another oracle model in the white-box fashion, and then
we use the target model to classify the adversarial images crafted by attacking the oracle
model.

Table 6: Natural and robust accuracies under different white-box adversarial attacks
of different robustly trained models on the MNIST dataset.

Model Anat Arob (FGSM) Arob (IFGSM40) Arob (IFGSM100) Arob (C&W)

Small-CNN 99.33% 98.17% 96.27% 96.09% 95.31%
Small-CNN-WNLL 99.39% 98.35% 97.36% 96.90% 97.55%

Table 7: Robust accuracies under different black-box adversarial attacks of different
robustly trained models on the MNIST dataset.

Model Oracle Arob (FGSM) Arob (IFGSM40) Arob (IFGSM100) Arob (C&W)

Small-CNN-WNLL Small-CNN 98.40% 97.47% 97.40% 98.14%

Table 6 lists both natural and robust accuracies of the PGD adversarially trained Small-
CNN with either the softmax or the WNLL output activation function on the MNIST.
Small-CNN with the WNLL activation is remarkably more accurate on both clean and
adversarial images, e.g., for Small-CNN, the natural accuracies for the softmax and the
WNLL activation functions are 99.33% and 99.39%, respectively. The robust accuracies for
Small-CNN and Small-CNN-WNLL are 98.17% v.s. 98.35%, 96.27% v.s. 97.36%, 96.09%
v.s. 96.90%, and 95.31% v.s. 97.55%, respectively, to the FGSM, IFGSM40, IFGSM100,
and C&W attacks in the white-box scenario. We regard Small-CNN as the oracle model to
perform black-box attacks on the Small-CNN-WNLL, the corresponding robust accuracies
to the above four adversarial attacks are listed in Table 7. In the MNIST experiment,
black-box attacks are less effective than the white-box attacks.

Table 8: Natural and robust accuracies under different white-box adversarial attacks
of different robustly trained models on the CIFAR10 dataset.

Model Anat Arob (FGSM) Arob (IFGSM20) Arob (IFGSM100) Arob (C&W)

ResNet20 75.11% 50.89% 46.03% 46.01% 58.73%
ResNet20-WNLL 75.53% 55.76% 53.31% 53.26% 63.82%

ResNet56 79.32% 55.05% 50.98% 50.06% 61.75%
ResNet56-WNLL 79.52% 60.50% 58.19% 57.26% 67.93%
WideResNet34 84.05% 51.93% 48.93% 48.32% 59.04%

WideResNet34-WNLL 84.95% 65.50% 63.03% 62.25% 72.37%

Next, we consider the adversarial defense capability of DNNs with the WNLL activation on
the CIFAR10 dataset. Table 8 lists the natural and robust accuracies, under the white-box
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Table 9: Robust accuracies under different black-box adversarial attacks of different
robustly trained models on the CIFAR10.

Model Oracle Arob (FGSM) Arob (IFGSM20) Arob (IFGSM100) Arob (C&W)

ResNet20-WNLL ResNet20 55.91% 53.44% 53.35% 65.13%
ResNet56-WNLL ResNet56 60.00% 57.94% 57.85% 70.47%

WideResNet34-WNLL WideResNet34 67.19% 67.07% 67.17% 81.17%

attacks, of the standard ResNet20, ResNet56, and WideResNet34-10 and their counterpart
with the WNLL activation. These results show that the robustly trained ResNets with the
WNLL activation slightly improves natural accuracies on the clean images, while the robust
accuracies are significantly improved. For instance, under the FGSM and C&W attacks,
the WNLL activation can boost robust accuracy by ∼ 5%; and under the IFGSM20 and
IFGSM40 attacks, the robust accuracy improvement is up to ∼ 7%. For the WideResNet34-
10, under the IFGSM20 attack, we achieve accuracy 63.03% which outperforms the results
of Zhang et al. (2019) (56.61%) by more than 6%. For black-box attacks on DNNs with the
WNLL activation, we regard the counterpart DNNs with the softmax activation as the oracle
models. The robust accuracies of ResNet20-WNLL, ResNet56-WNLL, and WideResNet34-
10-WNLL are listed in Table 9. Again, the black-box attacks are less effective than the
white-box ones.

Table 10: Natural and robust accuracies under different white-box adversarial attacks of
ResNet56-WNLL with different number of points, in the form (m,n), used for
interpolation on the CIFAR10 dataset.

Model Anat Arob (FGSM) Arob (IFGSM20) Arob (IFGSM100) Arob (C&W)

ResNet56-WNLL (15, 8) 79.89% 59.71% 57.85% 56.53% 67.91%
ResNet56-WNLL (30, 15) 79.52% 60.50% 58.19% 57.26% 67.93%
ResNet56-WNLL (45, 23) 78.92% 59.50% 57.94% 57.06% 66.26%
ResNet56-WNLL (60, 30) 77.92% 58.04% 55.80% 54.97% 67.74%

Furthermore, we consider the influence of the number of nearest neighbors m with the
nth-nearest neighbor used to normalize the weights in Eq. (5) in the WNLL interpolation.
Table 10 lists the natural and robust accuracies of the ResNet56-WNLL with the different
number of nearest neighbors, (m,n), involved in the WNLL interpolation. The natural
accuracy decays as a greater number of nearest neighbors are used for interpolation, and
the robust accuracies are maximized when (m,n) = (30, 15). When more nearest neighbors
are used for interpolation, the robust accuracies decay. This issue might be due to the fact
that these nearest neighbors are only selected from a finite number of data points and the
resulted nearest neighbors are far from the real nearest neighbors.

Finally, let us look at the adversarial images and the adversarial noise crafted by adversarial
attacks on DNNs with both softmax and WNLL activation functions. Figures 5 and 6
depict adversarial images and adversarial noise of the MNIST and the CIFAR10 obtained
by applying different adversarial attacks to Small-CNN and ResNet20 with both softmax
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and WNLL activation functions. All these adversarial images are misclassified by DNNs
with both the softmax and the WILL activation. However, they can be easily classified by
human-beings.

Adversarial Images Adversarial Noise

Figure 5: Adversarial images (left panel) selected from the MNIST dataset and the corre-
sponding adversarial noise (right panel). Column 1: cleaning image and noise (no
noise in this case); Column 2-3: adversarial images and noise crafted by IFGSM40

and C&W attacks on the small CNN, respectively; Column 4-5: adversarial im-
ages and noise crafted by IFGSM40 and C&W attacks on the small CNN-WNLL,
respectively. The predicted labels for the adversarial images are listed below the
adversarial images in the left panel.

4.4 Semi-supervised Learning

In this subsection, we apply the DNN-WNLL to semi-supervised learning where we have
access to all the training data of the CIFAR10 but only part of them are labeled. We can use
the unlabeled data to build a graph for the WNLL interpolation in semi-supervised learning,
while not in data-efficient learning. We list the accuracies of the semi-supervised learning
when 1K and 10K training data are labeled to train DNNs in Table 11. Compared to the
results in Table 3, semi-supervised learning has better accuracy with the same number of
labeled training data.

5. Geometric Explanations

In this section, we will consider the representations learned by DNNs with two different
output activation functions. As an illustration, we randomly select 1000 training instances
and 100 testing data each for the airplane and automobile classes from the CIFAR10 dataset.
We consider two different strategies to visualize the features learned by ResNet56 and
ResNet56-WNLL for the above randomly selected data.
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Adversarial Images Adversarial Noise

Figure 6: Adversarial images (left panel) selected from the CIFAR10 dataset and the corre-
sponding adversarial noise (right panel). Column 1: cleaning image and noise (no
noise in this case); Column 2-3: adversarial images and noise crafted by IFGSM40

and C&W attacks on the ResNet20, respectively; Column 4-5: adversarial im-
ages and noise crafted by IFGSM20 and C&W attacks on the ResNet20-WNLL,
respectively. The predicted labels for the adversarial images are listed below the
adversarial images in the left panel.

Table 11: Test error of DNNs with the WNLL output activation for the CIFAR10 classifi-
cation in the semi-supervised learning setting.

Network 1K (Labeled)/49K (Unlabeled) 10K (Labeled)/ 40K (Unlabeled)

ResNet20-WNLL 27.02% 9.01%
ResNet32-WNLL 26.28% 7.53%
ResNet44-WNLL 25.63% 7.25%
ResNet56-WNLL 25.53% 6.99%
ResNet110-WNLL 25.38% 6.50%

• Strategy I: Apply the principal component analysis (PCA) to reduce the 64D features
output right before the softmax/WNLL activation to 2D.

• Strategy II: Add an additional fully connected layer before the output activation
function. This fully connected layer will help to learn the 2D representations.

We first show that in Strategy II, the newly added fully connected (FC) layer does not
affect the performance of the original ResNet56 much. We train and test the ResNet56
with and without the additional FC layer on the aforementioned randomly selected training
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and testing data. As shown in Fig. 7, the training and testing accuracies evolution are
essentially the same for ResNet56 with and without the additional FC layer.

(a) (b)

Figure 7: Epochs v.s. accuracy in training ResNet56 on the CIFAR10. (a): without the
additional FC layer; (b): with the additional FC layer.

5.1 Improving Generalization

Figure 8 plots the representations for the selected airplane and automobile data from the
CIFAR10 dataset. First, panels (a) and (b) show the features of the test set learned by
ResNet56 visualized by the proposed two strategies. In both cases, the features are well
separated, in general, with a small overlapping which causes some misclassification. Charts
(c) and (d) depict the first two principal components (PCs) learned by ResNet56-WNLL for
the selected training and testing data. The PCs of the features learned by ResNet56-WILL
is better separated than that of ResNet56’s (Fig. 8), and it indicates that ResNet56-WILL
is more accurate in classifying the randomly selected data.

5.2 Improving Adversarial Robustness

First, let us look at how the adversarial attack changes the geometry of the learned rep-
resentations. We consider the simple one-step IFGSM attack, IFGSM1, with the same
parameters used before. Figure 9 shows the first two PCs of the representations learned
by ResNet56 and ResNet56-WNLL for the adversarial test images. These PCs show that
the adversarial attack makes the features of the two different classes mixed and therefore
drastically reduces the classification accuracy.

Second, we consider how the WNLL interpolation helps to improve adversarial robustness.
We randomly pick up an adversarial image that is misclassified by the standard DNNs
with the softmax activation from the MNIST and the CIFAR10, respectively. The top
five nearest neighbors in the deep feature space from the clean training data, of these two
adversarial images, are shown in Fig. 10. For the MNIST digit, all the nearest neighbors
belong to the same class as the adversarial image; and for the CIFAR10 adversarial image,
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(a) (b)

(c) (c)

Figure 8: Visualization of the features learned by ResNet56 with the softmax ((a), (b)) and
the WNLL ((c), (d)) activation functions. (a): the 2D features of the airplane
and automobile data in the test set learned by the ResNet56 with an additional
2 × 2 linear layer; (b): the first two principal components of the features of the
airplane and automobile data in the test set learned by the ResNet56; (c) and (d)
plot the first two principal components of features of the airplane and automobile
data in the training and test set learned by the ResNet56-WNLL. All experiments
are done on the CIFAR10 dataset.

the top three neighbors belong to the same category as the adversarial one. These nearest
neighbors will guide DNN-WNLL to classify the adversarial images correctly.

6. Concluding Remarks

In this paper, we leveraged ideas from the manifold learning and proposed to replace the
output activation function of the conventional deep neural nets (DNNs), typically the soft-
max function, with a graph Laplacian-based high dimensional interpolating function. This
simple modification is applicable to any of the existing off-the-shelf DNNs with the softmax
activation enables DNNs to make sufficient use of the manifold structure of data. Further-
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(a) (b)

Figure 9: Visualization of the first two principal components of the adversarial images’
(IFGSM1 attack) features learned by ResNet56 with the softmax (a) and the
WNLL (b) activation functions, respectively.

MNIST CIFAR10

Figure 10: A randomly selected adversarial image and their top five nearest neighbors in
the clean training set searched based on the distance between features output
from the layer before the WNLL activation layer. Left: IFGSM40 attack on the
small CNN-WNLL; Right: IFGSM20 attack on the ResNet20-WNLL.

more, we developed end-to-end and multi-staged training and testing algorithms for the
proposed DNN with the interpolating function as its output activation. On the one hand,
the proposed new framework remarkably improves both generalizability and robustness of
the baseline DNNs; on the other hand, the new framework is suitable for data-efficient ma-
chine learning. These improvements are consistent across networks of different types and
with a different number of layers. The increase in generalization accuracy could also be
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used to train smaller models with the same accuracy, which has great potential for mobile
device applications.

In this work, we utilized a special kind of graph interpolating function as DNNs’ output
activation. An alternative approach is to learn such an interpolating function instead of
using one which is fixed. This approach is under our consideration.
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