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Abstract We address the problem of registering two surfaces, of which a natural bijection between
them does not exist. More precisely, only a partial subset of the source domain is assumed to be in
correspondence with a subset of the target domain. We call such a problem an inconsistent surface
registration problem. This problem is challenging as the corresponding regions on each surfaces and a
meaningful bijection between them have to be simultaneously determined. In this paper, we propose
a variational model to solve the inconsistent surface registration problem by minimizing mapping
distortions. Mapping distortions are described by the Beltrami coefficient as well as the differential of
the mapping. Registration is then guided by feature landmarks and/or intensities, such as curvatures,
defined on each surfaces. The key idea of the approach is to control angle and scale distortions via
quasiconformal theory as well as minimizing landmark and/or intensity mismatch. A splitting method
is proposed to iteratively search for the optimal corresponding regions as well as the optimal bijection
between them. Bijectivity of the mapping is easily enforced by a thresholding of the Beltrami coefficient.
We test the proposed method on both synthetic and real examples. Experimental results demonstrate
the efficacy of our proposed model.

Keywords Inconsistent surface registration; mapping distortions; Beltrami coefficient; mapping
optimization problem; quasiconformal theories

1 Introduction

Surface registration aims to find meaningful pointwise correspondence between two geometric objects
embedded in R3. It has important applications in various fields, such as in computer graphics, computer
vision and medical imaging. For instances, the surface registration problem in computer vision and
graphics aims to find point-wise correspondence in order to perform shape analysis, relational learning,
to transfer motions, textures between shapes; in medical imaging, it is necessary to find bijective dense
correspondence between the target and the template anatomical surfaces so that the data defined on
the surfaces can be compared meaningfully in medical analysis. Very often, a desirable registration
map should be much more complex than a global rigid or affine motion.

Due to its importance, various registration models have been proposed. Existing approaches usu-
ally assume a global bijection between the two surfaces to be registered if the surfaces are closed
without boundary. For the registration between open domains, prescribed boundary condition is usu-
ally imposed. In a practical situation, a natural bijection between two shapes may not exist. Usually,
only a partial region of the source surface is in correspondence with a subset of the target surface.
This problem arises in many real situations, such as surface stitching, surface matching of anatomical
structures and so on. We refer this kind of registration problem as the inconsistent surface registration
problem. To solve the problem, the corresponding regions on each surfaces as well as a meaningful
bijection between them have to be simultaneously found. It poses a great challenge to the inconsistent
surface registration problem. Mathematically, this problem can be formulated as follows. Given two
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surfaces S1 and S2 to be registered, we look for optimal subsets Ω1 ⊂ S1 and Ω2 ⊂ S2, as well as
an optimal bijection f : Ω1 → Ω2 that satisfies some prescribed mapping constraints. The mapping
constraints are often given by feature landmarks and intensities, such as surface curvatures, defined
on each surfaces. The inconsistent surface registration problem can then be described as the following
optimization problem:

(Ω∗1 , Ω
∗
2 , f
∗) = argminΩ1,Ω2,f :Ω1→Ω2

{Elandmark(Ω1, Ω2, f) + Eintensity(Ω1, Ω2, f) +R(f)} (1)

where Elandmark and Eintensity are the landmark and intensity mismatching terms respectively. R is
the regularization on f . Note that this problem is different from the conventional registration problem.
Apart from the mapping problem, a shape optimization problem has to be solved simultaneously to
find the optimal regions Ω∗1 and Ω∗2 .

In this paper, we propose a variational model to solve the above inconsistent surface registration
problem through minimizing mapping distortions. We capture the mapping distortions by a geometric
quantity, called the Beltrami coefficient, from quasi-conformal theory, together with the differential of
the mapping. The main idea of the proposed model is to control the angle and scale distortions, while
minimizing the landmark and intensity mismatching under the mapping between the partial domains.
A splitting method is proposed to iteratively find the optimal corresponding regions on each surfaces
and the optimal bijection between them. The incorporation of Beltrami coefficient in our model allows
us to conveniently enforce the local bijectivity of the mapping. More specifically, the local bijectivity of
the mapping can be easily enforced by a thresholding of the Beltrami coefficient. Numerous tests have
been carried out on both synthetic and real data. Experimental results demonstrate the effectiveness
of the proposed model to solve the inconsistent surface registration problem.

The contributions of this paper are three-folded.

1. Firstly, we propose to formulate the inconsistent surface registration problem as an optimization
problem over the spaces of sub-regions on each surfaces and bijective mappings between them.
The regularization of the mapping is based on the differential and the Beltrami coefficient of the
mapping from quasiconformal theory, with which the bijectivity of the mapping can be easily
enforced.

2. Secondly, we propose an algorithm to obtain a free boundary deformation with controlled scale
distortions, whose Beltrami coefficient closely resemble to a prescribed one. This algorithm is
useful for solving the optimization problem for inconsistent surface registration in our formulation.

3. Thirdly, a splitting method is proposed to solve the optimization problem, which iteratively searches
for the optimal corresponding regions as well as the optimal bijection between them.

The rest of the paper is organized as follows. In section 2, relevant previous works are reviewed.
Some basic mathematical background are explained in Section 3. Our proposed model is discussed
in details in section 4. Details of the main algorithm to solve the proposed registration model are
explained in section 5. Experimental results are shown in section 6. The paper is concluded in section
7.

2 Related works

Surface registration in a non-rigid, deformable setting has been an active and challenging area of
research. Since the literature is vast, below we will mention works that are related to ours in terms of
the problem setting as well as the techniques deployed, but definitely they will not consist a complete
survey.

We approach the inconsistent surface registration problem in 2D parameter domain. Explicitly,
we use the conformal, also known as the intrinsic parametrizations [18,11,6,7] of the the surfaces,
which faithfully preserve the local geometry of the surfaces. And crucially, we register two inconsistent
shapes via optimized deformation in the 2D parametrization domain. Using conformal parametrization
is common in recent works on globally bijective surface registration possibly with large deformation. For
example, for surfaces with prescribed boundary correspondence as in Lam et al. [10], for closed surfaces
without boundaries as in [5,15]. Like ours, these works are based on landmark-intensity matching with
geometric regularization, where the regularization term is formulated as the local conformal or angular
distortion of the registration map. We refer to [10] and references therein for further related work on
the landmark-intensity hybrid registration. However, the local scale distortion of the registration map
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was not considered by them, mainly because the registration domain are fixed by boundary constraints
[10] or in very special forms [5,15], and thus cannot handle inconsistent shape problems.

In our work we formulate the scale distortion in a uniform framework with the conformal distortion,
namely the geometric properties of the mapping differential in quasiconformal theory [3]. In this
respect, our work is also closely related to the As-Rigid-As-Possible mesh deformation paradigm [23,8]
and its extensions to allow large non-isometric deformations [13]. Under such a framework geometric
smoothness and local bijectivity are non-trivial to achieve and recently many additional optimization
methods, e.g. [9,20] are proposed to solve this problem. However, we will show that with conformal
parametrization in 2D, it is very easy to achieve geometric smoothness and local bijectivity using the
quasiconformal methods. Indeed, our work gathers both the ideas from landmark-intensity registration
and mesh deformation modelling to solve the inconsistent shape registration problem possibly with
large deformation.

In case the registration map is as simple or close to a global rigid or affine motion, then the
inconsistent shape registration problem can also be posed as a fusion problem between surfaces and
can be solved by iterative closest point type of methods, please see [22,12,2,4] and the references
therein. On the other hand, the feature matching approach is often used in case the registration is
allowed to be sparse or possible locally non-injective. In this regard, methods based on the functional
correspondence framework [21,16] have also been proposed. Differently, we note that our goal is to
obtain a locally bijective mapping possibly with large deformation between sub-regions of the surfaces
to be registered.

3 Preliminaries on quasiconformal deformations

In this section, we introduce the basic mathematical concepts related to quasiconformal deformations.
For our purpose, let X and X ′ be planar domains in C of the disk topology equipped with the Euclidean
metric. The case of multiply-connected domains is similar. The same concepts can be applied to open
surfaces via conformal parametrization.

Consider a diffeomorphism f : X → X ′ between X and X ′. This mapping f induces a pullback
metric on X, and comparison between this metric and the original Euclidean metric on X reveals
geometric properties of f . Quasiconformal theory arises naturally in studying the geometric properties
as we now explain.

Consider the pullback metric under f , which can be written as a symmetric positive definite matrix
field H : X → S++ defined on X. Under this definition, the mapping f satisfies the following nonlinear
equation:

Df(z)TDf(z) = H(z).

H can be factorized as a product of det(Df) and a positive definite matrix field Q with unit determi-
nant:

H = det(Df) ·Q,

Here, we have used the fact that det(Df) > 0 since f is assumed to be a diffeomorphism. This
factorization signals a nice linearization of the nonlinear equation we obtained, by multiplying the
inverse of Df(p)T on both sides. More precisely, this will lead to the Beltrami’s equation

∂

∂z̄
f(z) = µ(z)

∂

∂z
f(z),

where µ = q11−q22+2iq12
q11+q22+2 , Q = (qij)1≤i,j≤2 and we use the complex notation ∂f

∂z̄ = (ux − vy)/2 +

i(uy + vx)/2, ∂f∂z = (ux + vy)/2 + i(−uy + vx)/2. It is easy to check that the diffeomorphism condition
implies |µ| < 1 [3]. We call injective solutions to the Beltrami equation with Beltrami coefficient µ
quasiconformal mappings. A special case when µ = 0 on X, the equation becomes ∂z̄f = 0 and is the
well-known Cauchy-Riemann equation. In this case, the mapping f is called a conformal mapping.

The Beltrami coefficient µ is in one-one correspondence to the unit determinant matrix field Q,
which encodes the angle distortion of the mapping at the tangent space level. This can be visualized
by the fact that quasiconformal mapping maps infinitesimal circles to ellipses. See Figure 1.

The strength of distortion is measured by the condition number of the mapping differential Df(z)

K(z) =
1 + |µ(z)|
1− |µ(z)| =

σ1(Df(z))

σ2(Df(z))
,
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Fig. 1 A quasiconformal mapping maps infinitesimal circles to ellipses. The local geometric distortion under the
quasiconformal map can be measured by the Beltrami coefficient.

where σ1(Df) and σ2(Df) is the largest and smallest singular value of the mapping differential Df ,
which we call the principal distortions. One can also observe that as |µ| tends to 1, the distortion blows
up to infinity.

The local area distortion of the mapping is contained inside the Jacobian

det(Df) = σ1(Df) · σ2(Df),

which is previously factored out from H and thus not encoded by the Beltrami coefficients. Note that
the angle and scale distortions are not independent of each other and they are coupled by a global
integrability condition. To be more precise, given Beltrami coefficient µ with ‖µ‖∞ < 1, the equation
has unique solution up to post-compositions of conformal mappings [3]. Thus, a unique solution can
be obtained, in particular, if the boundary value of the mapping is known, or it can be the minimal
condition as in the Riemann mapping theorem, namely fixing both the mapping’s value as well as its
complex derivative at a point.

The above observations about quasiconformal mappings will lead us to a novel free boundary
deformation model proposed in this paper, where we take both angle and area distortions into account.

4 Proposed model

In this section, we describe our proposed model for inconsistent surface registration in details. Our
strategy is to formulate the problem as an optimization problem to obtain an optimal corresponding
regions on each surfaces and the optimal bijection between them. Usually, priori intensity information
on the surface, such as the curvature, will be provided. In some situations, corresponding feature
landmarks on each surfaces will be delineated. Our variational model can generally be described as
finding optimal corresponding regions Ω∗1 ⊂ S1, Ω∗2 ⊂ S2 and the optimal f∗ : Ω∗1 → Ω∗2 that
minimizes:

EISR(Ω1, Ω2, f) = Efid(Ω1, Ω2, f) + Ereg(f) (2)

subject to the constraint that f is in a suitable set A. Efid is the fidelity term that guides the
registration map according to the matching error of intensities on the corresponding regions. Ereg
is the regularization term for the mapping f that enhances smoothness and reduces local geometric
distortions under f . A is called the admissible set, which constrains the mapping f . A is often defined
based on some prescribed requirements according to the problem, such as the landmark constraints.

The above optimization problem can be simplified by conformally parameterizing S1 and S2 onto C.
Let φ1 : X → S1 and φ2 : X ′ → S2 be the global conformal parameterizations of S1 and S2 respectively.
The inconsistent surface registration problem can be reduced to finding the optimal corresponding
regions Ω̄1 := φ−1

1 (Ω1) and Ω̄2 := φ−1
2 (Ω2), as well as the optimal bijection f̃ := φ−1

2 ◦f◦φ1 : Ω1 → Ω2.
As such, we will simply discuss the registration problem between two inconsistent 2D domains X ⊂ C
and X ′ ⊂ C from now on.
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Fig. 2 Deformation of a triangle under various Beltrami coefficients. As shown on the left in the first row, a triangle
is being deformed to anther triangle, where the two vertices at the base are fixed. The trajectories of the third vertex
(u(x, y), v(x, y)) under various Beltrami coefficients are shown in the second row. Circles represent the situation
when |µ| = 1/5, 7/20, 9/20, 3/5, 5/3, 20/9, 20/7, 5. The Beltrami coefficient can effectively measure local geometric
distortions as well as flipping under the deformation, as shown on the right in the first row.

4.1 Choices of Efid and Ereg

In this subsection, we discuss our choices of fidelity term Efid, regularization term Ereg and admission
set A. The fidelity term Efid(Ω1, Ω2, f) guides the registration map f according to the intensity
matching on the corresponding regions Ω1 and Ω2. We consider the following fidelity term:

Efid(Ω1, Ω2, f) =

∫
f(Ω1)∩Ω2

(If1 − I2)2 =

∫
f(X)∩X′

(If1 − I2)2, (3)

where I1 : S1 → R and I2 : S2 → R are intensities defined on S1 and S2 respectively and If1 := I1 ◦f−1

is the deformed image of I1 under f . It aims to mininimize the intensity mismatching under f on the
corresponding regions Ω1 ⊂ X and Ω2 ⊂ X ′. It serves for two purposes. First, it guides the mapping f
by matching the intensities as good as possible, so that a meaningful pointwise correspondence between
the two surfaces can be obtained. Second, by minimizing over all possible subregions, it optimizes the
corresponding subregions using the intensity information defined on each surfaces. Of course, the first
term is equal to 0 in the trivial case when f(Ω1) ∩ Ω2 is an empty set. This is the case when the
two surfaces are not in correspondence with each others at all. Thus, the regularization term Ereg,
as well as the landmark constraints, play an important role to avoid this trivial but meaningless
case from happening. The domain of integration f(Ω1) ∩ Ω2 can be further simplified by observing
f(Ω1)∩Ω2 = f(X)∩X ′. As such, the fidelity term can be simplified to be dependent on the registration
map f : X → C only.

As discussed, the choice of the regularization on f is crucial in our model to prevent the undesired
trivial case from happening. A natural mapping between two domains should preserve the local ge-
ometry as good as possible. Also, the local area distortion or scale distortion under the mapping. We
propose a regularization term that handles both sorts of distortions.

The local geometric properties of a diffeomorphic mapping f : X → X ′ is to a large extent deter-
mined by the unit determinant component Q of its pullback metric H, thus equivalently its Beltrami co-
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efficients. To illustrate this, in Figure 2 we display the distortion effect of different Beltrami coefficients
on a triangle. As shown on the left in the first row, a triangle is being deformed to another triangle. For
simplicity, we fix the two vertices at the base and let the third vertex (u(x, y), v(x, y)) move according
to the Beltrami coefficient. The trajectories of the third vertex under different Beltrami coefficients are
shown in the second row. When the magnitude of the Beltrmai coefficient is fixed, the trajectory is a cir-
cle. In the second row, circles represent the situation when |µ| = 1/5, 7/20, 9/20, 3/5, 5/3, 20/9, 20/7, 5.
We can see that the deformation of the triangle varies smoothly when the coefficient varies smoothly,
and higher smoothness is obtained when the coefficient is closer to zero. Consequently, we expect that
smoothness of Beltrami coefficient implies the smoothness of the corresponding solution. This can
be made precise via a Schauder estimate for the Beltrami equation, which can be found in [3]. The
Beltrami coefficient can effectively measure local geometric distortions as well as flipping under the
deformation, as shown on the right in the first row.

From this observation it is natural to consider the following regularization term to find a deforma-
tion f : X → C that minimizes:

Ereg(f) =
1

2

∫
X

α(µ0 − µ(f))2 + β|∇µ(f)|2, (4)

where µ(f) denotes the Beltrami coefficient of f , µ0 is a prescribed Beltrami coefficient and α, β ≥ 0
are parameters. Thus, minimizing this energy will promote the smoothness of the mapping g, while
trying to preserve a deformation induced by a given Beltrami coefficient µ0 as much as possible. µ0 can
be prescribed according to the actual situation. In particular, the local geometry can be well preserved
if the angle distortions under f are small. As such, we can set µ0 to be zero if the local geometry has
to be preserved. We call such as process to minimize Ereg a geometric smoothing process.

4.2 Choice of A

Other requirements on the registration map may usually be imposed. Mathematically, we need to
design a suitable admissible set A where f should lie in. In our case, we define our admissible set to
be the union of three sets of mappings A = L ∪ S ∪ B. More specifically,

L = {f : X → C : f(pi) = qi, i = 1, 2, ..., n};
S = {f : X → C : Df ∈MK1,K2

};
B = {f : X → C : ||µ(f)||∞ < 1}.

(5)

where pi ∈ X and qi ∈ X ′ are the corresponding landmarks on X and X ′ respectively, MK1,K2
=

{M : K2 ≤ σ2(M) ≤ σ1(M) ≤ K1}, σ1(M) and σ2(M) are the larger and smaller singular values of
M respectively.

L encodes the landmark constraints. S aims to preserve the scale of f as good as possible. Note
that the Beltrami coefficient of f encodes the relative strength of stretching effect of f , but not
the absolute scale distortion of the mapping. Although the scale can be determined once any of the
uniqueness-implying data is applied to solve the equation, such as the boundary value or the minimal
condition, there are difficulties with such approaches. In the case of boundary value data, it is often
impractical to assume they are available. In the case of minimal condition, how it influences the scale
under perturbation of the Beltrami coefficients can be difficult to handle, since one does not have the
optimal Beltrami coefficient initially. We thus turn to another aspect of the theory, namely using the
singular values of the mapping differential, i.e. principal distortions, for controlling the scale distortion.
The singular values of Df(z) contains precise scale information of the mapping f . Controlling their
magnitudes with singular value decomposition can be a lot more easier than controlling the Jacobian
directly. More specifically, we constrain the singular values of Df(z) such that they are bounded by
some prescribed values K1 > 0 and K2 > 0, where K1 ≤ K2. As a result, the local area distortion as
captured by det(Df(z)) is bounded by K2

1 and K2
2 . The scales of stretching in each principal directions

are also bounded by K1 and K1. In particular, the local area is preserved if we set K1 = K2 = 1.

Finally, B aims to require the Beltrami coefficient of f to have supreme norm strictly less than 1.
It enforces the bijectivity of f .



Inconsistent Surface Registration 7

4.3 Overall model

Our overall inconsistent surface registration model can be summarized as follows. Suppose we are
given the prescribed landmark constraints and intensity information on each domains. We look for a
registration map f : X → C that minimizes:

EISR(f) =

∫
f(X)∩X′

(If1 − I2)2 +

∫
X

α|µ(f)− µ0|2 + β|∇µ(f)|2 (6)

subject to f ∈ A.

5 Main algorithm

In this section, we explain our main algorithm to solve the optimization problem (6) in details.

5.1 Projection of f onto S

Note that in our optimization problem, the registration map f is required to lie in A = L ∪ S ∪ B.
To enforce it, we need projection operators to project a map f to A. The requirement of f ∈ L ∪
B can be taken care of during the projection onto S and during the minimization process of the
regularization term Ereg(f), which will be discussed in the next subsection. In this subsection, we
discuss the projection of f onto S in details.

In this work, we consider an iterative scheme to project f onto S. Given a mapping f , its differential
Df may not lie in MK1,K2

. We can project Df onto MK1,K2
by look for a matrix PK1,K2

(Df) that
solves the following minimization problem:

PK1,K2
(Df) = argminM∈MK1,K2

||M −Df ||2F (7)

Solving this minimization problem is equivalent to finding a projection of Df(z) onto the space of
matricesMK1,K2

, whose singular values are bounded by K1 and K2. The solution of the problem can
be given explicitly as follows.

Theorem 1 The unique solution of the minimization problem (7) is given by

PK1,K2
(Df) = U

(
min(σ1(Df),K1)

max(σ2(Df)),K2)

)
V T ,

where U, V are the rotation matrices such that Df = U

(
σ1(Df)

σ2(Df)

)
V T .

Proof This is related to the general two-sided Procrustes problem. Suppose X1 and X2 are two n× n
matrices. X1 = U1Σ1V

T
1 and X2 = U2Σ2V

T
2 are the singular value decompositions of X1 and X2

respectively. Consider
EP1(Q1, Q2) = ||QT1 X1Q2 −X2||2F ,

where Q1 and Q2 are n× n orthogonal matrices. Then, the mininizer of EP1 satisfies:

U1 = Q1U2Π and V1 = Q2V2Π, (8)

where Π is the permutation matrix that minimizes Tr(Σ2ΠΣ1Π) (see p.89-90 in [20]).
We now consider our original minimization problem (7). Let M = UMΣV

T
M be the singular value

decomposition of M . Then, we observe that:

||U
(
σ1(Df)

σ2(Df)

)
V T − UMΣV TM ||2F = ||

(
σ1(Df)

σ2(Df)

)
−QT1 ΣQ2||2F ,

where Q1 = UTMU and Q2 = V TMV are orthogonal matrices. Thus, the minimization problem (7) is
equivalent to minimizing:

EP2(Q1, Σ,Q2) = ||
(
σ1(Df)

σ2(Df)

)
−QT1 ΣQ2||2F .
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Fixing a diagonal matrix Σ, we consider the minimization problem over (P,Q) of EP2(P,Σ,Q). Then,
the minimizer must satisfy I = PΠ and I = QΠ according to (8). Thus, for any orthogonal matrices
Q1 and Q2 together with any diagonal matrix Σ,

EP2(Q1, Σ,Q2) = ||
(
σ1(Df)

σ2(Df)

)
−QT1 ΣQ2||2F

≥ ||
(
σ1(Df)

σ2(Df)

)
−ΠΣΠ||2F

≥ ||
(
σ1(Df)

σ2(Df)

)
−Σ||2F

= EP2(I,Σ, I),

where Σ is the minimizer of ||
(
σ1(Df)

σ2(Df)

)
− D||2F over all diagonal matrix D with diagonal

entries bounded by K1 and K2. Obviously, Σ can be written explicitly as:

Σ =

(
min(σ1(Df),K1)

max(σ2(Df)),K2)

)
.

We conclude that: M = UIΣIV T = UΣV T is the minimizer of the problem (7). This completes the
proof.

We call PK1,K2
the projection operator of a matrix onto the space MK1,K2

. In this way we can
effectively control the scaling effect of the mapping at each point. For simplicity we shall use K1,K2

uniformly on the domain, though other choices are clearly possible. We next look for a mapping
g : X → C, whose differential is closely resemble to PK1,K2

(Df):

EP(g) =

∫
X

||Dg − PK1,K2
(Df)||2F . (9)

We can separate the above minimization problem for each coordinate u, v of g, and therefore we
are left with two Poisson equations as their Euler-Lagrange equations:{

−∆u = −∇ · w1

−∆v = −∇ · w2

, (10)

where PK1,K2
(Df) = (w1, w2). The landmark constraints can be incorporated here via back substi-

tution into (10). In this way, f is constrained to lie in L. We repeat this procedure iteratively. More
precisely, given a map f (i), we compute PK1,K2

(Df (i)). We then compute f (i+1) that minimizes EP .
The iterative algorithm can be summarized in Algorithm 1.

Algorithm 1 Projection onto S
Inputs: null deformation (identity mapping) f (1), iteration number N , bounds on singular values
0 < K2 ≤ K1, landmark correspondences (pi, p

′
i).

Output: deformed mapping f (N).
for i = 1, ..., N do

Compute Df (i) and its singular value decomposition on each triangular face.
Compute W (i) = PK1,K2

(Df (i)) on each triangular face.

Solve equations (10) with landmark constraints to get f (i+1).
end for
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5.2 Linear Beltrami Solver

Solving Beltrami equation with given coefficient function µ is central to our optimization problem,
in which boundary datum is assumed. Solvers of the equation, with or without boundary datum, are
developed in the previous work [14,19], and therefore we briefly only introduce the main components
here and refer the reader to the references for details.

The key is to note the relation between the Beltrami equations and div-type second order elliptic
systems. In our case, we decouple the complex equation into its real and imaginary parts u and v
respectively, and solve the following system of equations with Dirichlet boundary condition

−∇ · (A∇u(z)) = 0 in int(X)

−∇ · (A∇v(z)) = 0 in int(X)

u = u0 on ∂X

v = v0 on ∂X

(11)

where A = 1
1−|µ|2

[
(ρ− 1)2 + τ2 −2τ
−2τ (1 + ρ)2 + τ2

]
, µ = ρ+iτ , and int(X) is the interior of X. In practice,

the operator ∇ · (A∇) is discretized using linear finite element method on triangular meshes, which
has the same form with the famous cotangent formula for the discrete Laplacian [19]. We call such
a solver the Linear Beltrami Solver. We also denote the reconstructed quasiconformal map f from
µ by f = LBS(µ, {(pi, qi)}Li=1), where {(pi, qi)}Li=1 denotes the prescribed corresponding landmark
constraints.

5.3 Free boundary quasiconformal deformation

To solve the registration model (6), we need an algorithm to obtain a free boundary deformation
with controlled distortions, whose Beltrami coefficient closely resemble to a prescribed one. The free
boundary deformation does not require the source domain to be mapped to another target domain
with fixed geometry. As such, surface registration problem, of which a natural bijection between two
surfaces does not exist, can be handled using our formulation.

In this subsection, we discuss an iterative scheme to obtain a free boundary quasiconformal defor-
mation. With a prescribed Beltrami coefficient µ0, our strategy is to iteratively adjust the quasicon-
formal map to reduce the smoothing energy Ereg(f). Suppose a quasiconformal map f (k) is obtained
at the k-th iteration. We proceed to update it to f (k+1) according to the gradient descent direction of
Ereg(f).

Firstly, it is desirable to obtain a quasiconformal map with a controlled scale distortion. It can be
achieved by requiring the quasiconformal map to lie in S. Hence, the projection step as described in
subsection (5.1) is applied on f (k) to obtain a new map g(i,1).

Secondly, we proceed to minimize the regularization term. We call such a process a geometric
smoothing step. Denote the Beltrami coefficient of g(i,1) by µg(i,1) . To enforce g(i,1) ∈ B, we require
that the supreme norm of the Beltrami coefficient is strictly less than 1. It ensures the bijectivity of
the registration map. We apply the following simple thresholding method:

µ′g(i,1)(z) =

{
µg(i,1) if |µg(i,1)(z)| < 1

0 otherwise
. (12)

Descending Ereg can be achieved as follows. By computing the gradient descent direction of Ereg,
we can update µ′g(i,1)(z) via the following iterative scheme:

ν(j+1) = (1− α)ν(j) + αµ0 + β∆ν(j), (13)

where ∆ is the Laplace-Beltrami operator of the domain and ν(0) = µ′g(i,1) . We can keep the process
for few (say M2) iterations, to minimize Ereg. The associated registration map can be reconstructed
by Linear Beltrami solver to obtain a new map g(i,2) with Dirchlet boundary condition given by g(i,1),
subject to the prescribed landmark constraints that g(i,2)(pi) = qi for i = 1, 2, ..., n. We keep this
process for M1 iterations to obtain g(i,M1) and set f (k+1) = g(i,M1). We run the above iterations to
obtain a sequence of quasiconformal maps {f (k)}Nk=1.
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We also denote the free boundary quasiconformal map f from µ0 by f = FD(µ0, {(pi, qi)}ni=1),
where {(pi, qi)}ni=1 denotes the prescribed corresponding landmark constraints. We remark that our
algorithm to obtain the free boundary deformation requires only two landmark constraints. That is,
n = 2. The overall algorithm can be summarized in Algorithm 2.

Algorithm 2 Free boundary quasiconformal deformation

Inputs: null deformation (identity mapping) f (1), overall iteration number N ; Projection step iter-
ation number N1, bounds on singular values 0 < K2 ≤ K1, landmark correspondences {(pi, qi)}ni=1;
smoothing parameters α, β > 0 and smoothing step iteration numbers M1,M2.
Output: Optimal free boundary quasiconformal deformation f (N).

for i = 1, ..., N do
for l = 1, ..., N1 do

Compute Df (i) and its singular value decomposition on each triangular face.
Compute W (i) = PK1,K2

(Df (i)) on each triangular face.

Solve equations (10) with landmark constraints to get g(i,1).
end for
for j = 1, ...,M1 do

Compute the Beltrami coefficients of g(i,j) and applying the thresholding (18).
for k = 1, ...,M2 do

Run the iteration according to (13).
end for
Set ν = ν(M2+1).
Set g(i,j+1) = LBS(ν, {(pi, qi)}Li=1).

end for
Set f (i+1) = g(i,M1).

end for

5.4 A splitting scheme for inconsistent surface registration model (6)

In this subsection, we discuss an iterative scheme to solve the optimization problem (6). Our strategy
is to minimize EISR alternatively. We look for a descent direction to minimize the regularization term
Efid and then a descent direction to minimize the fidelity term Ereg. Suppose a mapping f (k) is

obtained at the k-th iteration. We proceed to update f (k) to obtain a new mapping f (k+1). In essence,
the iterative algorithm is a modification of Algorithm 2. It employs the idea of Algorithm 2 to obtain
a free boundary quasiconformal deformation. And Algorithm 2 is modified by adding a substep to
minimize the intensity mismatching to solve the inconsistent surface registration problem.

Again, to enforce the registration map to lie in S, the projection step as described in subsection
5.1 is carried out to obtain a new map g(i,1).

To minimize EISR, we first consider the descent direction of Efid. Recall that our intensity regis-
tration problem aims to minimize the following loss function∫

|IX ◦ f−1 − IY |2 · χf(X)∩Y dxdy,

where χA denotes the indicator function of the set A.

Given fixed g(i,1)(X) ∩ Y , we can minimize the intensity mismatching term by using the gra-
dient descent method. Write g(i,1) = Id − u, the intensity mismatching term can be reformulated as∫
g(i,1)(X)∩Y |IX−IY (Id−u)|2dxdy. Minimizing this energy using gradient descent may lead to unstable

and non-diffeomorphic solutions. Recall that our algorithm aim to obtain a diffeomorphic registration.
To alleviate this issue, a regularization term is often introduced [17,24]:

E(u) =

∫
g(i,1)(X)∩Y

|IX − IY (Id− u)|2 +
σ2
i

σ2
T

R(u), (14)
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where σi and σT are some constants related to the intensity difference and the deformation respectively.
By considering the Taylor’s expansion of IY (Id− u) and defining R(u) = ||u‖2,

E(u) ≈ ||IX − IY + uT∇IY ||22 +
σ2
i

σ2
T

||u||22. (15)

By taking gradient on both sides with respect to u, we obtain

∇E(u) = 2(IX − IY + uT∇IY )∇IY + 2
σ2
i

σ2
T

u. (16)

∇E(u) gives us the descent direction to update g(i,1), such that the fidelity (intensity mismatching)
term can be reduced. As a result, we will obtain a vector field V = (V1, V2) that gives a new map
g̃ = Id + V. Its associated Beltrami coefficient µg̃ is given by

µg̃ =
(∂V1

∂x −
∂V2

∂y ) + i(∂V2

∂x + ∂V1

∂y )

(2 + ∂V1

∂x + ∂V2

∂y ) + i(∂V2

∂x −
∂V1

∂y )
. (17)

To enforce the registration map lies in B, we require that the supreme norm of the Beltrami
coefficient is strictly less than 1. It ensures the bijectivity of the registration map. We again apply the
following simple thresholding method:

µ′g̃(z) =

{
µg̃ if |µg̃(z)| < 1

0 otherwise
. (18)

After that, we proceed to minimize the regularization term. Descending Ereg can be achieved using
the equation (13) as described in subsection 5.3. This gives an updated Beltrami coefficient ν.

The associated quasiconformal map can be reconstructed by Linear Beltrami Solver to obtain
g(k,2) = LBS(ν), subject to the prescribed landmark constraints. We repeat the process to iteratively
minimize EISR for M iterations and set f (k+1) = g(i.M).

The main algorithm can now be summarized as follows.

Algorithm 3 Registration on inconsistent domains

Inputs: null deformation (identity mapping) f (1), overall iteration number N ; free boundary sub-
problem iteration number N1, bounds on singular values 0 < K2 ≤ K1, landmark correspondences
(pi, p

′
i); Demon’s algorithm parameters; smoothing parameters α, β > 0 and subproblem iteration

numbers M1,M2.
Output: optimal deformation f (N) given landmarks and intensities in the sense of ??

for i = 1, ..., N do
for l = 1, ..., N1 do

Compute Df (i) and its singular value decomposition on each triangular face.
Compute W (i) = PK1,K2

(Df (i)) on each triangular face.

Solve equations (10) with landmark constraints to get g(i,1).
end for
for j = 1, ...,M do

Obtain a vector field V (j) on g(k,j)(X) ∩ Y by matching intensities χg(i,j)(X)·∩Y IX ◦ (g(i,j))−1

and χg(i,j)(X)∩Y · IY according to Equation (16).

Apply V (j) to g(k,j) to get new registration map g̃.
Compute the Beltrami coefficients of g̃ and applying the thresholding (18).
Run the iteration according to (13) to iteratively minimize Ereg to get an update Beltrami
coefficient ν.
Solve the Beltrami equation using the updated coefficient to get g(i,j+1).

end for
Set f (i+1) = g(i,M).

end for
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Fig. 3 Effect of the geometric smoothing. The first row shows the input mesh. The landmark correspondences are
displayed. We deform the input mesh so that the blue landmarks are matched to the red landmarks, using our
proposed free boundary quasiconformal deformation algorithm. In the second row, the result on the left is obtained
without geometric smoothing. The result on the right shows the output of the algorithm with geometric smoothing.

Fig. 4 Result of the inconsistent image registration experiment in Example 2. The left in the first row shows the
input moving image. The middle in the first row shows the input static image. Our goal is to register the left taller “A”
to the middle wider “A”. The left in the second row shows the prescribed landmark correspondences. The registered
image from the moving image is shown on the right in the first row. The right in the second row shows the absolute
difference in intensity after registration.

6 Experimental results

6.1 Synthetic numerical experiments

In this subsection, we test the performance of our proposed algorithms on two synthetic examples.
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Fig. 5 Corresponding regions on the moving and static images. The region bounded by the dotted curve on left
shows the corresponding region on the moving image. The region bounded by the dotted curve on the right shows
the corresponding region on the target image.

Fig. 6 Energy and landmark error plots for the image registration experiment against iteration number. Energy
is averaged per triangular face. The left shows the overall energy versus iterations. The right shows the landmark
mismatching error versus iterations.

Fig. 7 Surface registration for a pair of inconsistent tooth surfaces in Example 3. The left shows the input moving
tooth surface. The middle shows the target static tooth surface. The right shows the difference of intensities on the
registered surface.

Example 1 (The Effect of geometric smoothing): In this example, we test our algorithm for free
boundary quasiconformal deformation (Algorithm 2), given landmark constraints as shown in the first
row of Figure 3. We have chosen α = β = 0.1 and smoothing steps M1 = 30,M2 = 10. Bounds on
singular values are chosen to be K1 = 5,K2 = 0.2. The result without geometric smoothing (that is,
setting M1 = M2 = 0) is shown on the left in the second row, where one can clearly observe flipping
and non-smooth singularities around the landmark points. The result with geometric smoothing in
the third row, where the local deformations are well propagated around the landmark points and the
obtained deformation is smooth. This shows the necessity and effectiveness of the geometric smoothing
scheme.
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Fig. 8 The left in the first row shows the conformal parametrization of the moving tooth surface in Example 3. The
right in the second row shows the conformal parametrization of the static tooth surface. The landmark correspondences
in the 2D parameter domains are also displayed. The registration result in the 2D domain is shown in the second row.
The blue mesh is transformed mesh from the moving mesh under the registration map. The red mesh is the 2D mesh
of the target surface under the conformal parametrization.

Fig. 9 Corresponding regions on the moving and static tooth surfaces in Example 3. The green region on left shows
the corresponding region on the moving tooth surface. The green region on the right shows the corresponding region
on the target tooth surface.

Example 2 (Registration of a pair of images): In this example, we test our intensity registration
model (Algorithm 3) on an inconsistent pair of images of the letter “A”. In Figure 4, the left on the
first row shows the input images with their intensities to be matched, where the one on the left is the
moving domain. Our goal is to register the left taller “A” to the middle wider “A”. The given landmark
correspondences are shown on the left in the second row. In this example, we set α = 0.01, β = 0.01,
smoothing steps M1 = 1,M2 = 10; bounds K1 = 1.4,K2 = 0.2; free boundary subproblem for N1 = 1
iterations; intensity subproblem for 20 iterations and overall iteration N = 20. The registered image
from the moving image is shown on the right in the second row. It closely resembles to the target static
image. The absolute difference in intensity after registration is shown on the right in the first row. This



Inconsistent Surface Registration 15

Fig. 10 Energy and landmark error plots for the teeth experiment in Example 3 against iteration number. Energy
is averaged per face. The left shows the overall energy versus iterations. The right shows the landmark mismatching
error versus iterations.

experimental result demonstrates that our algorithm is effective in finding an accurate registration map
matching the intensities as well as finding the corresponding regions on the images.

We also display the energy plot against the iteration number averaged per face of the mesh on the
left of Figure 6, and the landmark error plot on the left. We can see that the algorithm successfully
reduces the intensity and landmark mismatching errors.

6.2 Experiments on surfaces

In this subsection, we test our registration model on surfaces.

Example 3 (Registration of a pair of synthetic teeth surfaces): In this example, we test the registration
model on an inconsistent pair of tooth surfaces. The two surfaces are not bijectively corresponding to
each others. Only a partial subset of the source surface is in correspondence with a subset of the target
surface.

In Figure 7, the first and second columns shows the input surfaces with their curvatures to be
matched, where the one on the left is the moving surface. We first perform conformal flattening [11]
of the two 3D meshes into 2D, as shown in the first row in Figure 8. The landmark correspondences
in the 2D parameter domains are also displayed. In this example, we have used α = 0.01, β = 0.1,
smoothing steps M1 = 1,M2 = 10; bounds K1 = 1.2,K2 = 0.8; free boundary subproblem for N1 = 5
iterations; intensity subproblem for 10 iterations and overall iteration N = 50. The registration result
is shown in the last column of Figure 7. It is the registered surface from the moving surface to the target
static surface. The colormap on the surface is given by the curvature mismatching error. Note that the
mismatching error is small, indicating the curvatures are accurately matched. The registration result
in the 2D domain is shown in the second row of Figure 8. The blue mesh is transformed mesh from the
moving mesh under the registration map. The red mesh is the 2D mesh of the target surface under the
conformal parametrization. The intersection region of the two meshes is the region of correspondence
amongst the two tooth surfaces.

We also display the energy plot against iteration number averaged per face of the mesh on the
left of Figure 10, and the landmark error plot on the left. We can see that the algorithm successfully
reduces the intensity and landmark matching errors.

Example 4(Registration of partial tooth surfaces): Here, we test our registration model on another
inconsistent pair of teeth. In Figure 11, the first and second columns show the moving tooth surface and
the target static tooth surface respectively. The two surfaces are obviously not bijectively corresponding
to each others. Again, our goal is to simultaneously look for the corresponding regions on each surface
as well as the registration map between them. The colormaps on each surfaces are given by their
curvatures, which are to be matched using our registration algorithm. As before we first perform
conformal flattening [11] of the two surface meshes into 2D, as shown in the first row in Figure 12.
The landmark correspondences in the 2D parameter domains are also shown. In this example, we have
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Fig. 11 Surface registration for another pair of inconsistent tooth surfaces in Example 4. The left shows the input
moving tooth surface. The middle shows the target static tooth surface. The right shows the difference of intensities
on the registered surface.

Fig. 12 The first row shows the conformal parametrizations of the moving and static tooth surfaces in Example 4
respectively. The landmark correspondences in the 2D parameter domains are also displayed. The registration result
in the 2D domain is shown in the second row. The blue mesh is transformed mesh from the moving mesh under
the registration map. The red mesh is the 2D mesh of the target surface under the conformal parametrization.The
intersection represents the corresponding region.

used α = 0.06, β = 0.11, smoothing steps M1 = 1,M2 = 5; bounds K1 = 1.3,K2 = 0.4; free boundary
subproblem for N1 = 1 iterations; intensity subproblem for 1 iterations and overall iteration N = 50.
The registration result is shown in the last column of Figure 11. It is the registered surface from the
moving surface to the target static surface. The colormap on the surface is given by the curvature
mismatching error. Note that the mismatching error is small, indicating the curvatures are accurately
matched. The registration result in the 2D domain is shown in the second row of Figure 12. The blue
mesh is transformed mesh from the moving mesh under the registration map. The red mesh is the 2D
mesh of the target surface under the conformal parameterization. The intersection region of the two
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Fig. 13 Corresponding regions on the moving and static tooth surfaces in Example 4. The green region on left shows
the corresponding region on the moving tooth surface. The green region on the right shows the corresponding region
on the target tooth surface.

Fig. 14 Energy and landmark error plots for the tooth surface experiment in Example 4 against iteration number.
Energy is averaged per face. The left shows the overall energy versus iterations. The right shows the landmark
mismatching error versus iterations.

Fig. 15 Surface registration for a pair of inconsistent human faces in Example 5. The left shows the input moving
surface The right shows the target static surface. The right shows the difference of intensities on the registered surface.

meshes is the region of correspondence amongst the two tooth surfaces. We also display the energy plot
against iteration number averaged per face of the mesh on the left of Figure 14, and the landmark error
plot on the left. We can observe that the algorithm successfully reduces the intensity and landmark
matching errors.

Example 5 (Registration of a pair of human faces): In this example, we test our registration method
on a pair of inconsistent human faces, which are obtained from FIDENTIS 3D Face Database [1]. The
first and second columns in Figure 15 show the moving human face and the target static human face
respectively. The colormaps on each surfaces are given by their mean curvatures. The two surfaces are
not bijectively corresponding to each others. As before, we first perform conformal flattening [11] of the
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Fig. 16 The first row shows the conformal parametrizations of the moving and static human faces in Example 5
respectively. The landmark correspondences in the 2D parameter domains are also displayed. The registration result
in the 2D domain is shown in the second row. The blue mesh is transformed mesh from the moving mesh under the
registration map. The red mesh is the 2D mesh of the target surface under the conformal parametrization.

two surface meshes into 2D, as shown in the first row of Figure 16. The landmark correspondences in
the 2D parameter domains are also shown. In this example, we have used α = 0.1, β = 0.1, smoothing
steps M1 = 1,M2 = 10; bounds K1 = 1.2,K2 = 0.8; free boundary subproblem for N1 = 5 iterations;
intensity subproblem for 10 iterations and overall iteration N = 50. The registration result is shown
in the last column of Figure 15. It is the registered surface from the moving surface to the target
static surface. The colormap on the surface is given by the curvature mismatching error. Note that
the mismatching error is small, indicating the curvatures are accurately matched. The registration
result in the 2D domain is shown in the second row of Figure 16. The blue mesh is transformed
mesh from the moving mesh under the registration map. The red mesh is the 2D mesh of the target
surface under the conformal parameterization. The intersection region of the two meshes is the region
of correspondence amongst the two human faces. We also display the energy plot against iteration
number averaged per face of the mesh on the left of Figure 18, and the landmark error plot on the left.
The intensity registration is more complicated in this case. Nevertheless we can see that the algorithm
still successfully reduces the intensity and landmark matching errors.

Example 6:(Registration of partial human faces) In this example, we test our registration method on
another pair of inconsistent human faces, which are obtained from FIDENTIS 3D Face Database [1].
The first and second columns in Figure 19 show the moving human face and the target static human
face respectively. The colormaps on each surfaces are given by their mean curvatures. We again perform
conformal flattening [11] of the two surface meshes into 2D, as shown in the first row of Figure 20.
The landmark correspondences in the 2D parameter domains are also shown. In this example, we have
used α = 0.01, β = 0.1, smoothing steps M1 = 1,M2 = 5; bounds K1 = 5,K2 = 0.2; free boundary
subproblem for N1 = 5 iterations; intensity subproblem for 5 iterations and overall iteration N = 30.
The registration result is shown in the last column of Figure 19. It is the registered surface from the
moving surface to the target static surface. The colormap on the surface is given by the curvature
mismatching error. The mismatching error is small, indicating the curvatures are accurately matched.
The registration result in the 2D domain is shown in the second row of Figure 20. The blue mesh is
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Fig. 17 Corresponding regions on the moving and static human faces in Example 5. The green region on left shows
the corresponding region on the moving surface. The green region on the right shows the corresponding region on the
target surface.

Fig. 18 Energy and landmark error plots for the human face experiment in Example 5 against iteration number.
Energy is averaged per face. The left shows the overall energy versus iterations. The right shows the landmark
mismatching error versus iterations.

Fig. 19 Surface registration for another pair of inconsistent human faces in Example 6. The left shows the input
moving surface The right shows the target static surface. The right shows the difference of intensities on the registered
surface.

transformed mesh from the moving mesh under the registration map. The red mesh is the 2D mesh of
the target surface under the conformal parameterization. The intersection region of the two meshes is
the region of correspondence amongst the two human faces. We also display the energy plot against
iteration number averaged per face of the mesh on the left of Figure 22, and the landmark error plot
on the left. The intensity registration is more complicated in this case. Nevertheless we can see that
the algorithm still successfully reduces the intensity and landmark matching errors.
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Fig. 20 The first row shows the conformal parametrizations of the moving and static human faces in Example 6
respectively. The landmark correspondences in the 2D parameter domains are also displayed. The registration result
in the 2D domain is shown in the second row. The blue mesh is transformed mesh from the moving mesh under the
registration map. The red mesh is the 2D mesh of the target surface under the conformal parametrization.

Fig. 21 Corresponding regions on the moving and static human faces in Example 6. The green region on left shows
the corresponding region on the moving surface. The green region on the right shows the corresponding region on the
target surface.

7 Conclusion

We have proposed a deformation model that is able to control both angle and area distortion and allow
free boundary movement, which is further developed into a registration algorithm used for domains
that are not in any natural global bijective correspondence. The key is to use Beltrami coefficient for
smoothness and the mapping differential singular values for free boundary. Experimental results have
been given to show the effectiveness of our approach.
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Fig. 22 Energy and landmark error plots for the human face experiment in Example 6 against iteration number.
Energy is averaged per face. Energy is averaged per face. The left shows the overall energy versus iterations. The
right shows the landmark mismatching error versus iterations.

References

1. Fidentis database. https://www.facebase.org/facial norms/notes/6262. Accessed: 2018-10-01
2. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid icp algorithms for surface registration. In: 2007

IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
3. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the

Plane (PMS-48). Princeton University Press (2008)
4. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-

invariant partial surface matching. Proceedings of the National Academy of Sciences 103(5), 1168–1172 (2006)
5. Choi, P.T., Lam, K.C., Lui, L.M.: Flash: Fast landmark aligned spherical harmonic parameterization for genus-0

closed brain surfaces. SIAM Journal on Imaging Sciences 8(1), 67–94 (2015)
6. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. In: Computer graphics forum,

vol. 21, pp. 209–218. Wiley Online Library (2002)
7. Gu, X., Yau, S.T.: Global conformal surface parameterization. In: Proceedings of the 2003 Eurographics/ACM

SIGGRAPH symposium on Geometry processing, pp. 127–137. Eurographics Association (2003)
8. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. In: ACM transactions on

Graphics (TOG), vol. 24, pp. 1134–1141. ACM (2005)
9. Kovalsky, S.Z., Aigerman, N., Basri, R., Lipman, Y.: Large-scale bounded distortion mappings. ACM Transactions

on Graphics (TOG) 34(6), 191 (2015)
10. Lam, K.C., Lui, L.M.: Landmark-and intensity-based registration with large deformations via quasi-conformal

maps. SIAM Journal on Imaging Sciences 7(4), 2364–2392 (2014)
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