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Abstract

We study the problem of restoring images distorted by atmospheric turbulence.
Geometric distortions and blur are thetwo main components of degradations due to
atmospheric turbulence, and prior work has been done to address thesecomponents sep-
arately. We propose a joint variational deblurring and geometric distortion correction
model and presentnumerical results on synthetic and real data.

1 Introduction and Background

Atmospherically-distorted images of a static scene arise in long range imaging where the
images are distorted by turbulent geometric distortion and blurring effects during their ac-
quisition. A model for this degradation is presented in Frakes et. al. [2, 4]

fi(x) = Φi(K(u(x))) + noise, (1)

where a static undistorted scene u(x) is distorted with blurring effects modeled by blur
kernel K and geometric distortion effects represented by the operator Φi to yield respective
distorted frames fi. The goal is to recover the static scene u from a stream of distorted
image frames of the static scene.

In the model of turbulence (1), the distorted image fi is generated by first blurring the
static image u and then degrading the resulting blurry image with geometric distortions.
The authors of [7] study both this case and the case where the static image is first affected
with geometric distortions and then with blur (i.e. fi(x) = K(Φi(u(x))) + noise). In their
work, they use temporal filtering in combination with registration to correct for geometric
distortions and a blind deconvolution algorithm to correct for blurring effects.
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In the work [9], the authors formulate blind image deconvolution as a principal compo-
nents analysis (PCA) problem, and they perform restoration experiments on atmospheric
turbulence-degraded imagery. Whereas in [15], the focus is more on geometric distortion
correction. The authors use a Kalman filter to recover the static scene from a series of dis-
torted frames. They assume a high frame rate and use time-dependent differential equations
to model the warping of the frames.

In a different type of approach, the authors of [1] present an improved “lucky-region”
fusion (LRF) approach. The LRF approach estimates the local quality of images using an
image quality map, which is often based on the gradient of the image. The image quality map
selects the best quality regions of each image, and these “lucky-regions” are fused together
to give the restored static image.

In a very recent work [10], the authors propose a method that performs joint frame
sharpening with the Sobolev gradient method and temporal distortion correction using the
Laplace operator. With the reconstructed frames, they apply an approach similar to the
lucky-region fusion approach to reconstruct the static image.

In the work [11], the authors address specifically the geometric distortions caused by
atmospheric turbulence. They start with a reference frame that is a good approximation of
the static scene (usually the mean of the input frames) and estimate the optical flows from
this reference frame to each of the input frames. Once the optical flows are determined, they
are used to determine a new reference frame, where this new reference frame is the solution
of a variational problem involving nonlocal TV regularization. Once this new reference frame
is found, the process repeats. A geometrically corrected image results after a few iterations
of this process.

A recent approach to deblur the effects of atmospheric turbulence is proposed in [8], where
the authors utilize the Fried kernel [3] in a framelet based deconvolution algorithm. The Fried
kernel is an analytical formulation of the atmosphere modulation transfer function (MTF)
and depends on parameters of the acquisition system and characteristics of the imaging scene
as well as a refractive index structure which reflects the turbulence level in the atmosphere.
In their work, a method to estimate this refractive index structure parameter is provided.
In the next section, we give a brief review of the Fried kernel.

The last two prior works have been combined to produce very nice results. First, the input
frames are used to produce a geometrically corrected image using [11]. The geometrically
corrected result is then used as input for the deconvolution algorithm in [8]. This two step
process yields a deblurred and geometrically corrected image. Our goal is to combine both
the deconvolution and geometric correction into one variational restoration model. We give
preliminary results for this model.

1.1 Review of Fried Kernel

We give here the basic form of the MTF of the Fried kernel to illustrate its behavior as a
function of four parameters D, L, λ, and C2

n. For more details, we refer the reader to [3, 8].
In two dimensions, letting ω be the frequency modulus, Fried’s MTF MF (ω) (in the Fourier
domain) is given by

MF (ω) = M0(ω)MSA(ω) (2)
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where

M0(ω) =

{
2
π
(arccos(ω)− ω

√
1− ω2) for ω < 1

0 for ω > 1,
(3)

and

MSA(ω) = exp

{
− (2.1X)5/3(ω5/3 − V (Q,X)ω2)

}
. (4)

k = 2π
λ

, r0 = 2.1ρ0 = 2.1(1.437(k2LC2
n))−3/5, Q = D√

λL
, X = D

r0
, and

V (Q,X) = A(Q) +
B(Q)

10
exp

{
− (log10(X) + 1)3

3.5

}
(5)

where A and B depend on Q only.
Here, D is the system entrance pupil diameter, L is the path length given by the distance

between the sensor and acquired scene, λ is the wavelength on which the imaging system
is working, and C2

n is the refractive index structure reflecting the turbulence level of the
atmosphere (for more information on C2

n, we refer the reader to [16]). As measured in [16],
C2
n is typically in the range [10−16m−2/3, 10−12m−2/3] where larger values of C2

n correspond
to stronger turbulence.

1.2 Geometric Distortion Operator and Computation of Its Ad-
joint

For the notation of the geometric distortion operator and the computation of its adjoint, we
follow the notations and method presented in [11]. Let g = g(x1, x2), v1 = v1(x1, x2) and
v2 = v2(x1, x2) be functions from R2 to R. We define the geometric distortion operator Φ by

Φ : g(x1, x2)→ g(x1 + v1(x1, x2), x2 + v2(x1, x2)). (6)

For fixed v1 and v2, Φ is a linear operator on the space of functions from R2 to R.
The adjoint of Φ is denoted ΦT and is defined as the operator such that

〈h,ΦTg〉 =

∫
h(ΦTg)dx =

∫
(Φh)gdx = 〈Φh, g〉 ∀h. (7)

Numerically, the authors of [11] take h in (7) to be the ‘single spike function’

hy(x) =

{
1 if y = x

0 if y 6= x,
(8)

and subsequently arrive at the relation

(ΦTg)(y) = 〈hy,ΦTg〉 = 〈Φhy, g〉. (9)

〈Φhy, g〉 is easy to evaluate since Φhy is a simple function.
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2 Proposed Variational Model

We propose two variations of a combined deblurring and geometric distortion correction
model. The two variations correspond to the relations

Φk(f
k) = Ku+ noise (10)

and
fk = Φk(Ku) + noise (11)

where Φk represents the geometric distortion operator corresponding to the kth frame fk.

2.1 Variation 1

The first model that we propose involves the relation

Φk(f
k) = Ku+ noise. (12)

Using this relation, we propose the following minimization problem

min
vk1 ,v

k
2 ,u

{
E1(u, vk1 , v

k
2) = µ

numFrames∑
k=1

∫
Ω

(|∇vk1 |2 + |∇vk2 |2)dx (13)

+ λ
numFrames∑

k=1

∫
Ω

(Ku− Φk(f
k))2dx+ γ

∫
Ω

|∇u|dx
}
,

where fk is the kth distorted frame of a true scene, K is the blur kernel, and Φk is the linear
operator representing geometric distortions of the kth frame given by

Φk(f
k(x1, x2)) = fk(x1 + vk1(x1, x2), x2 + vk2(x1, x2)), (14)

where each vk1 = vk1(x1, x2) and vk2 = vk2(x1, x2), and vk = (vk1 , v
k
2) represents the turbulence

warping from fk to Ku.
The first term in E1 is an H1 regularization on vk1 and vk2 , which enforces a smooth

turbulence warping. The second term in E1 acts as a fidelity term that constrains the
unknowns u, vk1 and vk2 to adhere to (12), and the last term in E1 is simply the total
variation (TV) regularization in u [14, 13], which allows for the restored image u to have
edges.

To minimize the energy (14), we use Euler-Lagrange equations and alternating minimiza-
tion in the unknowns. We give the associated gradient descent equations for u, vk1 and vk2 ,
where k = 1, ..., numFrames.
For u:

∂u

∂t
= −∂E1

∂u
= λ

numFrames∑
k=1

{
− 2K∗(Ku− Φk(f

k))

}
+ γ∇ ·

(
∇u
|∇u|

)
.

For vk1 :
∂vk1
∂t

= −∂E1

∂vk1
= 2µ4vk1 + 2λ(Ku− Φk(f

k))(Φk(f
k
x )).
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For vk2 :
∂vk2
∂t

= −∂E1

∂vk2
= 2µ4vk2 + 2λ(Ku− Φk(f

k))(Φk(f
k
y )).

The above equations are discretized using finite differences, and a fully explicit scheme is
used to update the unknowns. We start with initial guess

u0 = constant = mean
(x1,x2)∈Ω,k=1:numFrames

fk(x1, x2)

and vk1 = vk2 = 0. We perform one iteration of gradient descent at each minimization step,
using the previous u, vk1 and vk2 ’s in the update process. After updating each of the unknowns,
the process is repeated until the energy E1 reaches a steady state.

2.2 Variation 2

Similar to the first model, the second model that we propose involves the relation

fk = Φk(Ku) + noise. (15)

With this relation, we propose the following minimization problem

min
vk1 ,v

k
2 ,u

{
E2(u, vk1 , v

k
2) = µ

numFrames∑
k=1

∫
Ω

(|∇vk1 |2 + |∇vk2 |2)dx (16)

+ λ
numFrames∑

k=1

∫
Ω

(Φk(Ku)− fk)2dx+ γ

∫
Ω

|∇u|dx
}

where again fk is the kth distorted frame of the true scene, K is the blur kernel, and Φk is
the linear operator representing geometric distortions of the kth frame given by

Φk((Ku)(x1, x2)) = (Ku)(x1 + vk1(x1, x2), x2 + vk2(x1, x2)), (17)

where each vk1 = vk1(x1, x2) and vk2 = vk2(x1, x2), and vk = (vk1 , v
k
2) represents the turbulence

warping from Ku to fk.
We use the same regularizations in vk1 , vk2 and u as in our first proposed model, and the

only difference between this second model and the first is that the fidelity term reflects the
relation (15).

To minimize (17), we again use Euler-Lagrange equations and alternating minimization.
We give here the associated gradient descent equations for unknowns u, vk1 and vk2 , for
k = 1, ..., numFrames.
For u:

∂u

∂t
= −∂E2

∂u
= λ

numFrames∑
k=1

{
− 2K∗ΦT

k (Φk(Ku)− fk)
}

+ γ∇ ·
(
∇u
|∇u|

)
.

For vk1 :
∂vk1
∂t

= −∂E2

∂vk1
= 2µ4vk1 − 2λ(Φk(Ku)− fk)(Φk((Ku)x))
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For vk2 :
∂vk2
∂t

= −∂E2

∂vk2
= 2µ4vk2 − 2λ(Φk(Ku)− fk)(Φk((Ku)y))

We discretize the above equations using finite differences, and using a fully explicit scheme,
we update the unknowns. We start with initial guess

u0 = constant = mean
(x1,x2)∈Ω,k=1:numFrames

fk(x1, x2)

and vk1 = vk2 = 0. We perform one iteration of gradient descent at each minimization step,
using previous u, vk1 and vk2 ’s in update process. After updating each of the unknowns, we
repeat the process until the energy E2 reaches a steady state.

3 Numerical Experiments

In this section, we provide some preliminary numerical results. We compare the results of our
proposed variational model with the work found in [11] on geometric distortion correction
and [8] on deconvolution using Fried kernel. In all examples, only 10 frames were used in
the reconstructions.

As shown in [6], applying the temporal mean or median filter on the input frames often
give a good reference image, with the temporal median producing a less blurred result than
the temporal mean. In our results, we include the temporal mean and median of the input
frames for comparison.

We begin with the simple case of K = I where the blur kernel is simply the identity,
representing the case of geometric distortion only and no blurring effects. The data was
generated synthetically, and three sample frames of the geometric distortion are displayed
to give the reader a sense of the magnitude of the distortion (top row of Fig. 1).

In the second case, we consider joint geometric distortion correction and deblurring,
taking K to be the Fried kernel and look at the effect of the refractive index structure C2

n on
the restored result. The data was collected by NATO SET156 (ex-SET072 RTG40) Group
during the 2005 New Mexico’s field trials. Three sample frames of each of the data sets are
given (middle and bottom rows of Fig. 1).

3.1 Geometric Distortion Correction, Case: K = I

We begin by considering synthetic data that models turbulent geometric distortion without
blur. The true image is 256×256, and we consider 10 distorted frames for our reconstructions.
In Fig. 2, we present for comparison, the true image, the mean of the input frames, the
median of the input frames, the geometric distortion corrected image using the algorithm
in [11], and our restored results. Both Variation 1 and 2 of the proposed model corrects
for the geometric distortion well, but the reconstructed images are not as sharp as the true
image. The reconstruction using [11] is sharp, but fails to reconstruct parts of the image as
well as our proposed model (e.g. the eyes). Furthermore, Variation 2 of our proposed model
provides a sharper reconstruction than that of Variation 1. We would like to mention that
the reconstructions using [11] utilize the nonlocal total variation regularization [5], and the
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Figure 1: Three sample frames of distorted data.

reconstructions using our proposed model utilize the local total variation regularization. A
more thorough comparison will be made in the future.

3.2 Joint Deblurring and Geometric Distortion Correction, K Fried
Kernel

In this section, we present joint deblurring and geometric distortion correction numerical
examples. We take K to be the Fried kernel. We consider two data sets (middle and bottom
rows of Fig. 1). In both restorations, we use only 10 frames.

With the first example, we performed two restorations; one restoration uses the measured
value of C2

n = 1.51× 10−13 and the second uses the estimated C2
n = 2.5× 10−13, which was

found using the algorithm in [8]. Recall that a larger C2
n value creates a stronger blur

kernel since it corresponds to higher levels of turbulence. Fig. 3 shows our joint deblurring
and geometric distortion correction results along with a comparison with the geometrically
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Figure 2: Geometric distortion correction. Top, left to right: true image, mean of 10 in-
put frames, median of 10 input frames. Bottom, left to right: Variation 1 reconstruction,
Variation 2 reconstruction, geometric distortion correction using [11].

corrected image using [11], and the deblurred results of the geometrically corrected image
using [8] with Fried kernel corresponding to the two C2

n values. The second row of Fig. 3
corresponds to C2

n = 1.51× 10−13. The restored images using Variation 1 and Variation 2 of
our model are very similar; the result using Variation 2 is slightly sharper (see the lower part
of the three bars farthest to the right). Whe n the larger estimated value of C2

n = 2.5×10−13

is used (see bottom row of Fig. 3), no difference can be detected between the restored images
using Variation 1 and Variation 2. The restored images using first the geometric distortion
correction [11] and then deconvolution with [8] give a more constant intensity along some of
the bars (see the top of the bar second from the right) but overall are similar to the restored
images using our proposed models.

With our second example, we performed restoration using the measured C2
n = 1.91×10−13

for our joint deblurring and geometric distortion correction models. Fig. 4 gives our restored
images as well as a comparison with the geometrically corrected image using [11] and the
blind deconvolution of this result using [8], where the approximated value of C2

n = 1.7×10−13.
The restored images using our proposed models are similar, with Variation 2 giving a slightly
sharper restored image (the top loop of the ‘B’ in ‘ALBEDOS’). The result using [11] and [8]
performs better in certain areas (the ‘D’ in ‘ALBEDOS’ looks nicer than in our restored
images), but results using our model performs better in other areas (the ‘A’ and ‘L’ are more
separated in ‘ALBEDOS’).
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Figure 3: Top, left to right: mean of 10 input images, median of 10 input images, geometric
distortion correction using [11]. Middle, left to right: reconstructions using Variation 1,
Variation 2, and framelet non-blind deconvolution of geometrically corrected image (top
right) using algorithm in [8]; here measured C2

n = 1.51×10−13 is used. Bottom, left to right:
reconstructions using Variation 1, Variation 2, and blind deconvolution of geometrically
corrected image (top right) using algorithm in [8]; here approximated value of C2

n = 2.5 ×
10−13 is used.

4 Discussion

In the future, we will perform more numerical experiments to gain a better understanding of
the performance of our proposed joint deblurring and geometric distortion correction models
and to see if any improvements can be achieved using a combined model. For a more equal
comparison with [11], we will implement the nonlocal total variation [5] in place of the total
variation. In addition, to increase performance speed, we will utilize the Bregman iterative
method [12].
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Figure 4: Top, left to right: mean of 10 input images, median of 10 input images, geo-
metrically restored image using [11]. Bottom, left to right: Variation 1 and Variation 2
reconstructions using measured C2

n = 1.91 × 10−13, blind Fried deconvolution of geometri-
cally restored (top right) using [8] algorithm with estimated C2

n = 1.7× 10−13.
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