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Abstract

Mean-variance optimization (MVO) is a popular framework for portfolio alloca-
tion due to its tractability and intuitive concept. However, MVO has several pitfalls;
in particular, it does not take into account characteristics of the strategies’ returns
beyond their means and volatilities/correlations, which makes it unsuitable for siz-
ing strategies with for example significant left-tail (e.g. volatility selling strategies).
In this paper, we propose an extension to the MVO framework that makes it more
appropriate for sizing strategies with skewed returns, but at the same time is still
intuitive and simple to use in practice. The portfolio manager specifies a penalizing
factor for the tail events, and the framework determines the optimal risk allocation
based on this specification. The proposed framework has three important features:
1) it is intuitive, interpretable and simple to use in practice, 2) when returns of the
underlying strategies are jointly normally distributed, the proposed framework out-
puts the exact same solution as the MVO, and 3) the formulation is in the form of
a convex optimization, which guarantees a unique optimal solution that is easy to
compute.

1 Introduction

Mean-variance optimization (MVO) pioneered by Markowitz [4] is the dominant framework
for portfolio allocation. The MVO approach is intuitive and tractable, which has led to
its popularity. Moreover, it is well known that if strategies’ returns are jointly normally
distributed, then the optimal allocation given by MVO is the same as maximized expected
utility for any utility function (see for example [5]).

On the other hand, in practice many strategies do not have normally distributed returns
and their volatilities are not a sufficient measure of their risk. For example, suppose a
strategy that returns 1% with probability 0.9 and −9% with probability 0.1. A simple
calculation yields that the volatility of the strategy is 3%. Therefore, a junior portfolio
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manager might attribute a return of −9% to a 3x standard deviation move with occurrence
probability of 0.13%; however, by definition, the probability of observing this return is 10%!

As the above example shows, using volatility as the sole measure of risk in
portfolio construction, especially for strategies with skewed returns, is at best
misleading and at worst can result into catastrophic outcomes. Yet, MVO only
uses expected returns and volatilities/correlations for portfolio allocation and ignores other
characteristics of the return distribution, which can yield counterintuitive risk allocations.
Consider the following example: suppose two strategies have the same expected returns and
volatilities and are uncorrelated to each other and the rest of the portfolio, but the returns
for one of the strategies are normally distributed while the other one has significant left
tail. The MVO framework would allocate same amount of risk to both strategies; however,
conceivably a prudent portfolio manager would not allocate the same amount of risk to
these strategies as their return distribution have very different characteristics.

Therefore, a natural question for portfolio managers is: how to appropriately size
strategies whose returns are not normally distributed (in particular are left-
skewed)? This question especially becomes relevant for portfolio managers who invest in
volatility selling strategies whose returns have significant left tail.

The goal of this paper is to address the question posed above both qualitatively
and quantitatively. To that end, we propose an extension to the MVO framework
for portfolio allocation that we call the mean-variance optimization with expected short-
fall penalization (ESP). The proposed framework is not too oversimplified and takes into
account other characteristics of the strategies’ return distribution than their means and
volatilities/correlations, but at the same time it is not too overcomplicated that renders it
unwieldy to use in practice.

The framework proposed here has practical consequences for portfolio managers: given
portfolio manager’s aversion to tail events, it determines exactly how much risk should be
allocated to left-skewed strategies. As a simple rule of thumb, in typical investment
situations, the framework advocates to decrease the size of strategies with
significant left tail to around 2/3 of their MVO allocations (see figure 4).

1.1 Related work

The framework proposed here is closely related to other optimization approaches that use
expected shortfall (some examples are [2, 6, 7]). Our main contribution is to formulate the
problem in such a way that the parameters have clear interpretation and help portfolio
managers to build intuition for the results.

1.2 Organization

The rest of the paper is organized as follows: Section 2 introduces several notations and
briefly reviews some of the concepts that are used throughout the paper. Section 3 describes
the proposed framework that extends MVO. In section 4, we build intuition for the ESP
framework by looking at its results in the context of a simple example.
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2 Notations and Preliminaries

2.1 Mean-variance optimization

For a given investment horizon, we use the following notation:

• σi: the volatility of strategy i.

• ri: return of strategy i.

• wi: the weight of strategy i in the portfolio.

• r̃i = ri
σi

: volatility-normalized return of strategy i.

• ki = wiσi: the risk allocated to strategy i in the portfolio.

• Ω: correlation matrix among the strategies.

• σΠ: portfolio’s risk budget.

Observe that the return of the portfolio over the investment horizon attributed to strategy
i is equal to r̃iki = riwi. Bold face letters are used to denote vectors, e.g. k denotes vector
of portfolio’s risk allocations to different strategies.

The MVO risk allocation kMVO is given by solving the following optimization problem

kMVO = argmax
k

E[r̃Tk] subject to kTΩk ≤ σ2
Π. (1)

It is well known that when the correlation matrix is ill-conditioned, kMVO becomes unstable
(see [3] for detailed discussion on this); however, this does not become an issue when the
portfolio is comprised of strategies with low correlations.

2.2 Two-point distribution

A two-point distribution is a random variable with the following possible outcomes:{
rd with probability pd,
ru with probability pu = 1− pd.

(2)

This distribution can be used to represent returns of strategies that are small positive
most of the times but have a huge drawdown every once in a while , e.g. volatility selling
strategies, shorting natural gas March-April spread, etc.

Appendix A provides some statistics for the two-point distribution. As an example,
figure 1 plots the ratio rd/ru in terms of the Sharpe ratio of the two-point distribution for
several values of pd.
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Figure 1: Ratio of rd to ru for the two-point distribution (2).

2.3 Expected shortfall deviation (ESD)

For continuous random variable R, let QR(p) denote its quantile function at probability
level p, that is Pr[R ≤ QR(p)] = p (in words, with probability p, R realizes values less than
or equal to QR(p)). The expected shortfall (ES) of R at probability level p, also known as
conditional value at risk1 (CVaR), is given by2

ESp(R) =
1

p

∫ p

0

QR(u)du = E[R|R ≤ QR(p)]. (3)

Observe that when R is the random variable for portfolio’s return, ESp(R) translates into
the average return in the worst 100p% cases. Figure 2 shows examples of the difference
between mean and expected shortfall for several portfolios (normalized by the volatility of
portfolios). Conceivably, given two portfolios with the same expected return and volatility,
the portfolio for which this difference is smaller is preferred. To that end, we define ex-
pected shortfall deviation (ESD), as the difference between the mean and expected shortfall
normalized with corresponding probability:

ESDp(R) =
p

1− p
[E[R]− ESp(R)] . (4)

Figure 3 plots the values of ESD (normalized by the portfolio’s volatility) for the same
examples as in figure 2. Consequently, given two portfolios with the same expected
return and volatility, the portfolio with lower ESD is preferred.

1The continuity assumption of R is critical here, otherwise this is not true (see for example [1]).
2Some authors use slightly variant definitions for the expected shortfall: with a minus sign in front of

the integral or with 1− p in place of p.

4



1% 2% 3% 4% 5% 6% 7% 8%
ES's probability level

2.0

2.5

3.0

3.5

4.0

M
ea
n 
m
in
us
 E
S 
(in

 te
rm

s o
f p

or
tfo

lio
's 
vo
l) normal

pd=20%
pd=10%
pd=5%

Figure 2: Difference between mean and expected shortfall of portfolio’s return in terms
of portfolio’s volatility (i.e. (E[R] − ESp(R))/

√
Var[R]) for different probability levels p.

Here portfolio consist of allocating equal risk to two uncorrelated strategies A and B, where
both strategies have Sharpe 1 (i.e. the optimal allocation based on the MVO problem (1)).
Returns of strategy B have normal distribution. The line labeled “normal” shows the case
where returns of strategy A have normal distribution. The other lines show the cases where
strategy A has two-point distribution with corresponding pd.
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Figure 3: The ESD of portfolio’s return in terms of portfolio’s volatility (i.e.
(ESDp(R)/

√
Var[R]) for different probability levels p. Here portfolio consist of allocating

equal risk to two uncorrelated strategies A and B, where both strategies have Sharpe 1
(i.e. the optimal allocation based on the MVO problem (1)). Returns of strategy B have
normal distribution. The line labeled “normal” shows the case where returns of strategy A
have normal distribution. The other lines show the cases where strategy A has two-point
distribution with corresponding pd.

6



3 Mean Variance Optimization with Expected Short-

fall Penalization

This section formulates a simple extension to the MVO framework that has several desirable
properties. Again, our main goal is to propose a framework that is more realistic than the
MVO framework for investment, but is still straightforward to understand and implement.

As mentioned in the previous section, given two portfolio with the same expected return
and volatility, the portfolio with lower ESD is preferred. Motivated by this observation,
we modify the MVO problem (1) by penalizing the objective function with ESD:

For 1 ≤ γ ≤ 1
p
, let

kESP = argmax
k

{
E[r̃Tk]− (γ − 1)ESDp[r̃

Tk]
}

subject to kTΩk ≤ σ2
Π. (5)

In general, parameters γ and p in (5), which determine the penalization of the tail
events, are specified by the portfolio manager based on their level of risk aversion. For
example, a portfolio manager with a strong track record has higher tolerance to drawdowns
and might use a lower value of γ than a novice portfolio manager who is worried of blow
ups.

There are several important features that make the ESP problem (5) ergonomic for risk
allocations:

1. As shown in theorem 3.1 below, parameter γ has a clear interpretation as the over-
weighting factor of the tail events. The objective function in (5) is akin to taking
expectation of r̃Tk with respect to the probability measure for which the probability
of the tail events are increased from p to γp. In particular, setting γ = 1, reduces
the ESP problem to the MVO problem for any distribution of returns r̃.

2. In the case of multivariate normal distribution r̃, it can be shown that kMVO = kESP
for all values of γ and p. Therefore, the ESP coincides with the MVO for jointly
normally distributed returns, but when returns are not normally distributed, the ESP
enhances the MVO by taking into account the tail characteristics of the returns.

3. Note that function ESDp(·) is a convex function because ESp(·) is a concave function
(see for example [1]). Consequently, the ESP problem (5) is a convex optimization
problem3, which guarantees existence and uniqueness of the optimal solution. More-
over, [6] presents a method to write ES optimization (and therefore ESD optimiza-
tion) as a linear programing problem, which provides a method to efficiently solve
(5).

4. It is easy to show that the relative risk between strategies in the optimal allocation
kESP is independents of the overall volatility of the portfolio σΠ (similar to the
behavior seen in the MVO framework).

3We are maximizing a concave objective function over a convex feasible set.
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The next theorem motivates the interpretation of γ in the ESP problem (5) as the
overweighting factor of the tail events. In some sense, factor γ is analogous to the pricing
kernel dQ

dP
used to change the probability measure from the physical world to the risk neutral

world.

Theorem 3.1 Denote the set of left tail events (with probability p) for portfolio returns
r̃Tk by T and its complement by Tc. The objective function of the MVO problem (1) is
equal to

E[r̃Tk] = pE[r̃Tk|T] + (1− p)E[r̃Tk|Tc]. (6)

On the other hand, the objective function of the ESP problem (5) is equal to

E[r̃Tk]− (γ − 1)ESDp(r̃
Tk) = p∗ E[r̃Tk|T] + (1− p∗)E[r̃Tk|Tc] (7)

where p∗ = γp.

Proof: See appendix B.

4 Numerical Results

This section builds intuition for the results of the ESP framework by applying it to a simple
example. Suppose we want to allocate risk to strategy A with left-skewed returns. We use
the two-point distribution (2) with pd < pu to represent return distribution of A (think
of A as a strategy that returns a small positive most of the time, but occasionally has a
huge drawdown, e.g. vol selling strategies, shorting natural gas March-April spread, etc.).
Note that we could use any distribution with a heavy left tail in the ESP framework; here
we use the two-point distribution for ease of comprehension. We use B to represent the
rest of the strategies in the portfolio, which is assumed to be well diversified and therefore
it is reasonable to assume B has normally distributed returns. For ease of exposition, we
assume that strategy B has Sharpe ratio of 1, and strategies A and B are uncorrelated. In
typical investment scenarios, strategy A would have a lower Sharpe ratio than strategy B,
since the latter is made up of many well-diversified strategies. Therefore, we only consider
cases where Sharpe ratio of A is smaller or equal than one4.

Figure 4 shows the ratio of the risk that the ESP framework allocates to strategy A
and B as Sharpe of A varies. Here we plot the results for four different types of return
distributions for strategy A (i.e. normal distribution, as well as two-point distributions
with pd = 20%, 10%, 5%). We highlight the following observations in figure 4:

• As noted in section 3, when both A and B have normally distributed returns, the
ESP framework makes the same allocation as the MVO framework (hence the solid
black line with slope 1).

4In appendix C, we consider what happens when strategy A has higher Sharpe than B even though
this is not a typical investment scenario.
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• When strategy A has left-skewed return, the ESP framework underweights it in
comparison to the MVO framework. This should appear very intuitive to portfolio
managers: left-skewed assets have more inherent risk. The more left-skewed the
returns (characterized by lower pd; see figure 1), the lower the allocated risk. The
advantage of using the ESP framework is to quantitatively determine the
appropriate amount of underweighting required.
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Figure 4: Ratio of risk allocation between strategies A and B using the ESP portfolio
optimization (5) with parameters γ = 4 and p = 0.05 for different values of the Sharpe
ratio of strategy A. Here portfolio consists of two uncorrelated strategies A and B. Returns
of strategy B have normal distribution with Sharpe 1. The line labeled “normal” shows
the case where returns of strategy A have normal distribution. The other lines show the
cases where strategy A has two-point distribution with corresponding pd.

As an example, figure 5 shows the profile of returns for MVO and ESP allocations. It
is noteworthy that the ESP portfolio does not sacrifice too much on the Sharpe ratio (1.37
versus MVO’s Sharpe ratio of 1.41), but manages to improve the expected shortfall of
the portfolio by more than half of volatility (i.e. ESP’s expected shortfall of -1.1 versus
MVO’s expected shortfall of -1.7).

Figure 6 shows the sensitivity of allocation between strategies A and B to different
values of the overweighting factor of tail events γ. When γ = 1, ESP reduces to the MVO
framework; therefore, regardless of the return distribution of strategy A, the risk allocated
to A is half of the risk allocated to B (since Sharpe of A is half of Sharpe of B and the two
strategies are uncorrelated). As noted in section 3, in the case when returns of strategy A
are normally distributed, the ESP allocation of risk is independent of the value of γ (hence
the black solid horizontal line in figure 6).
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Figure 7 shows the sensitivity of allocation between strategies A and B to different
values of the ESD probability level p. When p = 0, ESP reduces to the MVO framework;
therefore, regardless of the return distribution of strategy A, the risk allocated to A is half
of the risk allocated to B (since Sharpe of A is half of Sharpe of B and the two strategies are
uncorrelated). As noted in section 3, in the case when returns of strategy A are normally
distributed, the ESP allocation of risk is independent of the value of p (hence the black
solid horizontal line in figure 7).
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Figure 5: Distribution of returns for portfolios constructed with the MVO portfolio opti-
mization (1) and the ESP portfolio optimization (5). Here portfolios have unit volatility
and consist of two uncorrelated strategies A and B. Returns of strategy B have normal
distribution with Sharpe 1. Returns of strategy A have two-point distribution with Sharpe
1 and pd = 0.05. The parameters used for the ESP optimization are p = 0.05 and γ = 4.
The black dashed vertical line corresponds to 0.05 quantile for the MVO portfolio. The
expected shortfalls with probability 5% for the MVO and ESP portfolios are -1.7 and -
1.1, respectively (denoted by the dotted lines). The Sharpe ratios of the MVO and ESP
portfolios are 1.41 and 1.37, respectively.

Acknowledgement

The author benefited greatly from constructive feedback and insightful discussions with
Yuri Garbuzov for this project.

10



1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
γ

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

kA
kB
   

normal
pd=20%
pd=10%
pd=5%

Figure 6: Ratio of risk allocation between strategies A and B using the ESP portfolio
optimization (5) for different values of γ and with p = 0.05. Here portfolio consist of two
uncorrelated strategies A and B. Returns of strategy B have normal distribution with
Sharpe 1. Strategy A has Sharpe 0.5. The line labeled “normal” shows the case where
returns of strategy A have normal distribution. The other lines show the cases where
strategy A has two-point distribution with corresponding pd.
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Figure 7: Ratio of risk allocation between strategies A and B using the ESP portfolio
optimization (5) for different values of p and with γ = 4. Here portfolio consist of two
uncorrelated strategies A and B. Returns of strategy B have normal distribution with
Sharpe 1. Strategy A has Sharpe 0.5. The line labeled “normal” shows the case where
returns of strategy A have normal distribution. The other lines show the cases where
strategy A has two-point distribution with corresponding pd.
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A Some statistics for the two-point distribution

Consider the two-point distribution{
rd with probability pd,
ru with probability pu = 1− pd.

The mean µ of the distribution is given by

µ = puru + pdrd,

and the variance σ2 is given by

σ2 = pdpu(ru − rd)2.

Given ratio rd/ru, Sharpe S of the two-point distribution is given by

S =
1 + (rd/ru)(pd/pu)√
pd/pu(1− rd/ru)

.

Conversely, given Sharpe S, we can back-out the ratio rd/ru for the two-point distribution:

rd
ru

=
S
√
pd/pu − 1

S
√
pd/pu + pd/pu

.

B Interpretation of factor γ

In this appendix, we provide proof for theorem 3.1, which justifies interpretation of the
parameter γ as the overweighting factor of the tail events.

Proof of Theorem 3.1: Set R = r̃Tk. Observe that

T = {R ≤ QR(p)}, and Tc = {R > QR(p)}.

By the law of iterated expectation,

E[R] = pE[R|T] + (1− p)E[R|Tc], (B.1)

which yields identity (6). It remains to show (7). Observe that

E[R]− (γ − 1)ESDp(R)

=E[R]− (γ − 1)p

1− p
[E[R]− ESp(R)]

=pE[R|T] + (1− p)E[R|Tc]− (γ − 1)p

1− p
[(1− p)E[R|Tc]− (1− p)E[R|T]]

=γpE[R|T] + (1− γp)E[R|Tc],

where we used (4) for the first equality, and used (B.1) and (3) for the second equality.
Finally, setting p∗ = γp in the above equation yields

E[R]− (γ − 1)ESDp(R) = p∗ E[R|T] + (1− p∗)E[R|Tc] (B.2)

which yields identity (7).
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C The skewed-return strategy is the main source of

alpha in the portfolio

In this appendix we investigate the result of the ESP framework when the Sharpe ratio
of A is greater than the Sharpe ratio of B (i.e. when the strategy with the skewed-return
has superior performance than the rest of the portfolio combined). Note that this is not
a typical investment situation; nevertheless, the result may seem counterintuitive at first,
which prompted us to mention it here. Figure 8 plots the same result as figure 4; however,
with the range of the Sharpe ratio of strategy A extended to 2.5. As figure 8 shows,
the underweighting of the skewed-return strategy becomes smaller as its Sharpe increases.
In some cases, the ESP framework would even overweight the skewed-return strategy in
comparison to the MVO allocation, which might seem surprising and counterintuitive at
first glance.

To elucidate this behavior, we show in figure 9 the return distribution of the combined
portfolio in a scenario where the ESP framework would slightly overweight the skewed-
return strategy. Compare this figure with figure 5: In figure 5, the performance of the
strategies are comparable, which results into the ESP framework underweighting the skew-
return strategy to attenuates the tail of the ESP portfolio in comparison to the MVO
portfolio. On the other hand, figure 9 shows an example where the skewed-return strategy
has much better performance than the strategy with normally distributed returns. Com-
paring the distributions of the MVO and the ESP portfolios in figure 9 suggest that the
ESP portfolio prefers to slightly overweight the skewed-return strategy as it does not signif-
icantly change the tail behavior of the distribution, but increases the probability of the two
modes of the return distribution. Intuitively, when the skewed-return strategy has
much better performance than the strategy with normally distributed returns,
the ESP framework underweights the latter strategy to not dilute the strong
performance of the skewed-return strategy.
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Figure 9: Distribution of returns for portfolios constructed with the MVO portfolio opti-
mization (1) and the ESP portfolio optimization (5). Here portfolios have unit volatility
and consist of two uncorrelated strategies A and B. Returns of strategy B have normal
distribution with Sharpe 1. Returns of strategy A have two-point distribution with Sharpe
2.5 and pd = 0.2. The parameters used for the ESP optimization are p = 0.05 and γ = 4.
The black dashed vertical line corresponds to 0.05 quantile for the MVO portfolio. The
expected shortfalls with probability 5% for the MVO and ESP portfolios are 0.36 and 0.38,
respectively (denoted by the dotted lines). The Sharpe ratios of the MVO and ESP port-
folios are 2.692 and 2.691, respectively. Note that this is not a typical investment
situation, because we are assuming strategy A has much greater Sharpe than strategy B
that is made up of the remaining well-diversified strategies in the portfolio. This figure is
included to highlight the point mentioned in appendix C.
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