IMAGE SEGMENTATION WITH PARTIAL CONVEXITY PRIOR
USING DISCRETE CONFORMALITY STRUCTURES
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Abstract. Image segmentation aims to partition an image into meaningful regions and extract
important objects therein. In real applications, the given images may contain multiple overlapping
objects with noisy background, inducing great challenges to the segmentation task. In these cases,
priori information of the target object is essential for an accurate and meaningful segmentation result.
In this paper, we present a new framework to achieve image segmentation with convexity prior,
guaranteeing the segmented region to be fully or partially convex according to the user’s preference.
The basic idea is to incorporate a registration-based segmentation model with a specially designed
convexity constraint. The convexity constraint is based on the discrete conformality structures of
the image mesh. We propose an iterative scheme to solve the segmentation model, which smoothly
deforms a template object to trace the boundary of the target object. A projection is carried out to
enforce the convexity constraint. The target object is then captured by a (fully or partially) convex
region. Experiments have been carried out on both synthetic and real images. Results demonstrate
the effectiveness of our proposed framework.

Key words. Image segmentation, convexity, conformality structure, registration-based model,
quasi-conformal

1. Introduction. Image segmentation is an important topic in many aspects as
it simplifies higher level image processing, understanding and analysis by highlighting
meaningful regions and distinguishing different components in images. It is an impor-
tant yet challenging task in many scenarios, especially for images with occlusions or
corruptions (see Figure 1.1,1.2). For instance, in medical science, MR images may not
be clear enough to capture the whole shape of the relevant anatomical structures due
to machine and manual artifacts. This causes inaccurate segmentation which in turn
induces difficulties to both further analysis and medical operations. In zoology, the
occlusion in images of wildlife animals by trees and grass increases the difficulty to
estimate and record measurements such as the height and the length of the animals.
As for photography, background noise, over-exposure and occlusions may obscure and
distort the target object in a video or even an everyday photo, posing great challenge
to subsequent processing such as restoration, inpainting and registration.

To overcome these challenges, priori knowledge about the target object is usually
introduced to guide the segmentation algorithm to extract the target object with an
appropriate shape. However, while some priori information such as the topology of the
target object may sometimes be too rough for an accurate segmentation, some other
priori information such as the actual shape prior of the target object may not always
be available. Therefore, a balance is needed in between. Here, we observe that many
objects in real life are indeed convex or partially convex (that is, part of the contour
has non-negative curvature) when they are projected onto a 2D image. Therefore, in
this work, convexity of the target object is utilized as the prior knowledge to improve
segmentation accuracy. By preserving the convexity of the segmented domain, the
boundary of the target object can still be captured correctly even if it is occluded and
obscured.

In this paper, we propose a topology-preserving registration-based segmentation
model, which incorporates the convexity prior. The image domain is discretized by a
triangulation mesh. The convexity constraint can then be formulated in terms of the
discrete conformality structure, called the dihedral angle, defined on the mesh. Our
algorithm iteratively deforms a template binary image to extract the target object in
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Fic. 1.1. Ezamples of mis-segmentation due to occlusion or corruption in images. The left
shows the image of a road sign occluded by grass. The right shows a corrupted medical image. The
segmentation results are inaccurate using conventional segmentation model without the incorporation
of shape information.

the image, by enforcing that the dihedral angles of the deformed mesh satisfies the
convexity constraint. As a result, the target object is captured by a domain, which is
convex in the prescribed region and preserves the prescribed topology. The accuracy
of the segmentation result can be significantly improved with the convexity constraint
for degraded images due to noises or occlusions.

Our proposed model has two merits. On one hand, by parametrizing the space
of immersions of a topological triangulation using the notion of dihedral angles, the
proposed algorithm is developed directly on a discrete setting, hence allowing one
to effectively guarantee convexity without the concern of discrepancy from a smooth
model to its discretization. As a result, convexity can be guaranteed accurately not
only in theory but also in real implementation. On the other hand, our proposed
framework allows users to enforce partial convexity, in the sense that non-negativity
of curvature may be prescribed only on parts of the boundary curve. To the best of
our knowledge, the proposed framework is the first one that explicitly allows users to
freely enforce convexity only on disjoint portions of the segmented domain. The imple-
mentation of partial convexity allows more flexible use of the algorithm for handling
more general images.

The paper is organized as follows. Closely related previous works are reviewed
in Section 2. Relevant mathematical background is explained in Section 3. Our
proposed segmentation model are explained in details in Section 4. In Section 5, we
describe our proposed numerical algorithm to solve the proposed segmentation model.
Experimental results are shown in Section 6, and the conclusion follows in Section 7.

2. Related work. In this section, previous works closely related to our proposed
framework are reviewed.

2.1. Image segmentation and image registration. The snake model, or
active contour model, for segmentation was first introduced in [24] and has been
improved since its inception in terms of capture range [13, 52] and removal of depen-
dency on parametrization [26, 6]. A thorough survey on active contour models may
be found in [2]. By representing the contour by a level set of a function (very often a
signed-distance function, i.e. a function with unit gradient) rather than parametrizing
the contour explicitly, Chan-Vese model allows for topological change in the contour
[11]. Improvements to the model have been made in [40, 12]. A thorough survey on
Chan-Vese model may be found in [9)].

Prior knowledge is often useful for guiding segmentation. Topological-prior seg-
mentation [21, 45, 28] ensures the segmented object has the prescribed topology. For
stronger priors, the statistics of control points of snakes, and statistics of level-set
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Fi1Gc. 1.2. Ezamples of fully and partially convexr objects. The first row are examples of fully
convex objects. The second row shows examples of partially convex objects.

functions or template functions are used in [16] and [31, 15, 10] respectively.

Less stringent than these geometrical priors is the prior of convexity. It was
proposed in [43] to segment convex regions by prescribing a set of sufficiently dense
set of orientations, as well as their orthogonal complements, and partition the image
into regions with linear boundaries with the prescribed orientations, such that the
central region will be convex. A graph theory-based method was proposed in [39] to
enforce a graph-based discrete convexity constraint via imposing a linear inequality
for each path in each segmented region. Gorelic et al. [20] proposed penalizing the
number of triplets of collinear pixels (p, g, ) such that p and r lies inside the region,
while ¢ lies between p and r but outside the region. In [1], the prior is enforced by
penalizing the L' norm of the curvature, which necessitates solving a high order PDE.
In [53], the prior is enforced by restricting from the space of all level-set function to
that of sub-harmonic signed-distance functions, whose level sets are all convex. This
is implemented in an alternating manner.

Sometimes, image registration can be used to aid the segmentation process. Many
different methods have been developed for image registration, like feature-based meth-
ods [19, 17] and mutual information-based methods [50, 44]. A thorough survey may
be found in [55]. In [46, 49], the non-parametric registration problem was solved by
morphing one image to the other by a vector field, and the action is ensured to be
diffeomorphic in the latter paper.

Segmentation and registration are interrelated. In particular, segmentation may
be guided by registration by registering with a template [54, 29, 23].

2.2. Discrete Conformal Geometry. Conformal maps be approximated in
discrete settings [18, 22, 32, 37], say by approximating Cauchy-Riemann equation.
Alternative to the equation-solving approach is the circle packing approach, which is
based on the principle that conformal maps map infinitesimal circles to infinitesimal
circles. Circle packing was first proposed in [47] for theoretical study of manifolds, and
discretized in [48], and implemented in [14]. Circle Pattern, which allows transversely
intersecting circles, is a more relaxed setting for computation. Its theory, in the form
of dihedral angles!, was first proposed in [38] for the study of Euclidean simplicial

LCircle pattern is phrased in terms of the supplement of dihedral angles.
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surfaces with cone-like singularities and was extended in [30, 3]. It was applied in [25]
for mesh flattening. A similar framework was used in [42] for texture mapping.
Allowing, and accounting for, conformal distortion in a discrete map gives rise to
discrete quasi-conformal geometry. It has been applied in diverse setting ranging from
shape analysis [34, 7] and map compression [33] to registration [27] and segmentation
with topological prior [8]. Quasi-conformal geometry will be reviewed in Section 3.

3. Mathematical background. In this section, the mathematical tools perti-
nent to the proposed framework are described.

3.1. Quasi-Conformal Geometry. The foundation of the proposed framework
is based on quasi-conformal geometry. Quasi-conformal maps generalize conformal
maps. Given a domain 2 C C, a mapping f : Q2 — C is said to be quasi-conformal if
there exists a Lebesgue-measurable p :  — C such that

of . . of
@) =n) 5 () (31)

and

lplloo < 1. (3.2)

Equation (3.1) is called the Beltrami equation, and y is called the Beltrami coefficient
of f. Roughly speaking, quasi-conformal maps are orientation-preserving homeomor-
phisms between Riemann surfaces with a bounded conformality distortion, and the
distortion can be effectively controlled using the Beltrami coefficient p of f. The
following theorem, whose proof can be found in [33], is a well-established explanation
of the relationship between a mapping f and its Beltrami coefficient u.

THEOREM 3.1. Given a domain Q2 C C, let f:Q — C be a mapping, by defining

ue) = (G /5L @). (33)

then ||u|leo < 1 if and only if f is an orientation-preserving homeomorphism.

Therefore, in particular, any diffeomorphic deformation on 2 must be a quasi-
conformal mapping. This provides an alternative interpretation of diffeomorphic de-
formations, that requiring a deformation to be diffeomorphic is equivalent to requiring
its Beltrami coefficient to have sup norm strictly less than 1.

In the infinitesimal scale, a quasi-conformal mapping f on  has its local para-
metric expression as

f(2) = F(0) + f2(0)z + f2(0)Z = f(0) + f2(0)(z + p(0)Z). (34)

From the expression 3.4, it can be seen that the non-conformal part of f comes from
the term D(z) = z+ 1(0)Z which is essentially contributed by the Beltrami coefficient
wu of f only. Indeed, the Beltrami coefficient p has a one-to-one correspondence with
the quasi-conformal mapping f. Given a quasi-conformal mapping f, its Beltrami
coefficient can be uniquely determined by (3.1). The converse is guaranteed by the
following famous theorem.

THEOREM 3.2 (Measurable Riemann Mapping Theorem). Suppose p : C —
C is Lebesgue measurable satisfying ||p|loo < 1, then there exists a quasi-conformal
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mapping f : C — C in the Sobolev space W12 that satisfies the Beltrami equation in
the distribution sense. Furthermore, assuming that the mapping is stationary at 0,1
and oo, then the associated quasi-conformal mapping [ is uniquely determined.

The existence and uniqueness of the corresponding quasi-conformal mapping f
from a given admissible Beltrami coefficient g is not just guaranteed in theory. In
practice, given a Beltrami coefficient p : @ — C with sup-norm strictly less than
1, the corresponding quasi-conformal mapping f can be explicitly determined by
the Linear Beltrami Solver (LBS), whose details may be found in [33]. With LBS,
deformation can be directly controlled by perturbing the Beltrami coefficient and
hence deformations can now be prescribed to be diffeomorphic.

Now, let us consider the composition of quasi-conformal maps. Given two quasi-
conformal mappings f,g : € — €, by using uy and pg to denote their Beltrami
coefficients respectively, the Beltrami coefficient 1140 ¢ of the composite mapping g o f
is given by

prtpgofr _ f
L+ fig(pg o ) [

This provides a more convenient way to compute the composition of diffeomorphisms.
That is, using the above notations, the composite mapping go f on € can be obtained
by applying the Linear Beltrami Solver on the its Beltrami coefficient p40¢ which can
be directly determined via (3.5).

Hgof = (3.5)

3.2. Discrete Conformality Structure Based on Dihedral Angles. The
notion of quasi-conformal maps provides a way to preserve different properties of a
mapping, to be diffeomorphic for instance, by perturbing the corresponding Beltrami
coefficient. However, it is noted that an image domain is usually represented by a
triangular mesh and hence can be regarded as a discrete object. Much geometric
information can be effectively described by the discrete conformality structures. In
particular, we enforces convexity using the discrete conformality structure based on
dihedral angles.

Let M = (V,E,F) be a general triangular mesh with vertex set V, edge set E
and face set F. If M is merely a topological simplicial complex, V only has indices
rather than coordinates as elements; if M is immersed in R?, then V contains the
coordinates. To study angles in a mesh, the notion of plausible angle assignment is
in place.

DEFINITION 3.3 (Plausible angle assignment). A function ¢ : V x F — R is
called a plausible angle assignment (resp e-plausible angle assignment, where € > 0)
if all of the followings hold

Ypa =0 if v is not a vertex of the face A, (3.6)
wu.a >0 (resp >¢€) if v is a vertex of the face A, (3.7)
Z Yy A =T for every face A € F, (3.8)

where @, A = p(v,A) for allv e VA € F.

The angles of an immersion of M in R™ defines a plausible angle assignment as
follows. Let ¢, A to be the interior angle of the face A € F' at the vertex v € V, and
wu,a =0if v € V is not a vertex of A € F. The ¢, A is a plausible angle assignment.
However, not all plausible angle assignments are angles of some immersion.
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Fia. 3.1. Illustration of dihedral angles. For each mesh, the dihedral angle of the colored edge
is given by the sum of colored angles.

Using the plausible angle assignment ¢, A, the dihedral angle of each edge can
be defined as follows.

DEFINITION 3.4 (Dihedral Angle). Let e € E and ¢ be a plausible angle assign-
ment. The dihedral angle 8., or simply 0., of e is defined by

ee = Z @U,(Aeﬂ,)7 (39)

veV,

where V. is the set of vertices opposite to e, and A, is the unique face containing
both e and v.

A simple interpretation of dihedral angle is presented in the top row of Figure
(3.1), in which for each mesh, the dihedral angle of the colored edge equals to the sum
of those colored angles.

Every immersion has dihedral angles. Conversely, under a mild condition, mesh
can be recovered from the dihedral angles. To make the converse precise, the following
definitions are in place.

DEFINITION 3.5 (Plausible Dihedral Assignment). A function 6 : E — Ry is a
plausible dihedral assignment if it is the dihedral angles of a plausible angle assignment,
or in symbols 0(e) = b, for some plausible angle assignment .

DEFINITION 3.6 (Delaunay Plausible Dihedral Assignment). A plausible dihedral
assignment 0 is said to be Delaunay (resp e-Delaunay) iff 0(e) < m (resp 6(e) < m—¢).
A plausible angle assignment is Delaunay (resp e-Delaunay) iff its dihedral angles are
Delaunay (resp e-Delaunay).

By the fact that opposite angles in a cyclic quadrilateral are complementary, if
M is immersed in the plane, then it is Delaunay iff its dihedral angles of the angles
of the immersion is Delaunay.

A plausible dihedral assignment 6 : E' — R, is always the dihedral angles of the
angles of some immersion under the mild condition of Delaunayness. In fact, we have
the following theorem proven in [38].

THEOREM 3.7. If 0 is a Delaunay plausible dihedral assignment of a topological
triangulation M, then there exists an immersion of M whose dihedral angles are
precisely given by 0.

4. Proposed Segmentation Model. In this section, our proposed mathemat-
ical model for image segmentation with convexity priors will be discussed in details.
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Fic. 3.2. Example of topology prior images with different prescribed topology.

Prior image Deformed  Result

Fia. 3.3. Illustration of the segmentation model using Beltrami coefficient. A prior image is
deformed by a diffeomorphism to approximate the boundary of the target object in an image.

4.1. The foundation: Segmentation model using Beltrami coefficient.
We first describe the segmentation model in the continuous setting. Suppose [ : Q —
R is an image on a rectangular domain Q@ C C, and T' C € is the underlying sub-
domain in which the target object sits in I. To segment T" from 2 with a prescribed
topology, Chan et al. [8] proposed a registration-based segmentation model using
the Beltrami coefficient. The basic idea is to deform a simple template image J,
called the topological prior image, to extract the region T of the target object in the
image I. The prior image comprises of simple objects, such as a disk, according to
the prescribed topology (see Figure 3.2). The segmentation model aims to look for a
diffeomorphism f, : 2 — Q with Beltrami coefficient y, such that the deformed prior
image J o f, ! closely resembles to I (see Figure 3.3). Thus, the desired region T can
be estimated by T ~ f#(D), where D is the object region in J. More precisely, the
overall segmentation model can be formulated as the following optimization problem:

min B(ucr,e2) = [ Wy [ (Tofu=doal A [ 9uPro [ (uf+vu?) (1)
" Q Q Q Q

where v = f, — Id and 7, \,0 > 0 are weighting parameters. The topological prior
image Jg, ¢, is given by

Jor o) = c, ifzeD (4.2)
e ) 6, ifz € Q\D. '

The first term of F aims to minimize p to minimize local geometric distortions
under f,, and preserve the bijectivity of f,. The second term minimizes the discrep-
ancy between I o f,, and J., .,. The last two terms aim to enhance the smoothness
of f,. Since f, is bijectivity, the segmented object preserves the topology inherited
from the topological prior image.

To simplify the optimization model, the strategy of splitting variables is utilized so
that an alternating minimization scheme can be adopted. The modified optimization
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U

K(v)

Fi1G. 4.1. Lllustration of interior angle ® and exterior angle K (v) at vertexr v on the left. The
exterior angle can be used to determine the convexity of a polygon. The right shows a polygon which
is partially conver with respect to T'.

model then reads as follows:

min  E(p,v,c1,c2) :/ W2 +nIof,— )2+ ANV +o(|ul® + |Vul?) + 0|y — pl?.
Q

Hn,v,C1,C2
(4.3)
In practice, a digital image is discretized. In particular, an image can be dis-
cretized by a triangular mesh. Suppose ) is triangulated as Q@ ~ M = (V, E, F),
where V is the set of vertices, E is the set of edges and F' is the set of faces. The
Beltrami coefficients g and v can then be discretized by complex-valued functions
defined on V', which are respectively denoted by puy : V. — C and vy : V — C.
Similarly, f,, and u can be discretized on V' and respectively denoted as f,, v : V — C
and uy : V — C. The deformed image I o f,,,, can be defined on V' by interpolation.
Vvy and Vuy are computed by finite element method and are defined on V' as well.
As such, the segmentation model in the discrete setting is written as:

Irjnircl . E(uy,vy,c1,c2) = Z vy |? +nZ(IOf5 —J)? +)\Z |Voy|?
MKV ,VV,C1,C2 eV eV eV ( 4)

+o Z(|Uv|2 + [Vuy[?) +6 Z vy — v [?

veV veV

4.2. Formulation of the convexity prior. In this work, we propose to impose
the convexity prior in our segmentation model. In this subsection, we describe how
the convexity prior can be formulated, which can be easily incorporated into the
segmentation model (4.4).

In the continuous setting, the convexity or partial convexity of a curve can be
defined in the following sense.

DEFINITION 4.1 (Partial Convexity). Let D C R? be a bounded domain with
piece-wise smooth boundary. Let T be a subset of 0D. D is said to be partially convex
with respect to I if the curvature is non-negative on the smooth portions of I', and the
exterior angles (i.e. the jump in tangent direction) on T are non-negative.

In the discrete setting in which Q ~ M = (V| E, F'), the object domain D is also
triangulated as D ~ (V' E', F') for some V' C V, E' C E and F’ C F. The notion
of discrete convexity can be formulated by requiring D to be a convex polygon. We
have the following definition of discrete (partial) convexity.

DEFINITION 4.2 (Discrete Partial Convexity). Let D be a polygonal domain with
triangulation D = (V' E', F') and let OD be the boundary of D. The exterior angle
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K(v) at a vertez v € D is defined as K(v) = 7 — ®, where ® = Yoncr Pon- Let
T" be a subset of OD. D is said to be discrete partially convex with respect to I if the
exterior angle K (v) is non-negative for every v € T.

Figure 4.1 shows the exterior angle at a vertex of a polygon, as well as a partially
convex polygon. With the above definition, our segmentation model with convexity
prior can now be formulated as the following optimization problem:

min  E(uy,vv,ci,e0) =Y P40 ) (To fi —=J)+ A [Vl

KV YV ,C1,C2

veV veV veV (4 5)
+0 > (uvl+ [Vuy ) +6 > vy — py?
veV veV
subject to K(v) = — Z wu.a > 0forall vel, where I' C OD. (4.6)
A€F!

The convexity constraint in the above optimization problem is formulated by
K (v), which is defined in terms of the vertex angles ¢. This constraint is difficult
to handle. After adjusting ¢ to satisfy the convexity constraint, the corresponding
deformation map f{; has to be found to minimize the energy functional. However,
there is no obvious way to obtain f{; from ¢. The existence of an associated f{; from
an adjusted ¢ is also questionable. As such, it is desirable to formulate the convexity
constraint in terms of a suitable geometric quantity, which is closely related to an
associated deformation map.

In this work, we propose to formulate the discrete convexity based on the dihedral
angle. In particular, we will prove that discrete convexity in Definition 4.2 may be
equivalently defined by the following inequality.

Z Ofe) > (|Fo] = 1) for every v € T'. (4.7)
e€E,

In order to observe the above formulation, the relationship between the dihedral
angles and the angle sum at a vertex has to be examined. More precisely, in the
notations in subsection 3.2, we have the following proposition:

PROPOSITION 4.3. Let ¢ be the angles of the faces at each vertex of M, and 6 be
the dihedral angles of ¢. Let v be a vertex of M, and E, and F, be the sets of edges
and faces containing v. Then, for every verter v of the immersion,

Z@v,A = |Fv|7r - Z 96'
A

ecE,

Proof. Let ¢} and ¢34 be the two angles of the triangular face A other than o, A,
then clearly we have p, o = m — ¢} — ¢4. Hence,

D pua =) (m—ox—dA)
A

A

= |Fylm =) (¢h + ¢A)

A
= |Fylr— > 0.

eck,
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0
In this work, the above formulation of discrete convexity in term of the dihedral
angle will be adopted, with which the convexity constraint can be handled easily.

4.3. Overall segmentation model with (partial) convexity priors. The
overall image segmentation model with (partial) convexity priors can now be refor-
mulated as:

min E(uy,vv) =Y [wl>+n> (To fi =0+ 1) [Vwl?

Hv Vv

veV veV veV (4 8)
+o Y (fuy P+ [ VuyP) +8 Y vy — vl
veV veV
subject to: Z Oty > (|Fy| — 1)m for all v € ', where I' C 0D. (4.9)

eck,

The constraint in the above optimization problem can be handled. To enforce the
convexity constraint, a projection on the dihedral angle 6.y can be carried out. There
exists a corresponding deformation map f{; associated to the modified dihedral angle
Of(e), from which the map itself can be reconstructed. Solving the above optimization
problem becomes feasible, which will be discussed in details in the next section.

5. Proposed algorithm. In this section, we discuss our proposed algorithm to
solve the optimization model as described in subsection 4.3 in details. Our strategy is
to apply an alternating minimization scheme, followed by a projection to satisfy the
convexity constraint.

5.1. Alternating minimization. In order to minimize E, we adopt an alter-
nating minimization scheme. In each iteration, by fixing vy, we minimize over iy .
Similarly, fixing py/, we minimize over vy. More specifically, suppose py,, and vy,
are obtained at the n-th iteration, we proceed to obtain py ,4+1 and vy ,41 by solving
the following sub-problems:

s = argmingy c{n Y (Lo i~ 0 + 0 3 (Juv]? + [Vuy[?)
veV veV

+4 Z |VV,n - /’6‘2}a

veV

(5.1)

Wit = avgmingy Lo{ 3 PN VP53 -l (52)
veV veV veV

We first solve the py-subproblem and vy -subproblem, followed by a convexity
projection to enforce the convexity constraint. We will now describe the algorithms
to solve each subproblem in details.

5.1.1. py-subproblem. It can be proven (see [8]) that the global minimizer of
the sub-problem (5.1) can be obtained from the solution to the linear system

(VI3 4+ 0 — o) uy =n(J —I)(VI), (5.3)

subjected to uy = 0 on 91, where V, A are the discrete gradient and the discrete
Laplacian operator on €. Then, py 41 is computed via the finite difference differen-
tiation

ofk ofh
pvain(e) = D)0 0 vaeq (5.4)
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where fl7 = uy + Id. Note that if the denominator of (5.4) is 0 at some zy € Q, then
we set py.n+1(20) = 0. This completes the sub-problem (5.1).

5.1.2. vy-subproblem. To solve the subproblem (5.3), we compute the Euler-
Lagrange equation of the energy functional. It ends up with a linear system. More
specifically, vy, 41 is updated by solving the following linear system

(2 + 20 — )\A)Vv,n+1 = 26MV,n+17 (55)

subjected to vy 41 = 0 on 0. This solves the sub-problem (5.2).

5.1.3. c1, co-subproblem. Finally, fixing uy and vy, we optimize over ¢; and
co. The optimizers can be written explicitly, which are

fD Iof{;,n+1d2

Jpdz (5.6)

_ fQ\D Iof\l;,n+1dz
fQ\D dz ’

Cc1 =

C2

5.2. Convexification. After the alternating minimizing steps, a projection is
carried out to satisfy the convexity constraint. In this subsection, we will describe the
convexification step in details.

5.2.1. Mesh construction from dihedral angles. After the py-subproblem
and vy-subproblem are solved, the dihedral angles have to be adjusted to satisfy
the convexity constraint. After the dihedral angles are modified, it is necessary to
have an algorithm to construct a mesh from the dihedral angles. The mesh gives the
deformation map f{; associated to the dihedral angles. As such, the adjusted dihedral
angles can naturally be incorporated to the segmentation model.

In this subsection, the algorithm to construct a mesh from dihedral angles will
be explained in details. To this end, the following theorem is important for the
development of our algorithm.

THEOREM 5.1. Suppose M is a mesh embedded in R™ with dihedral angle 0. Then
its angles on each face are the solution ¢* of the variational problem

Pu,A
SD* = argmaxy, plgusible angle assignment — Z/ IOgQSiH tdtv (57)
dihedral angles given by 0 v.A YO

Further, the objective functional above, denoted by £, has the following properties.

1. Suppose v € V is a vertex of a face A € F, 8@%5 = —log(2sinp, A)
02 '

W&' = —cot g, a. All other first and second order partial derivatives
v, A

vanish.
2. E 1is concave on the space of plausible angle assignments.

and

Proof. This theorem has been proven by Rivin in [38]. This theorem can also be
illustrated by a more intuitive proof in terms of simple sine law for easier understand-
ing, as described in the Appendix. O

Note that the objective functional is independent on 6. Rather, 6 appears in
the constraint, which reads that the argument ¢ must satisfy (3.6), (3.7), (3.8) and
(3.9), all of which are linear and bound constraints. Theorem 5.1 may be seen as a
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C

A

F1G. 5.1. Illustration of Equation (5.8)

quantitative version of Theorem 3.7. While the latter asserts the existence of a mesh,
the former nails down the shape of the mesh through the specification of its angles.

More specifically, Theorem 5.1 offers a feasible solution to construct a mesh as-
sociated to a given dihedral angle. Given a plausible dihedral angle, one can find the
angle assignment of the associated immersion by solving the optimization problem
(5.7). The vertex positions of the mesh are then obtained from the plausible angle
assignment.

On the other hand, to turn the constraint to a bound constraint amenable to
numerical computation, the feasible set of the optimization problem (5.7) is further
restricted to the space of e-plausible angle assignment for some small ¢ > 0. The
modified problem is then a concave problem with bound and linear constraints, and
hence can be easily solved by any standard convex optimization solver. In this work,
the interior-point method [4, 5, 51] is used. To further improve accuracy, a few Newton
steps may be added afterwards. For all these algorithms, only the function value of
the objective function, as well as its gradient, Hessian are needed. The latter two are
available in closed form and the objective values may be efficiently approximated by
Taylor expansion.

In addition, if the immersion is planar, the vertex positions can be found by solving
a linear equation arising from sine law. This approach allows flexible introduction of
regularization to control the mesh position. Before introducing the promised equation,
the criteria of planarity in terms of the discrete conformality structures are presented
below.

PROPOSITION 5.2. Let M be a connected embedded mesh such that every trian-
gle has an interior vertex. In the notations of Proposition (4.3), the followings are
equivalent.

e M is planar.
e For every interior vertex v, Y A Pp,A = 2.
e For every interior vertex v, Y cp O = (|Fy] — 2)T.

Proof. The mesh M is planar if and only if the angle sum at every interior angle
is 27, and this is equivalent to the above equation by Proposition 4.3. O

The linear equation for solving the vertex positions can then be derived. Suppose
the faces are positively oriented on the plane. In other words, for each face A € F,
going from the first vertex va.i, through the second va;2 and third va.3, back to the
first forms a counter-clockwise loop. Then for each face A € F and and for each
I € {1,2,3}, the equation

VA T—-1 — VAT _ e‘/_l‘pfavA-I UAT+1 — UAT

; - (5.8)
S Pyp.r41,A S Pyn.r_1,A



Image segmentation with convexity prior 13

is imposed where v is the vertex positions represented by complex numbers. This
ensures the length ratios obey the sine law and the angles are as prescribed. Equiv-
alently, referring to Figure (5.1) with A playing the role of va r, the equation (5.8)
reads

C.— A _ e‘/jaB__ A.
sin 8 sin 7y

By solving equation (5.8), the immersion of the 