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Abstract. Image segmentation aims to partition an image into meaningful regions and extract
important objects therein. In real applications, the given images may contain multiple overlapping
objects with noisy background, inducing great challenges to the segmentation task. In these cases,
priori information of the target object is essential for an accurate and meaningful segmentation result.
In this paper, we present a new framework to achieve image segmentation with convexity prior,
guaranteeing the segmented region to be fully or partially convex according to the user’s preference.
The basic idea is to incorporate a registration-based segmentation model with a specially designed
convexity constraint. The convexity constraint is based on the discrete conformality structures of
the image mesh. We propose an iterative scheme to solve the segmentation model, which smoothly
deforms a template object to trace the boundary of the target object. A projection is carried out to
enforce the convexity constraint. The target object is then captured by a (fully or partially) convex
region. Experiments have been carried out on both synthetic and real images. Results demonstrate
the effectiveness of our proposed framework.

Key words. Image segmentation, convexity, conformality structure, registration-based model,
quasi-conformal

1. Introduction. Image segmentation is an important topic in many aspects as
it simplifies higher level image processing, understanding and analysis by highlighting
meaningful regions and distinguishing different components in images. It is an impor-
tant yet challenging task in many scenarios, especially for images with occlusions or
corruptions (see Figure 1.1,1.2). For instance, in medical science, MR images may not
be clear enough to capture the whole shape of the relevant anatomical structures due
to machine and manual artifacts. This causes inaccurate segmentation which in turn
induces difficulties to both further analysis and medical operations. In zoology, the
occlusion in images of wildlife animals by trees and grass increases the difficulty to
estimate and record measurements such as the height and the length of the animals.
As for photography, background noise, over-exposure and occlusions may obscure and
distort the target object in a video or even an everyday photo, posing great challenge
to subsequent processing such as restoration, inpainting and registration.

To overcome these challenges, priori knowledge about the target object is usually
introduced to guide the segmentation algorithm to extract the target object with an
appropriate shape. However, while some priori information such as the topology of the
target object may sometimes be too rough for an accurate segmentation, some other
priori information such as the actual shape prior of the target object may not always
be available. Therefore, a balance is needed in between. Here, we observe that many
objects in real life are indeed convex or partially convex (that is, part of the contour
has non-negative curvature) when they are projected onto a 2D image. Therefore, in
this work, convexity of the target object is utilized as the prior knowledge to improve
segmentation accuracy. By preserving the convexity of the segmented domain, the
boundary of the target object can still be captured correctly even if it is occluded and
obscured.

In this paper, we propose a topology-preserving registration-based segmentation
model, which incorporates the convexity prior. The image domain is discretized by a
triangulation mesh. The convexity constraint can then be formulated in terms of the
discrete conformality structure, called the dihedral angle, defined on the mesh. Our
algorithm iteratively deforms a template binary image to extract the target object in
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Fig. 1.1. Examples of mis-segmentation due to occlusion or corruption in images. The left
shows the image of a road sign occluded by grass. The right shows a corrupted medical image. The
segmentation results are inaccurate using conventional segmentation model without the incorporation
of shape information.

the image, by enforcing that the dihedral angles of the deformed mesh satisfies the
convexity constraint. As a result, the target object is captured by a domain, which is
convex in the prescribed region and preserves the prescribed topology. The accuracy
of the segmentation result can be significantly improved with the convexity constraint
for degraded images due to noises or occlusions.

Our proposed model has two merits. On one hand, by parametrizing the space
of immersions of a topological triangulation using the notion of dihedral angles, the
proposed algorithm is developed directly on a discrete setting, hence allowing one
to effectively guarantee convexity without the concern of discrepancy from a smooth
model to its discretization. As a result, convexity can be guaranteed accurately not
only in theory but also in real implementation. On the other hand, our proposed
framework allows users to enforce partial convexity, in the sense that non-negativity
of curvature may be prescribed only on parts of the boundary curve. To the best of
our knowledge, the proposed framework is the first one that explicitly allows users to
freely enforce convexity only on disjoint portions of the segmented domain. The imple-
mentation of partial convexity allows more flexible use of the algorithm for handling
more general images.

The paper is organized as follows. Closely related previous works are reviewed
in Section 2. Relevant mathematical background is explained in Section 3. Our
proposed segmentation model are explained in details in Section 4. In Section 5, we
describe our proposed numerical algorithm to solve the proposed segmentation model.
Experimental results are shown in Section 6, and the conclusion follows in Section 7.

2. Related work. In this section, previous works closely related to our proposed
framework are reviewed.

2.1. Image segmentation and image registration. The snake model, or
active contour model, for segmentation was first introduced in [24] and has been
improved since its inception in terms of capture range [13, 52] and removal of depen-
dency on parametrization [26, 6]. A thorough survey on active contour models may
be found in [2]. By representing the contour by a level set of a function (very often a
signed-distance function, i.e. a function with unit gradient) rather than parametrizing
the contour explicitly, Chan-Vese model allows for topological change in the contour
[11]. Improvements to the model have been made in [40, 12]. A thorough survey on
Chan-Vese model may be found in [9].

Prior knowledge is often useful for guiding segmentation. Topological-prior seg-
mentation [21, 45, 28] ensures the segmented object has the prescribed topology. For
stronger priors, the statistics of control points of snakes, and statistics of level-set
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Fig. 1.2. Examples of fully and partially convex objects. The first row are examples of fully
convex objects. The second row shows examples of partially convex objects.

functions or template functions are used in [16] and [31, 15, 10] respectively.
Less stringent than these geometrical priors is the prior of convexity. It was

proposed in [43] to segment convex regions by prescribing a set of sufficiently dense
set of orientations, as well as their orthogonal complements, and partition the image
into regions with linear boundaries with the prescribed orientations, such that the
central region will be convex. A graph theory-based method was proposed in [39] to
enforce a graph-based discrete convexity constraint via imposing a linear inequality
for each path in each segmented region. Gorelic et al. [20] proposed penalizing the
number of triplets of collinear pixels (p, q, r) such that p and r lies inside the region,
while q lies between p and r but outside the region. In [1], the prior is enforced by
penalizing the L1 norm of the curvature, which necessitates solving a high order PDE.
In [53], the prior is enforced by restricting from the space of all level-set function to
that of sub-harmonic signed-distance functions, whose level sets are all convex. This
is implemented in an alternating manner.

Sometimes, image registration can be used to aid the segmentation process. Many
different methods have been developed for image registration, like feature-based meth-
ods [19, 17] and mutual information-based methods [50, 44]. A thorough survey may
be found in [55]. In [46, 49], the non-parametric registration problem was solved by
morphing one image to the other by a vector field, and the action is ensured to be
diffeomorphic in the latter paper.

Segmentation and registration are interrelated. In particular, segmentation may
be guided by registration by registering with a template [54, 29, 23].

2.2. Discrete Conformal Geometry. Conformal maps be approximated in
discrete settings [18, 22, 32, 37], say by approximating Cauchy-Riemann equation.
Alternative to the equation-solving approach is the circle packing approach, which is
based on the principle that conformal maps map infinitesimal circles to infinitesimal
circles. Circle packing was first proposed in [47] for theoretical study of manifolds, and
discretized in [48], and implemented in [14]. Circle Pattern, which allows transversely
intersecting circles, is a more relaxed setting for computation. Its theory, in the form
of dihedral angles1, was first proposed in [38] for the study of Euclidean simplicial

1Circle pattern is phrased in terms of the supplement of dihedral angles.
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surfaces with cone-like singularities and was extended in [30, 3]. It was applied in [25]
for mesh flattening. A similar framework was used in [42] for texture mapping.

Allowing, and accounting for, conformal distortion in a discrete map gives rise to
discrete quasi-conformal geometry. It has been applied in diverse setting ranging from
shape analysis [34, 7] and map compression [33] to registration [27] and segmentation
with topological prior [8]. Quasi-conformal geometry will be reviewed in Section 3.

3. Mathematical background. In this section, the mathematical tools perti-
nent to the proposed framework are described.

3.1. Quasi-Conformal Geometry. The foundation of the proposed framework
is based on quasi-conformal geometry. Quasi-conformal maps generalize conformal
maps. Given a domain Ω ⊂ C, a mapping f : Ω→ C is said to be quasi-conformal if
there exists a Lebesgue-measurable µ : Ω→ C such that

∂f

∂z̄
(z) = µ(z)

∂f

∂z
(z) (3.1)

and

||µ||∞ < 1. (3.2)

Equation (3.1) is called the Beltrami equation, and µ is called the Beltrami coefficient
of f . Roughly speaking, quasi-conformal maps are orientation-preserving homeomor-
phisms between Riemann surfaces with a bounded conformality distortion, and the
distortion can be effectively controlled using the Beltrami coefficient µ of f . The
following theorem, whose proof can be found in [33], is a well-established explanation
of the relationship between a mapping f and its Beltrami coefficient µ.

Theorem 3.1. Given a domain Ω ⊂ C, let f : Ω→ C be a mapping, by defining

µ(z) = lim
ẑ→z

(
∂f

∂z̄
(ẑ)

/
∂f

∂z
(ẑ)

)
, (3.3)

then ||µ||∞ < 1 if and only if f is an orientation-preserving homeomorphism.

Therefore, in particular, any diffeomorphic deformation on Ω must be a quasi-
conformal mapping. This provides an alternative interpretation of diffeomorphic de-
formations, that requiring a deformation to be diffeomorphic is equivalent to requiring
its Beltrami coefficient to have sup norm strictly less than 1.

In the infinitesimal scale, a quasi-conformal mapping f on Ω has its local para-
metric expression as

f(z) ≈ f(0) + fz(0)z + fz̄(0)z̄ = f(0) + fz(0)(z + µ(0)z̄). (3.4)

From the expression 3.4, it can be seen that the non-conformal part of f comes from
the term D(z) = z+µ(0)z̄ which is essentially contributed by the Beltrami coefficient
µ of f only. Indeed, the Beltrami coefficient µ has a one-to-one correspondence with
the quasi-conformal mapping f . Given a quasi-conformal mapping f , its Beltrami
coefficient can be uniquely determined by (3.1). The converse is guaranteed by the
following famous theorem.

Theorem 3.2 (Measurable Riemann Mapping Theorem). Suppose µ : C →
C is Lebesgue measurable satisfying ||µ||∞ < 1, then there exists a quasi-conformal



Image segmentation with convexity prior 5

mapping f : C→ C in the Sobolev space W 1,2 that satisfies the Beltrami equation in
the distribution sense. Furthermore, assuming that the mapping is stationary at 0, 1
and ∞, then the associated quasi-conformal mapping f is uniquely determined.

The existence and uniqueness of the corresponding quasi-conformal mapping f
from a given admissible Beltrami coefficient µ is not just guaranteed in theory. In
practice, given a Beltrami coefficient µ : Ω → C with sup-norm strictly less than
1, the corresponding quasi-conformal mapping f can be explicitly determined by
the Linear Beltrami Solver (LBS), whose details may be found in [33]. With LBS,
deformation can be directly controlled by perturbing the Beltrami coefficient and
hence deformations can now be prescribed to be diffeomorphic.

Now, let us consider the composition of quasi-conformal maps. Given two quasi-
conformal mappings f, g : Ω → Ω, by using µf and µg to denote their Beltrami
coefficients respectively, the Beltrami coefficient µg◦f of the composite mapping g ◦ f
is given by

µg◦f =
µf + (µg ◦ f)τ

1 + µ̄f (µg ◦ f)τ
, τ =

f̄z
fz
. (3.5)

This provides a more convenient way to compute the composition of diffeomorphisms.
That is, using the above notations, the composite mapping g ◦f on Ω can be obtained
by applying the Linear Beltrami Solver on the its Beltrami coefficient µg◦f which can
be directly determined via (3.5).

3.2. Discrete Conformality Structure Based on Dihedral Angles. The
notion of quasi-conformal maps provides a way to preserve different properties of a
mapping, to be diffeomorphic for instance, by perturbing the corresponding Beltrami
coefficient. However, it is noted that an image domain is usually represented by a
triangular mesh and hence can be regarded as a discrete object. Much geometric
information can be effectively described by the discrete conformality structures. In
particular, we enforces convexity using the discrete conformality structure based on
dihedral angles.

Let M = (V,E, F ) be a general triangular mesh with vertex set V , edge set E
and face set F . If M is merely a topological simplicial complex, V only has indices
rather than coordinates as elements; if M is immersed in R3, then V contains the
coordinates. To study angles in a mesh, the notion of plausible angle assignment is
in place.

Definition 3.3 (Plausible angle assignment). A function ϕ : V × F → R is
called a plausible angle assignment (resp ε-plausible angle assignment, where ε > 0)
if all of the followings hold

ϕv,∆ = 0 if v is not a vertex of the face ∆, (3.6)

ϕv,∆ > 0 (resp ≥ ε) if v is a vertex of the face ∆, (3.7)∑
v

ϕv,∆ = π for every face ∆ ∈ F , (3.8)

where ϕv,∆ = ϕ(v,∆) for all v ∈ V,∆ ∈ F .

The angles of an immersion of M in Rn defines a plausible angle assignment as
follows. Let ϕv,∆ to be the interior angle of the face ∆ ∈ F at the vertex v ∈ V , and
ϕv,∆ = 0 if v ∈ V is not a vertex of ∆ ∈ F . The ϕv,∆ is a plausible angle assignment.
However, not all plausible angle assignments are angles of some immersion.
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Fig. 3.1. Illustration of dihedral angles. For each mesh, the dihedral angle of the colored edge
is given by the sum of colored angles.

Using the plausible angle assignment ϕv,∆, the dihedral angle of each edge can
be defined as follows.

Definition 3.4 (Dihedral Angle). Let e ∈ E and ϕ be a plausible angle assign-
ment. The dihedral angle θe;ϕ, or simply θe, of e is defined by

θe =
∑
v∈Ve

ϕv,(∆e,v), (3.9)

where Ve is the set of vertices opposite to e, and ∆e,v is the unique face containing
both e and v.

A simple interpretation of dihedral angle is presented in the top row of Figure
(3.1), in which for each mesh, the dihedral angle of the colored edge equals to the sum
of those colored angles.

Every immersion has dihedral angles. Conversely, under a mild condition, mesh
can be recovered from the dihedral angles. To make the converse precise, the following
definitions are in place.

Definition 3.5 (Plausible Dihedral Assignment). A function θ : E → R+ is a
plausible dihedral assignment if it is the dihedral angles of a plausible angle assignment,
or in symbols θ(e) = θe;ϕ for some plausible angle assignment ϕ.

Definition 3.6 (Delaunay Plausible Dihedral Assignment). A plausible dihedral
assignment θ is said to be Delaunay (resp ε-Delaunay) iff θ(e) < π (resp θ(e) ≤ π−ε).
A plausible angle assignment is Delaunay (resp ε-Delaunay) iff its dihedral angles are
Delaunay (resp ε-Delaunay).

By the fact that opposite angles in a cyclic quadrilateral are complementary, if
M is immersed in the plane, then it is Delaunay iff its dihedral angles of the angles
of the immersion is Delaunay.

A plausible dihedral assignment θ : E → R+ is always the dihedral angles of the
angles of some immersion under the mild condition of Delaunayness. In fact, we have
the following theorem proven in [38].

Theorem 3.7. If θ is a Delaunay plausible dihedral assignment of a topological
triangulation M , then there exists an immersion of M whose dihedral angles are
precisely given by θ.

4. Proposed Segmentation Model. In this section, our proposed mathemat-
ical model for image segmentation with convexity priors will be discussed in details.
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Fig. 3.2. Example of topology prior images with different prescribed topology.

Fig. 3.3. Illustration of the segmentation model using Beltrami coefficient. A prior image is
deformed by a diffeomorphism to approximate the boundary of the target object in an image.

4.1. The foundation: Segmentation model using Beltrami coefficient.
We first describe the segmentation model in the continuous setting. Suppose I : Ω→
R is an image on a rectangular domain Ω ⊂ C, and T ⊂ Ω is the underlying sub-
domain in which the target object sits in I. To segment T from Ω with a prescribed
topology, Chan et al. [8] proposed a registration-based segmentation model using
the Beltrami coefficient. The basic idea is to deform a simple template image J ,
called the topological prior image, to extract the region T of the target object in the
image I. The prior image comprises of simple objects, such as a disk, according to
the prescribed topology (see Figure 3.2). The segmentation model aims to look for a
diffeomorphism fµ : Ω→ Ω with Beltrami coefficient µ, such that the deformed prior
image J ◦ f−1

µ closely resembles to I (see Figure 3.3). Thus, the desired region T can
be estimated by T ≈ fµ(D), where D is the object region in J . More precisely, the
overall segmentation model can be formulated as the following optimization problem:

min
µ
E(µ, c1, c2) =

∫
Ω

|µ|2+η

∫
Ω

(I◦fµ−Jc1,c2)2+λ

∫
Ω

|∇µ|2+σ

∫
Ω

(|u|2+|∇u|2) (4.1)

where u = fµ − Id and η, λ, σ > 0 are weighting parameters. The topological prior
image Jc1,c2 is given by

Jc1,c2(x) =

{
c1, if x ∈ D
c2, if x ∈ Ω\D.

(4.2)

The first term of E aims to minimize µ to minimize local geometric distortions
under fµ and preserve the bijectivity of fµ. The second term minimizes the discrep-
ancy between I ◦ fµ and Jc1,c2 . The last two terms aim to enhance the smoothness
of fµ. Since fµ is bijectivity, the segmented object preserves the topology inherited
from the topological prior image.

To simplify the optimization model, the strategy of splitting variables is utilized so
that an alternating minimization scheme can be adopted. The modified optimization
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Fig. 4.1. Illustration of interior angle Φ and exterior angle K(v) at vertex v on the left. The
exterior angle can be used to determine the convexity of a polygon. The right shows a polygon which
is partially convex with respect to Γ.

model then reads as follows:

min
µ,ν,c1,c2

E(µ, ν, c1, c2) =

∫
Ω

|ν|2 + η(I ◦ fµ−J)2 +λ|∇ν|2 +σ(|u|2 + |∇u|2) + δ|ν−µ|2.

(4.3)
In practice, a digital image is discretized. In particular, an image can be dis-

cretized by a triangular mesh. Suppose Ω is triangulated as Ω ≈ M = (V,E, F ),
where V is the set of vertices, E is the set of edges and F is the set of faces. The
Beltrami coefficients µ and ν can then be discretized by complex-valued functions
defined on V , which are respectively denoted by µV : V → C and νV : V → C.
Similarly, fµ and u can be discretized on V and respectively denoted as fµ,V : V → C
and uV : V → C. The deformed image I ◦ fµV can be defined on V by interpolation.
∇νV and ∇uV are computed by finite element method and are defined on V as well.
As such, the segmentation model in the discrete setting is written as:

min
µV ,νV ,c1,c2

E(µV , νV , c1, c2) =
∑
v∈V
|νV |2 + η

∑
v∈V

(I ◦ fµV − J)2 + λ
∑
v∈V
|∇νV |2

+ σ
∑
v∈V

(|uV |2 + |∇uV |2) + δ
∑
v∈V
|νV − µV |2

(4.4)

4.2. Formulation of the convexity prior. In this work, we propose to impose
the convexity prior in our segmentation model. In this subsection, we describe how
the convexity prior can be formulated, which can be easily incorporated into the
segmentation model (4.4).

In the continuous setting, the convexity or partial convexity of a curve can be
defined in the following sense.

Definition 4.1 (Partial Convexity). Let D ⊆ R2 be a bounded domain with
piece-wise smooth boundary. Let Γ be a subset of ∂D. D is said to be partially convex
with respect to Γ if the curvature is non-negative on the smooth portions of Γ, and the
exterior angles (i.e. the jump in tangent direction) on Γ are non-negative.

In the discrete setting in which Ω ≈M = (V,E, F ), the object domain D is also
triangulated as D ≈ (V ′, E′, F ′) for some V ′ ⊂ V , E′ ⊂ E and F ′ ⊂ F . The notion
of discrete convexity can be formulated by requiring D to be a convex polygon. We
have the following definition of discrete (partial) convexity.

Definition 4.2 (Discrete Partial Convexity). Let D be a polygonal domain with
triangulation D = (V ′, E′, F ′) and let ∂D be the boundary of D. The exterior angle
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K(v) at a vertex v ∈ ∂D̃ is defined as K(v) = π − Φ, where Φ =
∑

∆∈F ′v
ϕv,∆. Let

Γ be a subset of ∂D. D is said to be discrete partially convex with respect to Γ if the
exterior angle K(v) is non-negative for every v ∈ Γ.

Figure 4.1 shows the exterior angle at a vertex of a polygon, as well as a partially
convex polygon. With the above definition, our segmentation model with convexity
prior can now be formulated as the following optimization problem:

min
µV ,νV ,c1,c2

E(µV , νV , c1, c2) =
∑
v∈V
|νV |2 + η

∑
v∈V

(I ◦ fµV − J)2 + λ
∑
v∈V
|∇νV |2

+ σ
∑
v∈V

(|uV |2 + |∇uV |2) + δ
∑
v∈V
|νV − µV |2

(4.5)

subject to K(v) = π −
∑

∆∈F ′v

ϕv,∆ ≥ 0 for all v ∈ Γ, where Γ ⊂ ∂D. (4.6)

The convexity constraint in the above optimization problem is formulated by
K(v), which is defined in terms of the vertex angles ϕ. This constraint is difficult
to handle. After adjusting ϕ to satisfy the convexity constraint, the corresponding
deformation map fµV has to be found to minimize the energy functional. However,
there is no obvious way to obtain fµV from ϕ. The existence of an associated fµV from
an adjusted ϕ is also questionable. As such, it is desirable to formulate the convexity
constraint in terms of a suitable geometric quantity, which is closely related to an
associated deformation map.

In this work, we propose to formulate the discrete convexity based on the dihedral
angle. In particular, we will prove that discrete convexity in Definition 4.2 may be
equivalently defined by the following inequality.∑

e∈Ev

θf(e) ≥ (|Fv| − 1)π for every v ∈ Γ. (4.7)

In order to observe the above formulation, the relationship between the dihedral
angles and the angle sum at a vertex has to be examined. More precisely, in the
notations in subsection 3.2, we have the following proposition:

Proposition 4.3. Let ϕ be the angles of the faces at each vertex of M , and θ be
the dihedral angles of ϕ. Let v be a vertex of M , and Ev and Fv be the sets of edges
and faces containing v. Then, for every vertex v of the immersion,∑

∆

ϕv,∆ = |Fv|π −
∑
e∈Ev

θe.

Proof. Let φ1
∆ and φ2

∆ be the two angles of the triangular face ∆ other than ϕv,∆,
then clearly we have ϕv,∆ = π − φ1

∆ − φ2
∆. Hence,∑

∆

ϕv,∆ =
∑
∆

(π − φ1
∆ − φ2

∆)

= |Fv|π −
∑
∆

(φ1
∆ + φ2

∆)

= |Fv|π −
∑
e∈Ev

θe
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In this work, the above formulation of discrete convexity in term of the dihedral
angle will be adopted, with which the convexity constraint can be handled easily.

4.3. Overall segmentation model with (partial) convexity priors. The
overall image segmentation model with (partial) convexity priors can now be refor-
mulated as:

min
µV ,νV

E(µV , νV ) =
∑
v∈V
|νV |2 + η

∑
v∈V

(I ◦ fµV − J)2 + λ
∑
v∈V
|∇νV |2

+ σ
∑
v∈V

(|uV |2 + |∇uV |2) + δ
∑
v∈V
|νV − µV |2

(4.8)

subject to:
∑
e∈Ev

θf(e) ≥ (|Fv| − 1)π for all v ∈ Γ, where Γ ⊂ ∂D. (4.9)

The constraint in the above optimization problem can be handled. To enforce the
convexity constraint, a projection on the dihedral angle θf(e) can be carried out. There
exists a corresponding deformation map fµV associated to the modified dihedral angle
θf(e), from which the map itself can be reconstructed. Solving the above optimization
problem becomes feasible, which will be discussed in details in the next section.

5. Proposed algorithm. In this section, we discuss our proposed algorithm to
solve the optimization model as described in subsection 4.3 in details. Our strategy is
to apply an alternating minimization scheme, followed by a projection to satisfy the
convexity constraint.

5.1. Alternating minimization. In order to minimize E, we adopt an alter-
nating minimization scheme. In each iteration, by fixing νV , we minimize over µV .
Similarly, fixing µV , we minimize over νV . More specifically, suppose µV,n and νV,n
are obtained at the n-th iteration, we proceed to obtain µV,n+1 and νV,n+1 by solving
the following sub-problems:

µV,n+1 = argminµ:V→C{η
∑
v∈V

(I ◦ fµV − J)2 + σ
∑
v∈V

(|uV |2 + |∇uV |2)

+ δ
∑
v∈V
|νV,n − µ|2},

(5.1)

νV,n+1 = argminν:V→C{
∑
v∈V
|ν|2 + λ

∑
v∈V
|∇ν|2 + δ

∑
v∈V
|ν − µV,n+1|2}. (5.2)

We first solve the µV -subproblem and νV -subproblem, followed by a convexity
projection to enforce the convexity constraint. We will now describe the algorithms
to solve each subproblem in details.

5.1.1. µV -subproblem. It can be proven (see [8]) that the global minimizer of
the sub-problem (5.1) can be obtained from the solution to the linear system(

η||∇I||22 + σ − σ∆
)
uV = η(J − I)(∇I), (5.3)

subjected to uV = 0 on ∂Ω, where ∇,∆ are the discrete gradient and the discrete
Laplacian operator on Ω. Then, µV,n+1 is computed via the finite difference differen-
tiation

µV,n+1(z) =
∂fµV
∂z

(z)/
∂fµV
∂z

(z), ∀z ∈ Ω, (5.4)
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where fµV = uV + Id. Note that if the denominator of (5.4) is 0 at some z0 ∈ Ω, then
we set µV,n+1(z0) = 0. This completes the sub-problem (5.1).

5.1.2. νV -subproblem. To solve the subproblem (5.3), we compute the Euler-
Lagrange equation of the energy functional. It ends up with a linear system. More
specifically, νV,n+1 is updated by solving the following linear system

(2 + 2δ − λ∆)νV,n+1 = 2δµV,n+1, (5.5)

subjected to νV,n+1 = 0 on ∂Ω. This solves the sub-problem (5.2).

5.1.3. c1, c2-subproblem. Finally, fixing µV and νV , we optimize over c1 and
c2. The optimizers can be written explicitly, which arec1 =

∫
D
I◦fνV,n+1dz∫
D
dz

,

c2 =

∫
Ω\D I◦f

ν
V,n+1dz∫

Ω\D dz
.

(5.6)

5.2. Convexification. After the alternating minimizing steps, a projection is
carried out to satisfy the convexity constraint. In this subsection, we will describe the
convexification step in details.

5.2.1. Mesh construction from dihedral angles. After the µV -subproblem
and νV -subproblem are solved, the dihedral angles have to be adjusted to satisfy
the convexity constraint. After the dihedral angles are modified, it is necessary to
have an algorithm to construct a mesh from the dihedral angles. The mesh gives the
deformation map fµV associated to the dihedral angles. As such, the adjusted dihedral
angles can naturally be incorporated to the segmentation model.

In this subsection, the algorithm to construct a mesh from dihedral angles will
be explained in details. To this end, the following theorem is important for the
development of our algorithm.

Theorem 5.1. Suppose M is a mesh embedded in Rn with dihedral angle θ. Then
its angles on each face are the solution ϕ∗ of the variational problem

ϕ∗ = argmaxϕ plausible angle assignment
dihedral angles given by θ

−
∑
v,∆

∫ ϕv,∆

0

log 2 sin tdt, (5.7)

Further, the objective functional above, denoted by E, has the following properties.
1. Suppose v ∈ V is a vertex of a face ∆ ∈ F , ∂

∂ϕv,∆
E = − log(2 sinϕv,∆)

and ∂2

∂ϕ2
v,∆
E = − cotϕv,∆. All other first and second order partial derivatives

vanish.
2. E is concave on the space of plausible angle assignments.

Proof. This theorem has been proven by Rivin in [38]. This theorem can also be
illustrated by a more intuitive proof in terms of simple sine law for easier understand-
ing, as described in the Appendix.

Note that the objective functional is independent on θ. Rather, θ appears in
the constraint, which reads that the argument ϕ must satisfy (3.6), (3.7), (3.8) and
(3.9), all of which are linear and bound constraints. Theorem 5.1 may be seen as a
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Fig. 5.1. Illustration of Equation (5.8)

quantitative version of Theorem 3.7. While the latter asserts the existence of a mesh,
the former nails down the shape of the mesh through the specification of its angles.

More specifically, Theorem 5.1 offers a feasible solution to construct a mesh as-
sociated to a given dihedral angle. Given a plausible dihedral angle, one can find the
angle assignment of the associated immersion by solving the optimization problem
(5.7). The vertex positions of the mesh are then obtained from the plausible angle
assignment.

On the other hand, to turn the constraint to a bound constraint amenable to
numerical computation, the feasible set of the optimization problem (5.7) is further
restricted to the space of ε-plausible angle assignment for some small ε > 0. The
modified problem is then a concave problem with bound and linear constraints, and
hence can be easily solved by any standard convex optimization solver. In this work,
the interior-point method [4, 5, 51] is used. To further improve accuracy, a few Newton
steps may be added afterwards. For all these algorithms, only the function value of
the objective function, as well as its gradient, Hessian are needed. The latter two are
available in closed form and the objective values may be efficiently approximated by
Taylor expansion.

In addition, if the immersion is planar, the vertex positions can be found by solving
a linear equation arising from sine law. This approach allows flexible introduction of
regularization to control the mesh position. Before introducing the promised equation,
the criteria of planarity in terms of the discrete conformality structures are presented
below.

Proposition 5.2. Let M be a connected embedded mesh such that every trian-
gle has an interior vertex. In the notations of Proposition (4.3), the followings are
equivalent.

• M is planar.
• For every interior vertex v,

∑
∆ ϕv,∆ = 2π.

• For every interior vertex v,
∑
e∈Ev θe = (|Fv| − 2)π.

Proof. The mesh M is planar if and only if the angle sum at every interior angle
is 2π, and this is equivalent to the above equation by Proposition 4.3.

The linear equation for solving the vertex positions can then be derived. Suppose
the faces are positively oriented on the plane. In other words, for each face ∆ ∈ F ,
going from the first vertex v∆;1, through the second v∆;2 and third v∆;3, back to the
first forms a counter-clockwise loop. Then for each face ∆ ∈ F and and for each
I ∈ {1, 2, 3}, the equation

v∆;I−1 − v∆;I

sinϕv∆;I+1,∆
= e
√
−1ϕf,v∆;I

v∆;I+1 − v∆;I

sinϕv∆;I−1,∆
(5.8)
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is imposed where v is the vertex positions represented by complex numbers. This
ensures the length ratios obey the sine law and the angles are as prescribed. Equiv-
alently, referring to Figure (5.1) with A playing the role of v∆,I , the equation (5.8)
reads

C −A
sinβ

= e
√
−1αB −A

sin γ
.

By solving equation (5.8), the immersion of the mesh can be obtained as supported
by the following proposition.

Proposition 5.3. If the triangulation is connected and has an immersion in the
plane, (5.8) has a unique solution up to a linear conformal map.

Proof. Theorem 3.7 guarantees that the equation has nontrivial solutions (i.e. the
vertices do not all have the same position). Clearly, translating, rotating and scaling
a solution gives another solution.

It remains to show uniqueness. Firstly, for a solution v, if for some face ∆0 ∈ F
and some I0 ∈ {1, 2, 3}, v∆0,I0 = v∆0,I0+1, then v∆,I = v∆0,I0 for every face ∆ ∈ F
(in the same connected component) and every I ∈ {1, 2, 3}, because (5.8) for ∆0

and I0 implies v∆0;1 = v∆0;2 = v∆0;3, and the case for other faces (in the connected
component) follows inductively.

For uniqueness, Consider two nontrivial solutions v and ṽ. The above argu-
ment shows that for no face ∆0 ∈ F and index I0 ∈ {1, 2, 3}, v∆0,I0 = v∆0,I0+1 or
ṽ∆0,I0 = ṽ∆0,I0+1 holds. Then fixing a face ∆0 ∈ F and an index I0 ∈ {1, 2, 3}
translating, scaling and rotating if necessary, it may be assumed that v∆0,I0 = ṽ∆0,I0

and v∆0,I0+1 = ṽ∆0,I0+1. Then the above argument shows ṽ − v is in fact a trivial
solution. The result then follows.

Furthermore, vertex positions may be regularized by turning the linear system
(5.8) into a variational model and adding a term that penalizes vertices’ deviation from
desired positions. Let vtarget be the desired position of vertex v. Then a compromise
between the discrete conformality structure and the vertex positions can be achieved
by solving the following least-square problem (possibly with linear constraints),

min
v
|Av|2 +

∑
vj∈V

ρv|vj − vtarget
j |2, (5.9)

where A is the matrix defined in (5.8), and 0 ≤ ρv ≤ ∞ is the user-chosen penalty
parameter for each vertex2.

The algorithm to construct a planar immersion from a plausible dihedral assign-
ment is summarized in Algorithm 1.

5.2.2. Convexity projection. With Algorithm 1, we can now describe our
proposed convexity projection to enforce the convexity constraint (4.7).

Recall that the image domain Ω is triangulated as

Ω = (V,E, F ), (5.10)

with subsets V ′ ⊂ V , E′ ⊂ E and F ′ ⊂ F such that the template object domain can
be triangulated by the sub-mesh structure

D = (V ′, E′, F ′). (5.11)

2The convention of 0 · ∞ = 0 is used in case ρv =∞.
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Algorithm 1 regularized planar dihedral angle-based conformality structure solver

Inputs:
1. a triangulation M = (V,E, F ) of Ω
2. a planar Delaunay plausible dihedral assignment θ
3. a target vertex position vtarget of each vertex v
4. a penalty parameter ρv for each vertex
5. an auxiliary parameter 0 < ε < π

Output: new vertex positions V ∗ in complex numbers

1: Solve the following maximization problem for ϕ∗:

ϕ∗ = argmaxϕ ε-plausible angle assignment
dihedral angles given by θ

−
∑
v,∆

∫ ϕv,∆

0

log 2 sin tdt

2: Solve the following equation for the coefficient matrix A of v∆;I :

v∆;I−1 − v∆;I

sinϕ∗v∆;I+1,∆

= e
√
−1ϕ∗f,v∆;I

v∆;I+1 − v∆;I

sinϕ∗v∆;I−1,∆

where I ∈ {1, 2, 3}, and ∆ = {v∆;1, v∆;2, v∆;3} ∈ F
3: Solve the following functional:

min
v
|Av|2 +

∑
vj∈V

ρv|vj − vtarget
j |2

for V ∗

Let Γ be the set of segments on which partial convexity prior is imposed.
Given f : Ω→ Ω (we put f = fµn in the main algorithm) with non-convex f(D),

we proceed to construct a sequence of diffeomorphisms {gi}Ni=1

gi : Ω→ Ω, gi(∂Ω) = Id, i = 0, 1, 2, . . . , (5.12)

such that gi gradually convexifies f(D) in the sense that

gN ◦ f(D) (5.13)

has non-negative exterior angles at prescribed portions eventually.
Denote f̃i = gi◦f . Let θf̃i(D) be the dihedral angle assignment of the mesh f̃i(D).

Our goal is to update θf̃i(D), such that it better satisfies the convexity constraint (4.7).
We consider an energy functional defined on the dihedral angle assignment θ : E → R
analogous to the one in [25]:

Eproj(θ) = Efidelity(ϕ(θ), ϕ(θf̃i(D))) + ωEconcavity(θ), (5.14)

where Econcavity measures the derivation of θ from the convexity constraint; ϕ(θ) and
ϕ(θf̃i(D)) are the vertex angle assignments of θ and θf̃i(D) respectively and Efidelity
measures the discrepancy between them. ω > 0 is a balancing parameter. By mini-
mizing Eproj iteratively, we search for θ that better satisfies the convexity constraint

while its associated mesh is not too deviated from the previous mesh f̃i(D).
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In this work, we define Econcavity as follows:

Econcavity(θ) =
∑
v∈Γ

(∑
e∈Ev

(
θf̃i(e) − (|Fv| − 1)π

)−)
, (5.15)

where the super-scripted minus sign denotes the negative part. Efidelity is defined as
follows:

Efidelity(ϕ(θ), ϕ(θf̃i(D))) =
∑

∆∈F,v∈V

1

3

area(f̃i(∆))

area(Ω)
|ϕ(θ)∆,v − ϕ(θf̃i(D))∆,v|2 (5.16)

This term penalizes the area-weighted sum of the difference between ϕ(θ) and ϕ(θf̃i(D))
for all ∆ ∈ F, v ∈ V , hence diminishing the overall deviation of the shape of the tri-
angulation.

Note that Econcavity can also be formulated in term of ϕ(θ). More precisely,

Econcavity(ϕ(θ)) =
∑
v∈Γ

(π −
∑
∆∈F

ϕ(θ)∆,v)
−. (5.17)

As such, to minimize Eproj , we first solve:

ϕ̂i+1 = arg min
ϕ planar ε-angle assignment,

ϕ ε-Delaunay over D

Efidelity(ϕ,ϕi) + ω
∑
v∈Γ

(π −
∑
∆∈F

ϕ∆,v)
−, (5.18)

where ϕi = ϕ(θf̃i(D)) is the angle assignment of the previous mesh f̃i(D) and 0 <

ε < π is a user-chosen parameter. It is noted that ϕ̂i+1 thus obtained may not be
the angles of some embedded mesh. Nevertheless, we can compute the associated
dihedral angle assignment θ(ϕ̂i+1) according to Definition 3.9. The associated mesh
f̃i+1(D) = gi+1(f(D)) can be constructed using Algorithm 1, which better satisfies the
convexity constraint. To ensure stability of the position of f(D), penalty parameter
ρv is chosen as:

ρv =

{
ρLv/2 if v is on the contour

0 otherwise
, (5.19)

where ρ > 0 is a user-chosen parameter, and Lv is the length of the edges on f(∂D)
containing f(v).

It is remarked that the the angles in f̃i+1(D) are not the same as ˆϕi+1. However,
by Proposition 4.3, they share the same exterior angle as they have the same dihedral

angle. Hence, the improvement in convexity from computing ˆϕi+1 is retained in
f̃i+1(D).

Afterwards, the remaining gi+1◦f(Ω\D) is constructed by the conformal extension
of gi+1◦f(D) with the fixed boundary condition gi+1(∂Ω) = Id. Explicitly, by writing
f = u +

√
−1v and µ = ζ +

√
−1τ , the Linear Beltrami Solver (LBS) is applied to

solve for f by

∇ ·
(
C

(
ux
uy

))
= 0, ∇ ·

(
C

(
vx
vy

))
= 0, (5.20)
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where

C =

(
α1 α2

α2 α3

)
, α1 =

(ζ − 1)2 + τ2

1− ζ2 − τ2
, α2 = − 2τ

1− ζ2 − τ2
, α3 =

(ζ + 1)2 + τ2

1− ζ2 − τ2
,

(5.21)
with µ replaced by µf , the boundary data (gi+1 ◦ f)|∂D and Id|∂Ω to first obtain

ĥi+1(RC), and then again with µ = projB(0,1−εµ)(µĥi+1
) and the same boundary data

to obtain (gi+1 ◦ f)(RC).
In this way, the deformations f(D)→ g1◦f(D)→ g2◦f(D)→ . . . are smooth and

gi ◦ f(D) tends to be convex as i→∞. In practice, a maximum iteration parameter
N ′ ∈ N can be prescribed to control the maximum number of iterations involved.
While a convex region is usually obtained at the last iteration, and non-convexity is
acceptable in intermediate stages, if one would like to guarantee convexity, one may,
at the end, by setting ω = ∞, impose tentative target position of two vertices in
Algorithm 1, and then find the best-fit rotation and translation with regards to the
vertex positions of f(∂D).

The overall algorithm for convexity projection is summarized in Algorithm 2.

5.3. Overall algorithm. In summary, our proposed segmentation model with
convexity priors is solved iteratively. In each iteration, the alternating minimization
steps are carried out, which is described in subsection 5.1. Afterwards, a convexi-
fication step is performed, which is described in subsection 5.2. The overall image
segmentation model with convexity prior can now be described as in Algorithm 3.

6. Experimental results. We have tested our proposed segmentation algo-
rithm on both synthetic and real images. In this section, we show the experimental
results to demonstrate the performance of our proposed model.

In our experiments, all computations are done in MATLAB and its optimization
toolbox 2016a [36, 35]. The triangulations of Ω and D are computed by [41].

6.1. Full convexity prior. We first test our algorithm with full convexity prior.
In other words, we assume f(D) is globally convex.

6.1.1. Synthetic binary images. Figure 6.1 presents a series of experiments on
synthetic binary images, each of which consists of a single object with clean boundary.
The target objects for the experiments are, respectively, a square, an ellipse, and a
hexagon, which are all convex. However, in each experiment, parts of the target object
are manually removed in order to simulate occlusions. In particular, the convexity of
the target object is lost. The task here is to segment the target object while retrieving
a convex object in the segmentation result.

The segmentation results are visualized in Figure 6.1. The 1st column shows the
target image I while the 2nd column shows the contour of the template object ∂D in J
superimposed on I. The 3rd column presents the segmentation result of the foundation
model in [8], or equivalently, the model (4.3). It can be seen that the occluded regions
are excluded by the model. The segmentation results are indeed accurate though, if we
assume no prior shape knowledge of the target objects. However, according to our set-
up that the target object has part of its boundary being occluded, the segmentation
results are not really satisfying. In the 4th column, the segmentation results using the
model in [20], which also aims at segmenting a convex region out of the given image,
are presented. It can be observed that although the segmented regions are convex,
they are not capturing the target objects accurately, especially in the experiment
of ellipse and that of hexagon. Finally, in the last column, the segmentation results
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Algorithm 2 Convexification Step

Inputs:
1. a triangulation M = (V,E, F ) on Ω with a template region D ⊆ Ω
2. a set of edges Γ ⊂ ∂D to be convexified
3. a boundary fixing piecewise-linear homeomorphism f : Ω→ Ω
4. model parameters 0 < ω <∞, ρ > 0
5. auxiliary parameters 0 < ε < π, 0 < εµ < 1, N ′ ∈ Z+

Output: A piecewise linear homeomorphism g : Ω → Ω such that g(f(D)) is suffi-
ciently convex

1: Compute the Beltrami coefficient µf = ρ+
√
−1τ of f = u+

√
−1v.

2: Set g0 = f .
3: for i = 0, 1, 2, ..., N ′ − 1 do
4: Solve the variational problem

ϕ̂i+1 = arg min
ϕ planar ε-angle assignment,

ϕ ε-Delaunay over D

Efidelity(ϕ,ϕi)+ω
∑
v∈Γ

(π−
∑
∆∈F

ϕ∆,v)
−, (5.22)

for ϕ̂i+1 with

Efidelity(ϕ(θ), ϕ(θf̃i(D))) =
∑

∆∈F,v∈V

1

3

area(f̃i(∆))

area(Ω)
|ϕ(θ)∆,v − ϕ(θf̃i(D))∆,v|2.

(5.23)
5: Compute the dihedral angles θi of ϕ̂i+1 by

θi =
∑
v∈Ve

ϕ̂i+1. (5.24)

6: Compute gi+1(f(D)) by applying Algorithm 1 with

ρv =

{
ρLv/2 if v is on the contour

0 otherwise
, (5.25)

7: Obtain ĥi+1(RC) by solving Equation (5.20).

8: Compute the Beltrami coefficient µĥi+1
of ĥi+1 and project it to the shrunk

unit disc B(0, 1− εµ) to obtain µ̂i+1.
9: Compute gi+1(f(DC)) by the LBS again with µ̂i+1 in place of µ, and boundary

data given by gi+1(f(∂D)) and f(∂Ω).
10: Combine gi+1(f(D)) and gi+1(f(DC)) to form gi+1(f(Ω)).
11: end for
12: return g = gN ′
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Algorithm 3 Image segmentation with convexity priors

Inputs:
(a) Given image I : Ω→ R in which Ω is triangulated by M = (V,E, F )
(b) Topological prior image J : Ω→ R with known template object D ⊂ Ω
(c) Selected segments Γ ⊂ D to be convexified
(d) model parameters 0 < ω <∞, ρ, σ, δ, λ > 0
(e) auxiliary parameters 0 < ε < π, 0 < εµ < 1, N ′,K ∈ Z+

Output: A topological preserving diffeomorphism fV segmenting the target object
by fV (D) in which fV (D) is sufficiently convex

1: Initialize: µV,0 = νV,0 = 0
2: for n = 0, 1, . . . , N − 1 do
3: µV -subproblem: Compute µV by solving the linear system(

η||∇I||22 + σ − σ∆
)
uV = η(J − I)(∇I),

subjected to uV = 0 on ∂Ω. Then compute

µV,n+1(z) =
∂fµV
∂z

(z)/
∂fµV
∂z

(z), ∀z ∈ Ω,

where fµV = uV + Id.
4: νV -subproblem: Compute ν1

V,n+1 by solving

(2 + 2δ − λ∆)ν1
V,n+1 = 2δµV,n+1,

subjected to ν1
V,n+1 = 0 on ∂Ω.

5: Compute the corresponding mapping fν
′

V,n+1 of the Beltrami coefficient ν1
V,n+1

by solving Equation (5.20).
6: if mod(n,K) = 0 then
7: Convexification step: Compute gn+1 by Algorithm (2) with input Ω =

(V,E, F ), D ⊂ Ω, Γ, ω and ρ
8: Compute the Beltrami coefficient ν2

V,n+1 of gn+1 by (3.1).

9: Compute νV,n+1 by the composition of the Beltrami coefficients ν1
V,n+1 and

ν2
V,n+1:

νV,n+1 =
ν1
V,n+1 + (ν2

V,n+1 ◦ fν
′

V,n+1)τ

1 + ν1
V,n+1(ν2

V,n+1 ◦ fν
′

V,n+1)τ
, τ =

(
∂fν

′
V,n+1

∂z

)/
∂fν

′

V,n+1

∂z

10: else
11: Set νV,n+1 = ν1

V,n+1

12: end if
13: c1, c2-subproblem: Update

J(z) =

{
c1, if z ∈ D
c2, if z ∈ Ω \D

where

c1 =
∫
D
I◦fνV,n+1dz∫
D
dz

,

c2 =

∫
Ω\D I◦f

ν
V,n+1dz∫

Ω\D dz
.

14: end for
15: return fV = fνV,N .
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Fig. 6.1. Segmentation results with full convexity prior on synthetic binary images. The first
column shows the input binary images. The second column shows the initial contours. The third
column shows the segmentation result of the foundation model without convexity prior. The fourth
column shows the segmentation results using the model in [20], which also enforces the convexity
prior. The last column shows the segmentation results using our proposed method.

using the proposed model are demonstrated. It is evident that the model achieves high
accuracy capturing the target objects while eluding the occlusions. Therefore, these
results demonstrate the effectiveness of our proposed model to maintain a balance
between convexity of the segmented domain and the accuracy of the segmentation
process.

6.1.2. Real images. We also test our proposed segmentation model with full
convexity prior on real images. Figure 6.2 shows a series of experiments on real
images, each of which shows a target object with occlusion, and hence, having an
unclear boundary. The task here is to segment the target object with a natural
boundary eluding the occlusions as much as possible. As before, in Figure 6.2, the
first and the second column shows the target images and the initial contours of the
template object respectively. It is noted that the colored images are compressed
into gray-scale images before applying those segmentation models. The third column
shows the segmentation results using our foundation model without the convexity
prior. The fourth column shows the segmentation results using the model in [20],
which also enforces the full convexity prior. The last column shows the segmentation
results using our proposed method with full convexity prior enforced.

For the first experiment, the target object is a piece of paper which is covered by
many pens. As a result, both the geometry and the topology of the piece of paper is
lost due to the occlusion. From the segmentation results, it can be seen that without
assuming a convex target object, the foundation model mixes up some pens with the
paper, including them into the foreground which is inaccurate. The segmentation
result using the model in [20] is better, for at least the model tries to segment a
convex region and ignores the pens, yet the accuracy is still unsatisfying. However,
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Fig. 6.2. Segmentation results with full convexity prior on real images. The first column shows
the input real images. The second column shows the initial contours. The third column shows
the segmentation result of the foundation model without convexity prior. The fourth column shows
the segmentation results using the model in [20], which also enforces the convexity prior. The last
column shows the segmentation results using our proposed method.

using the proposed model, clearly the target paper is extracted accurately without
including the occlusions.

In the second experiment, the road sign is partially blocked by some grass. This
is one common scenario in real life in which the occlusions destroys the convexity of
the target object. Referring to the results, not surprisingly, the foundation model
separates all the grass from the road sign and this in turn excludes some hindering
part of the road sign. Then, it is observed that the model in [20] does not segment a
fully convex region, and the boundary of the road sign is not captured very accurately.
Using the proposed model yields the best result among the three attempts, that most
part of the road sign is captured with a fully convex domain and the effect of occlusion
seems to be diminished.

The third experiment demonstrates one another common type of occlusions de-
stroying convexity of the target object. The target object is still a road sign, yet the
occlusion does not come from coverage of other objects but instead is caused by stains
on it. From the results, while simply prescribing the segmented domain to be genus-0
using the foundation model does not give a satisfying result, the model in [20] cannot
accurately locate the boundary contour of the road sign. It is the contribution of the
proposed model to capture the target road sign correctly, with those occlusions being
neglected and the true boundary contour is detected more accurately.

Our proposed segmentation model can also handle high-genus domain with full
convexity prior. Figure 6.3 demonstrates one medical application of segmentation
with convexity prior of high-genus objects. In this experiment, an MR image of the
cardiac system including the cardiovascular is given. The goal of this experiment is to
simulate the segmentation of the cardiovascular. According to medical research, the
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Fig. 6.3. Segmentation results of high-genus domain with full convexity prior on real MR
images. The first column shows the input images. The second column shows the initial contours.
The third column shows the segmentation result of the foundation model without convexity prior.
The last column shows the segmentation results using our proposed method.

Fig. 6.4. Segmentation results with partial convexity prior on synthetic images. The first
column shows the input binary images. The second column shows the initial contours and partial
convexity priors are enforced on the red segments. The third column shows the segmentation result
of the foundation model without convexity prior. The fourth column shows the segmentation results
using our model with full convexity prior. The last column shows the segmentation results using our
proposed method with partial convexity prior.

cardiovascular should be a hollow object (allowing blood flow) with both the outer and
the inner boundary (i.e. the vascular walls) enclosing a convex region. However, the
vascular walls in the image are shown to have local concavity (see the first column).
In this case, a segmentation tool being able to enforce convexity prior is particularly
helpful, aiding the approximation of the true position of the vascular walls in prior to
any medical operations. Using the proposed model with a torus as the prior object,
it can be observed in the last column that the segmented region matches with the
convexity constraint and captures the vascular walls accurately. The segmentation
result using the foundation model is also presented in the third column for reference.
And it is obvious that the foundation model obeys the intensity difference accurately
but does not give a truly helpful result.

6.2. Partial convexity prior. In this subsection, we study our algorithm with
partial convexity prior. In other words, we only assume a subset Γ ⊂ f(D) is convex.

6.2.1. Synthetic binary images. We test the proposed algorithm with partial
convexity priors on synthetic binary images. The segmentation results are demon-
strated in Figure 6.4. The first column shows the input binary images to be segmented.
It is noted that in the second column, the red contours indicate the portions of the
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boundary of the template object in which convexity is constrained, while the green
contours correspond to the boundary of the template object in which not further con-
straint is enforced. In the first experiment, the target object is a cartoon-moon shaped
object. While the left hand side of its boundary should have negative curvature, on
the right hand side where non-negativity should be assumed, manual occlusions are
added so that the convexity there is destroyed. In the second experiment, the target
object is a bin-shaped object, and is assumed to have its outer boundary of entirely
non-negative curvature, but not its inner boundary. Similarly, manual obstructions
are added around its outer boundary to simulate occlusions. Therefore, convexity
should only be imposed on the outer boundary. This renders a segmentation exper-
iment with partial convexity prior on a high-genus object. In both experiments, the
tasks are to recover the obscured regions there while preserving the right geometry of
the target objects.

The third, fourth and the last columns of Figure 6.4 demonstrate the segmenta-
tion results using the foundation model without convexity priors, the proposed model
with full convexity being constrained (i.e. convexity is enforced on the whole bound-
ary contours), and the proposed model with partial convexity being constrained in the
manner as mentioned before. It can be observed that segmenting the target objects
either without using any convexity prior or enforcing fully convex constraint does not
give correct results. Only the partial convexity prior can give more relevant solu-
tions for these images having partially occluded objects with much more complicated
geometry.

6.2.2. Real images. Indeed, segmentation with partial convexity prior has a
wide range of real applications. For instance, in medical science, photography, zool-
ogy and even archaeology, it is very common to have a photo capturing a partially
occluded object that has a complicated geometry. Figure 6.5 presents some exper-
iments on real images. As before, the first and the second column show the input
image and the contour of the template object’s boundary superimposed on it, with
the red contours corresponding to the portions where convexity is enforced when a
partial prior is applied. And, again, the third, fourth and the last columns of Figure
6.4 correspond to the segmentation results using the foundation model without con-
vexity prior, the proposed model with full convexity prior, and the proposed model
with partial convexity prior.

In the first experiment, the target object is a piece of leaf which is generally
convex. However, part of it is missing due to physical damage. Consider the case if
scientists want to recover its original shape, then segmentation with convexity prior
is a great tool for advising its actual shape. From this point of view, using simply
the foundation model without enforcing the convexity prior cannot retain the missing
part as its disk topology is still preserved under the occlusion. The result presented
in the fourth column given by the proposed model with full convexity prior seems
to be satisfactory. It naturally recovers the missing part of the leaf. However, upon
zooming in, one may observe that the there are many local textures that are im-
portant to bio-taxonomy and should be preserved. These textures cause fluctuations
around the boundary and thus enforcing global convexity on the boundary is indeed
not a suitable solution. To accurately keep those minor but important details while
naturally recovering the missing part of the leaf, the proposed model should be em-
ployed and it can be seen that the result is satisfying. By enforcing partial convexity
close to the missing portions of the leaf, the details of the leaf are mostly preserved
and the missing part is naturally recovered, which is beneficial for further biological,
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Fig. 6.5. Segmentation results with partial convexity prior on real images. The first column
shows the input real images. The second column shows the initial contours and partial convexity
priors are enforced on the red segments. The third column shows the segmentation result of the
foundation model without convexity prior. The fourth column shows the segmentation results using
our model with full convexity prior. The last column shows the segmentation results using our
proposed method with partial convexity prior.

bio-taxonomical or even archaeological study.

The target object of the second experiment is a wild bear with its bottom part
being covered by grass. This is just like the scene that most photos of many other
wild animals would capture. In zoology, the height and the size of animals is an
interesting study. On top of it, the appearance and the shape of the animals also
drive much information for further zoological study. It is therefore important to
scientifically estimate the size of the animals captured in the photos. One possible
solution is to segmenting the animals from the image while estimating the occluded
part by convexity prior. From the segmentation results, clearly both segmentation
with convexity prior and solely topology preserving segmentation are not enough for
accomplishing the task. They either mess up the occluded part or segment only a
very rough and inaccurate convex region. It is only the proposed model with partial
convexity prior that can capture all those clear shape details on the top part of the
bear, while naturally approximating the bottom part of which is obstructed by grass.

The third experiment is kind of similar to the second one, that the target object
is being occluded by grass, but the target object here is a fruit instead of an animal.
Actually, in photography it is common to have a photo of occluded objects. Those
occlusions could sometimes be considered as the major contributing factor to the
beauty and the uniqueness of the photo and hence are important to be kept. However,
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as for photo editing, it is equally important to be able to extract the object accurately
regardless to the obstructions, so that further editing can be applied to a local yet
meaningful region. For this purpose, while topology preserving segmentation enforces
too loose constraint and hence its result is greatly affected by the occlusions, fully
convex segmentation enforces too much constraint on the convexity of the target
object and thus some of its details are lost. The proposed algorithm with partial
convexity being enforced on the red contour as shown in Figure 6.5 yields the most
natural and accurate segmentation of the fruit, capturing both the shape details and
also the occluded parts naturally.

In the last subsection, a medical example in which full convexity prior may be
utilized to capture the high-genus cardiovascular in case of occlusions is presented.
However, it is noted that since not all human tissues are entirely convex. This experi-
ment presents one of those examples in which the full convexity prior is not a suitable
assumption. The target tissue has similar geometry as the cartoon-moon shaped ob-
ject in the previous synthetic experiment. It can be seen that part of the object is
missing. This may be caused by disease, e.g. that part may be infected or inflamed.
The tissue’s structure may hence be damaged and so is the penetrating index. Under
this assumption, not only topology preserving segmentation cannot elude the occlu-
sions, but the proposed segmentation model with full convexity prior does not yield
a meaningful result either. Applying partial convexity prior is a suitable approach in
this situation. By enforcing convexity only around those regions shown to be missing,
the resultant contour captures that part very accurately.

7. Conclusion. This paper presents a new model for image segmentation with
convexity prior. The convexity constraint can be partially prescribed based on the
user’s preference. The proposed model implements the convexity constraint in the
notion of dihedral angles and incorporates with a topology-preserving mapping-based
segmentation model. Beyond inheriting such desirable properties as robustness against
topological noise from the topology-preserving segmentation model, the proposed
model provides an efficient and effective way to preserve and prescribe convexity of the
object domain by manipulation of dihedral angles. The discrete nature of the model
render it immune from the discrepancy between a smooth model and the discrete
computation. A variety of experiments are presented to demonstrate the effectiveness
and efficiency of the proposed framework. It is a natural extension in future work to
consider more general shape prior than convexity from the point of view of dihedral
angles.

Appendix. Proof of Theorem 5.1. In this Appendix, we give a more intuitive
proof for Theorem 5.1 in terms of sine law for easier understanding.

Observe that it suffices to determine the angles of each triangle. Then the triangles
can be pieced together one by one to give the immersion. Suppose the length of one
edge e0 is fixed. Since the angles of the triangles, via sine law, determine the other
edges in the triangles that contains e0, and hence hence all edgelengths in the same
connected component, by considering paths of edge-sharing faces. Therefore, the
edgelengths will agree upon piecing up, if the edgelengths determined by all paths are
the same, or equivalently, for every edge and every loop of edge-sharing faces based
at that edge, the length determined by the path is the same as the original length.

More specifically, consider the loop of faces ∆1, ...,∆n such that ∆i and ∆i+1

share an edge ei, where addition is in mod n. This is illustrated in Figure (7.1).
Suppose the length of e0 = en is originally assigned to be L. Then letting ϕ+

i and ϕ−i
be the angles in ∆i opposite to ei and ei−1 respectively, the length of en determined
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Fig. 7.1. Illustration for the Proof of Theorem 5.1 in Appendix.

by the path (∆i) is L
∏ sinϕ+

i

sinϕ−i
. Therefore, the angles have to be chosen such that

∏ sinϕ+
i

sinϕ−i
= 1,

or equivalently, ∑
log sinϕ+

i =
∑

log sinϕ−i (7.1)

for every loop of faces.
Now, the Lagrangian optimality condition of (5.7) implies (7.1) via∑

(log sinα+
i + log 2) =

∑
Λ∆i

+ λei∑
(log sinα−i + log 2) =

∑
Λ∆i + λei−1 ,

where Λ∆ is the Lagrange multiplier corresponding to
∑
v ϕv,∆ = π and λe is the one

corresponding to the constraint of the dihedral angle of e.
Note that the gradients of the constraints are linearly dependent, but since the

constraints are linear, this is not an issue.
The assumption that θ is a plausible dihedral angle ensures that the feasible set

is nonempty, and Delaunayness ensures the optimum is attained in the interior. We
refer the reader to [38] for a detailed proof of the latter claim.

It remains to establish the properties of the objective functional E. The partial
derivatives may be computed by direct computation. For concavity, letting ∆ be
the open simplex spanned by πe1, πe2, πe3, where {e1, e2, e3} is the standard basis of
R3, and V : ∆ → R be defined by V (ϕ1, ϕ2, ϕ3) = −

∑
I∈{1,2,3}

∫ ϕI
0

log 2 sin tdt for

(ϕ1, ϕ2, ϕ3) ∈ ∆, it suffices to show HessV is negative-definite on the tangent space
Tp∆ at every p = (α, β, π − α− β) ∈ ∆. This is a straight-forward computation.

HessV (α, β, π − α− β) = −

cotα
cotβ

1−cotα cot β
cotα+cot β


Let u = (1, 0,−1) and v = (0, 1,−1). Then {u, v} spans Tp∆. Let w = λu+ µv.

Then

wT (HessV (p))w = − 1

cotα+ cotβ

[
λ µ

] [ cot2 α+ 1 1− cotα cotβ
1− cotα cotβ cot2 β + 1

] [
λ
µ

]
,
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where monotonicity of cot implies cotα + cotβ > cotα + cot(π − α) = 0. The trace
and determinant of the 2 × 2 matrix are, respectively, 2 + cot2 α + cot2 β > 0 and
(cotα+ cotβ)2 > 0. The result then follows.
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