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Abstract. We present a method for optimal path planning of human walking paths in mountain-5
ous terrain, using a control theoretic formulation and a Hamilton-Jacobi-Bellman equation. Previous6
models for human navigation were entirely deterministic, assuming perfect knowledge of the ambient7
elevation data and human walking velocity as a function of local slope of the terrain. Our model in-8
cludes a stochastic component which can account for uncertainty in the problem, and thus includes a9
Hamilton-Jacobi-Bellman equation with viscosity. We discuss the model in the presence and absence10
of stochastic effects, and suggest numerical methods for simulating the model. We discuss two different11
notions of an optimal path when there is uncertainty in the problem. Finally, we compare the optimal12
paths suggested by the model at different levels of uncertainty, and observe that as the size of the13
uncertainty tends to zero (and thus the viscosity in the equation tends to zero), the optimal path tends14
toward the deterministic optimal path.15
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1. Introduction. Optimal path planning is a classical problem in control theory19

and engineering. The basic mathematical formulation of the problem includes an agent20

whose movement is constrained by an equation of motion, and who desires to optimally21

travel from one point to another while obeying this equation. We will consider optimal22

path planning in the context of hikers traversing mountainous terrain.23

Early approaches to the optimal path planning problem date back to the 1950’s and24

were originally discrete in nature: discretizing the continuous domain into a weighted25

graph and then employing Dijkstra’s algorithm and its many variants [12]. Several of26

these discrete or semi-discrete approaches are still being developed and improved today27

[18, 22, 29, 30, 35, 40]. However, since the late 1990’s, there has also been significant28

interest in solving the problem using variational and partial different equation (PDE)29

based models. Sethian and Vladimirsky determined optimal paths on manifolds by30

formulating the dynamic programming principle and Hamilton-Jacobi-Bellman (HJB)31

equation as a continuous version of Dijkstra’s algorithm [43, 44]. In a similar approach,32

one can use the level set method of Osher and Sethian [33] to resolve optimal paths33

[10, 37]. In application, variational methods for optimal path planning are extensively34

used in the context of self-driving vehicles. This problem was first considered by Dubins35

[13] in discrete form, but later reformulated continuously, and adapted to answer a36

number of questions involving impassable obstacles and reachable sets, among others37

[1, 5, 26, 49]. Human movement has also been modeled using HJB equations, whether38

it be walking while expending minimal energy [17, 36], reach-avoid games like capture-39

the-flag [9, 51], or pedestrian flow modeling [8].40
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One feature of all the models referenced above is that they are completely deter-41

ministic. For example, in the simplest reach-avoid games, the strategy of each team is42

known to the opposing team. Assumptions like this may not be realistic in practice,43

and thus it is important to incorporate some uncertainty into the models, and this can44

be done in a number of ways. In the case of reach-avoid games, Gilles and Vladimirsky45

suggest paths for the attackers or defenders that minimize or maximize risk in different46

ways [16]. In optimal path planning, Shen and Vladimirsky account for weather effects47

on a sailboat by designing a piecewise deterministic algorithm, wherein the travel ve-48

locity changes randomly but at discrete times [45]. These type of stochastic effects are49

of special interest to those working on self-driving vehicles wherein misaligned axles,50

miscalibrated sensors or a host of other variables could significantly perturb an opti-51

mal driving path, and these can be modeled using randomness in a number of different52

ways [3, 23, 25, 27, 28]. Others have suggested optimal path planning for underwater53

unmanned vehicles using a stochastic drift term to account for the effects of the ocean’s54

current [24, 47, 48]55

In this paper, we propose a method for optimal path planning where the walking56

velocity depends on the local slope in the direction or motion (and is thus anisotropic),57

and there is uncertainty in the equation of motion of the traveler. That is, rather than58

an ordinary differential equation, our equation of motion is a stochastic differential59

equation where Brownian motion can account for uncertainty in human walking speed,60

the ambient elevation data, terrain traversibility or other uncertainties. In doing so, we61

follow a similar formulation as in a previous paper [37]. However, since the Hamilton-62

Jacobi-Bellman equation for the stochastic case has viscosity, the level set method is no63

longer applicable, so we opt for a model more rooted in control theory. This paper is64

organized as follows: in section 2, we discuss the setup of our model, including some of65

the underlying mathematical formalism and how it pertains to optimal path planning.66

In section 3, we discuss the numerical methods which we used to simulate the model.67

In section 4, we discuss the results of our simulations. Specifically, we test our model68

against both synthetic data and real elevation data taken from the area surrounding El69

Capitan, a mountain in Yosemite National Park. We compare two different notions of70

optimal paths when stochastic effects are present. Finally, we observe that as the size71

of the uncertainty tends to zero (and thus the solution of the stochastic HJB equation72

tends to the viscosity solution of the ordinary HJB equation [11]), the optimal path73

tends toward the deterministic optimal path.74

2. Mathematical Model. We discuss the construction of our model, only briefly75

mentioning the underlying control theoretic concepts. Treatments of these concepts with76

varying levels of rigor can be found in several books [6, 7, 15, 31, 38]. The main insights77

here are how the controlled equation of motion leads to a Hamilton-Jacobi-Bellman78

equation, and how we can use this equation to determine the optimal control.79

2.1. The Deterministic Optimal Path Planning Model. We consider the80

problem of planning optimal walking paths in mountainous terrain. We imagine that a81

hiker is standing at a point x0∈R2, and wishes to walk to a point xend∈R2. We are82

given the elevation profile E :R2→R which provides the elevation at any point in space,83

and velocity function V :R→ [0,∞) which measures walking velocity as a function of84

slope. Here slope is in units of grade, so that slope of 1 corresponds to a 45◦ incline,85

and slope of −1 corresponds to a 45◦ decline. Let x : [0,T ]→R2 represent the current86

position of the hiker, where T >0 is the total walking time. Note, this terminal time87

T is a parameter which one specifies at the outset. Our control variable will be the88

walking direction along the path, s : [0,T ]→S1 ..={a∈R2 : ‖a‖2 = 1}. Given all of this,89
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the equation of motion for our hiker is90

ẋ(t) =V (∇E(x(t)) ·s(t))s(t), 0<t≤T,
x(0) =x0.

(2.1)91

Note that ∇E(x) ·s represents the local slope in the walking direction.92

For the cost functional, we simply consider Euclidean distance to the end point.93

Given a particular control parameter s : [0,T ]→S1, define94

(2.2) C[s(·)] =‖x(T )−xend‖2,95

where x is constrained by (2.1). To arrive at the Hamilton-Jacobi-Bellman equation,96

we invoke the dynamic programming principle, stating that to find a globally optimal97

path, we need only consider paths which are locally optimal. That is, for any given98

x∈R2 and t∈ (0,T ], one can consider optimal paths on the interval (t,T ] with x(t) =x.99

We define the cost function by100

(2.3) u(x,t) = inf
s

{
Cx,t[s(·)]

}
,101

where Cx,t[s(·)] denotes the same cost functional, but restricted to paths x on the102

interval (t,T ] with x(t) =x. Provided that the map x 7→V (∇E(x) ·s) is sufficiently103

regular [15], one can show that the cost function u satisfies the equation104

ut(x,t)+ inf
s∈S1
{V (∇E(x) ·s)[∇u(x,t) ·s]}= 0,

u(x,T ) =‖x−xend‖2.
(2.4)105

This is the Hamilton-Jacobi-Bellman (HJB) equation for this control problem. Note106

that this is a terminal value problem, for which we have data at time T and we solve107

backwards in time on the interval [0,T ). This correspondence between the control108

problem and the HJB equation will hold under the condition that x 7→V (∇E(x) ·s) is109

Lipschitz with a constant which is uniform over s∈S1 [15]. In our application, this110

will likely hold, but we cannot guarantee it because we will use real elevation data111

E(x). Thus this may only be a formal correspondence, though empirically, the method112

appears to work even when the elevation data is somewhat non-smooth. Another note113

is that the infimum in (2.4) is being taken over a compact set, so again, under some114

mild assumptions of continuity, this will be realized as a minimum.115

The question remains of how to use (2.4) to determine the optimal control, and116

thus the optimal trajectory. At each point, the optimal control is given by the infimum117

in (2.4). Thus if one can solve (2.4), the optimal control s∗ is118

(2.5) s∗(x,t) = argmin
s∈S1

{V (∇E(x) ·s)[∇u(x,t) ·s]} .119

When this minimization problem is solved, the optimal trajectory is then resolved by120

solving the differential equation121

ẋ(t) =V (∇E(x(t)) ·s∗(x(t),t))s∗(x(t),t), 0<t≤T,
x(0) =x0.

(2.6)122

It was mentioned above that the terminal time T is a parameter which one must123

specify beforehand. It is important to note what this means for the model. Notice that124
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for our cost functional, we have chosen a lump sum cost which is the distance from125

the end of the path x(T ) to the desired end point xend. The optimal control problem126

attempts to minimize this cost. Thus the path that we observe will be the path x whose127

end point is as close to xend as possible, given time T >0. If we select T too small, the128

path will not reach the end point, and in some cases this can lead to some interesting129

decisions regarding how the path should be constructed. We discuss this further in130

section 4.3.131

2.2. The Stochastic Optimal Path Planning Model. In the above, we assume132

that all data is known perfectly and that there is no uncertainty. In reality, weather133

effects, instrumentation noise, incomplete elevation data or any number of other things134

could cause uncertainty in the equation of motion. Accordingly, we can account for135

random effects by considering a stochastic equation of motion136

dXt=V (∇E(Xt) ·s(t))s(t)dt+σ(Xt,s(t))dW t, 0<t≤T
X0 =x0,

(2.7)137

where W t is an ordinary two-dimensional Brownian motion whose coordinates W
(1)
t138

and W
(2)
t are independent one-dimensional Brownian motions, and σ is some function139

that determines the uncertainty.140

In this case, we define the expected cost function141

(2.8) C[s(·)] =E(‖XT −xend‖2) ,142

and perform similar steps as above to arrive at a stochastic version of the Hamilton-143

Jacobi-Bellman equation. That is, we localize the problem and define144

(2.9) u(x,t) = inf
s

{
E
(
Cx,t[s(·)]

)}
,145

where again Cx,t[s(·)] denotes the cost functional restricted to trajectories X on the146

interval (t,T ] with Xt=x. A key point in the derivation of the HJB equation invokes147

the chain rule for the function t 7→u(x(t),t), which explains the appearance of ut and148

∇u in the HJB equation. We are now concerned with the map t→u(Xt,t) and we must149

consider second order derivatives because of the fundamental relationship (dW
(i)
t )2∼dt150

for i= 1,2. Thus the stochastic Hamilton-Jacobi-Bellman equation reads151

ut(x,t)+ inf
s∈S1

{
V (∇E(x) ·s)[∇u(x,t) ·s]+ 1

2
σ(x,s)2∆u(x,t)

}
= 0,

u(x,T ) =‖x−xend‖2.
(2.10)152

Again, this is a terminal value problem, solved backwards from t=T to t= 0. Thus153

the positive sign on the diffusion is the correct sign to ensure that the diffusion has a154

smoothing effect on the solution, and there is no danger of finite-time blow-up.155

As above, to determine the optimal control, we solve (2.10), and at each point set156

(2.11) s∗(x,t) = argmin
s∈S1

{
V (∇E(x) ·s)[∇u(x,t) ·s+

1

2
σ(x,s)2∆u(x,t)]

}
.157

At this point, there is a choice as to how to construct the path. One can use the optimal158

control computed from the stochastic HJB equation but simulate the deterministic path159

equation160

ẋ(t) =V (∇E(x(t)) ·s∗(x(t),t))s∗(x(t),t), 0<t≤T,
x(0) =x0,

(2.12)161
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to arrive at an optimal path. Alternatively, to compute a single instance of a path, we162

could simulate the equation163

dXt=V (∇E(Xt) ·s∗(Xt,t))s
∗(Xt,t)dt+σ(Xt,s

∗(Xt,t))dW t, 0<t≤T
X0 =x0.

(2.13)164

Because this is only one instance and is subject to randomness, the path will not neces-165

sarily connect the points x0 and xend. However, we can average over many realizations166

to arrive at an expected optimal path. This is summarized in table 1.167

Table 1: The two options for how to compute optimal paths with uncertainty.

Method (i) Method (ii)

Stochastic HJB Equation (2.10) Stochastic HJB Equation (2.10)
→ control values → control values

Deterministic equation of motion (2.12) Stochastic equation of motion (2.13)
ẋ=V (∇E(x) ·s)s E

(
dXt=V (∇E(Xt) ·s)sdt+σdW t

)
→ optimal path → expected optimal path

These methods have different interpretations and may be better suited to modeling168

different physical scenarios. In using method (i), the uncertainty is factored into the169

planning of the route, but upon traversing the route, there is no uncertainty in the170

velocity. This could model a hiker walking through a forest. The hiker does not feel171

random perturbations in the walking velocity at each step; rather, the uncertainty is in172

the exact form of the landscape that lies ahead. Method (ii) may be of more practical use173

to a company shipping goods from one port to another, wherein each boat that makes174

the trip will actually feel random perturbations in velocity due to wind or currents. We175

will use both methods to compute paths and compare the results in section 4.176

2.3. Our Model. In order to simulate the model, we simply need to determine177

some parameter values, specifically those of E,V and σ. For the elevation data E,178

we will begin by using synthetic elevation data which is mostly flat but with a few179

“mountains” included which we would expect the hiker to avoid. After this, we will180

use real elevation data in the area surrounding El Capitan, a large granite cliff face in181

Yosemite National Park in California. We will specify the elevation data which we use182

for each simulation in section 4.183

For the walking velocity function, we use a modified version of the function of184

Irmischer and Clarke [19]. Our specific velocity function is [37]:185

(2.14) V (S) = 1.11exp

(
− (100S+2)2

2345

)
.186

Additionally, if we use this velocity function and only consider the walking direction187

∇E(x) ·s, then the walking velocity in the tangential and normal directions to the path188

are completely decoupled. Thus one could walk easily in the east-west direction, even189

when the grade in the north-south direction is arbitrarily steep. To prevent this, we190

penalize the velocity if the grade is sufficiently steep in any direction [37].191

Lastly, one must determine the exact form of the uncertainty σ in the stochastic192

equation of motion. For our purposes, we take σ constant, so that we model uncertainty193
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in the walking velocity in a general sense without specifying the exact nature of the194

uncertainty. As a consequence, if we reconsider (2.10), we notice that the viscosity term195

is independent of the control variable s, and thus the equation can be re-written196

ut(x,t)+
σ2

2
∆u(x,t)+ inf

s∈S1
{V (∇E(x) ·s)[∇u(x,t) ·s]}= 0,

u(x,T ) =‖x−xend‖2.
(2.15)197

This case is interesting because now the optimal control is resolved exactly as in the198

deterministic case, and (2.15) is reminiscent of the viscous Hamilton-Jacobi equation199

considered by Crandall and Lions [11] when establishing the vanishing viscosity method200

for Hamilton-Jacobi equations. Thus if our Hamiltonian201

(2.16) H(x,p) ..= inf
s∈S1
{V (∇E(x) ·s)[p ·s]}202

is continuous, we expect that the solution u(σ) to equation (2.15) will converge to the203

viscosity solution u of (2.4) as σ↘0 [11]. Again, continuity of H(x,p) will depend204

on the nature of the elevation data, but we can observe this convergence empirically205

by considering the optimal path constructed by the the method at varying levels of206

uncertainty σ.207

3. Numerical Methods. There are several numerical concerns that must be208

addressed in order to simulate these equation; both general concerns for numerical209

Hamilton-Jacobi equations and specific concerns relating to our model. We begin by210

discussing general notions for solving Hamilton-Jacobi type equations numerically.211

3.1. An Explicit Scheme for (2.4). We consider a general Hamilton-Jacobi equa-212

tion of the form213

(3.1) ut+H(ux,uy) = 0, x∈R2, t>0,214

with initial data at t= 0. Our Hamiltionian (2.16) depends also on x, but for the sake215

of numerical methods, this is unimportant, so we suppress it here to simplify notation.216

Since solutions of Hamilton-Jacobi equations have kinks [4, 11, 32], näıve forward, back-217

ward and centered differencing methods may fail to accurately simulate the equation.218

Accordingly, in a numerical scheme, one must replace the Hamiltonian H(ux,uy) with219

a numerical Hamiltonian Ĥ(u+x ,u
−
x ,u

+
y ,u

−
y ) which deftly combines the forward differ-220

ences u+x ,u
+
y and backwards differences u−x ,u

−
y so as to smooth the solution, minimize221

oscillation near kinks, track the characteristics, or otherwise capture the dynamics of222

the equation.223

Following Osher and Shu [34], we use the Godunov numerical Hamiltonian224

(3.2) ĤG(u+x ,u
−
x ,u

+
y ,u

−
y ) = ext

u∈I(u−
x ,u

+
x )

ext
v∈I(u+

y ,u
−
y )
H(u,v)225

where226

(3.3) I(a,b) = [min(a,b),max(a,b)] and ext
x∈I(a,b)

=

{
mina≤x≤b if a≤ b,
maxb≤x≤a if a>b.

227

These minima and maxima are designed to track the characteristics of the equation,228

thus accurately approximating the Hamiltonian without resorting to excessive numerical229

diffusion as is present in the Lax-Friedrichs scheme; we comment on this further later.230
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Osher and Shu [34] suggest a method for approximating ux and uy with forward and231

backward difference schemes which are accurate to arbitrarily high order, though we232

opt for first order approximations which suffice in this application. In the absensce of233

viscosity, we then explicitly integrate (3.1) in time using explicit Euler time stepping.234

Specifically while (2.4) has infinite spatial domain, for the purpose of simulating it,235

we draw some box [a,b]× [c,d] containing the points x0 and xend. We also invert the236

time variable, so that we instead solve for u(x,y,T − t) on the interval t∈ (0,T ]. Next237

discritize this box, and the time interval uniformly:238

xi=a+ i
(b−a)

N
, i= 0,1,. ..,N,

yj = c+j
(d−c)
M

, j= 0,1,. ..,M,

tk =
kT

K
, k= 0,1,. ..,K.

(3.4)239

Then if ukij
..=u(xi,yj ,T − tk), our explicit time stepping scheme is240

(3.5) ukij =uk−1ij +∆tĤG(u+x ,u
−
x ,u

+
y ,u

−
y )k−1ij241

for i= 1,. ..,N−1,j= 1,. ..,M−1 and k= 1,. ..,K, where ∆t ..=T/K. Note, the positive242

sign in front of ĤG in (3.5) is due to the time inversion; this would ordinarily be negative243

when moved to the right hand side of (2.4). If one is resolving the spatial derivatives244

to higher order accuracy and desires to maintain this accuracy, one can easily replace245

the explicit Euler time integration with a higher order Runge-Kutta scheme [34].246

The layers of nodes corresponding to i= 0,i=N,j= 0 or j=M are necessarily247

boundary layers, because for example, we cannot compute the backwards difference248

approximation u−x at the nodes where i= 0. Thus after evaluating (3.5) at each time249

step, we must enforce some artificial boundary condition, which is not prescribed in the250

differential equation, but is rather a purely numerical consideration. We use the bound-251

ary conditions suggested by Kao et al. [20] which extrapolate while also attempting to252

minimize oscillation and prevent information from entering through the boundary:253

uk0,j = min(max(2uk1,j−uk2,j ,uk2,j),uk−10,j ),

ukN,j = min(max(2ukN−1,j−ukN−2,j ,ukN−2,j),uk−1N,j ),

uki,0 = min(max(2uki,1−uki,2,uki,2),uk−1i,0 ),

uki,M = min(max(2uki,M−1−uki,M−2,uki,M−2),uk−1i,M ).

(3.6)254

For our particular application, the maximum velocity at which information flows255

along characteristics is Vmax
..= maxSV (S) = 1.11, and so this scheme will be stable so256

long as the parameters (∆x,∆y,∆t) ..=
(
b−a
N , d−cM , TK

)
satisfy the CFL condition [32]:257

(3.7) ∆t ·Vmax

(
1

∆x
+

1

∆y

)
<1.258

3.2. A Semi-Implicit Scheme for (2.15). In order to numerically simulate the259

reaction-diffusion equation (2.15), one could simply insert the centered difference ap-260

proximation to ∆u and continue with the explicit Euler time stepping. However, this261

will require exceedingly small time discretization, since the stability condition for for-262

ward Euler time stepping for a diffusion operator is of the form ∆t=O((∆x)2,(∆y)2).263
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Instead, we resolving the diffusion implicitly. Thus, our scheme for (2.15) is264

(3.8) ukij−
σ2∆t

2∆x
(u+x −u−x )kij−

σ2∆t

2∆y
(u+y −u−y )kij =uk−1ij +∆tĤG(u+x ,u

−
x ,u

+
y ,u

−
y )k−1ij .265

Since implicit Euler time stepping for diffusion is unconditionally stable, our dis-266

cretization is still only bound by the CFL condition (3.7). For larger values of σ, the267

resulting diffusion will smooth the solution u, and thus sophisticated numerical Hamil-268

tonians are probably no longer necessary. However, we have implemented this scheme269

as stated, so that as σ↘0, the semi-implicit scheme (3.8) reverts to the explicit scheme270

(3.5), and there are no stability issues. We note that this semi-implicit scheme is only271

available when the uncertainty σ in the equation of motion is independent of the con-272

trol variable. If σ depends on s, then the Hamilton-Jacobi-Bellman equation takes the273

form (2.10), and in this case the Hamiltonian cannot be decoupled from the diffusion274

term. Thus one would have to resort to explicit time stepping methods, or use alternate275

numerical methods such as pseudospectral methods [46].276

3.3. Implementation Concerns. One may question why we have decided to277

use the Godunov scheme, since for the purposes of implementation, something like278

the Lax-Friedrichs numerical Hamiltonian may be easier. Indeed, the Lax-Friedrichs279

Hamiltonian in given by280

(3.9) ĤLF (u+x ,u
−
x ,u

+
y ,u

−
y ) =H

(
u+x +u−x

2
,
u+y +u−y

2

)
− α1

2
(u+x −u−x )− α2

2
(u+y −u−y ),281

where α1,α2 are bounds on the derivatives of H with respect to the first or second282

arguement, respectively [34]. The Lax-Friedrichs scheme works by adding numerical283

diffusion, thus in essence changing equation (3.1) to284

(3.10) ut−ε∆u+H(ux,uy) = 0,285

where ε=O(∆x,∆y). In most applications, this is acceptable, since the Lax-Friedrichs286

Hamiltonian still provides a first order accurate approximation to the Hamilton-Jacobi287

equation. However, in our case, adding diffusion at level ε to the Hamilton-Jacobi288

equation is akin to adding uncertainty in the equation of motion at level ε1/2. For289

example, in the discretization we will use, the numerical diffusion would be on the order290

of 0.01, which would correspond to uncertainty in the equation of motion on the order291

of 0.1 m/s. This is a nontrivial level of uncertainty, representing roughly one tenth292

of the maximum walking velocity. For this reason, minimally diffusive schemes are293

necessary for our application. A similar roadblock arises when using level set methods,294

especially when the geometry of the level sets is a crucial aspect of the model like in295

shock-capturing, image-processing [14] or recent deforestation models [2]. In these cases,296

numerical diffusion becomes noticeable when level set velocity is near zero.297

If the Hamiltonian H is relatively simple, the minima and maxima in the Go-298

dunov Hamiltonian can be resolved exactly. For example, in the special case that299

H(u,v) =h(u2,v2) and h is monotone in each argument, the Godunov scheme simplifies300

significantly [37]. In our application, this situation arises when the elevation is flat so301

that ∇E≡0, and our Hamiltonian (2.16) becomes H(x,∇u) =−Vmax‖∇u‖2. In general,302

our Hamiltonian is much more complicated. In order to implement the Godunov scheme303

for our Hamiltonian, we must resolve three minima or maxima: the minimum involved in304

the definition of the Hamiltonian, and the two minima/maxima involved in the scheme305

itself. We resolve all this minima and maxima discretely, by simply sampling points and306
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choosing the correct one. As long as the error from this descrete optimization remains307

on the order of ∆x and ∆y, the scheme will remain accurate to first order. The level308

of resolution needed for the discrete optimization depends somewhat on the problem,309

but empirically it appears that the most important facet is the regularity of the eleva-310

tion data E. This makes intuitive sense: for less smooth elevation, the minimization in311

(2.16) taken with respect to the walking direction will require finer resolution to resolve.312

Likewise, for less smooth elevation, the discontinuities in the derivative of the solution313

u become more severe. Thus the optimization sets in the Godunov scheme, which have314

the form I(u+x ,u
−
x ) and I(u+y ,u

−
y ), become larger.315

4. Simulations & Results. We implemented our model in MATLAB using the316

numerical schemes (3.5, 3.8) to solve the Hamilton-Jacobi-Bellman equations (2.4, 2.15),317

and the forward Euler method to solve the equation of motion (2.12). In the following318

figures, we will display elevation contours ranging from blue signifying low elevation to319

yellow signifying high elevation. The starting point x0 will be marked with a green star320

and the desired end point xend will be marked with a red star. The lines representing321

the walking paths will be plotted in colors ranging from green, symbolizing simulations322

with smaller σ values, to red, symbolizing larger σ values.323

4.1. Synthetic Elevation Data. We began by testing our model against simple324

synthetic data. In figure 1, we have computed optimal paths with several different325

levels of uncertainty σ. Referring to table 1, we are using method (i) to compute the326

optimal paths. That is, we are using the stochastic HJB equation to determine the327

optimal control values, but then computing the path using the deterministic equation328

of motion. In this example, the elevation is flat except for two large mountains which329

lie between the starting point and end point.330

(a) σ= 0.0 (b) σ= 0.2 (c) σ= 0.4

(d) σ= 0.6 (e) σ= 0.8 (f) σ= 1.0

Fig. 1: Optimal paths using different σ values. End time T = 3.8 for each plot.
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In the deterministic case, plotted in figure 1a, the path curves around the mountains331

as one would expect: the walking velocity is significantly hampered by the change in332

elevation, so it is more efficient to avoid those regions. In this case, we see that the333

optimal path suggested by our algorithm is not particularly sensitive to small changes334

in σ. The path in figure 1b which has σ= 0.2 looks very similar to that in figure 1a335

which has σ= 0. However, as σ becomes larger, we do see significant changes in the336

path. The path in figure 1f where σ= 1 is significantly different from the deterministic337

case. Here the uncertainty is on roughly the same order as the walking velocity. With338

this level of uncertainty, one could imagine walking through a forest in a very dense339

fog. In planning the path, this algorithm suggests that you walk directly toward your340

destination and adjust as necessary when obstacles arise.341

Next, we consider method (ii) from table 1; that is, we simulate the stochastic342

equation of motion many times and compute the average path. Here we are still using343

the forward Euler method for the stochastic ODE and since the coefficient in front of the344

Brownian motion is independent of Xt, this corresponds with the Milstein method which345

exhibits strong and weak convergence at first order [21]. In each of the following results,346

we have simulated the equation of motion 10000 times and taken the average path.347

Results are displayed in figures 2a-2c. The black line represents the average optimal path348

and the colored lines represent three individual realizations of the stochastic equation349

of motion. Here as σ gets larger, the individual realizations become less meaningful,350

but the average path is still somewhat smooth and roughly connects the starting point351

to the ending point.352

(a) σ= 0.2 (b) σ= 0.5 (c) σ= 0.8

(d) σ= 0.2 (e) σ= 0.4 (f) σ= 0.8

Fig. 2: (a) - (c) Average path over 10000 trials (black), and three realizations of the
stochastic equation of motion (colored) at different levels of uncertainty σ. (d) - (f)
Average path (black) with standard deviation (grey), and the path computed using
method (i) (dotted green).
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We also calculate a form of confidence interval to evaluate how close a single real-353

ization is likely to be to the average. To do this, at each point (x,y) along the average354

path, we calculate the standard deviation (δx,δy) in each of the coordinates. Then at355

each point, we plot in light grey the ellipse centered at (x,y) with radii (δx,δy) in the356

x or y direction, respectively. As we travel along the path plotting these ellipses, the357

grey envelope represents the set of points within one standard deviation of the average358

path. This is seen in figures 2d-2f. In these plots the average path is plotted as a solid359

black line. Now we also display the path which was computed using method (i) using a360

dotted green line. For small σ, the average path and the determistic path match fairly361

well. For larger σ, they begin to diverge, but the walking strategy seems similar: for362

larger σ, the average paths take a much more direct approach, cutting corners more363

closely, or walking directly over the mountains. In each case, the deterministic path364

stays well within one standard deviation of the average path. Notice that as σ gets365

larger, the standard deviation grows very quickly so that in figure 2f the set of possible366

paths within one standard deviation of the average is quite large, and it may simply be367

that method (i) provides a more reasonable solution in this application.368

4.2. Real Elevation Data. Seeing that our model works correctly for simplified369

elevation data, we tested the model against real elevation in the area surrounding the370

mountain El Capitan in Yosemite National Park. The elevation profile of El Capitan,371

along with the starting an ending points, is pictured in figure 3. Notice that directly in372

between the starting and ending points, the contour lines lie close together, indicating a373

sheer cliff face. The starting point is near the summit of the mountain, and the ending374

point is in the valley to the south of the mountain, so any walking path should choose375

the gentler grades to the east or west of the cliff face.376

(a) The south-facing cliff face of El Capitan (b) The elevation profile of El Capitan.

Fig. 3: El Capitan, Yosemite National Park, California1

Indeed, this is exactly what we observe, as seen in figure 4. These paths were377

determined using method (i), the deterministic equation of motion. In these simulations378

all the scales in the problem are completely genuine. The region displayed in these figures379

is a rectangle roughly 5 kilometers east-to-west and 6 kilometers north-to-south. The380

1Image courtesy of Mike Murphy, uploaded to Wikipedia Commons under Share-Alike license:
https://commons.wikimedia.org/wiki/File:Yosemite El Capitan.jpg
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starting and ending points are roughly 2 kilometers apart and the terrain is mountainous,381

and so several thousand seconds are required to traverse a path connecting the points.382

Here, the elevation data is much less smooth, and this leads to a greater sensitivity to383

small changes in σ. Figure 4b shows that at σ= 0.05, the optimal path looks largely384

the same as in the deterministic case, displayed in figure 4a. However, when σ= 0.3,385

the optimal path is quite different, as seen in figure 4f.386

(a) σ= 0.00, T ≈6800 (b) σ= 0.05, T ≈6850 (c) σ= 0.10, T ≈7500

(d) σ= 0.15, T ≈7550 (e) σ= 0.20, T ≈8950 (f) σ= 0.30, T ≈15550

Fig. 4: Optimal paths descending El Capitan using different σ values.

One significant note here: at different levels of σ, there are different optimal terminal387

times T . Recall, the parameter T must be chosen before simulating the model. In the388

case of the synthetic data in figure 1, the terminal time T is not particularly sensitive to389

changes in σ, since qualitatively the paths are all similar and the amount of time that390

is “wasted” by taking a non-optimal path is not significant. In that case, we set T = 3.8391

and any path with σ∈ [0,1] had sufficient time to reach the endpoint. This is not the392

case in figure 4, where small changes in σ lead to more significant qualitative changes in393

the paths. Indeed, the greedy strategy of taking a more direct route and then adjusting394

as necessary can be very costly in the case of El Capitan where it is very easy to get395

stuck in regions of severe grades, and be nearly unable to move. In this case, if one396

is reasonably uncertain about walking velocity as in figure 4f, the algorithm suggests397

one should allow ample time, and take a safer route which more deliberately avoids398

regions with large changes in elevation. Because this route is significantly different, it399

requires a terminal time of roughly T = 15550 seconds, as opposed to a terminal time400

closer to T = 6800 seconds as in figure 4a. For larger values of σ (for example σ>0.5),401

the path will not make it down the mountain even given exorbitantly large terminal402

time, because it will walk too close to the cliff, become stuck, and have insufficient time403

to adjust. We say more about the role of the parameter T , especially as it pertains to404
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impassable obstacles such as the El Capitan cliff face, in section 4.3.405

As in the previous section, we would also like to use method (ii) to construct a406

path. In figures 5a-5c, we plot the average path along with three realizations in the case407

that σ= 0.05,0.1 and 0.2. When σ= 0.05,0.1, each of these realizations is fairly close to408

the average path, and the results are similar to those obtained using method (i). We409

have also included the region which is one standard deviation away from the average410

path, as seen in figures 5d-5f. Even when σ is very small, the variance in how the paths411

descend the mountain is fairly large. This is because small perturbations in that region412

will more qualitatively change the course of path. The results for σ= 0.2—displayed413

in figures 5c,5f—do not seem particularly meaningful. In this case, the uncertainty in414

the walking velocity is large enough that if the path approaches the large cliff face, the415

random perturbation can cause the path to move down the cliff. In this region, the416

walking velocity is approximately zero, and so the random effects are the driving force417

for the movement. In those simulations, a large enough portion of the paths descended418

the cliff in this manner, leading to a skewed average path, and an enormously large419

standard deviation. Similar problems may arise whenever there are regions where the420

walking velocity is very small. In such cases, it seems that using the deterministic421

equation of motion with the stochastic control values (as in figure 4) will give a much422

more meaningful result.423

(a) σ= 0.05 (b) σ= 0.1 (c) σ= 0.2

(d) σ= 0.05 (e) σ= 0.1 (f) σ= 0.2

Fig. 5: (a) - (c) Average path over 10000 trials (black), and three realizations of the
stochastic equation of motion (colored) at different levels of uncertainty σ. (d) - (f)
Average path (black) with standard deviation (grey), and the path computed using
method (i) (dotted green).

4.3. Impassable Obstacles and the Role of the Parameter T . We remarked424

in section 2.1 that different choices for the terminal time T can lead to qualitative425

changes in how the path is constructed. We can observe this in the example of El426
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Capitan. In figure 6, we used σ= 0 so that the model is fully deterministic, and we427

simulated the model with two different terminal times T . In figure 6a, we see that with428

terminal time T ≈2000 seconds, the path simply walks to the cliff face and stays put.429

However, given T ≈6800 seconds, the path descends the eastern slope and finds the430

desired end point as seen in figure 6b431

(a) Optimal path given T = 2000 seconds. (b) Optimal path given T = 6800 seconds.

Fig. 6: Optimal paths in the vicinity of El Capitan with different terminal times.

We can recreate this scenario using synthetic elevation data by placing a large432

wall directly between the starting point and end point as in figure 7. The elevation433

is incredibly steep in the colored region, meaning that any optimal path would surely434

avoid the wall. In figure 7b, where T = 4.25, this is exactly the behavior we observe; the435

path curves around the obstacle. However, in figure 7a, where T = 2, the path walks436

toward the obstacle, stopping at the edge because velocity is near zero there.437

(a) Optimal path given T = 2 seconds. (b) Optimal path given T = 4.25 seconds.

Fig. 7: Optimal paths using different end time values. The colored region is a wall.

Recall, our model constructs the path which ends as close (in Euclidean distance)438

to the desired end point as possible in the time allotted. When T = 2 in figure 7a, there439

is not enough time to walk around the wall and instead, to get as close to the desired440

end point as possible, the path walks directly toward the wall. When situations like441

this arise, there is some critical amount of time T ∗>0 such that, given T >T ∗, the path442

will walk around the obstacle, but given T <T ∗, the path will walk toward the obstacle443

because it will not be able to get close enough to the end point if it walks around.444

14

This manuscript is for review purposes only.



We can see this more explicitly if we plot the actual control values s∗(x,t) as well,445

as is done in figure 8. In this example, the critical time is roughly T ∗= 3.4, so we446

have plotted the path created by the algorithm with final time of T = 3.5, but we have447

plotted the path at times t= 0,0.7,1.4,2.1. The arrows in the pictures are the values448

of s∗(x,t). Notice that in figure 8a, there appears to be a discontinuity in the optimal449

control value. The deciding factor for whether the path will walk around the wall or450

walk toward the wall is where the starting point lies relative to this discontinuity. As451

time advances, the discontinuity in s∗(x,t) propagates, and since the starting point lies452

below the discontinuity, the path follows the arrows and walks around the obstacle. In453

the case when T = 2, the starting point is above the discontinuity, and thus the path454

walks toward the obstacle, rather than around it.455

Discontinuities in s∗(x,t) are to be expected and relate to non-uniqueness of the456

optimal path. If x0 lay directly on the discontinuity in s∗(x,0), then either walking457

around the obstacle or toward it would be equally optimal, since both would result in458

a path that ends the same distance from the desired end point. Mathematically, one459

reason to expect discontinuities in s∗(x,t) is because s∗(x,t) is closely related to the460

gradient ∇u(x,t) of the solution to the HJB equation. Indeed, in the case of isotropic

(a) t= 0.0 (b) t= 0.7

(c) t= 1.4 (d) t= 2.1

Fig. 8: The discontinuity in the control value s∗(x,t) propagates as time increases

461
motion (that is, when the equation of motion has the form ẋ=f(x)s), we will have462

s∗(x,t) =−∇u(x,t)/‖∇u(x,t)‖2. When the motion is anisotropic, as is the case in our463

model, the relationship between s∗(x,t) and ∇u(x,t) is no longer so explicit, but we464

can still anticipate that discontinuities in ∇u(x,t) will give rise to discontinuities in465

s∗(x,t), and as stated above, we expect the solutions of Hamilton-Jacobi equations to466

have discontinuities in their derivatives [4, 11, 32].467

When we add uncertainty, the path planning strategy becomes more greedy, walking468

directly toward the end point and adjusting to avoid obstacles as is seen in figure 1.469

When there is a wall, this strategy is costly because if one walks toward the wall, there470

may be insufficient time to adjust the route, and thus the critical time T ∗ required to471
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walk around the wall increases rapidly. This is why the large increase in T is necessary472

in the example of El Capitan in figure 4. We observe the same behavior in this synthetic473

example with the wall, though the increase in T as not as pronounced as in the case of474

El Capitan. In figure 9a, we set σ= 0.3 and notice that to wrap around the wall and475

reach the end point, the optimal path computed using method (i) requires an end time476

of T = 4.75 rather than T = 4.25 in the deterministic case. In figure 9b, we use method477

(ii), computing the average path over 10000 trials, and the path cuts through the wall478

since enough individual paths were pushed off course due to the random perturbations,479

as is seen with the pink path in the figure. As in figure 5f, an individual could not480

realistically traverse the average path, since the wall is impassable. Thus, it seems that481

method (i) gives to a more practical result.482

(a) Method (i), σ= 0.3, T = 4.75. (b) Method (ii), average path, standard de-
viation and three realizations.

Fig. 9: Optimal paths around the wall with uncertainty.

The dependence of the model on the parameter T is a major qualitative difference483

between this optimal path planning model and the model presented in [37]. That model484

deals only with the fully deterministic case, and uses a level set formulation wherein485

level sets representing optimal travel evolve outward from the starting point, and the486

terminal time T is defined as the time required for the level sets to envelop the end487

point. However, when we add uncertainty to the model, we introduce diffusion in the488

HJB equation and lose the level set intepretation of the equation. Thus while the model489

in [37] has the advantage of not depending on T , this model is more generally applicable.490

4.4. Convergence to the Deterministic Path as σ↘0. As stated in sec-491

tion 2.3, given mild regularity conditions on our Hamiltonian, the solution to the492

stochastic HJB equation (2.15) will converge to the viscosity solution to the ordinary493

HJB equation (2.4) as σ↘0 [11]. We can see this empirically, not by observing the494

solution itself, but by examining the optimal path suggested by our algorithm at dif-495

ferent levels of σ. This is shown in figure 10. Here we have plotted many paths on496

the same figure, each computed using method (i) with a different σ value. As before,497

paths plotted in green were computed using smaller σ values, and those in red were498

computed using larger σ values. In figure 10a, we see a very clear color gradient: the499

red paths computed with larger σ clearly tend toward the green path as σ decreases500

to zero. In figure 10b, this is less obvious, especially since, for larger σ, the path takes501

a qualitatively different route. However, we do see that for smaller σ (greener paths),502

there is a tendency toward the deterministic optimal path.503

5. Conclusions. Path planning algorithms have wide-reaching applications in self-504

driving vehicles, reach-avoid games, pedestrian flow modeling and many other areas.505

Many previous models for path planning are completely deterministic, while in reality506

stochastic effects may be present and can significantly alter the motion along the path.507
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(a) Convergence of paths with synthetic el-
evation data.

(b) Convergence of paths at El Capitan.

Fig. 10: As σ↘0, the stochastic optimal path converges back to the deterministic
optimal path.

In this paper we have developed a method for optimal path planning of human508

walking paths in mountainous terrain using a control theoretic approach and a Hamilton-509

Jacobi-Bellman (HJB) equation and allowing for uncertainty in the controlled equation510

of motion. The walking speed in our model depends on local slope in the direction511

of travel, giving rise to an anisotropic control problem. In the HJB equation, the512

uncertainty presents itself in the form of diffusion, leading to a viscous Hamilton-Jacobi-513

type equation. We suggest numerical methods for solving these equations, opting for514

a semi-implicit numerical scheme with a minimally diffusive numerical Hamiltonian,515

since any spurious numerical diffusion could be intepreted as nontrivial amounts of516

uncertainty in the equation of motion. After solving the HJB equation numerically, we517

suggest two methods for resolving the optimal path. First, we use the optimal control518

values resolved via the stochastic HJB equation, but simulate a deterministic equation519

of motion. This could simulate a person walking through a dark room or a dense forest,520

wherein they are cognizant of some uncertainty as they are planning the route, but521

do not feel random perturbations in velocity as they walk along a path. Second, we522

integrate the stochastic differential equation many times and arrive at a single path523

by averaging the results. This could model scenarios such as underwater unmanned524

vehicles, wherein the traveler actually feels the stochastic effects on the travel velocity.525

We test our algorithm, including both methods for resolving the path, with syn-526

thetic elevation data first, and then with real elevation data in the area surrounding El527

Capitan. We compare these two notions of optimal path, and conclude that in the case528

of real elevation data or impassable barriers, the first notion gives a more meaningful529

result. We also observe that in these cases, there will be discontinuities in the optimal530

control parameter and, especially in the presence of large walls, the position of these531

discontinuities can determine the walking strategy. Finally, we simulate the model at532

different levels of uncertainty in the equation of motion and observe that as uncertainty533

tends to zero, the optimal path path suggested by the model converges back to the534

deterministic optimal path.535
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