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Abstract. We study information matrices for statistical models by the L2-Wasserstein
metric. We call them Wasserstein information matrices (WIMs), which are analogs of
classical Fisher information matrices. We introduce Wasserstein score functions and
study covariance operators in statistical models. Using them, we establish Wasserstein-
Cramer-Rao bounds for estimations and explore their comparisons with classical results.
We next consider the asymptotic behaviors and efficiency of estimators. We derive the on-
line asymptotic efficiency for Wasserstein natural gradient. Besides, we study a Poincaré
efficiency for Wasserstein natural gradient of maximal likelihood estimation. Several an-
alytical examples of WIMs are presented, including location-scale families, independent
families, and rectified linear unit (ReLU) generative models.

1. Introduction

Fisher information matrix plays essential roles in statistics, physics, and differential
geometry with applications in machine learning [1, 2, 5, 8, 10]. In statistics, it is a funda-
mental quantity for the estimation theory, including both design and analysis of estimators.
In particular, the maximal likelihood principle is a well-known example. It connects the
Fisher information matrix to another concept, named score functions. They frequently
arise in statistical efficiency and sufficiency problems, especially for Cramer-Rao bound
and Fisher-efficiency.

Fisher information matrix is also named Fisher-Rao metric in information geometry [3].
It uses the Fisher information matrix to study divergence functions and their invariance
properties [3]. Furthermore, the Fisher information matrix is also useful for statistical
learning problems. In particular, the natural gradient method [2] rectifies the gradient
direction by the Fisher information matrix. It is shown that the Fisher natural gradient
method is asymptotically online Fisher-efficient.

On the other hand, optimal transport introduces the other metric in probability space
[23, 24], often named Wasserstein metric [11, 20]. Different from information geometry, it
encodes the geometry of sample space into the definition of metric in probability space.
Nowadays, it is known that the Wasserstein metric intrinsically connects the Kullback-
Leibler (KL) divergence with Fisher information functional [20], known as de Bruijn iden-
tities [26]. Many concentration inequalities such as log-Sobolev inequalities and Poincaré
inequalities arise naturally [21].

Key words and phrases. Wasserstein information matrix; Wasserstein score function; Wasserstein-
Cramer-Rao inequality; Wasserstein online efficiency; Poincaré efficiency.
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Despite various studies of optimal transport in full probability space, not much is known
in parametric statistical models, which play crucial roles in parametric statistics. Funda-
mental questions arise: Is there a statistical theory based on optimal transport? Compared
to Fisher information matrices and Fisher statistics, what are counterparts of information
matrices, score functions, Cramer-Rao bounds, and online efficiencies of natural gradient
methods in Wasserstein statistics? Moreover, can this theory provide statistical tools for
machine learning models, especially for generative models?

In this paper, following key ideas in [12], we positively answer the above questions
by introducing a Wasserstein information matrix (WIM). We derive the WIM by pulling
back the Wasserstein metric from full probability space to finite-dimensional parametric
statistical models [15, 16]. We show that the WIM defines Wasserstein score functions with
a Wasserstein covariance operator of estimators. Based on them, a Wasserstein-Cramer-
Rao bound is derived. Furthermore, combining WIM with Wasserstein score functions,
we recover an asymptotic efficiency property of the online Wasserstein natural gradient
methods.

Meanwhile, by comparing both Wasserstein and Fisher information matrices, we natu-
rally prove several concentration inequalities such as log-Sobolev inequalities and Poincaré
inequalities within statistical models. Extending the study in full probability space, we
further decompose a Hessian term and study the Ricci-Information-Wasserstein (RIW)
criterion for log-Sobolev inequalities and Poincaré inequalities in statistical models. Here
we provide several examples in analytic probability families. Those functional inequalities
turn out to be essential in a new efficiency property named Poincaré efficiency. This is
concerned with dynamics where the Wasserstein natural gradient works on Fisher score
functions (related to maximal likelihood estimators). We prove convergence rate analysis
for these dynamics. Several numerical experiments are provided to confirm our conclu-
sions.

Lastly, we demonstrate that the WIM provides a clear statistical theory for complicated
models coming from machine learning approaches, especially implicit generative models.
For example, we carefully study a one-dimensional probability family generated by push-
forward maps based on the ReLU function. We demonstrate that the WIM still exists in
this family while the classical Fisher information matrix does not exist. In other words,
it is suitable to introduce a statistical theory based on WIMs. It can be a theoretical
background for machine learning implicit models.

In literature, there have been lots of works attempting to use tools from optimal trans-
port and information geometry to study statistical problems. [6] designs new estimators
for parametric inference using Wasserstein distance. This idea is utilized in approximating
Bayesian computation. The authors apply Wasserstein distance to measure the similarity
between synthetic and observed data sets. Compared to them, we focus on the study of
estimation and efficiency of WIMs. We expect it could have potential properties in Wasser-
stein estimators. In [7], they design a generalized information matrix based on a maximum
mean discrepancy. Compared to them, we majorly focus on information matrices gener-
ated by the Wasserstein metric and study related statistical properties. Most closely, [22]
defines a Wasserstein covariance by applying a closed-form formula for one-dimensional
Wasserstein metric. This is a canonical definition. Our approach further extends this
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idea into general parametric models. We start by introducing the WIM in parametric
models. Using it, we define Wasserstein score functions as well as the Wasserstein covari-
ance operator. We further establish the Wasserstein-Cramer-Rao bound and associated
statistical efficiency properties. Also, [25] defines several new divergence functions by com-
bining knowledge from both optimal transport and information geometry. Here we focus
on statistical properties of WIMs in statistical models. Furthermore, Wasserstein natural
gradient method has been widely studied in optimization techniques with machine learning
applications [4, 9, 18, 13, 17]. Here we focus on statistical theory and study its associated
online efficiency. Compared with classical online Fisher-efficiency results in [2, 19], our
results can deal with general information matrices. In particular, for WIMs, we discover
a new efficiency property named Poincaré efficiency. It relies on a comparison between
Wasserstein and Fisher information matrices, demonstrate its connection with Poincaré
inequalities.

The paper is organized as follows. In section 2, we establish the definition of the WIM.
We present it analytically for several well-known probability families. We provide an
explicit example of WIMs for ReLU generative models. Under this model, we show that
the WIM exists while the Fisher information matrix does not exist. In section 3, with
the introduction of the Wasserstein covariance, the Wasserstein-Cramer-Rao inequality
is established. In section 4, we introduce and discuss both Wasserstein efficiency and
Poincaré efficiency.

Probability Family Wasserstein information matrix Fisher information matrix
Uniform:

p(x; a, b) =
1

b− a
1(a,b)(x)

GW (a, b) = 1
3

(
1 1

2
1
2 1

)
GF (a, b) not well-defined

Gaussian:

p(x;µ, σ) =
e−

1
2σ2

(x−µ)2

√
2πσ

GW (µ, σ) =

(
1 0
0 1

)
GF (µ, σ) =

(
1
σ2 0
0 2

σ2

)
Exponential:

p(x;m,λ) = λe−λ(x−m) GW (m,λ) =

(
1 1

λ2
1
λ2

2
λ4

)
GF (m,λ) not well-defined

Laplacian:

p(x;m,λ) =
λ

2
e−λ|x−m|

GW (m,λ) =

(
1 0
0 2

λ4

)
GF (m,λ) =

(
λ2 0
0 1

λ2

)
Location-scale:

p(x;m,λ) =
1

λ
p(
x− p
λ

)
GW (λ,m) =

(
Eλ,mx2−2mEλ,mx+m2

λ2
0

0 1

)
GF (λ,m) =

 1
λ2

(
1 +

∫
R

(
(x−m)2p′2

λ2p
+ (x−m)p′

λ

)
dx
) ∫

R
(x−m)p′2

λ3p
dx∫

R
(x−m)p′2

λ3p
dx 1

λ2

∫
R
p′2

p dx


Independent:

p(x, y; θ) = p(x; θ)p(y; θ)
GW (x, y; θ) = G1

W (x; θ) +G2
W (y; θ) GF (x, y; θ) = G1

F (x; θ) +G2
F (y; θ)

ReLU push-forward:

p(x; θ) = fθ∗p(x),

fθ θ-parameterized ReLUs, Ex. 8.

GW (θ) = F (θ) ,

F cdf of p(x), F (y) =

∫ y

−∞
p(x)dx.

GF (θ) not well-defined

Table 1. In this table, we present Wasserstein, Fisher information matri-
ces for probability families.

2. Wasserstein information matrix and score functions

In this section, we present Wasserstein information matrices (WIMs) and score func-
tions. Several analytical studies are presented.

Given a sample space X ⊂ Rn, let P(X ) denote the space of probability distributions
over X . Given a metric tensor g on P(X ), we call (P(X ), g) density manifold. Consider a
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Family Entropy functional Fisher-information functional Log-Sobolev inequality(LSI(α))

Gaussian

H̃(pµ,σ) = − 1

2
log 2π − log σ − 1

2
,

H̃(pµ,σ|pµ∗,σ∗) = − log σ + log σ∗ −
1

2

+
σ2 + (µ− µ∗)2

2σ2
∗

.

Ĩ(pµ,σ) =
1

σ2
,

Ĩ(pµ,σ|pµ∗,σ∗) =
(µ− µ∗)2

4σ4
∗

+

(
− 1

σ
+

σ

σ2
∗

)2

.

H̃(pµ,σ|pµ∗,σ∗) <
1

2α
Ĩ(pµ,σ|pµ∗,σ∗),

µ, σ > 0.

Laplacian

H̃(pm,λ) = − 1 + log λ− log 2,

H̃(pm,λ|pm∗,λ∗) = − 1 + log λ− log λ∗

+ λ∗ |m−m∗|+
λ∗e
−λ|m−m∗|

λ
.

Ĩ(pλ,m) =
λ2

2
,

Ĩ(pm,λ|pm∗,λ∗) = λ2
∗

(
1− e−λ|m−m∗|

)2

+

(
(λ |m−m∗|+ 1)λ∗e

−λ|m−m∗| − λ
)2

2
.

H̃(pλ,m|pλ∗,m∗) <
1

2α
Ĩ(pλ,m|pλ∗,m∗),

m ∈ R, λ > 0.

Table 2. In this table, we continue to list the entropy functional, the
Fisher information functionals, log-Sobolev inequalities for probability fam-
ilies.

parameter space Θ ⊂ Rd and a parameterization function

p : Θ→ P (X ) , θ 7→ pθ

which can also be viewed as p : X ×Θ→ R. Here Θ is named a statistical model. Denote
〈f, h〉 =

∫
X f(x)h(x)dx for the L2(X ) inner product, where dx refers to the Lebesgue

measure on X . And we denote by (v, w) = v · w the (pointwise) Euclidean inner product
of two vectors.

2.1. Information matrix. We first review metric tensors on parameter space and con-
nect them with information matrices.

Definition 1 (Statistical information matrix). Consider the density manifold (P(X ), g)
with a metric tensor g, and a smoothly parametrized statistical model pθ with parameter
θ ∈ Θ ⊂ Rd. Then the pull-back metric G ∈ Rd×d of g onto this parameter space Θ is
given by

G(θ) =
〈
∇θpθ, g(pθ)∇θpθ

〉
.

Denote G(θ) = (G(θ)ij)1≤i,j≤d, then

G(θ)ij =

∫
X

∂

∂θi
p(x; θ)

(
g(pθ)

∂

∂θj
p
)

(x; θ)dx.

Here we name g statistical metric, and call G statistical information matrix.

In geometry, using this metric tensor g to rise(resp. lower) indices, there exists a
canonical isomorphism from tangent(resp. cotangent) space to cotangent(resp. tangent)
space, namely:

g(p) : TpP(X ) ' T ∗pP(X ), f 7→ [g(p) (f)] ,

g(p)−1 : T ∗pP(X ) ' TpP(X ), [f ] 7→ g(p)−1 (f) .

Thus the metric tensor can actually be viewed as an operator between these two spaces.
The above tangent space TpP(X ) is identified with the function space:

TpP(X ) ' C0(X ) = {f ∈ C(X )|
∫
X
fdx = 0},

where C(X ) is the function space of continuous function on the space X . And its dual
space C(X )/R, i.e. f, g ∈ C(X ), f ∼ g if f = g + a, a ∈ R, can be identified with the
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cotangent space of the density manifold: T ∗pP(X ) ' C(X )/R. We use [f ] to represent
the equivalent class of this function in C(X )/R. And the pairing between tangent spaces
and cotangent spaces is merely 〈f, h〉 =

∫
X fhdx, where we abuse the symbol 〈, 〉 for the

inner product. We note here that tangent spaces of a statistical model Θ can be viewed
as subspaces of that of density manifold, i.e. we have inclusion:

TpΘ ↪→ TpP(X ).

While taking the dual of this inclusion we get projection from the cotangent space of the
density manifold to that of the statistical model:

T ∗pP(X )→ T ∗pΘ.

An approach in information geometry is that one can reinterpret the metric tensor in
the dual coordinates, i.e. cotangent space.

Definition 2 (Score function). Denote Φi : X ×Θ→ R, i = 1, ..., n satisfying

Φi(x; θ) =

[
g(p)

(
∂

∂θi
p(x; θ)

)]
.

We call Φis score functions associated with the statistical information matrix G and are
equivalent classes in C(X )/R. The representatives in equivalent classes are determined by
the following normalization condition:

EpθΦi = 0, i = 1, ..., n. (1)

Then the statistical information matrix satisfies

G(θ)ij =

∫
X

Φi(x; θ)
(
g(pθ)

−1Φj

)
(x; θ)dx.

Remark 1. The normalization condition is an enforced condition. It fixes a representative
for the score function in the equivalent class. And we assume that score functions are
always integrable w.r.t. pθ.

In above, there are two formulations of metric tensor, which use the following fact
g(p)−1 = g(p)−1g(p)g(p)−1. Thus

G(θ)ij =
〈
∇θipθ, g(pθ)∇θjpθ

〉
=
〈
g(pθ)∇θipθ, g(pθ)

−1g(pθ)∇θjpθ
〉

=
〈

Φi, g(pθ)
−1Φj

〉
.

Example 1. One important choice of metric is the Fisher-Rao metric:

g(p) : TpP(X ) ' T ∗pP(X ), f 7→
[
f

p

]
,

g(p)−1 : T ∗pP(X ) ' TpP(X ), [f ] 7→ p (f − Epf) .

In this case, the statistical information matrix satisfies

GF (θ)ij = 〈 ∂
∂θi

pθ,
1

pθ

∂

∂θj
pθ〉 =

∫
X

∂
∂θi
p(x; θ) ∂

∂θj
p(x; θ)

p(x; θ)
dx.
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And score functions of Fisher information matrix form

ΦF
i (x; θ) =

1

p(x; θ)

∂

∂θi
p(x; θ) =

∂

∂θi
log p(x; θ),

where the normalization condition holds automatically. In terms of score functions, the
Fisher information matrix forms

GF (θ)ij =

∫
X

ΦF
i (x; θ)

(
gF (p)−1ΦF

j

)
(x; θ)dx

=

∫
X

∂

∂θi
log p(x; θ)

∂

∂θj
log p(x; θ)p(x; θ)dx

= Epθ

(
∂

∂θi
log p(x; θ)

∂

∂θj
log p(x; θ)

)
.

In literature, ΦF
i (x; θ) = ∂

∂θi
log p(x; θ) is named (Fisher) score function; while GF (θ) is

the Fisher information matrix. They play important roles in estimation, efficiency and
Cramer-Rao bound.

Remark 2. The definition of Fisher score functions can be given in classical statistics as
the gradient of the log-likelihood function w.r.t. parameters. Here we view it as an object
on cotangent space associated with the Fisher-Rao metric on statistical models. That is,
we have a family of canonical tangent vector fields ∂

∂θi
pθ on statistical models. Whenever

there is a metric g(pθ) on this manifold, we can define score functions associated with it
as:

Φi = g(pθ)
∂

∂θi
pθ.

From above fact, we observe that statistical concepts are related to the metric tensor in
density manifold pull-back onto parameter space. In particular, classical statistics relates
to the Fisher-Rao metric. The pull-back metric tensor forms an information matrix while
dual variables define score functions. In this paper, we derive these notations in the other
important statistical metric, known as the Wasserstein metric.

2.2. Wasserstein information matrix. The other statistical metric, namely Wasser-
stein metric tensor forms

gW (p) = (−∆p)
−1, where ∆p = ∇ · (p∇).

Here ∆p is an elliptic operator weighted on a probability density p. When p satisfies
suitable conditions, standard PDE theory guarantees that the operators ∆−1

p and ∆p are
an inverse to each other between function spaces:

∆−1
p : C0(X )→ C(X )/R;

∆p : C(X )/R→ C0(X ).

The pull-back GW of gW is given by

GW (θ)ij = 〈 ∂
∂θi

pθ, (−∆pθ)
−1 ∂

∂θj
pθ〉.
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Similar to the Fisher information matrix, we can rewrite GW by dual coordinates. Denote

ΦW
i (x; θ) = (−∆pθ)

−1 ∂

∂θi
p(x; θ).

Then

GW (θ)ij = 〈 ∂
∂θi

pθ, (−∆pθ)
−1 ∂

∂θj
pθ〉

= 〈ΦW
i , (−∆pθ)Φ

W
j 〉

=

∫
X

(∇xΦW
i (x; θ),∇xΦW

j (x; θ))p(x; θ)dx,

where the last equality holds by integration by parts w.r.t. x.

We summarize the above fact into the following definition.

Definition 3 (Wasserstein information matrix & score function). Denote GW (θ) ∈ Rd×d:

GW (θ)ij = Epθ
[
∇xΦW

i (x; θ) · ∇xΦW
j (x; θ)

]
,

where · refers to the inner product of vector and ΦW
i : X ×Θ→ R satisfies

−∇x · (p(x; θ)∇xΦW
i (x; θ)) =

∂

∂θi
p(x; θ), EpθΦ

W
i = 0, i = 1, 2, ..., d.

We name functions ΦW
i (x; θ) =

(
(−∆pθ)

−1 ∂
∂θi
pθ

)
(x; θ) Wasserstein score functions, and

call the matrix GW (θ) the Wasserstein information matrix.

Remark 3. This definition of information matrices is motivated by an intrinsic connection
among distances, divergence functions, and metrics. Specifically, given a smooth family of
probability densities p(x; θ) and a given perturbation ∆θ ∈ TθΘ, consider following Taylor
expansions in term of ∆θ:

H(p(θ)‖p(θ + ∆θ)) =
1

2
∆θTGF (θ)∆θ + o((∆θ)2),

W2(p(θ + ∆θ), p(θ))2 = ∆θTGW (θ)∆θ + o((∆θ)2).
(2)

Here H represents the Kullback–Leibler (KL) divergence or the relative entropy functional

H(p(θ)‖p(θ + ∆θ)) =

∫
X
p(x; θ) log

p(x; θ)

p(x; θ + ∆θ)
dx.

While W 2
2 denotes the squared L2-Wasserstein distance defined by

W2(p(θ), p(θ + ∆θ))2 = inf
π∈Π(p(θ),p(θ+∆θ))

{∫
X×X

dX (x, y)2 dπ (x, y)
}
, (3)

where Π (p(θ), p(θ + ∆θ)) refers to the set of couplings between p(θ), p(θ+∆θ) and dX is a
distance function defined in X . Thus our approach parallels classical Fisher statistics. The
Fisher information matrix approximates the KL divergence, which relates to the Fisher
distance in Fisher geometry [1, 5], while WIM approximates the Wasserstein distance
in Wasserstein geometry. Meanwhile, our approach can be viewed as exploring another
aspect, namely metric aspect, of the Wasserstein statistics. For example, it can be related
to the study of Wasserstein estimators [6].
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We next study several basic properties of WIMs and score functions. We first illustrate
a relation between Wasserstein and Fisher score functions.

Proposition 4 (Poisson equation). Wasserstein score functions ΦW
i (x; θ) satisfy the fol-

lowing Poisson equation

∇x log p(x; θ) · ∇xΦW
i (x; θ) + ∆xΦW

i (x; θ) = − ∂

∂θi
log p(x; θ). (4)

Proof. Notice the fact that(
∆pθ

)
ΦW (x; θ) = ∇x · (p(x; θ)∇xΦW (x; θ))

= ∇xp(x; θ) · ∇xΦW (x; θ) + p(x; θ)∆xΦW (x; θ).

Then the Wasserstein score function ΦW
i (x) satisfies

∇xp(x; θ) · ∇xΦW (x; θ) + p(x; θ)∆xΦW (x; θ) = − ∂

∂θi
p(x; θ).

Divide the above equation on both sides by p(x; θ):

1

p(x; θ)

{
∇xp(x; θ) · ∇xΦW (x; θ) + p(x; θ)∆xΦW (x; θ)

}
= − 1

p(x; θ)

∂

∂θi
p(x; θ),

i.e.
1

p(x; θ)
∇xp(x; θ) · ∇xΦW (x; θ) + ∆xΦW (x; θ) = − 1

p(x; θ)

∂

∂θi
p(x; θ).

Since 1
p(x;θ)∇xp(x; θ) = ∇x log p(x; θ) and 1

p(x;θ)
∂
∂θi
p(x; θ) = ∂

∂θi
log p(x; θ), we prove the

property (4). �

We then demonstrate that Wasserstein score functions and information matrices can
also be decomposed into a summation of separable functions in independent models.

Proposition 5 (Separability). If p(x; θ) is an independence model, i.e.

p(x, θ) = Πn
k=1pk(xk; θ), xk ∈ Xk, x = (x1, · · · , xn).

Then there exists a set of one-dimensional functions ΦW,k : Xk ×Θk → R, such that

ΦW (x; θ) =
n∑
k=1

ΦW,k(xk; θ). (5)

In addition, the WIM is separable:

GW (θ) =
n∑
k=1

GkW (θ),

where GkW (θ) = Epθ
(
∇xkΦW,k(x; θ),∇xkΦW,k(x; θ)

)
.

Proof. The proof follows from proposition 4. Suppose one can write the solution in form
of (5), then equation (4) forms

n∑
k=1

{
∇xk log pk(xk; θk)∇xkΦW,k(xk; θ) + ∆xkΦW,k(xk; θ)−

∂

∂θi
log pk(xk; θ)

}
= 0.
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From the separable method for solving the Poisson equation, we derive

∇xk log pk(xk; θk)∇xkΦW,k(xk; θ) + ∆xkΦW,k(xk; θk)−
∂

∂θi
log pk(xk; θ) = 0.

We finish the first part of the proof. In addition,

GW (θ) = Epθ
(
∇xΦW (x; θ),∇xΦW (x; θ)

)
= Epθ

(∑
k

(∇xkΦW,k(x; θ),∇xkΦW,k(x; θ)

)
=
∑
k

Epθ
(
∇xkΦW,k(x; θ),∇xkΦW,k(x; θ)

)
=
∑
k

GkW (θ).

�

We next list some analytical solutions for WIMs and score functions in 1-d case. See
related studies in [23] (c.f. Ch 2.2).

Proposition 6 (One-dimensional sample space). If X ⊂ R1, Wasserstein score functions
satisfy

ΦW
i (x; θ) = −

∫
X∩(∞,x]

1

p(z; θ)

∂

∂θi
F (z; θ)dz, (6)

where F (x; θ) =
∫
X∩(∞,x] p(y; θ)dy is the cumulative distribution function. And the WIM

satisfies

GW (θ)ij = Epθ

( ∂
∂θi
F (x; θ) ∂

∂θj
F (x; θ)

p(x; θ)2

)
.

If the dimension of sample space X is larger than 1, exact solutions of Wasserstein score
functions and information matrices depend on solutions of Poisson equation (4). We leave
the derivation of general formulas for interested readers.

2.3. Analytic examples. We present several analytical examples of the WIM in one-
dimensional sample space. The derivation is given in section A.

Example 2 (Gaussian distribution). Consider Gaussian distribution families with mean

value µ and standard variance σ > 0, i.e. p(x;µ, σ) = 1√
2πσ

e−
1

2σ2
(x−µ)2 . Wasserstein score

functions satisfy

ΦW
µ (x;µ, σ) = x− µ, ΦW

σ (x;µ, σ) =
(x− µ)2 − σ2

2σ
.

And the WIM satisfies

GW (µ, σ) =

(
1 0
0 1

)
.
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Example 3 (Exponential distribution). Consider exponential distribution families Exp(m,λ),

i.e. p(x;m,λ) = 1[m,∞)(x)λe−λ(x−m), where the function 1C is the indicator function for
a set C ⊂ R. Wasserstein score functions satisfy

ΦW
λ (x;m,λ) =

(x−m)2 − 2
λ2

2λ
, ΦW

m (x;m,λ) = x−m− 1

λ
.

And the WIM satisfies

GW (m,λ) =

(
1 1

λ2
1
λ2

2
λ4

)
.

Example 4 (Laplacian distribution). Consider Laplacian distribution families La(m,λ),

i.e. p(x;m,λ) = λ
2 e
−λ|x−m|. Wasserstein score functions satisfy

ΦW
λ (x;m,λ) =

(x−m)2 − 2
λ2

2λ
, ΦW

m (x;m,λ) = x−m.

Notice that score functions for exponential families and Laplacian families have similar
formulas. And the WIM satisfies

GW (m,λ) =

(
1 0
0 2

λ4

)
.

We will show below that the Laplacian family has an advantage that densities within this
family have the same support. Thus this model is convenient for us to compare the WIM
with the Fisher information matrix. See details in section B.3.

Example 5 (Uniform distribution). Consider uniform distribution families within interval
[a, b], i.e. p(x; a, b) = 1

b−a1[a,b](x). Wasserstein score functions satisfy

ΦW
a (x; a, b) =

x(a+ b− x)

(b− a)
− b2 + a2 + 4ab

6
,

ΦW
b (x; a, b) =

b(x− 2a)

(b− a)
− b2 − 3ab

2
.

And the WIM satisfies

GW (a, b) =
1

3

(
1 1

2
1
2 1

)
.

Example 6 (Wigner semicircle distribution). Consider semicircle distribution families, i.e.

p(x;m,R) = 1[−R+m,R+m](x) 2
πR2

√
R2 − (x−m)2. Wasserstein score functions satisfy

ΦW
R (x;m,R) =

1

R
(
(x−m)2

2
− R2

8
), ΦW

p (x;m,R) = x−m.

And the WIM satisfies

GW (m,R) =

(
1 0
0 1

4

)
.

Example 7 (Independent model). Consider an independent model as follow: suppose
X ∼ p1(x; θ), and Y ∼ p2(x; θ), and (X,Y ) ∼ p(x, y; θ), then

p(x, y; θ) = p1(x; θ)p2(y; θ).
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Denote Wasserstein score functions (resp. WIM) for statistical model X ∼ p1(x; θ), Y ∼
p2(x; θ) as ΦW

1 (x; θ),ΦW
2 (x; θ)(G1

W (x; θ), G2
W (x; θ)) respectively. Then, Wasserstein score

functions for this model (X,Y ) ∼ p(x, y; θ) satisfy

ΦW (x, y; θ) = ΦW
1 (x; θ) + ΦW

2 (y; θ),

because of the additivity of expectation EpθΦW (x, y; θ) = EpθΦW
1 (x; θ)+EpθΦW

2 (y; θ) = 0.
And the WIM satisfies

GW (x, y; θ) = G1
W (x; θ) +G2

W (y; θ).

The proof follows directly from proposition 5.

In above discussions, all examples are based on location-scale families, which will be
derived carefully in section A.2. We show that location-scale families are totally geodesic
submanifolds in Wasserstein geometry.

2.4. WIM in generative models. In this section, we study the WIM for generative
models using ReLU function, which is given by

σ (x) =

{
0, x ≤ 0,

x, x > 0.

Generative models are powerful in machine learning [14]. It applies the reparameterization
trick (known as push-forward relation) to conduct efficient sampling. In practice, one
often applies the ReLU as a push-forward function (7). For this reason, we call this kind
of models ReLU push-forward family. The push-forward measure f∗p is defined as∫

A
f∗pdx =

∫
f−1(A)

pdx, ∀A ⊂ R. (7)

To keep derivations simple, we consider one-dimensional cases with a given distribution
p0 (x), x ∈ R. And its cumulative distribution function is denoted by F0 (x).

Example 8 (ReLU push-forward family). We use a family of ReLU functions fθ param-
eterized by θ to generate a push-forward family

p : Θ ' R→P (R) : θ 7→ pθ,

pθ (x) = p (x; θ) = (fθ∗p0) (x) , fθ (x) = σ (x− θ) =

{
0, x ≤ θ,
x− θ, x > θ.

The WIM of pθ satisfies
GW (θ) = 1− F0 (θ) . (8)

We can also consider another family of ReLU maps to push forward the source distri-
bution. This family is given by

p : Θ ' R→P (R) : θ 7→ pθ

pθ (x) = p (x; θ) = (hθ∗p0) (x) , hθ (x) = σ (x− θ) + θ =

{
θ, x ≤ θ,
x, x > θ.

The WIM of pθ satisfies
GW (θ) = F0 (θ) . (9)
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A figure illustrating these two families is provided below.

Figure 1. This figure plots two examples of push-forward families we
described above with parameters chosen as θ1 = 3, θ2 = 5.

Remark 4. To calculate the WIMs of this model, we cannot use previous approaches of
score functions, since it is not smooth enough. Instead, we utilize the idea stated in remark
3. Namely, we use the relation (2) between Wasserstein distance and the WIM to compute
the latter.

Proof. Consider the following two push-forward distributions given by

(fθ+∆θ∗p0) (x) = F0 (θ + ∆θ) δ0 + p0 (·+ θ + ∆θ)[0,∞) ,

(fθ∗p0) (x) = F0 (θ) δ0 + p0 (·+ θ)[0,∞) ,

where δ0 refers to the Dirac measure concentrating at point 0. And p0 (·+ θ)[0,∞) repre-

sents the measure p̃ (x) = p0 (x+ θ) restricting to the interval [0,∞). Using monotonicity
of transportation plan in 1-d, we conclude that its restriction on (0,∞) transports mea-
sure on x to x+ ∆θ. And it remains to transport the Dirac measure centered at 0 to the
remained place. The transportation cost is given by

W 2
2 (fθ∗p0, fθ+∆θ∗p0) =

∫ ∞
0

p0 (x+ θ + ∆θ) (∆θ)2 dx+

∫ ∆θ

0
x2p0 (x+ θ) dx

= (∆θ)2 (1− F0 (θ + ∆θ)) +O
(

(∆θ)3
)
,

(10)

where the third equality holds by∫ ∆θ

0
p0 (x+ θ) dx = O (∆θ) .

Notice in formula (10), we decompose the transportation cost into two parts: the first
one is concerned with the cost on the right part of 0, while the second one considers
transporting Dirac measure at 0 to the remained part. Since the WIM is an infinitesimal
approximation of the Wasserstein distance, i.e. equation (2). The conclusion (8) follows.
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For the other family, derivations follow the same method as before. Specifically, we have

W 2
2 (hθ∗p0, hθ+∆θ∗p0) =

∫ ∆θ

0
x2p0 (x+ θ) dx+ (∆θ)2 F0 (θ)

= (∆θ)2 F0 (θ) +O
(

(∆θ)3
)
,

where we again decompose the transportation cost into two parts. The first one is ab-
solutely continuous w.r.t the Lebesgue measure, while the second one contains a Dirac
measure. �

Here we notice that density functions in ReLU push-forward family can be singular.
Thus the Fisher information matrix, which depends on an explicit formula of density
functions, namely

GF (θ)ij =

∫
X

∂

∂θi
log p(x; θ)

∂

∂θj
log p(x; θ)p(x; θ)dx

fails to exist in these models. On the contrary, as we have shown in the above example,
the WIM still exists. This property shows that the WIM can provide statistical studies
for generative models, while the Fisher information matrix in classical statistics can not.

3. Wasserstein estimation

In this section, we define the Wasserstein covariance and establish the Wasserstein-
Cramer-Rao bound. Based on these concepts, we introduce a notion of efficiency in
Wasserstein statistics. Several examples based on the previous section are provided.

3.1. Estimation and efficiency. Following the spirit under which we introduce infor-
mation matrices in section 2, we generalize the definition of covariance matrix for a given
metric tensor g on probability space.

Denote 〈f, h〉g the inner product of cotangent vectors f, h in the metric g.

〈f, h〉g = 〈f, g(p)−1h〉.

Definition 7 (Information covariance matrix). Given a statistical model Θ with metric g,

and statistics T , T̃ which are of dimension m,n respectively, the information covariance

matrix of T ,T̃ associated to metric g is defined as:

Covgθ[T, T̃ ]ij = 〈Ti, T̃j〉g,

where Ti, T̃j are random variables as function of x. Denote the information variance as:

Vargθ[T ] = 〈T, T 〉g.

Remark 5. Here the inner product 〈Ti, T̃j〉g is obtained by viewing the statistics as cotan-
gent vectors on density manifold P(X ).

Example 9 (Fisher covariance). Given two statistics T1, T2, we view them as cotangent
vectors in space C(X )/R. Hence their Fisher inner product is defined as

〈T1, T2〉gF =

∫
X

(T1 − Epθ [T1]) (T2 − Epθ [T2]) pθdx.



14 LI AND ZHAO

Here choosing the function T1 − Epθ [T1] as the representative of [T1] is consistent with
the normalization requirement (1). Thus Fisher covariance (resp. variance) reduces to the
original definition of the covariance (resp. variance) in probability theory.

And the classical Cramer-Rao bound is given by

CovFθ [T (x)] � ∇θEpθ [T (x)]TGF (θ)−1∇θEpθ [T (x)],

where GF (θ) is the Fisher information matrix. In 1-d cases, the above forms

Varθ[T (x)] ≥ (∇θEpθT (x))2

GF (θ)
.

We next focus on the Wasserstein covariance operator.

Definition 8 (Wasserstein covariance). Given a statistical model Θ, denote the Wasser-
stein covariance as follows:

CovWθ [T1, T2] = Epθ
(
∇xT1(x),∇xT2(x)T

)
,

where T1, T2 are random variables as functions of x and the expectation is taken w.r.t.
x ∼ pθ. Denote the Wasserstein variance:

VarWθ [T ] = Epθ
(
∇xT (x),∇xT (x)T

)
.

Theorem 9 (Wasserstein-Cramer-Rao inequality). Given any set of statistics T = (T1, ..., Tm) : X →
Rm, where m is the number of the statistics, define two matrices CovWθ [T (x)], ∇θEpθ [T (x)]T

as below:

CovWθ [T (x)]ij = CovWθ [Ti, Tj ], ∇θEpθ [T (x)]Tij =
∂

∂θj
Epθ [Ti(x)],

then
CovWθ [T (x)] � ∇θEpθ [T (x)]TGW (θ)−1∇θEpθ [T (x)],

where the notion � refers to that the difference of two matrices is positive semi-definite.

Proposition 10 (Covariance property). Given the Wasserstein score function ΦW
i (x; θ)

and any smooth statistic f : X → R, then

∂

∂θi
Epθf(x) = Epθ(∇xΦW

i (x),∇xf(x)) = 〈ΦW
i , f〉gW .

Proof. Notice the fact that

∂

∂θi
Epθf(x) =

∂

∂θi

∫
X
f(x)p(x; θ)dx

=

∫
X
f(x)

∂

∂θi
p(x; θ)dx

=

∫
X
f(x)

(
−∇x · (p(x; θ)∇xΦW

i (x; θ))
)
dx

=

∫
X
∇xf(x) · ∇xΦW

i (x; θ)p(x; θ)dx,

where the third equality comes from the definition of Wasserstein score functions, while
the last equality holds by integration by parts formula in spatial domain. �
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Remark 6. This property is in contrast to Fisher score functions

∂

∂θi
Epθf(x) = Epθ

(
f(x)

∂

∂θi
log p(x; θ)

)
= Covθ[(f(x),

∂

∂θi
log p(x; θ))] = 〈ΦF

i , f〉gF .

This is merely a dual relation between tangent and cotangent space in the density manifold.

Proof of Theorem 9. By the definition of semi-positive matrix, it suffices to prove that for
arbitrary v ∈ Rm, we have:

vTCovWθ [T (x)]v ≥ vT∇θEpθ [T (x)]TGW (θ)−1∇θEpθ [T (x)]v.

Here we define Tv = vTT as the statistic associated to the vector v. Then the LHS of
above formula equals to the variance of Tv:

vTCovWθ [T (x)]v = VarWθ [Tv].

As we have mentioned before, score functions ΦW
i s, as a set of basis, span a linear

space V ∗p(x;θ)Θ of the cotangent space T ∗p(x;θ)P (X ) at each point p (x; θ) on the density

manifold. Meanwhile, the statistic Tv : X → R can be viewed as a cotangent vector field
on this statistical model. Now, the subspace V ∗p(x;θ)Θ at each point θ is a finite-dimensional

subspace of the Hilbert space T ∗p(x;θ)P(X ) endowed with the Wasserstein inner product.

Thus it is a closed linear subspace. By elementary theory of functional analysis, we have
orthogonal projection operator P:

P : T ∗p(x;θ)P(X )→ V ∗p(x;θ)Θ.

Since ΦW
i s span the whole subspace, we have:

〈ΦW
i , v −Pv〉gW = 0, ∀v ∈ T ∗p(x;θ)P(X ).

Now, back to the theorem, we have:

VarWθ [Tv] = Epθ
[
(∇xTv(x),∇xTv(x)T)

]
= 〈Tv, Tv〉gW ≥ 〈PTv,PTv〉gW ,

where the last inequality holds by the property of the orthogonal projection operator.
Now, since P is the projection onto the subspace V ∗p(x;θ)Θ with a set of basis ΦW

i , at

each point θ, we can write the cotangent vector PTv as a linear combination of Wasserstein
score functions:

PTv =
d∑
i=1

tθiΦ
W
i ,
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where the superscript of tθi indicates the dependency on point θ. Now, plugging this linear
combination into the Wasserstein metric, we get:

〈PTv,PTv〉gW =

d∑
i=1

tθi 〈PTv,ΦW
i 〉gW

=
d∑

i,k=1

tθkδ
k
i 〈PTv,ΦW

i 〉gW

=
d∑

i,j,k=1

tθkgkjg
ij〈PTv,ΦW

i 〉gW

=

d∑
i,j=1

〈PTv,ΦW
i 〉gW

(
GW (θ)−1

)
ij
〈PTv,ΦW

i 〉gW

= ∇θEpθ [Tv(x)]TGW (θ)−1∇θEpθ [Tv(x)],

where GW (θ)−1 is the inverse matrix of the WIM, gkj , g
ij are elements of matrix GW , G−1

W

respectively, and the third equality holds by the fact
∑

j gkjg
ij = δki . The last equality

is guaranteed by proposition 10. Combining the above calculation and the comparison
between the inner product of Tv and PTv, we obtain the desired result. �

Given the above theorem, we can define the Wasserstein efficiency as follows.

Definition 11. For an estimator T (x), it is Wasserstein efficient if and only if it attains
the Wasserstein-Cramer-Rao bound, namely:

VarWθ [T (x)] = ∇θEpθ [T (x)]TGW (θ)−1∇θEpθ [T (x)].

Remark 7. From the above derivation, a sufficient and necessary condition for a statistic
to be efficient is that, it can be written as a linear combination of score functions. Notice
this criterion is valid for any metrics, including both Fisher and Wasserstein metrics. This
is a purely geometric condition and we seek below in various statistical models to find out
its statistical significance.

Remark 8. As shown in the above theorem, if we denote the Fisher-Rao metric as gF (p) =
1
p , we then derive the classical Cramer-Rao bound:

Covθ(T (x), T (x)) ≥ ∇θEpθ [T (x)]TGF (θ)−1∇θEpθ [T (x)].

Here the Fisher-Rao metric corresponds to the classical covariance operator

Covθ(T (x), T (x)) = Epθ [(T (x)− EpθT (x), T (x)− EpθT (x))],

which depends on the expectation of statistics EpθT (X). Furthermore, given any infor-
mation matrix on a statistical model, we have an associated Cramer-Rao bound.

3.2. Analytic examples.
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Example 10 (Gaussian distribution). Recall that given a Gaussian distribution with
mean value µ and standard variance σ, Wasserstein score functions satisfy

ΦW
µ (x;µ, σ) = x− µ, ΦW

σ (x;µ, σ) =
(x− µ)2 − σ2

2σ
,

with the WIM

GW (µ, σ) =

(
1 0
0 1

)
.

Thus by the criterion, we know that efficient statistics in Wasserstein cases are exactly
those which can be written as linear combinations of score functions. Since statistics only
depend on samples xi and do not depend on parameters µ, σ, they must be of the form:

ax2 + bx+ c = 2aσΦW
σ + (2aµ+ b)ΦW

µ + c+ aµ2 + bµ− aσ2,

since Wasserstein cotangent vectors are determined up to a constant. Wasserstein efficient
statistics are degree 2 polynomials of x.

While score functions for Fisher case are given by:

ΦF
µ (x;µ, σ) =

x− µ
σ2

, ΦF
σ (x;µ, σ) =

(x− µ)2

σ3
− 1

σ
.

And the Fisher information matrix satisfies

GF (µ, σ) =

(
1
σ2 0
0 2

σ2

)
.

Thus we conclude that although we have different score functions in Wasserstein and
Fisher-Rao cases, it turns out that efficient statistics associated with these two information
matrices coincide. But still, Fisher and Wasserstein information matrices provide us with
different Cramer-Rao bounds. The Fisher-Cramer-Rao bound is better when we have prior
knowledge that σ is large while worse if σ is small.

Example 11 (Exponential distribution). Given an exponential distribution, Wasserstein
score functions satisfy

ΦW
λ (x;m,λ) =

(x−m)2 − 2
λ2

2λ
, ΦW

m (x;m,λ) = x−m− 1

λ
,

and the WIM satisfies

GW (m,λ) =

(
1 1

λ2
1
λ2

2
λ4

)
.

Similarly to Gaussian cases, Wasserstein sufficient statistics are also those which can be
written as quadratic functions of variables x.

While the counterpart for Fisher case reads:

ΦF
λ (x;m,λ) = m− x+

1

λ
, ΦF

m(x;m,λ) not well defined.

Meanwhile, the Fisher information matrix is also ill-behaved, in contrast to the well-
definedness of both Wasserstein score functions and WIMs. This example provides a
situation where Wasserstein statistics are better than the classical Fisher statistics.
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4. Wasserstein natural gradient works efficiently

In this section, we study Wasserstein dynamics in terms of sampling and estimation
processes. As a consequence, we prove asymptotic efficiencies of the Wasserstein natu-
ral gradient algorithm. And we refer it as Wasserstein efficiency. Meanwhile, another
efficiency that we named Poincaré efficiency is introduced and connected to Poincaré in-
equalities and log-Sobolev inequalities, which are discussed in section B.

In the beginning, we review the natural gradient algorithm. We aim to estimate an
un-known distribution in a probability family p(x; θ) with unknown parameters θ ∈ Θ.
Assume that an optimal parameter p(x; θ∗) coincides with the target distribution. Given
a set of i.i.d. samples xi, i = 1, 2, ... from this distribution, we utilize a general online
natural gradient algorithm to solve this problem:

θt+1 = θt −
1

t
∇Wθ l(xt, θt). (11)

In the above formula, θt is an updating state variable, 1
t in the RHS is an adaptive factor.

And ∇Wθ is the Riemannian (natural) gradient of the loss function l w.r.t. θ in Wasserstein
metric. It can also be understood as using WIM as a preconditioner to get a new gradient
direction, i.e. ∇Wθ l = G−1

W ∇θl, with ∇θl being the Euclidean gradient. We first pose here a
definition of the efficiency of the natural gradient algorithm, which generalizes the notion
discussed in [2]. Denote the Wasserstein covariance matrix of estimator θt by:

Vt = Epθ∗
(
∇x(θt − θ∗) · ∇x(θt − θ∗)T

)
,

where ∇x(θt − θ∗) is the matrix given by

∇x(θt − θ∗) =


∂(θt−θ∗)1

∂x1

∂(θt−θ∗)1
∂x2

· · · ∂(θt−θ∗)1
∂xn

∂(θt−θ∗)2
∂x1

∂(θt−θ∗)2
∂x2

· · · ∂(θt−θ∗)2
∂xn

...
...

. . .
...

∂(θt−θ∗)n
∂x1

∂(θt−θ∗)n
∂x2

· · · ∂(θt−θ∗)n
∂xn

 ,

and the multiplication is simply in matrix sense. It turns out that the element of the
covariance matrix is given by

Epθ∗
(
∇x(θt − θ∗) · ∇x(θt − θ∗)T

)
ij

= Epθ∗ (∇x(θt − θ∗)i · ∇x(θt − θ∗)j)

Here · refers to inner product of gradient vectors. And subscripts p(·; θ∗) refer to take
expectation on the set of samples xi ∼ p(·; θ∗), i = 1, 2, .... Notice that in this algorithm,
we obtain the t-th estimator θt via t − 1 iterations of the above equation (11). Then
we actually have θt = θt(x1, x2..., xt−1). Hence intuitively, the Wasserstein-Cramer-Rao
bound for θt is given by 1

t−1G
−1
W (θ∗). It inspires the following definition:

Definition 12. The Wasserstein natural gradient is asymptotic efficient if

Vt =
1

t
G−1
W (θ∗) +O(

1

t2
).

Remark 9. This definition is similar to the definition of classical Fisher efficiency except
that we substitute the Fisher information matrix by the WIM. This also indicates the
importance of studying information matrices. And it will be shown that this quantity
characterizes convergence rates of dynamics in statistical inference problems.
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We first state a general updating equation for this dynamics. Then, we specify two
different loss functions, namely, Fisher scores and Wasserstein scores. And we discuss
convergence properties of these two cases separately.

Theorem 13 (Variance updating equation of the Wasserstein natural gradient). For any
function f(x, θ) that satisfies the condition Epθf(x, θ) = 0, consider here the asymptotic

behavior of the Wasserstein dynamics θt+1 = θt − 1
tG
−1
W (θt)f(xt, θt). That is, assume

priorly Epθ∗
[
(θt − θ∗)2

]
,

Epθ∗
[
|∇x (θt − θ∗)|2

]
= o(1), ∀t. Then, the Wasserstein covariance matrix Vt updates

according to the following equation:

Vt+1 = Vt +
1

t2
G−1
W (θ∗)Epθ∗

[
∇x (f(xt, θ∗)) · ∇x

(
f(xt, θ∗)

T
)] (

G−1
W (θ∗)

)
− 2Vt

t
Epθ∗ [∇θf(xt, θ∗)]G

−1
W (θ∗) + o(

Vt
t

) + o

(
1

t2

)
.

Remark 10. In general, it will be shown that such a simple updating equation merely
attributes to properties of information matrices. Specifically, any statistical information
matrices with separability property w.r.t. independent variables have this form of updating
equation. For the WIM, this is already established in proposition 5. And for the Fisher
information matrix, this is only a property of expectation under independent variables.
Further results such as efficiency of the natural gradient can be established with the same
procedure below.

The proof is technical and we leave it to section C.1. Here, we show several important
cases of Theorem 13.

4.1. Wasserstein natural gradient for Wasserstein scores. In Fisher case studied
by [2], we have:

∇Fθ l(xt, θt) = G−1
F ΦF (xt, θt) ,

with l(xt, θt) the log-likelihood function. Thus a natural generalization to Wasserstein
geometry is:

∇Wθ f(xt, θt) = G−1
W ΦW (xt, θt) . (12)

Concerned with this dynamics, we have the following corrolary.

Corollary 14 (Wasserstein natural gradient efficiency). For the dynamics

θt+1 = θt −
1

t
G−1
W (θt)Φ

W (xt, θt),

the Wasserstein covariance updates according to

Vt+1 =Vt +
1

t2
G−1
W (θ∗)−

2

t
Vt + o

(
1

t2

)
+ o(

Vt
t

).

Then, the online Wasserstein natural gradient algorithm is Wasserstein efficient, that is:

Vt =
1

t
G−1
W (θ∗) +O

(
1

t2

)
. (13)
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Proof of Corollary 14. If we choose function f(x, t) to be Wasserstein scores ΦW
i , we will

have following simplification:

Epθ∗
[
∇x
(
ΦW (xt, θ∗)

)
· ∇x

(
ΦW (xt, θ∗)

T
)]

= GW (θ∗),

since ΦW is the dual coordinate of the statistical model. We also have:

Epθ∗
[
∇θΦW (xt, θ∗)

]
= −GW (θ∗),

which is given by differentiating Epθ∗
[
ΦW (xt, θ∗)

]
= 0 by θ:

0 = ∇θEpθ∗
[
ΦW (xt, θ∗)

]
= ∇θ

[∫
X
p(x; θ∗)Φ

W (x, θ∗)dx

]
=

∫
X
∇θp(x; θ∗)Φ

W (x, θ∗)dx+

∫
X
p(x; θ∗)∇θΦW (x, θ∗)dx

= GW +

∫
X
p(x; θ∗)∇θΦW (x, θ∗)dx,

where the last equality holds because of the pairing between tangent vector and cotangent
vector. And the final updating equation for the Wasserstein covariance reduces to:

Vt+1 = Vt +
1

t2
G−1
W (θ∗)−

2

t
Vt +O

(
1

t3

)
+ o(

Vt
t

).

To further solve this updating equation, we expand Vt = x
t + y

t2
+ o

(
1
t2

)
with constant

x, y to be determined and plug into the equation(we ignore the term that is of order o
(

1
t2

)
):

x

t+ 1
+

y

(t+ 1)2 + o

(
1

t2

)
=
x

t
+
y

t2
+ o

(
1

t2

)
+

1

t2
G−1
W (θ∗)−

2x

t2
+ o

(
1

t2

)
,

which is equivalent to:(
x

t+ 1
− x

t

)
+

(
y

(t+ 1)2 −
y

t2

)
+

2x

t2
− 1

t2
G−1
W (θ∗) + o

(
1

t2

)
= 0.

And we conclude that:

x = G−1
W (θ∗) .

Thus, we asymptotically have following estimation on the Wasserstein covariance con-
cerned with this dynamics:

Vt =
1

t
G−1
W (θ∗) + o

(
1

t

)
.

�

Remark 11. At first, such a generalization to Wasserstein metric may seem unreasonable.
We only use a fact that both of them are metrics on probability spaces. Different from
Fisher scores ΦF = ∇θl (x; θ), Wasserstein scores ΦW can not be written as gradients of
some functions w.r.t. θ. There is no such “loss functions”. However, a key insight here is
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that, if in a second we assume that the statistical model Θ is exactly the density manifold
GW (pθ) = gW (pθ), GF (pθ) = gF (pθ):

G−1
W (pθ)Φ

W (x, θ) = gW (pθ)g
−1
W (pθ)

∂

∂θ
p(x; θ) = ∇θp(xt, θt)

= gF (pθ)g
−1
F (pθ)

∂

∂θ
p(x; θ) = G−1

F (pθ)Φ
F (x, θ) .

Then both two dynamics can be written in the following way:

θt+1 = θt −
1

t
∇θp(xt, θt).

4.2. Wasserstein natural gradient for Fisher scores. Another phenomenon appears
when we consider the Wasserstein natural gradient applies to Fisher scores. Specifically,
we use log-likelihood function as a loss function and apply WIM as a preconditioner. The
dynamics concerned in this case is given by:

θt+1 = θt −
1

t
∇Wθ l(xt, θt).

The Wasserstein natural gradient is simply ∇Wθ l (xt, θt) = G−1
W ∇θl (xt, θt). We comment

here that ∇θl (xt, θt) = ΦF (xt, θt) is both the Euclidean gradient of log-likelihood function
l w.r.t. θ and the Fisher score. And the convergence analysis is shown in the following
corollary:

Corollary 15 (Poincaré efficiency). For the dynamics

θt+1 = θt −
1

t
∇Wθ l(xt, θt),

the Wasserstein covariance updates according to

Vt+1 = Vt +
1

t2
G−1
W (θ∗)Epθ∗

[
∇x (∇θl(xt, θ∗)) · ∇x

(
∇θl(xt, θ∗)T

)]
G−1
W (θ∗)

− 2

t
VtGF (θ∗)G

−1
W (θ∗) +O

(
1

t3

)
+ o

(
Vt
t

)
.

Now suppose that α = sup{a|GF � aGW }. Then the dynamics is characterized by the
following formula

Vt =


O
(
t−2α

)
, 2α ≤ 1,

1

t

(
2GFG

−1
W − I

)−1
G−1
W (θ∗)I

(
G−1
W (θ∗)

)
+O

(
1

t2

)
, 2α > 1,

(14)

where

I = Epθ∗
[
∇x (∇θl(xt, θ∗)) · ∇x

(
∇θl(xt, θ∗)T

)]
,

where elements of this matrix is given by

Iij = Epθ∗
[
∇x (∇θi l(xt, θ∗)) · ∇x

(
∇θj l(xt, θ∗)

T
)]

Proof of Corollary 15. The result is obtained once we observe that:

Epθ∗
[
∇θΦF (xt, θ∗)

]
= −GF (θ∗),
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which follows exactly the same philosophy of the previous case. We conclude that the
Wasserstein covariance updates according to:

Vt+1 = Vt +
1

t2
G−1
W (θ∗)Epθ∗

[
∇x (∇θl(xt, θ∗)) · ∇x

(
∇θl(xt, θ∗)T

)] (
G−1
W (θ∗)

)
− 2

t
VtGF (θ∗)G

−1
W (θ∗) +O

(
1

t3

)
+ o

(
Vt
t

)
.

Next, we solve this dynamics asymptotically. We denote GF (θ∗)G
−1
W (θ∗) = B and

G−1
W (θ∗)Epθ∗

[
∇x (∇θl(xt, θ∗)) · ∇x

(
∇θl(xt, θ∗)T

)] (
G−1
W (θ∗)

)
= C.

Now by elementary linear algebra, we know that the matrix B = GF (θ∗)G
−1
W (θ∗) is

similar to the matrix G
− 1

2
W GFG

− 1
2

W . Hence their eigenvalues coincide. While the definition

of α translates to that the least eigenvalue of the symmetric matrix G
− 1

2
W GFG

− 1
2

W is exactly
α. Thus we conclude that the least eigenvalues of the matrix B are also α. Suppose first
that 2α < 1, we consider the following expansion of matrix Vt:

Vt =
A1

tq
+

A2

tq+1
+ o

(
1

tq+1

)
, A1, A2 = O(1).

And plug the above equation to both sides of the updating equation, we find:

A1

(t+ 1)q
+

A2

(t+ 1)q+1 + o

(
1

tq+1

)
=
A1

tq
+

A2

tq+1
+ o

(
1

tq+1

)
− 2A1B

tq+1
+
C

t2
+O(

1

t3
).

Using the Lagrange’s mean value theorem, we have:

A

tq
− A

(t+ 1)q
=

qA

(t+ υ)q+1 =
qA

tq+1
+ o(

1

tq
), υ ∈ [0, 1].

Substituting back to the equation, we get:

0 =
A1 (qI− 2B)

tq+1
+
C

t2
+ o(

1

tq+1
) +O(

1

t3
).

We conclude that we cannot have q strictly greater than 1, for then the most significant
term in the RHS will be C

t2
6= 0 which contradicts to the LHS. Thus if we have q < 2α < 1,

the matrix qI− 2B will be negative definite, and we cannot have A1 (qI− 2B) = 0 unless
A1 equals to 0. Consequently, the index q should be greater than or equal to 2α. And we
have that asymptotically

Vt = O

(
1

t2α

)
.

While for the situation such that 2α > 1, we expand Vt = A1
t + A2

t2
+o
(

1
t2

)
with constant

A1, A2 to be determined:

A1

t+ 1
+

A2

(t+ 1)2 + o

(
1

t2

)
=
A1

t
+
A2

t2
+ o

(
1

t2

)
+
C

t2
− 2A1B

t2
+ o

(
1

t2

)
.

The constant A1 can be fixed by considering the coefficient of the term 1
t2

for both sides
with conclusion:

A1 = (2B − I)−1C.
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Here, invertibility of the matrix 2B − I is guaranteed by the fact that eigenvalues of 2B
are all greater than 1, thus the matrix 2B − I is indeed positive definite. �

The convergence behavior of this dynamics relies largely on the least significant eigen-
value of the matrix GFG

−1
W . This is in great similarity with the RIW condition for Poincaré

inequality in statistical models [16]. This inspires us to name such efficiency Poincaré ef-
ficiency. For detailed discussions and calculations on Poincaré inequalities in statistical
models, please refer to the section B. We also illustrate some results of two efficiencies in
Gaussian family, whose proof and numerical experiments are delayed to the section C.2.

Example 12 (Gaussian distribution). Suppose we have following dynamics in a Gaussian
model p (x;µ, σ)

θt+1 = θt −
1

t
∇Wθ l(xt, θt), xt ∼ p (x;µ∗, σ∗) .

The asymptotic behavior of the covariance matrix for the online Wasserstein natural gra-
dient algorithm is given by

Vt =


O

(
t
− 2

σ2∗

)
,

1

σ2
∗
≤ 1

2
,

1

t

(
1

(2−σ2
∗)σ

2
∗

0

0 4
(4−σ2

∗)σ
2
∗

)
+O(

1

t2
),

1

σ2
∗
>

1

2
.

5. Discussions

In this paper, we introduce the Wasserstein information matrix in statistical mod-
els. Similar to the study in information geometry, we turn the geometric aspect of the
Wasserstein metric into statistics. Here we generalize the classical concepts such as score
function, covariance operator, Cramer-Rao bound, and estimation to the Wasserstein sta-
tistics. Several explicit computable examples are provided, including the location-scale
family, and the ReLU push-forward family. Also, by comparing both Wasserstein and
Fisher information matrices, some new efficiency concepts, such as Wasserstein efficiency
and Poincaré efficiency have been introduced.

In the future, several natural questions between Fisher and Wasserstein statistics arise.
For example, similar to the relation with Fisher information matrices and maximal like-
lihood estimators, what is the relation between the WIM and the Wasserstein distance
estimator? Is there a canonical Wasserstein divergence function for the WIM? What is
the corresponding Wasserstein maximal likelihood estimator? Meanwhile, we will apply
Wasserstein natural gradient to study stochastic gradient descent algorithms in statistical
learning problems. Lastly and most importantly, we have shown that the Wasserstein
statistics provide the rigorous statistical advantages in generative models than classical
Fisher statistics. We will study the properties of WIMs in clear statistical terms for
machine learning models.
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[13] W. Li, A. T. Lin, and G. Montúfar. Affine natural proximal learning. Geometric science of information,

2019, 2019.
[14] W. Li, S. Liu, H. Zha, and H. Zhou. Parametric fokker-planck equation. In F. Nielsen and F. Bar-

baresco, editors, Geometric Science of Information, pages 715–724, Cham, 2019. Springer Interna-
tional Publishing.
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Appendix A. Proofs in section 2

A.1. WIMs and score functions in analytic examples.

Proof of WIMs in Gaussian families. Since we have

log p(x;µ, σ) = −(x− µ)2

2σ2
− log σ − log

√
2π,

taking derivative, we get

∇x log p(x;µ, σ) = −x− µ
σ2

,

∂

∂µ
log p(x;µ, σ) =

x− µ
σ2

,
∂

∂σ
log p(x;µ, σ) =

(x− µ)2

σ3
− 1

σ
.

In this case, the Possion equation for Wasserstein score functions (ΦW
µ ,Φ

W
σ ) forms

− x− µ
σ2

· d
dx

ΦW
µ +

d2

dx2
ΦW
µ = −x− µ

σ2
,

− x− µ
σ2

· d
dx

ΦW
σ +

d2

dx2
ΦW
σ = −(x− µ)2

σ3
+

1

σ
.

We simply check that ΦW
µ (x) = x−µ and ΦW

σ (x) = (x−µ)2−σ2

2σ are solutions, and they also

satisfy the normalization condition EpθΦW
i = 0. Thus

GW (µ, σ)µµ = Epµ,σ
(
d

dx
ΦW
µ ,

d

dx
ΦW
µ

)
= Epµ,σ1 = 1,

GW (µ, σ)µσ = Epµ,σ
(
d

dx
ΦW
µ ,

d

dx
ΦW
σ

)
= Epµ,σ

(
1 · (−X − µ

2σ
)

)
= 0,

GW (µ, σ)σσ = Epµ,σ
(
d

dx
ΦW
σ ,

d

dx
ΦW
σ

)
= Epµ,σ

(
X − µ
σ

· X − µ
σ

)
= 1.

�

Proof of WIMs in exponential families. We derive results using the closed-form solution
in 1-d. The cumulative distribution function satisfies

F (x;m,λ) =

{
1− e−λ(x−m) x ≥ m,
0 x < m.

Thus

∂

∂λ
F (x;m,λ) =

{
(x−m)e−λ(x−m) x ≥ m,

0 x < m.

∂

∂m
F (x;m,λ) =

{
λe−λ(x−m) x ≥ m,

0 x < m.
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Then

ΦW
λ (x;m,λ) =−

∫ x

m

1

p(y;m,λ)

∂

∂λ
F (y;m,λ)dy + C1

=−
∫ x

m

(y −m)

λ
dy + C1 =

(x−m)2

2λ
+ C1,

ΦW
m (x;m,λ) =−

∫ x

m

1

p(y;m,λ)

∂

∂m
F (y;m,λ)dy + C2

=−
∫ x

m
dy + C2 = (x−m) + C2.

Using the normalization condition, we can decide integration constants appearing above.
And inner products between score functions follow:

GW (m,λ)λλ = Epm,λ

(
d

dx
ΦW
λ ,

d

dx
ΦW
λ

)
=

∫ ∞
m

(x−m)

λ
· (x−m)

λ
· λe−λ(x−m)dx

=

∫ ∞
m

(x−m)2

λ
e−λ(x−m)dx =

2

λ4
,

GW (m,λ)λm = Epm,λ

(
d

dx
ΦW
λ ,

d

dx
ΦW
m

)
=

∫ ∞
m

(x−m)

λ
· λe−λ(x−m)dx =

1

λ2
,

GW (m,λ)mm = Epm,λ

(
d

dx
ΦW
m ,

d

dx
ΦW
m

)
=

∫ ∞
m

λe−λ(x−m)dx = 1.

�

Proof of WIMs in uniform families. The cumulative distribution function satisfies

F (x; a, b) =


1 x > b,
x−a
b−a a ≤ x ≤ b,
0 x < a.

Thus when x ∈ [a, b],

∂

∂a
F (x; a, b) =

x− b
(b− a)2

,
∂

∂b
F (x; a, b) =

a− x
(b− a)2

.

Then

ΦW
a (x; a, b) =−

∫ x

a

1

p(y; a, b)

∂

∂a
F (y; a, b)dy + C1 =

(x− a)(a− 2b+ x)

2(b− a)
+ C1,

ΦW
b (x; a, b) =−

∫ x

a

1

p(y; a, b)

∂

∂b
F (y; a, b)dy + C2 =

(a− x)2

2(b− a)
+ C2,
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where integration constants C1, C2 can be decided via the normalization condition. Thus

GW (a, b)aa = Epa,b

(
d

dx
ΦW
a ,

d

dx
ΦW
a

)
=

1

3
,

GW (a, b)ab = Epa,b

(
d

dx
ΦW
a ,

d

dx
ΦW
b

)
=

1

6
,

GW (a, b)bb = Epa,b

(
d

dx
ΦW
b ,

d

dx
ΦW
b

)
=

1

3
.

�

Proof of the WIM in semicircle families. The cumulative distribution function satisfies

F (x+m;m,R) =

∫ x

−R

2

πR2

√
R2 − y2dy

=

∫ arcsin( x
R

)

−π
2

2

πR2

√
R2 −R2 sin2 td(R sin t)

=

∫ arcsin( x
R

)

−π
2

2

πR2
R2(cos t)2dt

=

∫ arcsin( x
R

)

−π
2

1

2π

cos(2t) + 1

2
dt

=
1

π

(sin(2t)

2
+ t
)∣∣∣∣∣

arcsin x
R

−π
2

=
1

π

{x√R2 − x2

R2
+ arcsin

x

R
+
π

2

}
,

where we use a transformation y = R sin t. Thus

∂

∂R
F (x+m;m,R) =

1

π

{(x
√
R2 − x2)′R2 − 2Rx

√
R2 − x2

R4
+ (arcsin

x

R
)′
}

=
1

π

{xR(R2 − x2)−
1
2R2 − 2Rx

√
R2 − x2

R4
− x

R
√
R2 − x2

}
= − 2x

√
R2 − x2

πR3
.

Thus

ΦW
R (x+m;m,R) = −

∫ x

−R

1

p(y;m,R)

∂

∂R
F (y;m,R)dy + C

=

∫ x

−R

y

R
dy + C

=
1

R
(
x2

2
− R2

2
) + C.

The calculation of the score function associated with the parameter p is the same as before.
And we conclude

ΦW
p (x;m,R) = x−m.
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Thus

GW (m,R)mm = Epm,R

(
d

dx
ΦW
m ,

d

dx
ΦW
m

)
= 1,

GW (m,R)mR = Epm,R

(
d

dx
ΦW
R ,

d

dx
ΦW
m

)
=

1

R2
EmR (x−m) = 0,

GW (m,R)RR = Epm,R

(
d

dx
ΦW
R ,

d

dx
ΦW
R

)
=

1

R2
EmR (x−m)2 =

1

4
.

�

A.2. The location-scale family.

Example 13 (Location-scale families). Consider a location-scale family as following:
given a probability density function p(x) with

∫
R p(x)dx = 1, we define density func-

tions of a location-scale family with a location parameter m, and a scale parameter λ
as

p(x;m,λ) =
1

λ
p(
x−m
λ

), λ > 0.

Most of previously discussed examples belong to this family, except that we do not use
location and scale parameters in their parameterizations. We present some geometric
formulas in this setting. We further require the original density function to be symmetric
according to the location parameter m, i.e. p(x) = p(2m − x). Notice that a simple
corollary of this assumption is Epm,λx = m.

We use the closed-form solution for 1-d model to calculate the score function associated
with the location parameter m. Thus we have:

∂

∂m
F (x;m,λ) =

∂

∂m

∫ x

−∞
p(y;m,λ)dy =

∂

∂m

∫ x

−∞

1

λ
p(
y −m
λ

)dy

=− ∂

∂x

∫ x

−∞

1

λ
p(
y −m
λ

)dy = −p(x;m,λ).

Consequently, the score function associated to the parameter m satisfies

ΦW
m (x;m,λ) = −

∫ x

m

1

p(y;m,λ)

∂

∂m
F (y;m,λ)dy + C1 = (x−m) + C1,

where the integration constant C1 is determined to be 0. Thus we have

GW (m,λ)mm = Epm,λ

(
d

dx
ΦW
m ,

d

dx
ΦW
m

)
= 1.

For the scaling parameter λ, we use a method of optimal transportation map to deter-
mine its score function. Namely, for two smooth distributions p1, p2 which are absolutely
continuous w.r.t. each other, their Wasserstein distance can be obtained by an optimal
transportation map f , i.e.

f∗p1 = p2, W 2
2 (p1, p2) =

∫
X

(f (x)− x)2 p1 (x) dx.

Assume we have a tangent vector ∂p
∂θ and a smooth path p (t) ⊂ P (X ) , t ∈ [−ε, ε] with

p (0) = p0, p
′ (0) = ∂p

∂θ . Denote the optimal transportation map between p (0) , p (θ) as



WASSERSTEIN INFORMATION MATRIX 29

f (x, θ). Then we have following relation between optimal transportation maps and the

score function associated with tangent vector ∂p
∂θ

d

dx
ΦW (x) = lim

∆θ→0

f (x,∆θ)− x
∆θ

.

First, we show that the optimal transportation map between distributions p(x;m1, λ1)
and p(x;m2, λ2) is given by a linear map:

l(x) = m2 +
(x−m1)λ2

λ1
.

As we are working in a location-scale family, it is easy to show that this map pushes
p(x;m1, λ1) forward to p(x;m2, λ2), i.e. l∗pm1,λ1 = pm2,λ2 . Then, we have

l(x) = ∇x
(
m2 (x−m1) +

(x−m1)2λ2

2λ1

)
.

The function in the bracket is a convex function. Therefore, l (x) is exactly the optimal
transportation map between these two distributions.

To calculate the score function correspondent to the tangent vector ∂
∂λ , we consider

following infinitesimal optimal transportation p(x;m1, λ1) → p(x;m1, λ1 + dλ). By dis-
cussions above, the optimal transportation map is given by

l (x) = m1 +
(x−m1) (λ1 + dλ)

λ1
= x+ (x−m1)

dλ

λ1
.

Thus the gradient of the score function is given by

d

dx
ΦW
λ (x;m1, λ1) =

l (x)− x
dλ

=
(x−m1)

λ1
.

The inner product of this tangent vector is given by

GW (m,λ)λλ =Epm,λ

(
d

dx
ΦW
λ ,

d

dx
ΦW
λ

)
=

∫
R

(
x−m
λ

)2

p(x;m,λ)dx

=
Epm,λx2 − 2mEpm,λx+m2

λ2
.

The gradient of the score function associated to the parameter λ (resp. m) is odd (resp.
even) function when viewing as a function of x−m. We conclude that the integration of
their product is zero:

GW (m,λ)λm = Epm,λ

(
d

dx
ΦW
λ ,

d

dx
ΦW
m

)
= Epm,λ(x−m) = 0.

Consequently, WIMs of location-scale families are diagonal matrices, i.e.

GW (m,λ) =

(
1 0

0
Epm,λx

2−2mEpm,λx+m2

λ2

)
.

We next explain above closed-form solutions of WIMs by following proposition.
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Proposition 16. A location-scale family p(x;m,λ) is a totally geodesic family in density
manifold under Wasserstein metric.

Proof. It suffices to prove that for any two densities ρ1 = p(x;m1, λ1) and ρ2 = p(x;m2, λ2),
a geodesic connecting them lies within this family. We compute the optimal transport map
T associated with these two measures ρ1, ρ2, that is:

T = argminT∗ρ1=ρ2

∫
R

(T (x)− x)2 ρ1(x)dx,

where T is a map that pushes density ρ1 forward to density ρ2. It is known that a sufficient
and necessary condition for an optimal map in 1-d case is that it is a monotone map, i.e.
(T (x)− T (y)) (x− y) ≥ 0. And in a location-scale family, such map has a closed-form
solution, namely:

T (x) =
λ2 (x−m1)

λ1
+m2.

The geodesic γ(t) : [0, 1] → P(R) between ρ1 and ρ2 follows easily as below by the
classical theory of optimal transport

γ(t) = (tx+ (1− t)T (x))∗ ρ1,

where the push-forward map has a closed-form solution:

tx+ (1− t)T (x) = tx+ (1− t)λ2 (x−m1)

λ1
+ (1− t)m2

=
(tλ1 + (1− t)λ2) (x−m1)

λ1
+ (1− t)m2 + tm1.

And by the same argument, γ(t) lies in this location-scale family with parameters given
by

λt = tλ1 + (1− t)λ2, mt = (1− t)m2 + tm1.

Thus we show that geodesics between any two densities in a location-scale family lie in
this family. In other words, location-scale families are totally geodesic submanifolds in
density manifold. �

Remark 12. This result on totally geodesic of location-scale families is a generalization of
the same result on Gaussian families in 1-d. Both proofs of these two cases rely on the
fact that optimal transport maps in these families are linear.
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Remark 13. For location-scale families, we also formulate its Fisher scores and Fisher
information matrices for comparisons:

ΦF
m(x;m,λ) =

p′

λp
, ΦF

λ (x;m,λ) = − 1

λ
− (x−m)p′

λ2p
,

GF (m,λ)λλ =

∫
R
p (∂λ log p)2 dx =

∫
R
p

(
− 1

λ
− (x−m)p′

λ2p

)2

dx

=
1

λ2

(
1 +

∫
R

(
(x−m)2 p′2

λ2p
+

(x−m) p′

λ

)
dx

)
,

GF (m,λ)mm =

∫
R
p (∂m log p)2 dx =

1

λ2

∫
R

p′2

p
dx,

GF (m,λ)mλ =

∫
R
p (∂m log p) (∂λ log p) dx

=

∫
R
p

(
− p

′

λp

)(
− 1

λ
− (x−m)p′

λ2p

)
dx

=

∫
R

(x−m)p′2

λ3p
dx.

(15)

WIMs and Fisher information matrices are given by

GW (m,λ) =

(
1 0

0
Epm,λx

2−2mEpm,λx+m2

λ2

)
,

GF (m,λ) =
1

λ2

 ∫
R
p′2

p dx
∫
R

(x−m)p′2

λp dx∫
R

(x−m)p′2

λp dx 1 +
∫
R

(
(x−m)2p′2

λ2p
+ (x−m)p′

λ

)
dx

 ,

which illustrates that WIMs are simpler than Fisher information matrices in location-scale
families.

Appendix B. Functional inequalities via information matrices

In this section, we explore connections between information matrices and functional
inequalities such as log-Sobolev inequalities (LSIs) and Poincaré inequalities (PIs) in sta-
tistical models. In section 4, we show that these inequalities are important for the study
of statistical efficiency properties.

B.1. Classical functional inequalities. Before working in statistical models, we first
give a summary of relations among PIs, LSIs and dynamical quantities on density manifold.

Consider the relative entropy (KL-divergence) defined on density manifold:

H(µ|ν) =

∫
X

log
µ(x)

ν(x)
µ(x)dx, µ ∈ P(X ).

Here, we use a notation H (·|·) in order to be consistent with literature. We recall the
definition of log-Sobolev inequality as below.
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Definition 17 (Log-Sobolev inequality). A probability measure ν is said to satisfy a log-
Sobolev inequality with constant α > 0 (in short: LSI(α)) if we have:

H(µ|ν) <
1

2α
I(µ|ν), µ ∈ P(X ),

where the quantity I(µ|ν) is the so-called Fisher-information functional

I(µ|ν) =

∫
X

∣∣∣∣∇x log
µ(x)

ν(x)

∣∣∣∣2 µ(x)dx, µ ∈ P(X ).

Remark 14. If we assume that µ is absolutely continuous w.r.t. the reference measure ν
and define function h on X as:

µ(x) =
h(x)ν(x)∫
X h(x)ν(x)dx

,

then above definition of LSI translates to:(
H(µ|ν)

∫
X
h(x)ν(x)dx

)
=

∫
X
h(x) log h(x)ν(x)dx−

(∫
X
h(x)ν(x)dx

)
log

(∫
X
h(x)ν(x)dx

)
≤ 1

2α

∫
X

|∇xh(x)|2

h(x)
ν(x)dx =

1

2α

(
I(µ|ν)

∫
X
h(x)ν(x)dx

)
.

The middle inequality is a more familiar definition of LSI(α). By linearizing above formula
with h = 1 + εf, ε→ 0, we get the classical definition of PI(α)∫

X
f2(x)ν(x)dx ≤ 1

α

∫
X
|∇xf(x)|2 ν(x)dx,

∫
X
f(x)ν(x)dx = 0.

Definition 18 (Poincaré inequalities). A probability measure ν is said to satisfy a Poincaré
inequalities with constant α > 0 (in short: PI(α)) if we have:∫

X
f2(x)ν(x)dx ≤ 1

α

∫
X
|∇xf(x)|2 ν(x)dx, ∀f, s.t.

∫
X
f(x)ν(x)dx = 0.

A sufficient criterion that guarantees LSIs and PIs is related to information matrices
(operators or metrics in infinite dimension case) GW .

Proposition 19. Denote HessW H(µ|ν), GW (µ) two bi-linear forms correspondent to Hes-
sian of the relative entropy and Wasserstein metric.

(1) Suppose HessW H(µ|ν)− 2αGW (µ) is a semi-positive definite bi-linear form on the
Hilbert space TµP (X ), ∀µ ∈ P (X ). Then LSI(α) holds for ν.

(2) Suppose HessW H(ν|ν)− 2αGW (ν) is a semi-positive definite bi-linear form on the
Hilbert space TνP (X ). Then PI(α) holds for ν.

Proof. First, we prove the result concerned with LSIs. We compute the gradient of the
relative entropy w.r.t. Wasserstein metric, which is given by:

gradW H(µ|ν) =−∇ ·
(
µ∇ δ

δµ
H(µ|ν)

)
= −∇ ·

(
µ∇ log

µ(x)

ν(x)

)
,
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where δ
δµ refers to the L2 functional derivative. Thus it is easy to obtain the relative

entropy dissipation along the gradient flow as:

d

dt
H(µ|ν)

= − gW (gradW H(µ|ν), gradW H(µ|ν))

= −
∫
X

∣∣∣∣∇x log
µ(x)

ν(x)

∣∣∣∣2 µ(x)dx = −I(µ|ν).

(16)

Using the assumption, we have:

d2

dt2
H(µt|ν) = HessW H(µt|ν) (gradW H(µt|ν), gradW H(µt|ν))

≥ 2αGW (µt) (gradW H(µt|ν), gradW H(µt|ν))

= − 2α
d

dt
H(µt|ν),

from which LSI(α) holds via integrating the above formula, i.e.

I(µt|ν) = I(µt|ν)− I(ν|ν)

=

∫ ∞
t

(
d2

dt2
H(µτ |ν)

)
dτ

≥ 2α

∫ ∞
t

(
− d

dt
H(µτ |ν)

)
dτ

= 2α (H(µt|ν)−H(ν|ν))

= 2αH(µt|ν),

where we use the fact that this gradient flow µt converges to ν and H(ν|ν) = I(ν|ν) = 0.

To prove the conclusion of Poincaré inequalities, we consider a path in density manifold,
i.e ρ (ε) = ν (1 + εf) ,

∫
X f(x)ν(x)dx = 0. Since we have

H (ρ (ε) |ν) =
ε2

2

∫
X
f2(x)ν(x)dx+ o

(
ε2
)
,

− d

dt
H(ρ (ε) |ν) = I (ρ (ε) |ν) = ε2

∫
X
|∇xf(x)|2 ν(x)dx+ o

(
ε2
)
.
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Consequently, we obtain ∫
X f

2(x)ν(x)dx∫
X |∇xf(x)|2 ν(x)dx

=
1

2
lim
ε→0
− H (ρ (ε) |ν)

d
dεH(ρ (ε) |ν)

=
1

2
lim
ε→0
−

d
dεH (ρ (ε) |ν)
d2

dε2
H(ρ (ε) |ν)

=
1

2
lim
ε→0

GW (ρ (0))
(
d
dερ (0) , ddερ (0)

)
HessW H(ρ (0) |ν)

(
d
dερ (0) , ddερ (0)

)
≤ 1

α
,

where we use L’Hopital’s rule in second equality and the third equality holds because of
the assumption that HessW H(ν|ν)− 2αGW (ν) is semi-definite. �

Remark 15. With the help of (16), readers can recognize that LSI guarantees a global ex-
ponential convergence of the gradient flow of the relative entropy H (·|ν). Indeed, suppose
µt is a gradient flow of H(·|ν) starting from µ0, then we have:

H(µt|ν) ≤ e−2αtH(µ0|ν), µ0 ∈ P(X ) (LSI(α)).

While intuitively speaking, a PI can be viewed as an infinitesimal version of a LSI, that
is to consider the dynamics in a neighborhood of the optimal value.

B.2. LSIs and PIs in families. Now, it is clear that PIs and LSIs are related to density
manifold. Here, we attempt to find those counterparts in statistical models, i.e. subman-
ifolds.

Now, we fix a model Θ ⊂ P(X ) with metric given by GW . The relative entropy H (·|ν)
is indeed a restriction of global functional to this family. And we furthermore require the
reference measure ν to lie in this family, i.e. ν = pθ∗ , θ∗ ∈ Θ. We use˜ to distinguish
constraint cases (statistical models) from the global situation (density manifold). Recall
that the Fisher information functional is merely the relative entropy dissipation along a
gradient flow. Thus we have

Ĩ(pθt |pθ∗) =− d

dt
H̃(pθt |pθ∗)

= gW

(
gradW H̃(pθ|pθ∗), gradW H̃(pθ|pθ∗)

)
= ∇θH̃T

(
G̃−1
W

)T
G̃W G̃

−1
W ∇θH̃

= ∇θH̃T G̃−1
W ∇θH̃,

(17)

where we use a fact

gradW H̃(pθ|pθ∗) = G̃−1
W ∇θH̃.

Definition 20 (LSI in family). Consider a statistical model p : X ×Θ→ R, a probability
measure pθ∗ is said to satisfy LSI(α) in Θ with constant α > 0 (in short: LSI(α)) if we
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have:

H̃(pθ|pθ∗) <
1

2α
Ĩ(pθ|pθ∗), θ ∈ Θ.

Using information matrices, we seek a sufficient condition for LSIs and PIs as proposition
19:

HessW H̃(pθ|pθ∗) ≥ 2αG̃W (θ),

where we have to take care that the Hessian on LHS is calculated in a submanifold in-
stead of density manifold. Fisher information matrix also comes into this picture, via a

decomposition of the Hessian term HessW H̃(pθ|pθ∗). This point is known as the Ricci-
information-Wasserstein (RIW) condition.

Theorem 21 (RIW-condition). The information matrices criterion for LSI(α) of distri-
bution pθ∗ is given by:

GF (θ) +∇2
θpθ log

pθ
pθ∗
− ΓW∇θH̃(pθ|pθ∗) ≥ 2αGW (θ),

where ΓW s are Christoffel symbols in Wasserstein statistical model Θ, while for PI(α) of
distribution pθ∗ can be written as:

GF (θ) +∇2
θpθ log

pθ
pθ∗
≥ 2αGW (θ).

Remark 16. It can be seen that the condition for log-Sobolev inequalities is much more
complicated than that of Poincaré inequalities. For LSIs require a global convexity of the
entropy while PIs only correspond to local behavior at the minimum. The most significant
change takes place in the Hessian term of entropy, where Wasserstein Christoffel symbols
come in.

B.3. Examples in 1-d Family. ] Both LSIs and PIs can be proved by using Wasserstein
and Fisher information matrices. Previously, we have done geometric computations on
metric tensor and Hessian of the entropy. This prepares ingredients for us to establish
inequalities in families of probability distributions. In this section, we utilize previous
calculations to obtain concrete bounds on these functional inequalities.

Example 14 (Gaussian distribution). Recall that for a Gaussian distribution with mean
value µ and standard variance σ, the Wasserstein and Fisher information matrices are
given by:

GW (µ, σ) =

(
1 0
0 1

)
, GF (µ, σ) =

(
1
σ2 0
0 2

σ2

)
.

The entropy and the relative entropy defined on this model are provided by:

H̃(µ, σ) = −1

2
log 2π − log σ − 1

2
,

H̃(µ, σ|p∗) = − log σ + log σ∗ −
1

2
+
σ2 + (µ− µ∗)2

2σ2
∗

, p∗ ∼ pµ∗,σ∗ .
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We can calculate Wasserstein gradients associated with these two functionals:

∇Wµ,σH̃(µ, σ) =

 0

− 1

σ

 , ∇Wµ,σH̃(µ, σ|p∗) =


µ− µ∗
σ2
∗

− 1

σ
+

σ

σ2
∗

 ,

with the correspondent Fisher information functionals as:

Ĩ(µ, σ) =
1

σ2
,

Ĩ(µ, σ|p∗) =
(µ− µ∗)2

σ4
∗

+

(
− 1

σ
+

σ

σ2
∗

)2

.

Thus, the LSI(α) for Gaussian pµ∗,σ∗ is given by

(µ− µ∗)2

σ4
∗

+

(
− 1

σ
+

σ

σ2
∗

)2

≥ 2α

(
− log σ + log σ∗ −

1

2
+
σ2 + (µ− µ∗)2

2σ2
∗

)
.

Next, we move onto the derivation of the RIW condition. It suffices to consider a

relation between G̃W ,HessW H̃ at each point in a statistical model. Recall the formula for
Hessian in Riemannian geometry:

(Hess f)ij = ∂i∂jf − Γ
k(W )
ij ∂kf,

where ΓW s are Christoffel symbols in Wasserstein geometry. In Wasserstein Gaussian
model where the metric is Euclidean, Christoffel symbols vanish, i.e. ΓW = 0. Thus we
have:

HessW H̃ (µ, σ) =

(
0 0
0 1

σ2

)
, HessW H̃ (µ, σ|p∗) =

(
1
σ2
∗

0

0 1
σ2 + 1

σ2
∗

)
.

For a gradient flow of the relative entropy w.r.t. a Gaussian pµ∗,σ∗ , we conclude that

HessW H̃(µ, σ|pθ∗) ≥
(

1

σ2
∗

)
GW (µ, σ),

since GW (µ, σ) is exactly an identity matrix. In other words, the Gaussian pµ∗,σ∗ satisfies

a LSI
(

1
2σ2
∗

)
in a Gaussian model. Notice this result coincides with the one in global case.

Next, for the gradient flow of the entropy H̃ (·), we do not have a satisfying constant α

such that the Hessian condition proposition 19 holds. For HessW H̃(µ, σ) matrix has an
eigenvalue 0. Despite of this, we have:

gradW H̃(µ, σ) = G−1
W ∇µ,σH̃(µ, σ) = ∇µ,σH̃(µ, σ),

whose µ component always vanishes. Thus the gradient direction of H̃(·) always coincides

with σ direction, in which we have eigenvalue’s bound: eigσ(H̃) ≥ 1
σ2 eigσ(GW ). This

refers to that eigenvalues of two matrices correspond to direction ∂
∂µ have a bound. For

LSIs, if the range of σ is the whole R, then it is easy to see there will not exist a satisfying
constant α > 0 for LSI(α) to hold, i.e. 1

σ2 ≥ 2α, ∀σ ∈ R. However, if we restrict the range

of σ to a bounded region such as [−M,M ], then LSI( 1
2M2 ) will hold.
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Remark 17. Above calculation on gradient flows of the entropy does not establish LSI(α)
for any specific distribution. It merely provides an example of using Hessian condition to
study dynamical behaviors.

Example 15 (Laplacian distribution). Consider the case of Laplacian distribution, where

GW (m,λ) =

(
1 0
0 2

λ4

)
, GF (m,λ) =

(
λ2 0
0 1

λ2

)
,

from which we can calculate the Christoffel symbol as:

Γ
2(W )
22 (m,λ) =

g−1
22

2
(∂2g22 + ∂2g22 − ∂2g22) =

g−1
22

2
∂2g22 =

λ4

4
·
(
− 8

λ5

)
= − 2

λ
,

Γ
k(W )
ij (m,λ) = 0 otherwise.

Following the same procedure we have done before, the entropy and the relative entropy
w.r.t. pm∗,λ∗ defined on this model is provided by:

H̃(m,λ) = −1 + log λ− log 2,

H̃(m,λ|p∗) = −1 + log λ− log λ∗ + λ∗ |m−m∗|+
λ∗e
−λ|m−m∗|

λ
,

from which we can calculate Wasserstein gradients associated with two functionals:

∇Wm,λH̃(m,λ) =

 0

1

λ

 ,

∇Wm,λH̃(m,λ|p∗) =



λ∗
(

1− e−λ(m−m∗)
)

− (λ (m−m∗) + 1)λ∗e
−λ(m−m∗) − λ

λ2

 , m > m∗,

− λ∗
(

1− e−λ(m∗−m)
)

− (λ (m∗ −m) + 1)λ∗e
−λ(m∗−m) − λ

λ2

 , m < m∗,

with the Fisher information functionals as:

Ĩ(m,λ) =
λ2

2
,

Ĩ(m,λ|p∗) = λ2
∗

(
1− e−λ|m−m∗|

)2
+

(
(λ |m−m∗|+ 1)λ∗e

−λ|m−m∗| − λ
)2

2
.

Notice that the value of ∇Wm,λH̃(m,λ|p∗) is not well-defined at point m = m∗. However,
what we considered is integral on the whole R. Thus we can simply ignore its value at
m = m∗. As before, LSI(α) is given by

λ2
∗

(
1− e−λ|m∗−m|

)2
+

(
(λ |m∗ −m|+ 1)λ∗e

−λ|m∗−m| − λ
)2

2

≥ 2α

(
−1 + log λ− log λ∗ + λ∗ |m−m∗|+

λ∗e
−λ|m−m∗|

λ

)
.
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And we find Hessians of the entropy and the relative entropy in (Θ, GW ) are given by:

HessW H̃ (m,λ) =

(
0 0
0 1

λ2

)
,

HessW H̃ (m,λ|p∗) =

(
λλ∗e

−λ|m−m∗| 0

0 1
λ2

+ λ∗e−λ|m−m∗|(m∗−m)2

λ3

)
.

Following the same analysis, we conclude that for gradient flows of the entropy H̃(m,λ),

a LSI(λ
2

4 ) holds. While for the relative entropy H(m,λ|pm∗,λ∗), Hessian condition can be
written as (

λλ∗e
−λ|m−m∗| 0

0 1
λ2

+ λ∗e−λ|m−m∗|(m∗−m)2

λ3

)
≥ α

(
1 0
0 2

λ4

)
,

which can be reformulated as

α = min
m,λ

{
λλ∗e

−λ|m−m∗|,
1

2

(
λ2 + λ∗e

−λ|m−m∗|λ (m∗ −m)2
)}

.

From above formula, we conclude that in order to find a satisfying constant, it suffices to
restrict the region of m ∈ [−M,M ] , λ ∈ [N,∞). The distribution La(m∗, λ∗) satisfies a
LSI(α) in Laplacian family with α given above.

Example 16 (Independent model). For an independent family p (x, y; θ) = p1 (x; θ) p (y; θ),
we have

GW = G1
W +G2

W , GF = G1
F +G2

F .

The entropy and the relative entropy also have this separability property

H̃ (θ) = H̃1 (θ) + H̃2 (θ) ,

H̃ (θ|p∗) = H̃1 (θ|p1∗) + H̃2 (θ|p2∗) ,

∇θH̃ (θ|p∗) = ∇θH̃1 (θ|p1∗) +∇θH̃2 (θ|p2∗) .

The Fisher information functional is given by

I (pθ|p∗)

=
(
∇θH̃1 (θ|p1∗) +∇θH̃2 (θ|p2∗)

)T (
G1
W +G2

W

)−1
(
∇θH̃1 (θ|p1∗) +∇θH̃2 (θ|p2∗)

)
,

with LSI(α) given by(
∇θH̃1 (θ|p1∗) +∇θH̃2 (θ|p2∗)

)T (
G1
W +G2

W

)−1
(
∇θH̃1 (θ|p1∗) +∇θH̃2 (θ|p2∗)

)
≥ 2α∇θH̃1 (θ|p1∗) +∇θH̃2 (θ|p2∗) .

In conclusion, above examples introduce another way to prove functional inequalities
as well as convergence rates of dynamics in probability families.
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Appendix C. Proofs in section 4

C.1. Proof of Theorem 13.

Proof of Theorem 13. First, we postulate that ∇x refers to the gradient w.r.t. x variable
while ∇θ refers to the gradient w.r.t. θ variable. We expand the function f(xt, θt)

f(xt, θt) = f(xt, θ∗) +∇θf(xt, θ∗) (θt − θ∗) +O
(
|θt − θ∗|2

)
.

By substrating θ∗ in both sides of the updating equation and plugging in the expansion
above, we get:

θt+1 − θ∗ = (θt − θ∗)−
1

t
G−1
W (θt) (f(xt, θ∗) +∇θf(xt, θ∗) (θt − θ∗)

+ O
(
|θt − θ∗|2

))
.

Then, taking Wasserstein covariances of both sides, we get:

Vt+1 = Vt +
1

t2
Epθ∗

[
∇x
(
G−1
W (θt)f(xt, θt)

)
· ∇x

(
f(xt, θt)

TG−1
W (θt)

)]
− 2

t
Epθ∗

[
∇x (θt − θ∗) · ∇x

(
f(xt, θ∗)

TG−1
W (θt)

)]
+ o

(
Vt
t

)
− 2

t
Epθ∗

[
∇x (θt − θ∗) · ∇x

(
(θt − θ∗)T ∇θf(xt, θ∗)

TG−1
W (θt)

)]
,

where the last term corresponds to an expansion termO
(
|θt − θ∗|2

)
and we use an assump-

tion that Epθ∗
[
(θt − θ∗)2

]
,Epθ∗

[
|∇x (θt − θ∗)|2

]
= o(1). In above formula, we eliminate

transpose symbols T on metric tensor GW because of its symmetry. For the second term
on the RHS, we have:

1

t2
Epθ∗

[
∇x
(
G−1
W (θt)f(xt, θt)

)
· ∇x

(
f(xt, θt)

TG−1
W (θt)

)]
=

1

t2
Epθ∗

[
G−1
W (θ∗)∇x (f(xt, θ∗)) · ∇x

(
f(xt, θ∗)

T
)
G−1
W (θ∗)

]
+ o

(
1

t2

)
=

1

t2
G−1
W (θ∗)Epθ∗

[
∇x (f(xt, θ∗)) · ∇x

(
f(xt, θ∗)

T
)]
G−1
W (θ∗) + o

(
1

t2

)
,

where we use the following fact

Epθ∗
[
∇x
(
G−1
W (θt)f(xt, θt)

)
· ∇x

(
f(xt, θt)

TG−1
W (θt)

)]
− Epθ∗

[
G−1
W (θ∗)∇x (f(xt, θ∗)) · ∇x

(
f(xt, θ∗)

T
)
G−1
W (θ∗)

]
= O

(
Epθ∗ |θt − θ∗|

)
= o (1) .
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And the third term in the RHS can be reduced according to:

− 2

t
Epθ∗

[
∇x (θt − θ∗) · ∇x

(
f(xt, θ∗)

TG−1
W (θt)

)]
=− 2

t
Epθ∗

[
∇x (θt − θ∗) · ∇x

(
f(xt, θ∗)

T
)
G−1
W (θt)

]
− 2

t
Epθ∗

[
∇x (θt − θ∗) · f(xt, θ∗)

T∇xG−1
W (θt)

]
= 0,

where the first term vanishes because ∇x (θt − θ∗) only has non-vanishing components at
x1, ..., xt−1 while ∇x

(
f(xt, θ∗)

T
)

only has a non-vanishing component at xt. Consequently
their inner product vanishes everywhere. While the second term vanishes by considering
each element of this matrix, we have:(

Epθ∗
[
∇x (θt − θ∗) · f(xt, θ∗)

T∇xG−1
W (θt)

])
ij

=
2

t
Epθ∗∇x (θt − θ∗)i ·

(
f(xt, θ∗)

T∇xG−1
W (θt)

)
j

=
2

t
Epθ∗

[
∇x (θt − θ∗)i · ∇x

(
G−1
W (θt)kj

)
f(xt, θ∗)

T
k

]
=

2

t
Epθ∗

[
∇x (θt − θ∗)i · ∇x

(
G−1
W (θt)kj

)]
Epθ∗f(xt, θ∗)

T
k

= 0,

where the third equality is guaranteed by the fact that θt−θ∗ is independent to ∇θf(xt, θ∗)
since θt, xt are mutually independent. While the last equality holds by an assumption:

Epθ∗f(xt, θ∗) = 0.

For the last term, same as the analysis of the third term, we find:

− 2

t
Epθ∗

[
∇x (θt − θ∗) · ∇x

(
(θt − θ∗)T ∇θf(xt, θ∗)

TG−1
W (θt)

)]
=− 2

t
Epθ∗

[
∇x (θt − θ∗) · ∇x

(
(θt − θ∗)T

)
∇θf(xt, θ∗)

TG−1
W (θt)

]
− 2

t
Epθ∗

[
∇x (θt − θ∗) · (θt − θ∗)T ∇x

(
∇θf(xt, θ∗)

T
)
G−1
W (θt)

]
− 2

t
Epθ∗

[
∇x (θt − θ∗) · (θt − θ∗)T ∇θf(xt, θ∗)

T∇x
(
G−1
W (θt)

)]
=− 2

t
Epθ∗

[
∇x (θt − θ∗) · ∇x

(
(θt − θ∗)T

)
∇θf(xt, θ∗)

TG−1
W (θ∗)

]
+ o(

Vt
t

)

− 2

t
Epθ∗

[
∇x (θt − θ∗) · (θt − θ∗)T ∇θf(xt, θ∗)

T∇x
(
G−1
W (θt)

)]
,

where we again use the independent relation between (θt − θ∗) and f(xt, θ∗). The addi-
tional term appearing above, with the help that Epθ∗ [∇θf(xt, θ∗)] = O(1), ∇x

(
G−1
W (θt)

)
=
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∇xθt∇θ
(
G−1
W (θt)

)
= O(∇x (θt − θ∗)), can be further reduced to the form below:

2

t
Epθ∗

[
∇x (θt − θ∗) · (θt − θ∗)T ∇θf(xt, θ∗)∇x

((
G−1
W (θt)

))]
=

2

t
Epθ∗

[
∇x (θt − θ∗) · (θt − θ∗)T O(1)∇x (θt − θ∗)O(1)

]
≤ O(1)

t

√
Epθ∗

[
|∇x (θt − θ∗)|2

]
Epθ∗

[
(θt − θ∗)2

]
Epθ∗

[
|∇x (θt − θ∗)|2

]
= o

(
Vt
t

)
.

And the last term finally reduces to:

− 2

t
Epθ∗

[
∇x (θt − θ∗) · ∇x

(
(θt − θ∗)T

)
∇θf(xt, θ∗)

(
G−1
W (θ∗)

)]
+ o(

Vt
t

)

=− 2Vt
t
Epθ∗ [∇θf(xt, θ∗)]G

−1
W (θ∗) + o(

Vt
t

).

Combining all the terms we have in hand, we derive the following updating equation
for Wasserstein covariances during a natural gradient descent:

Vt+1 = Vt +
1

t2
G−1
W (θ∗)Epθ∗

[
∇x (f(xt, θ∗)) · ∇x

(
f(xt, θ∗)

T
)] (

G−1
W (θ∗)

)
− 2Vt

t
Epθ∗ [∇θf(xt, θ∗)]G

−1
W (θ∗) + o(

Vt
t

) + o

(
1

t2

)
+O(

Vt
t2

).

�

Remark 18. The most frequently used tools in this proof is a separability property, c.f.
proposition 5. The key observation here is that, for two statistics T1, T2 which depend on
(independent) different variables, such as T1 = T1(x1, ..., xt−1), T2 = T2(xt, ..., xt+n) are
“orthogonal” in both Wasserstein and Fisher metrics. Specifically, consider gradients of
T1, T2 w.r.t. x, since they depend on different variables, thus

CovW [T1, T2] = Epθ∗ [∇xT1 · ∇xT2] = 0.

This type of separability is a direct analog of the one in Fisher-Rao geometry:

CovF [T1, T2] = Epθ∗ [T1T2] = Epθ∗ [T1] · Epθ∗ [T2] = 0.

C.2. Examples and numerical experiments of two efficiencies.

Example 17 (Gaussian distribution). Consider the Gaussian distribution with mean value
µ and standard variance σ:

p(x;µ, σ) =
1√
2πσ

e−
1

2σ2
(x−µ)2 .

The WIM satisfies

GW (µ, σ) =

(
1 0
0 1

)
.

The Fisher information matrix satisfies

GF (µ, σ) =

(
1
σ2 0
0 2

σ2

)
.
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Further, the matrix GFG
−1
W is given by:

GF (µ, σ)G−1
W (µ, σ) =

(
1
σ2 0
0 2

σ2

)
.

And optimal parameters are given by µ∗, σ∗. Thus we have following conclusions on effi-
ciency of the Fisher, Wasserstein natural gradients and Wasserstein natural gradient on
Fisher score (maximal likelihood estimator).

The Wasserstein natural gradient is asymptotically efficient with an asymptotic Wasser-
stein covariance given by:

Vt =
1

t

(
1 0
0 1

)
+O

(
1

t2

)
.

The Fisher natural gradient is asymptotic efficient with an asymptotic classical covariance
given by:

Vt =
1

t

(
σ2
∗ 0

0 σ2
∗
2

)
+O

(
1

t2

)
.

An interesting thing here is that the covariance matrix appears in the Wasserstein efficiency
is independent of the optimal value. While in Fisher case, the asymptotic behavior depends
a lot on the optimal parameter we obtain.

For the last case, in Gaussian family, two metric tensors GF , GW can be simultaneously
diagonalized, thus the situation is even simpler. We denote the least significant eigenvalue
of GFG

−1
W as α:

α =
1

σ2
∗
.

Further more, we have to figure out the term

Epµ∗,σ∗
[
∇x (∇µ∗,σ∗ l(xt, µ∗, σ∗)) · ∇x

(
∇µ∗,σ∗ l(xt, µ∗, σ∗)T

)]
,

that appears in the final result. In Gaussian, since we have Fisher scores ∇µ∗,σ∗ l(x; θ) =
ΦF (x, µ∗, σ∗) as:

ΦF
µ (x;µ, σ) =

x− µ
σ2

, ΦF
σ (x;µ, σ) =

(x− µ)2

σ3
− 1

σ
.

Via calculation, we have

Epµ∗,σ∗
[
∇xΦF

µ (x;µ∗, σ∗) · ∇x
(
ΦF
µ (x;µ∗, σ∗)

T
)]

= Epµ∗,σ∗

[
1

σ4
∗

]
=

1

σ4
∗
,

Epµ∗,σ∗
[
∇xΦF

µ (x;µ∗, σ∗) · ∇x
(
ΦF
σ (x;µ∗, σ∗)

T
)]

= Epµ∗,σ∗

[
1

σ2
∗
· 2(x− µ∗)

σ3
∗

]
= 0,

Epµ∗,σ∗
[
∇xΦF

σ (x;µ∗, σ∗) · ∇x
(
ΦF
σ (x;µ∗, σ∗)

T
)]

= Epµ∗,σ∗

[
4 (x− µ∗)2

σ6
∗

]
=

4

σ4
∗
,

we conclude the middle term is given by

I = Epµ∗,σ∗
[
∇x (∇µ∗,σ∗ l(xt, µ∗, σ∗)) · ∇x

(
∇µ∗,σ∗ l(xt, µ∗, σ∗)T

)]
=

(
1
σ4
∗

0

0 4
σ4
∗

)
.
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And when we have 2
σ2
∗
> 1, the inverse matrix of 2B − I is given by

(2B − I)−1 =

(
σ2
∗

2−σ2
∗

0

0 σ2
∗

4−σ2
∗

)
.

Consequently, the term appearing in the asymptotic behavior of the Poincaré efficiency is
given by

1

t

(
2GFG

−1
W − I

)−1
G−1
W (θ∗)I

(
G−1
W (θ∗)

)
=

(
σ2
∗

2−σ2
∗

0

0 σ2
∗

4−σ2
∗

)(
1
σ4
∗

0

0 4
σ4
∗

)

=

(
1

(2−σ2
∗)σ

2
∗

0

0 4
(4−σ2

∗)σ
2
∗

)
.

Thus the asymptotic behavior the Wasserstein covariance in the Wasserstein natural gra-
dient of Fisher scores is given by:

Vt =


O

(
t
− 2

σ2∗

)
,

1

σ2
∗
≤ 1

2
,

1

t

(
1

(2−σ2
∗)σ

2
∗

0

0 4
(4−σ2

∗)σ
2
∗

)
+O(

1

t2
),

1

σ2
∗
>

1

2
.

We verify our theory by following numerical experiments. In two cases, we verify two
kinds of efficiency, namely the Wasserstein-Cramer-Rao efficiency and the Poincaré ef-
ficiency respectively. In the first experiment, we verify the constant G−1

W appearing in
asymptotic efficiency of the Wasserstein natural gradient. While for the other situation
we verify the asymptotic exponential index α showing up in Poincaré efficiency.
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Figure 2. The Wasserstein-Cramer-Rao Type Convergence Rate. Here
x-axis represents the logarithm of iteration t while y-axis represents the
logarithm of Wasserstein covariance Vt. We take the reference measure in
KL-divergence to be Gaussian N (20, 1) where the parameter µ∗ = 20 is
the optimal point we aim to estimate. Since we have 1

σ2
∗

= 1 > 1
2 , the

Cramer-Rao type convergence holds.

Figure 3. Poincaré Type Convergence Rate. Here x-axis represents the
logarithm of iteration t while y-axis represents the logarithm of Wasser-
stein covariance Vt. We take the reference measure in KL-divergence to be
Gaussian N (20, 1) where the parameter µ∗ = 20 is the optimal point we
aim to estimate. Since we have 1

σ2
∗

= 1
4 <

1
2 , the Poincaré type convergence

holds.
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