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Abstract—When a disaster happens in the metropolitan area,
the wireless communication systems are highly affected, de-
grading the efficiency of the search and rescue (SAR) mission.
An emergent wireless network must be deployed quickly and
efficiently to preserve human lives. Teams of low-altitude rotary-
wing unmanned aerial vehicle (UAVs) is preferable to be utilized
as an on-demand temporal wireless network because they are
generally faster to deploy, flexible to reconfigure, and able to
provide better communication services with short line-of-sight
links. However, rotary-wing UAVs’ limited on-board batteries
require that they need to recharge and reconfigure frequently
during a mission. Therefore, we formulate the velocity control
problem for massive rotary-wing UAVs as a Schrödinger bridge
problem which can describe the frequent reconfiguration of
UAVs. Then we transform it into a mean field game and solve it
with the G-prox primal dual hybrid gradient (PDHG) method.
Finally, we show the efficiency of our algorithm and analyze the
influence of wind dynamics with numerical results.

I. INTRODUCTION

Large-scale natural catastrophe in the metropolitan areas
can inflict unimaginable losses of human lives and prop-
erty [1]. Efficiently and quickly conducted search and res-
cue (SAR) operations are needed to preserve human lives.
However, as the communication systems are always highly
destroyed after disaster, efficient rescue mission is extremely
reduced. Different types of communication systems can be
provided for SAR, such as terrestrial communications, high-
altitude platforms, and low-altitude unmanned aerial vehicles
(UAVs), among which the on-demand wireless communi-
cation systems consisting of teams of UAVs are preferable
because UAVs are generally faster to deploy, flexible to re-
configure, and able to provide better communication services
with short line-of-sight links [2].

Different types of UAVs can be utilized to establish the
temporal communication network for SAR, such as blimps,
balloons, fixed-wing and rotary-wing UAVs. Compared with
other UAVs, rotary-wing UAVs are appealing because of its
low price and ability to hover [1]. However, rotary-wing UAVs
also face a common challenge as the other UAVs because they
can remain airborne only for 15-20 minutes given their limited
on-board energy, which means multiple rounds of recharging
and then reforming specified wireless networks are needed.
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Thus, their movements in each round must be optimized to
complete more successful missions. However, the movement
control for massive rotary-wing UAVs are difficult because
of the frequent interactions between them and the lack of
centralized controller.

Regarding above disaster scenarios and energy limitation
challenges faced by UAV-supported wireless networks, we
formulate the movement control for massive rotary-wing
UAVs as a Schrödinger bridge problem [3], [4] for the
following reasons: (i) it can describe the frequent switch
between different distributions of the large number of UAVs
through a single stochastic process. (ii) it allows the differen-
tial constraint, which can describe the relationship between
UAVs’ velocities and locations. Then we propose a mean
field game theoretic approach to solve the Schrödinger bridge
problem because the generic UAV can determine its velocity
by reacting to the collective behavior of all other UAVs, i.e.,
mean field, instead of to every other UAV, which reduce the
complexity of the problem significantly. Specifically, UAVs
can determine their velocities through solving a partial differ-
ential equation (PDE), the Hamilton-Jacobi-Bellman (HJB)
equation, and the mean field information. After the UAVs
make their decisions, the teams of UAVs can eovlve to
another distribution by solving another PDE, the Fokker-
Planck-Kolmogorov (FPK) equation [5]. The evolution of
velocities and the mean field can reach an equilibrium, which
generate the optimal velocity control for all the UAVs.

Related Work [6] focuses on optimizing the spectral
efficiency without any major increase in the energy con-
sumption while [7] proposes a 3-D placement algorithm
for UAV base stations which can optimize the coverage
area with minimum transmit power. Both of them solve the
UAV-aided wireless communication problem under the sparse
deployment scenario. [8] considers the trajectory optimization
problem for rather dense deployment of UAVs and propose
an energy-efficient flocking algorithm which can minimize
the power consumption per downlink rate in one dimension
case. However, [8] utilizes a simplified power consumption
model consisting of kinetic energy and constant transmission
power. In contrast, [9] derives a practical power consumption
model for rotary-wing UAV but only consider the trajectory
optimization problem for a single rotary-wing UAV.

In summary, the main contributions in this paper are:
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Fig. 1: Emergent communication with teams of UAVs after
disaster

• We formulate the velocity control problem for mas-
sive rotary-wing UAVs in a two-dimension plane as
a Schrödinger bridge problem that can describe the
relationship between velocity and location, as well as
the frequent reconfiguration of massive UAVs during the
disaster.

• We propose a mean field game approach to solve the
Schrödinger bridge problem. Specifically, we reformulate
the Schrödinger bridge problem as a mean field game and
solve it with G-prox primal dual hybrid gradient (PDGH)
[10].

• We improve the energy efficiency around 70% for the
worst case, i.e., the highest wind variance and analyze the
influence of wind dynamics on the energy consumption
with numerical results.

The rest of this paper is organized in the following way.
In Section II, we model the energy consumption of massive
rotary-wing UAVs and formulate the velocity control problem
as a Schrödinger bridge problem. In Section III, we propose
a mean field game approach to obtain the optimal velocity
control, which can minimize the the energy consumption for
each UAV. Section IV shows the performance of our algorithm
with numerical results, and Section V draws the conclusion.

II. MODELING AND FORMULATING

We consider the scenario when a team of U rotary-wing
UAVs are going to provide emergent wireless communication
service for several SAR teams in the metropolitan area after
a disaster as shown in Fig. 1. U UAVs are flying at the same
altitude and thus the coordinate of the ith UAV is Xi(t) ∈ R2.
The speed of each UAV Vi(t) ∈ R2 is affected by its location
as well as the wind and we assume that the wind dynamics
follow the Ornstein-Uhlenbeck process based on [11]. Then
we represent the dynamic of the ith UAV’s location as

dXi(t) = (Vi(t) +A)dt+ ηAdBi(t), (1)

where A is the average wind velocity, ηA > 0 is the wind
velocity variance and Bi(t) is the standard Brownian motion,
which is identical and independent among all UAVs. The
initial distribution of the location Xi(t) is generated by the
known distribution ρ0 ∈ R2, i.e., X 0

i ∼ ρ0. The team of UAVs
are going to reform another location distribution ρ1 ∈ R2,
which is the location distribution of the SAR teams in a unit
time duration. Thus we have X 1

i ∼ ρ1.
The energy consumption of rotary wing UAVs consists of

the transmission energy and the propulsion energy. As the
propulsion energy is highly related to the UAV’s velocity,
we regard it as the main energy consumption and assume
the transmission energy of each UAV is a constant when we
consider the velocity control problem. The propulsion energy
of a rotary-wing UAV is mainly composed of the blade profile
energy and the parasite energy [9]. The blade profile energy is
utilized to overcome the blade profile drag while the parasite
energy is consumed by fuselage drag. The propulsion energy
for the ith rotary-wing UAV is computed by

Pi(Vi) =P0

(
1 +

3‖Vi‖2

U2
tip

)
︸ ︷︷ ︸

blade profile

+
1

2
d0ρasB‖Vi‖3︸ ︷︷ ︸

parasite

,
(2)

where P0 is the constant denoting the blade profile energy
in hovering status, Utip represents the speed of the rotor
blade, d0 and s are the fuselage drag ratio and rotor solidity,
respectively, ρa and B represents the air density and rotor
disc area, respectively.

In summary, the velocity control problem for the ith
UAV can be formulated as the following Schrödinger bridge
problem:

inf
Vi

∫ 1

0

EXi(t)∼ρtPi(Vi) dt (3)

s.t. dXi(t) = (Vi(t) +A)dt+ ηAdBi(t),

X 0
i ∼ ρ0,X 1

i ∼ ρ1,

where Pi(Vi) is the propulsion power consumption defined
in (2), the stochastic differential equation is the temporal
dynamic of location Xi(t) defined in (1), ρ0 and ρ1 are the
initial and final location distribution of Xi(t), respectively.

III. MEAN FIELD GAME APPROACH

In this section, we find the optimal velocity control for U
rotary-wing UAVs which can minimize the energy consump-
tion of each UAV when it travels from the initial location
to the target location. Specifically, we first reformulate the
Schrödinger bridge problem in (3) for massive UAVs into
a mean field game problem in Subsection III-A, and then
we propose the energy-efficient velocity control algorithm to
solve the mean field game in Subsection III-B.



A. Mean Field Game Formulation

In this subsection, we reformulate the Schrödinger bridge
problem in (3) for massive rotary-wing UAVs as a mean field
game. As we consider the reaction of a given UAV to the
collective behavior of all other UAVs, we now drop the index
i of location Xi, velocity Vi and its corresponding power
consumption Pi. Denote∫

W

ρ(t, x)dx = Pr(X ∈W ), (4)

where W is a measurable area on the two dimension plane
on which the UAVs are flying and Pr is the probability that
the given UAV appears in the area W . Based on (4), the
objective function in (3) can be represented in terms of the
UAV densities ρt as follows:∫ 1

0

EX t∼ρtP(V)dt =

∫ 1

0

∫
R2

P(V)ρ(t, x)dxdt. (5)

Then ρt satisfies the forward transition equation of xt, i.e.,
the FPK equation

∂ρ

∂t
+ O · (ρ(V +A))− ηA4ρ = 0, (6)

which describes the time evolution of the general location
distribution ρ of all UAVs (the mean field) when the given
UAV has changed its velocity. To this end, we are ready to
give the following mean field game formulation for (3).

Proposition 1 (Mean field game Formulation). The mean field
game formulation for (3) is [12]:

inf
v,ρ

∫ 1

0

∫
R2

P(v)ρ(t, x) dxdt, (7)

s.t.
∂ρ

∂t
+ O · (ρ(v +A))− ηA4ρ = 0,

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1,

where the infimum is taken over continuous unnormalized
density functions ρ : [0, 1] × R2 → R [13] and the given
UAV’s velocity V : [0, 1] × R2 → R2, the PDE in the first
constraint is the FPK equation given in (6), ρ0 and ρ1 are the
initial and target location distribution of UAVs, respectively.

Remark 1. Our formulation is a generalized Schrödinger
bridge problem, in which the objective function in (3) is com-
puted with fixed initial and terminal densities. If we further
relax the constraint on the terminal density, our formulation
is exactly the mean field game. We will leave this general
formulation in a future work.

B. Energy-efficient Velocity Control Algorithm

In this subsection, we solve the mean field game problem
in (7) and propose the energy-efficient velocity control algo-
rithm which can minimize the energy consumption when the
massive rotary-wing UAVs fly from the initial locations to the
target locations.

We solve (7) by solving its Lagrangian dual problem and
thus we first give the definition of the Legendre transform and
dual problem formulation as follows.

Definition 1 (Legendre transform). Consider a function f :
R2 → R and f is a convex function. The Legendre transform
of a function f , denoted by f∗ : R2 → R, is defined as

f∗(y) = sup
x∈R2

x · y − f(x).

Proposition 2 (Dual formulation). The dual formulation for
the mean field game problem in (7) is:

sup
Φ

∫
R2

Φ(1, x)ρ(1, x)− Φ(0, x)ρ(0, x) dx, (8)

s.t. ∂tΦ +H(OΦ) + ηA4Φ ≤ 0, x ∈ R2, t ∈ (0, 1).

Here, Φ : [0, 1] × R2 → R is a dual variable and
the constraint is the HJB equation where H is a Legendre
transform of P .

H(x, p) =
1

24
c0

(
−c1 +

√
c21 + 4c0‖p‖

)3

+
1

8
c1

(
−c1 +

√
c21 + 4c0‖p‖

)2

− p0 + p ·A,

where c0 = 3
2d0ρsB and c1 = 6p0

U2
tip

.

Proof. By introducing a dual variable Φ : [0, 1] × R2 → R,
we can reformulate the minimization problem into a saddle
problem. Assuming the duality gap is zero we can interchange
inf and sup. The proof is given in (9).

Let V = m
ρ − A where m : [0, 1] × R2 → R2 is a Borel

vector field. The mean field game problem in (7) is equivalent
to the following saddle problem [14], [15]:

inf
m,ρ

sup
Φ
L(m, ρ,Φ) (10)

where Φ : [0, 1] × R2 → R is a dual variable for the
minimization problem and a Lagrangian L is defined as
follows:

L(m, ρ,Φ) =P0

(
ρ+

3‖m− ρA‖2

U2
tipρ

)
+
d0ρasB‖m− ρA‖3

2ρ2

+Φ(∂tρ+∇ ·m− ηA∆ρ).
(11)

We implement the G-prox PDHG [10] to solve the saddle
problem due to its stability and faster speed to converge.

ρk+1 = arg minρ L(mk, ρ,Φk) + 1
τ ‖ρ− ρ

k‖2L2 ,

mk+1 = arg minm L(m, ρk+1,Φk) + 1
2τ ‖m−m

k‖2L2 ,

Φk+1 = arg maxΦ L(2mk+1 −mk, 2ρk+1 − ρk,Φ)

− 1
2σ‖Φ− Φk‖2H1 ,

(12)
where τ , σ are two small step sizes, ‖ρ−ρk‖2L2 =

∫ 1

0

∫
R2 |ρ−

ρk|2dxdt, ‖m − mk‖2L2 =
∫ 1

0

∫
R2 ‖m − mk‖2dxdt and



inf
V,ρ

sup
Φ

∫ 1

0

∫
R2

P(V)ρ+ Φ(∂tρ+∇ · (ρ(V +A))− ηA∆ρ)dxdt

= sup
Φ

inf
V,ρ

∫ 1

0

∫
R2

P(V)ρ+ Φ(∂tρ+∇ · (ρ(V +A))− ηA∆ρ)dxdt

= sup
Φ

inf
V,ρ

∫ 1

0

∫
R2

P(V)ρ− ∂tΦρ−∇Φ · (ρ(V +A))− ηA∆Φρdxdt+

∫
R2

Φ(1, x)ρ(1, x)− Φ(0, x)ρ(0, x)dx

= sup
Φ

inf
V,ρ

∫ 1

0

∫
R2

−ρ(V · ∇Φ− P(V))−∇Φ · ρA− ∂tΦρ− ηA∆Φρdxdt+

∫
R2

Φ(1, x)ρ(1, x)− Φ(0, x)ρ(0, x)dx

= sup
Φ

inf
ρ

∫ 1

0

∫
R2

− sup
V
ρ(V · ∇Φ− P(V))−∇Φ · ρA− ∂tΦρ− ηA∆Φρdxdt+

∫
R2

Φ(1, x)ρ(1, x)− Φ(0, x)ρ(0, x)dx

= sup
Φ

inf
ρ

∫ 1

0

∫
R2

ρ(−P∗(∇Φ)− ∂tΦ− ηA∆Φ−∇Φ ·A)dxdt+

∫
R2

Φ(1, x)ρ(1, x)− Φ(0, x)ρ(0, x)dx

= sup
Φ

{∫
R2

Φ(1, x)ρ(1, x)− Φ(0, x)ρ(0, x)dx : ∂tΦ +H(∇Φ) + ηA∆Φ ≤ 0

}
.

(9)

‖Φ−Φk‖2H1 =
∫ 1

0

∫
R2(∂tΦ− ∂tΦk)2 + ‖∇Φ−∇Φk‖2dxdt.

To solve the first iteration in (12), we need to differentiate
the equation with respect to ρ

P0 −
3P0‖m− ρA‖2

U2
tipρ

2
− 6P0(m− ρA) ·A

Utipρ

− d0ρasB
‖m− ρA‖3

ρ3
− ∂tΦ− ηA∆Φ +

1

τ
(ρ− ρk)

− 3d0ρasB
‖m− ρA‖(m− ρA) ·A

2ρ2
= 0.

(13)

(13) is a 4th order polynomial which doesn’t have an explicit
solution. We use Newton’s method [16] to find the positive
root for (13).

To solve the second iteration in (12), we differentiate it
with respect to m.

6P0(m− ρA)

U2
tipρ

+
3d0ρasB‖m− ρA‖(m− ρA)

2ρ2

−∇Φ +
1

τ
(m−mk) = 0.

(14)

We use Newton’s method to find the solution for (14).
The third iteration in (12) can be solved easily. Again, by

differentiating the equation with respect to Φ:

∂tρ+∇ ·m− ηA∆ρ− 1

σ
(−∆)(Φ− Φk) = 0 (15)

Solving (15) for Φ, we get an explicit solution for Φk+1.

Φk+1 = Φk + σ(−∆t,x)−1(∂tρ+∇ ·m− ηA∆ρ)

In conclusion, the energy-efficient velocity control algo-
rithm is given in Algorithm 1.

IV. SIMULATION RESULT

In this section, we conduct a comprehensive experiment
based on Algorithm 1 and manifest the energy efficiency of
our approach through numerical simulation results.

Algorithm 1 Energy-efficient velocity control algorithm
Input: initial and target densities ρ0, ρ1; average wind

velocity A; step size τ , σ; blade profile energy P0, tip speed
Utip, fuselage drag ratio d0, rotor solidity s, air density ρa,
rotor disc area B.

Output: the optimal velocity control V? = m?

ρ? −A

1: Find feasible m0 and ρ0

2: for k = 1, 2, · · · while not converged do
3: solve (13), (14), (15) with the Newton’s method
4: update ρk, mk, and Φk through (12)
5: end for

A. Simulation Parameters

We assume that U = 500 UAVs are flying above a
10km × 10km square disaster area. For the convenience of
computation, we regard this as a 1 × 1 unit area. The initial
location of UAVs are generated by the following uniform
distribution:

ρ0(x1, x2) = 1, (x1, x2) ∈ Ω,

where Ω = [0, 1] × [0, 1] is the unit area. These UAVs are
going to provide communication services for SAR teams
which have a Gaussian distribution in the same area, i.e., the
target the distribution of the UAVs locations are generated by:

ρ1(x1, x2) = exp
(
− (x1 − 0.5)2 + (x2 − 0.5)2

0.1

)
,

where (x1, x2) ∈ Ω. Other important parameters after scaling
are given in Table I.

B. Energy Efficiency under Different Wind Dynamics

In Fig. 2, we show the time evolution of UAVs distribution.
Brighter color represents higher density of UAVs in that area.
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Fig. 2: Time evolution of UAVs distribution
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Fig. 3: Effect of wind variance

TABLE I: Simulation Parameters

Parameter Single Resource
blade profile power P0 (watt) 1× 10−7

air density ρa (kg/m3) 1.225
fuselage drag ratio d0 0.3

rotor solidity s 0.05
rotor disc area B (m2) 0.01

tip speed Utip (m/s) 3.16× 10−4

During the unit time, UAVs move from initial locations (Fig.
2a) to the target locations (Fig. 2c). In Fig. 2b, there is a
shift of UAVs distribution to the center of the unit area. The
underlying reason for this is that UAVs tend to assemble
according to the direction of wind in order to save energy.

In Fig. 3a, we show the convergence behavior of the total
energy consumption of UAVs. Without an efficient velocity
control, the energy consumption under different wind vari-
ances are relatively high. Energy consumption drops very
fast after we apply a velocity control, even though it’s not

optimal. After around 100 iterations when we obtain an
optimal velocity control for UAVs, the total energy efficiency
is improved by around 70% for the worst case (ηA = 1e− 2)
and around 77% for the best case (ηA = 1e−5). In Fig. 4, the
energy consumption increases almost linearly with respect to
the increase of wind velocity.

In Fig. 3b, we show UAVs optimal velocity control obtained
by the Algorithm 1. The initial average speed of UAVs are
high and it gradually decreases when they approach their
target locations to save the energy. Moreover, UAVs tend to
choose lower initial speed and lower acceleration speed in
order to save energy when they face rather unstable wind
(ηA = 1e − 2) as shown by the blue curve in Fig.3b. In
contrast, when the wind become more stable (ηA = 1e− 5),
higher initial speed and higher acceleration are more favorable
as shown by the green curve in Fig. 3b.
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V. CONCLUSION

In this paper, we consider the velocity control problem for
massive rotary-wing UAVs in the metropolitan area after a
disaster. In order to describe the frequent reconfiguration of
massive UAVs, we formulate our problem as a Schrödinger
bridge problem. Then we transform it into a mean field
game problem in order to reduce the computation complexity.
Then the G-Prox PDHG method is implemented to solve
the mean field game problem due to its stability and faster
speed to converge. In the simulation, we show the significant
improvement of energy efficiency with our algorithm and
analyze the effect of wind dynamics on the total energy
consumption. In the future, we will further study on the
general wind velocity field and a relaxed terminal density.
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