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Abstract. We propose a class of very simple modifications of gradient descent and stochastic
gradient descent. We show that when applied to a large variety of machine learning problems,
ranging from logistic regression to deep neural nets, the proposed surrogates can dramatically reduce
the variance, allow to take a larger step size, and improve the generalization accuracy. The methods
only involve multiplying the usual (stochastic) gradient by the inverse of a positive definitive matrix
(which can be computed efficiently by FFT) with a low condition number coming from a one-
dimensional discrete Laplacian or its high order generalizations. It also preserves the mean and
increases the smallest component and decreases the largest component. The theory of Hamilton-
Jacobi partial differential equations demonstrates that the implicit version of the new algorithm is
almost the same as doing gradient descent on a new function which (i) has the same global minima
as the original function and (ii) is “more convex”. Moreover, we show that optimization algorithms
with these surrogates converge uniformly in the discrete Sobolev Hp

σ sense and reduce the optimality
gap for convex optimization problems. The code is available at: https://github.com/BaoWangMath/
LaplacianSmoothing-GradientDescent
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1. Introduction. Stochastic gradient descent (SGD) [37] has been the work-
horse for solving large-scale machine learning (ML) problems. It gives rise to a family
of algorithms that enables efficient training of many ML models including deep neu-
ral nets (DNNs). SGD utilizes training data very efficiently at the beginning of the
training phase, as it converges much faster than GD and L-BFGS during this period
[8, 16]. Moreover, the variance of SGD can help gradient-based optimization algo-
rithms circumvent local minima and saddle points and reach those that generalize
well [38, 18]. However, the variance of SGD also slows down the convergence after the
first few training epochs. To account for the effect of SGD’s variance and to ensure
the convergence of SGD, a decaying step size has to be applied which is one of the
major bottlenecks for the fast convergence of SGD [7, 41, 40]. Moreover, in training
many ML models, typically the stage-wise schedule of learning rate is used in practice
[39, 38]. In this scenario, the variance of SGD usually leads to a large optimality gap.

A natural question arises from the above bottlenecks of SGD is: Can we improve
SGD such that the variance of the stochastic gradient is reduced on-the-fly with neg-
ligible extra computational and memory overhead and a larger step size is allowed to
train ML models?

We answer the above question affirmatively by applying the discrete one-dimensional
Laplacian smoothing (LS) operator to smooth the stochastic gradient vector on-the-
fly. The LS operation can be performed efficiently by using the fast Fourier transform
(FFT).
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Another issue of GD and SGD is that when the Hessian of the objective func-
tion has a large condition number, GD performs poorly. In this case, the derivative
increases rapidly in one direction, while growing slowly in another. As a by-product,
numerically we will show that LS can avoid oscillation along steep directions and help
make progress in shallow directions effectively [25]. The implicit version of our pro-
posed approach is linked to an unusual Hamilton-Jacobi partial differential equation
(HJ-PDE) whose solution makes the original loss function more convex while retain-
ing its flat (and global) minima, and essentially works on this surrogate function with
a much better landscape. See [10] for related work.

1.1. Our contribution. In this paper, we propose a new modification to the
stochastic gradient-based algorithms, which at its core uses the LS operator to re-
duce the variance of stochastic gradient vector on-the-fly. The (stochastic) gradient
smoothing can be done by multiplying the gradient by the inverse of the following
circulant convolution matrix

(1.1) Aσ :=


1 + 2σ −σ 0 . . . 0 −σ
−σ 1 + 2σ −σ . . . 0 0
0 −σ 1 + 2σ . . . 0 0
. . . . . . . . . . . . . . . . . .
−σ 0 0 . . . −σ 1 + 2σ


for some positive constant σ ≥ 0. In fact, we can write Aσ = I − σL, where I is
the identity matrix, and L is the discrete one-dimensional Laplacian which acts on
indices. If we define the (periodic) forward finite difference matrix as

D+ =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
1 0 0 . . . 0 −1

 .

Then, we have Aσ = I−σD−D+, where D− = −D>+ is the backward finite difference.
We summarize the benefits of this simple LS operation below:
• It reduces the variance of stochastic gradient on-the-fly, and reduces the op-

timality gap when constant step size is used.
• It allows us to take a larger step size than the standard (S)GD.
• It is applicable to train many ML models including DNNs with better gener-

alization.
• It converges faster for the objective functions that have a large condition

number numerically.
• It avoids local sharp minima empirically.

Moreover, as a straightforward extension, we generalize the LS to high-order
smoothing operators, e.g., biharmonic smoothing.

1.2. Related work. There is an extensive volume of research over the past
decades for designing algorithms to speed up the convergence. These include using
momentum and other heavy-ball methods, reduce the variance of the stochastic gra-
dient, and adaptive the learning rate. We will discuss the related work from these
three perspectives.

The first type of idea to accelerate the convergence of GD and SGD is to apply
the momentum. Around local optima, the surface curves can be much more steeply
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in one dimension than in another [43], whence (S)GD oscillates across the slopes of
the ravine while only making hesitant progress along the bottom towards the local
optimum. Momentum is proposed to accelerate (S)GD in the relevant direction and
dampens oscillations [34]. Nesterov accelerated gradient (NAG) is also introduced to
slow down the progress before the surface curve slopes up, and it provably converge
faster in specific scenarios [31]. There are lots of recent progress in the development
of momentum; a relatively complete survey can be found at [3].

Due to the bottleneck of the variance of the stochastic gradient, a natural idea
is to reduce the variance of the stochastic gradient. There are several principles in
developing variance reduction algorithms [8], including Dynamic sample size methods;
Gradient aggregation, control variate type of technique is widely used along this direc-
tion, some representative works are SAGA [11], SCSG [24], and SVRG [19]; Iterative
averaging methods.

Another category of work tries to speed up the convergence of GD and SGD by
using an adaptive step size, which makes use of the historical gradient to adapt the
step size. RMSProp [44] and Adagrad [13] adapts the learning rate to the parameters,
performing smaller updates (i.e., low learning rates) for parameters associated with
frequently occurring features, and more substantial updates (i.e., high learning rates)
for parameters associated with infrequent features. Both RMSProp and Adagrad
make the learning rate to be historical gradient dependent. Adadelta [50] extends the
idea of RMSProp and Adagrad, instead of accumulating all past squared gradients, it
restricts the window of accumulated past gradients to some fixed size w. Adam [21]
and AdaMax [21] behave like a heavy ball with friction, and they compute the decaying
averages of past and past squared gradients to adaptive the learning rate. AMSGrad
[36] fix the issue of Adam that may fail to converge to an optimal solution. Adam can
be viewed as a combination of RMSprop and momentum: RMSprop contributes the
exponentially decaying average of past squared gradients, while momentum accounts
for the exponentially decaying average of past gradients. Since NAG is superior to
vanilla momentum, Dozat [12] proposed NAdam which combines the idea Adam and
NAG.

1.3. Notations. Throughout this paper, we use boldface upper-case letters A,
B to denote matrices and boldface lower-case letters w, u to denote vectors. For
vectors, we use ‖ · ‖ to denote the `2-norm for vectors and spectral norm for matri-
ces, respectively. And we use λmax(A), λmin(A), and λi(A) to denote the largest,
smallest, and the i-th largest eigenvalues, respectively. For a function f : Rn → R,
we use ∇f and ∇2f to denote its gradient and Hessian, and f∗ to denote a local
minimum of f . For a positive definite matrix A, we define the vector induced norm
by as ‖w‖A :=

√
〈w,Aw〉. List {1, 2, · · · , n} is denoted by [n].

1.4. Organization. We organize this paper as follows: In section 2, we intro-
duce the LS(S)GD algorithm and the FFT-based fast solver. In section 3, we show
that LS(S)GD allows us to take a larger step size than (S)GD. In section 4, we show
that LS reduces the variance of SGD both empirically and theoretically. We show
that LSGD can avoid some local minima and speed up convergence numerically in
section 5. In section 6, we show the benefit of LS in deep learning, including training
LeNet [23], ResNet [17], Wasserstein generative adversarial nets (WGAN) [27], and
deep reinforcement learning (DRL) model. The convergence analysis for LS(S)GD
is provided in section 7. The connection to the HJ-PDEs and future direction are
discussed in section 8. Most of the technical proofs are provided in section 9.
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Algorithm 2.1 LSSGD

Input: fi(w) for i = 1, 2, · · · , n.
w0: initial guess of w, T : the total number of iterations, and ηk, k = 0, 1, · · · , T :
the scheduled step size.
Output: The optimized weights wopt.
for k = 0, 1, · · · , T do

wk+1 = wk − ηkA−1σ
(
∇fik(wk)

)
.

return wT

2. Laplacian Smoothing (Stochastic) Gradient Descent. We present our
algorithm for SGD in the finite-sum setting. The GD and other settings follow
straightforwardly. Consider the following finite-sum optimization

min
w

F (w) :=
1

n

n∑
i=1

fi(w),(2.1)

where fi(w)
.
= f(w,xi, yi) is the loss of a given ML model on the training data

{xi, yi}. This finite-sum formalism is an abstract of training many ML models men-
tioned above. To resolve the optimization problem (2.1), starting from some initial
guess w0, the (k + 1)-th iteration of SGD reads

(2.2) wk+1 = wk − ηk∇fik(wk),

where ηk is the step size, ik is a random sample with replacement from [n].
We propose to replace the stochastic gradient∇fik(wk) by the Laplacian smoothed

surrogate, and we call the resulting algorithm LSSGD, which is written as

(2.3) wk+1 = wk − ηkA−1σ ∇fik(wk).

Intuitively, compared to the standard GD, this scheme smooths the gradient on-the-
fly by an elliptic smoothing operator while preserving the mean of the entries of the
gradient. We adopt fast Fourier transform (FFT) to compute A−1σ ∇f(wk), which
is available in both PyTorch [33] and TensorFlow [2]. Given a vector g, a smoothed
vector d can be obtained by computing d = A−1σ g. This is equivalent to g = d−σv∗d,
where v = [−2, 1, 0, · · · , 0, 1]> and ∗ is the convolution operator. Therefore

d = ifft

(
fft(g)

1− σ · fft(v)

)
,

where we use component-wise division (here, fft and ifft are the FFT and inverse FFT,
respectively). Hence, the gradient smoothing can be done in quasilinear time. This
additional time complexity is almost the same as performing a one step update on the
weights vector w. For many machine learning models, we may need to concatenate the
parameters into a vector. This reshaping might lead to some ambiguity, nevertheless,
based on our tests, both row and column majored reshaping work for the LS-GD
algorithm. Moreover, in deep learning cases, the weights in different layers might
have different physical meanings. For these cases, we perform layer-wise gradient
smoothing, instead. We summarize the LSSGD for solving the finite-sum optimization
(2.1) in Algorithm 2.1.
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Remark 2.1. In image processing and elsewhere, the Sobolev gradient [20] uses
a multi-dimensional Laplacian operator that operates on w, and is different from
the one-dimensional discrete Laplacian operator employed in our LS-GD scheme that
operates on indices.

It is worth noting that LS is a complement to the momentum and adaptive learn-
ing rate, e.g., Adagrad, algorithms. It can be combined with these acceleration tech-
niques to speed up the convergence. We will show the performance of these algorithms
in the Section 6.

2.1. Generalized smoothing gradient descent. We can generalize Aσ to the
n-th order discrete hyper-diffusion operator as follows

I + (−1)nσLn
.
= An

σ.

Each row of the discrete Laplacian operator L consists of an appropriate arrangement
of weights in central finite difference approximation to the 2nd order derivative. Sim-
ilarly, each row of Ln is an arrangement of the weights in the central finite difference
approximation to the 2n-th order derivative.

Remark 2.2. The n-th order smoothing operator I + (−1)nσLn can only be ap-
plied to the problem with dimension at least 2n + 1. Otherwise, we need to add
dummy variables.

Again, we apply FFT to compute the smoothed gradient vector. For a given
gradient vector g, the smoothed surrogate, (An

σ)−1g
.
= d, can be obtained by solving

g = d+(−1)nσvn∗d, where vn = (cnn+1, c
n
n+2, · · · , cn2n+1, 0, · · · , 0, cn1 , cn2 , · · · , cnn−1, cnn)

is a vector of the same dimension as the gradient to be smoothed. And the coefficient
vector cn = (cn1 , c

n
2 , · · · , cn2n+1) can be obtained recursively by the following formula

c1 = (1,−2, 1), cni =


1 i = 1, 2n+ 1

−2cn−11 + cn−12 i = 2, 2n

cn−1i−1 − 2cn−1i + cn−1i+1 otherwise.

Remark 2.3. The computational complexities for different order smoothing schemes
are the same when the FFT is utilized for computing the surrogate gradient.

3. The Choice of Step Size. In this section, we will discuss the step size
issue of LS(S)GD with a theoretical focus on LSGD on the function with L-Lipschitz
gradient.

Definition 3.1. We say the function F has L-Lipschitz gradient, if for any
w,u ∈ Rm, we have ‖∇F (w)−∇F (u)‖ ≤ L‖w−u‖. Or equivalently, ‖∇2F (w)‖ ≤
L.

For the function with L-Lipschitz gradient, it is known that the largest suitable
step size for GD is ηGDmax = 1

L [32]. In the following, we will establish a `2 estimate of
the square root of the LS operator when it is applied to an arbitrary vector. Based
on these estimates, we will show that LSGD can take a larger step size than GD.

To determine the largest suitable step size for LSGD. We first do a change of

variable in the LSGD 2.1 by letting vk = H
−1/2
σ wk where Hσ = A−1σ , then LSGD

can be written as

(3.1) vk+1 = vk − ηkH1/2
σ ∇F (H1/2

σ vk),
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which is actually the GD for solving the following minimization problem

(3.2) min
v
F (H1/2

σ v) := min
v
G(v).

Therefore, to determine the largest suitable step size for LSGD, it is equivalent to
find the largest appropriate step size for GD for minv G(v). Therefore, it suffices to
determine the Lipschitz constant for the ∇G(v), i.e., to find

LG := sup
v

{
‖∇2G(v)‖|v ∈ dom(G)

}
.

Note that ‖∇2F (v)‖ ≤ L, and ∇2G = H
1/2
σ ∇2FH

1/2
σ .

3.1. `2 estimates of Hσv.

Proposition 3.2. Given any vector v ∈ Rm, let w = Hσv, then

(3.3) ‖v‖2 = ‖w‖2 + 2σ‖D+w‖2 + σ2‖Lw‖2.

Proposition 3.2 is a special case of proposition 8.1, it shows that ‖∇2G‖ is not
larger than that of ‖∇2F‖. Therefore, LSGD can take at least the same step size as
GD. However, note that ‖D+w‖2 can be arbitrarily close to zero, so LSGD cannot al-
ways take a larger step size than GD. Next, we establish a high probability estimation
for taking a larger step size when using LSGD. Without any prior knowledge about
v, let us assume it is sampled uniformly from a ball in Rm centered at the origin.
Without loss of generality, we assume the radius of this ball is one. Under the above
ansatz, we have the following result

Theorem 3.3 (`2-estimate). Let σ > 0, and

β =
1

m

m∑
i=1

1

|1 + 2σ − σzi − σzi|2
,

where z1, · · · , zm are the m roots of unity. Let v be uniformly distributed in the unit

ball of the m dimensional `2 space. Then for any α >
√
β

1− π√
m

, we have

(3.4) P (‖Hσv‖ ≥ α‖v‖) ≤ 2 exp

− 2

π2
m

(
α− α π√

m
−
√
β

α+ 1

)2
.

The proof of this theorem is provided in the appendix. For high dimensional
ML problems, e.g., training DNNs, m can be as large as tens of millions so that the
probability will be almost one. The closed form of β is given in Lemma 3.4.

Lemma 3.4. If z1, . . . , zm denote the m roots of unity, then
(3.5)

β =
1

m

m∑
j=1

1

|1 + 2σ − σzj − σz̄j |2
=

2α2m+1 − ξα2m + 2ξmαm − 2α+ ξ

σ2ξ3(1− αm)2
→m→∞

1 + 2σ

(1 + 4σ)3/2
,

where 1 > α = 2σ+1−
√
4σ+1

2σ > 0, and ξ = −
√
1+4σ
σ .

The proof of the above lemma needs some tools from complex and harmonic
analysis, which is provided in the appendix. Table 1 lists some typical values for
different σ and m.

Based on Theorem 3.3, LSGD can take the largest step size 1√
βL

for high-

dimensional function with L-Lipschitz gradient with high probability. We will nu-
merically verify this later.
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Table 1
The values of β corresponding to some σ and m. β converges quickly to its

limiting value as m increases.

σ 1 2 3 4 5

m = 1000 0.268 0.185 0.149 0.128 0.114
m = 10000 0.268 0.185 0.149 0.128 0.114
m = 100000 0.268 0.185 0.149 0.128 0.114

4. Variance Reduction. The variance of SGD is one of the major bottlenecks
that slows down the theoretical guaranteed convergence rate in training ML models.
Most of the existing variance reduction algorithms require either the full batch gradi-
ent or the storage of stochastic gradient for each data point which makes it difficult
to be used to train the high-capacity DNNs. LS is an alternative approach to reduce
the variance of the stochastic gradient with negligible extra computational time and
memory cost. In this section, we rigorously show that LS reduces the variance of
the stochastic gradient and reduce the optimality gap under the Gaussian noise as-
sumption. Moreover, we numerically verify our theoretical results on both a quadratic
function and a simple finite-sum optimization problem.

4.1. Gaussian noise assumption. Stochastic gradient ∇fik , for any ik ∈ [n],
is an unbiased estimate of ∇F , many existing works model the variance between the
stochastic gradient and full batch gradient ∇F as Gaussian noise N (0,Σ), where
Σ is the covariance matrix [28]. Therefore, ignoring the variable w for simplicity of
notation, we can write the equation involving gradient and stochastic gradient vectors
as

(4.1) ∇fik = ∇F + n,

where n ∼ N (0,Σ). Thus for LS stochastic gradient, we have

(4.2) A−1σ ∇fik = A−1σ (∇F + n) .

The variances of stochastic gradient and LS stochastic gradient are basically the vari-
ance of n and A−1σ n, respectively. The following theorem quantifies the variance
between n and A−1σ n.

Theorem 4.1. Let κ denote the condition number of Σ. Then, for m dimensional
Gaussian random vector n ∼ N (0,Σ), we have

(4.3)

∑m
i=1 Var[

(
(An

σ)−1n
)
i
]∑m

i=1 Var[(n)i]
≤ 1− 1

κ
+

1

κm

m∑
j=0

1

[1 + 4nσ sin2n(πj/m)]2
.

The proof of Theorem 4.1 will be provided in the appendix.
Table 2 lists the ratio of variance after and before LS for an m-D standard nor-

mal vector n ∼ N (0, I). In practice, high order smoothing reduce variance more
significantly.

Moreover, LS preserves the mean (Proposition 4.2), decreases the largest compo-
nent and increases the smallest component (Proposition 4.3) for any vector.

Proposition 4.2. For any vector g ∈ Rm, d = A−1σ g, let jmax = arg maxi di
and jmin = arg mini di. We have maxi di = djmax

≤ gjmax
≤ maxi gi and mini di =

djmin
≥ gjmin

≥ mini gi.
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Table 2
Theoretical upper bound of

∑m
i=1 Var[

(
(An

σ)−1n
)
i
]/
∑m
i=1 Var[(n)i]

when n is an m-dimensional standard normal vector with m ≥ 10000.

σ 1 2 3 4 5

n = 1 0.268 0.185 0.149 0.129 0.114
n = 2 0.279 0.231 0.207 0.192 0.181
n = 3 0.290 0.256 0.238 0.226 0.218

Proof. Since g = Aσd, it holds that

gjmax
= djmax

+ σ(2djmax
− djmax−1 − djmax+1),

where periodicity of index is used if necessary. Since 2djmax
− djmax−1 − djmax+1 ≥ 0,

We have maxi di = djmax ≤ gjmax ≤ maxi gi. Similar we can show mini di = djmin ≥
gjmin ≥ mini gi.

Proposition 4.3. The operator A−1σ preserves the sum of components. For any
g ∈ Rm and d = A−1σ g, we have

∑
j dj =

∑
j gj, or equivalently, 1>d = 1>g.

Proof. Since g = Aσd,∑
i

gi = 1>g = 1>(I + σD>+D+)d = 1>d =
∑
i

di,

where we used D+1 = 0.

4.2. Reduce the optimality gap. A direct benefit of variance reduction is
that it reduces the optimality gap in SGD when constant step size is applied.

Proposition 4.4. Suppose f is convex with the global minimizer w∗, and f∗ =
f(w∗). Consider the following iteration with constant learning rate η > 0

wk+1 = wk − η(An
σ)−1gk

where gk is the sampled gradient in the k-th iteration at wk satisfying E[gk] =

∇f(wk). Denote GAn
σ

:= limK→∞
1
K

∑K−1
k=0 ‖gk‖2(An

σ)
−1 and wK :=

∑K−1
k=0 wk/K

the ergodic average of iterates. Then the optimality gap is

lim
K→∞

E[f(wK)]− f∗ ≤
ηGAn

σ

2
.

Proof. Since f is convex, we have

(4.4) 〈∇f(wk),wk −w∗〉 ≥ f(wk)− f∗.

Furthermore,

E[‖wk+1 −w∗‖2An
σ
] = E[‖wk − η(An

σ)−1gk −w∗‖2An
σ
]

= E[‖wk −w∗‖2An
σ
]− 2ηE[〈gk,wk −w∗〉] + η2E[‖(An

σ)−1gt‖2An
σ
]

≤ E[‖wk −w∗‖2An
σ
]− 2ηE[〈∇f(wk),wk −w∗〉] + η2‖gk‖2(An

σ)
−1

≤ E[‖wk −w∗‖2An
σ
]− 2η(E[f(wk)]− f∗) + η2‖gk‖2(An

σ)
−1 ,
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where the last inequality is due to (4.4). We rearrange the terms and arrive at

E[f(wk)]− f∗ ≤ 1

2η
(E[‖wk −w∗‖2An

σ
]− E[‖wk+1 −w∗‖2An

σ
]) +

η‖gk‖2(An
σ)
−1

2
.

Summing over k from 0 to K−1 and averaging and using the convexity of f , we have

E[f(wK)]− f∗ ≤
∑K−1
k=0 E[f(wk)]

K
− f∗ ≤ 1

2ηK
E[‖w0 −w∗‖2An

σ
] +

∑K−1
k=0 ‖gk‖2(An

σ)
−1

2K
η.

Taking the limit as K →∞ above establishes the result.

Remark 4.5. Since GAn
σ

is smaller than the corresponding value without LS. It
shows that the optimality gap is reduced when LS is used with a constant step size.
In practice, this is also true for the stage-wise step size since it is a constant in each
stage of the training phase.

4.2.1. Optimization for quadratic function. In this part, we empirically
show the advantages of the LS(S)GD and its generalized schemes for the convex
optimization problems. Consider searching the minima x∗ of the quadratic function
f(x) defined in (4.5).

(4.5) f(x1, x2, · · · , x100) =

50∑
i=1

x22i−1 +

50∑
i=1

x22i
102

.

Here, we consider the gradient with Gaussian noise injection, i.e., at any given
point x, we have

∇̃εf(x) := ∇f(x) + εN (0, I),

where the scalar ε controls the noise level, N (0, I) is the Gaussian noise vector with
zero mean and unit variance in each coordinate. The corresponding numerical schemes
can be formulated as

(4.6) xk+1 = xk − ηk(An
σ)−1∇̃εf(xk),

where σ is the smoothing parameter selected to be 10.0 to remove the intense noise.
The Gaussian noise injected gradient descent is widely used for privacy-preserving
machine learning [46] and Langevin dynamics [47]. We take diminishing step sizes
with initial values 0.1 for SGD/smoothed SGD; 0.9 and 1.8 for GD/smoothed GD, re-
spectively. Without noise, the smoothing allows us to take larger step sizes, rounding
to the first digit, 0.9 and 1.8 are the largest suitable step size for GD and smoothed
version here. We study both constant learning rate and exponentially decaying learn-
ing rate, i.e., after every 1000 iteration the learning rate is divided by 10. We apply
different schemes that corresponding to n = 0, 1, 2 in (4.6) to the problem ((4.5)),
with the initial point x0 = (1, 1, · · · , 1).

Figure. 1 shows the iteration v.s. optimality gap when the constant learning rate
is used. In the noise free case, all three schemes converge linearly. When there is
noise, our smoothed gradient helps to reduce the optimality gap and converges faster
after a few iterations.

The exponentially decaying learning rate helps our smoothed SGD to reach a
point with a smaller optimality gap, and the higher order smoothing further reduces
the optimality gap, as shown in Figure 2. This is due to the noise removal properties
of the smoothing operators.
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(a) ε = 0 (b) ε = 0.05

(c) ε = 0.1 (d) ε = 0.5

Fig. 1. Iterations v.s. optimality gap for GD and smoothed GD with order 1 and order 2
smoothing for the problem in (4.5). Constant step size is used.

4.2.2. Find the center of multiple points. Consider finding the center of
a given set of 5K points {xi ∈ R50}5000i=1 . 1 It can be formulate as the following
finite-sum optimization

(4.7) min
x
F (x) :=

1

N

N∑
i=1

fi(x) =
1

N

N∑
i=1

‖xi − x‖2.

We solve this optimization problem by running either SGD or LSSGD for 20K itera-
tions starting from the same random initial point with batch size 20. The initial step
size is set to be 1.0 and 1.2, respectively, for SGD and LSSGD, and decays 1.1 times
after every 10 iterations. As the learning rate decays, the variance of the stochastic
gradient decays [48], thus we decay σ 10 times after every 1K iterations. Figure 3 (a)
plots a 2D cross section of the trajectories of SGD and LSSGD, and it shows that the
trajectory of SGD is more noisy than that of LSSGD. Figure 3 (b) plots the iteration
v.s. loss for both SGD and LSSGD averaged over 3 independent runs. LSSGD con-
verges faster than SGD and has a smaller optimality gap than LSSGD. This numerical
result verifies our theoretical results on the optimality gap (Proposition 4.4).

4.2.3. Multi-class Logistic regression. Consider applying the proposed op-
timization sch–emes to train the multi-class Logistic regression model. We run 200
epochs of SGD and different order smoothing algorithms to maximize the likelihood
of multi-class Logistic regression with batch size 100. And we apply the exponentially
decaying learning rate with initial value 0.5 and decay 10 times after every 50 epochs.

1We thank professor Adam Oberman for suggesting this problem to us.



LAPLACIAN SMOOTHING GRADIENT DESCENT 11

(a) ε = 0 (b) ε = 0.05

(c) ε = 0.1 (d) ε = 0.5

Fig. 2. Iterations v.s. optimality gap for GD and smoothed GD with order 1 and 2 smoothing
for the problem in (4.5). Exponentially decaying step size is utilized here.

Fig. 3. Left: 2D trajectories of SGD and LSSGD. Right: Iteration v.s. Loss for SGD and
LSSGD.

We train the model with only 10 % randomly selected MNIST training data and test
the trained model on the entire testing images. We further compare with SVRG un-
der the same setting. Figure. 4 shows the histograms of generalization accuracy of
the model trained by SGD (a); SVRG (b); LS-SGD (order 1) (c); LS-SGD (oder 2)
(d). It is seen that SVRG somewhat improves the generalization with higher aver-
aged accuracy. However, the first and the second order LSSGD type algorithms lift
the averaged generalization accuracy by more than 1% and reduce the variance of the
generalization accuracy over 100 independent trials remarkably.

4.3. Iteration v.s. loss. In this part, we show the evolution of the loss in
training the multi-class Logistic regression model by SGD, SVRG, LSGD with first
and second order smoothing, respectively. As illustrated in Figure 5. At each iteration,
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among 100 independent experiments, SGD has the largest variance, SGD with first
order smoothed gradient significantly reduces the variance of loss among different
experiments. The second order smoothing can further reduce the variance. The
variance of loss in each iteration among 100 experiments is minimized when SVRG is
used to train the multi-class Logistic model. However, the generalization performance
of the model trained by SVRG is not as good as the ones trained by LS-SGD, or higher
order smoothed gradient descent (Figure 4 (b)).

(a) SGD (b) SVRG

(c) LS-GD: Order 1 (d) LS-GD: Order 2

Fig. 4. Histogram of testing accuracy over 100 independent experiments of the multi-class
Logistic regression model trained on randomly selected 10% MNIST data by different algorithms.

4.4. Variance reduction in stochastic gradient. We verify the efficiency of
variance reduction numerically in this part. We simplify the problem by applying the
multi-class Logistic regression only to the digits 1 and 2 of the MNIST training data.
In order to compute the variance of the (LS)-stochastic gradients, we first compute
descent path of (LS)-GD by applying the full batch (LS)-GD with learning rate 0.5
starting from the same random initialization. We record the full batch (LS)-gradient
on each point along the descent path. Then we compute the (LS)-stochastic gradients
on each points along the path by using different batch sizes and smoothing parame-
ters σ. In computing (LS)-stochastic gradients we run 100 independent experiments.
Then we compute the variance of the (LS)-stochastic gradient among these 100 ex-
periments and regarding the full batch (LS)-gradient as the mean on each point along
the full batch (LS)-GD descent path. For each pair of batch size and σ, we report the
maximum variance over all the coordinates of the gradient and all the points along the
descent path. We list the variance results in Table 3 (note the case σ = 0 corresponds
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(a) SGD (b) SVRG

(c) LS-GD: Order 1 (d) LS-GD: Order 2

Fig. 5. Iterations v.s. loss for SGD, SVRG, and LS-SGD with order 1 and order 2 gradient
smoothing for training the multi-class Logistic regression model.

to the SGD). These results show that compared to the SGD, LSGD with σ = 3 can
reduce the maximum variance ∼ 100 times for different batch sizes. It is worth noting
that the high order smoothing reduces more variance than the lower order smoothing,
this might due to the fact that the noise of SGD is not Gaussian.

Table 3
The maximum variance of the stochastic gradient generated by LS-SGD

with different σ and batch size. σ = 0 recovers the SGD.

Batch Size 2 5 10 20 50

σ = 0 1.50E-1 5.49E-2 2.37E-2 1.01E-2 4.40E-3
σ = 1 3.40E-3 1.30E-3 5.45E-4 2.32E-4 9.02E-5
σ = 2 2.00E-3 7.17E-4 3.46E-4 1.57E-4 5.46E-5
σ = 3 1.40E-3 4.98E-4 2.56E-4 1.17E-4 3.97E-5

5. Numerical Results on Avoid Local Minima and Speed Up Conver-
gence. We first show that LS-GD can bypass sharp minima and reach the global
minima. We consider the following function, in which we ‘drill’ narrow holes on a
smooth convex function,

f(x, y, z) = −4e−((x−π)
2+(y−π)2+(z−π)2) − 4

∑
i

cos(x) cos(y)e−β((x−r sin(
i
2
)−π)2+(y−r cos( i

2
)−π)2),(5.1)
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where the summation is taken over the index set {i ∈ N| 0 ≤ i < 4π}, r and β are
the parameters that determine the location and narrowness of the local minima and
are set to 1 and 1√

500
, respectively. We do GD and LS-GD starting from a random

point in the neighborhoods of the narrow minima, i.e., (x0, y0, z0) ∈ {
⋃
i Uδ(r sin( i2 )+

π, r cos( i2 ) + π, π)| 0 ≤ i < 4π, i ∈ N}, where Uδ(P ) is a neighborhood of the point P
with radius δ. Our experiments (Figure 6) show that, if δ ≤ 0.2 GD will converge to
a narrow local minima, while LS-GD convergences to the wider global minima.

(a) (b)

Fig. 6. Demo of GD and LS-GD. Panel (a) depicts the slice of the function ( (5.1)) with
z = 2.34; panel (b) shows the paths of GD (red) and LS-GD (black). We take the step size to be
0.02 for both GD and LS-GD. σ = 1.0 is utilized for LS-GD.

Next, let us compare LSGD with some popular optimization methods on the
benchmark 2D-Rosenbrock function which is a non-convex function. The global mini-
mum is inside a long, narrow, parabolic shaped flag valley. To find the valley is trivial.
To converge to the global minimum, however, is difficult. The function is defined by

(5.2) f(x, y) = (a− x)2 + b(y − x2)2,

it has a global minimum at (x, y) = (a, a2), and we set a = 1 and b = 100 in
experiments.

Starting from the initial point with coordinate (−3,−4), we run 2K iterations
of the following optimizers including GD, GD with Nesterov momentum [31], Adam
[21], RMSProp [44], and LSGD (σ = 0.5). The step size used for all these methods is
3e−3. Figure 7 plots the iteration v.s. objective value, and it shows that GD together
with Nesterov momentum converges faster than all the other algorithms. The second
best algorithm is LSGD. Meanwhile, Nesterov momentum can be used to speed up
LSGD, and we will show this numerically in training DNNs in section 6.

Furthermore, we will show that LSGD can be further accelerated by using Nes-
terov momentum. As show in Figure 8, the LSGD together with Nesterov momen-
tum converges much faster than GD with momentum, especially for high dimensional
Rosenbrock function.

6. Application to Deep Learning.

6.1. Train neural nets with small batch size. Many advanced artificial intel-
ligence tasks make high demands on training neural nets with extremely small batch
sizes. The milestone technique for this is group normalization [49]. In this section,
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Fig. 7. Iteration v.s. loss of different optimization algorithms in optimize the Rosenbrock
function.

Fig. 8. Iteration v.s. objective value for GD with Nesterov momentum and LSGD with Nesterov
momentum.

we show that LS-SGD successfully trains DNN with extremely small batch size. We
consider LeNet-5 [23] for MNIST classification. Our network architecture is as follows

LeNet-5: input28×28 → conv20,5,2 → conv50,5,2 → fc512 → softmax.

The notation convc,k,m denotes a 2D convolutional layer with c output channels,
each of which is the sum of a channel-wise convolution operation on the input using a
learnable kernel of size k×k, it further adds ReLU nonlinearity and max pooling with
stride size m. fc512 is an affine transformation that transforms the input to a vector
of dimension 512. Finally, the tensors are activated by a multi-class Logistic function.
The MNIST data is first passed to the layer input28×28, and further processed by
this hierarchical structure. We run 100 epochs of both SGD and LS-SGD with initial
learning rate 0.01 and divide by 5 after 50 epochs, and use a weight decay of 0.0001
and momentum of 0.9. Figure. 9(a) plots the generalization accuracy on the test set
with the LeNet5 trained with different batch sizes. For each batch size, LS-SGD with
σ = 1.0 keeps the testing accuracy more than 99.4%, SGD reduce the accuracy to
97% when batch size 4 is used. The classification become just a random guess, when
the model is trained by SGD with batch size 2. Small batch size leads to large noise
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in the gradient, which may make the noisy gradient not along the decent direction;
however, Lapacian smoothing rescues this by decreasing the noise.

Fig. 9. (a). Testing accuracy of LeNet5 trained by SGD/LS-SGD on MNIST with various
batch sizes. (b). The evolution of the pre-activated ResNet56’s training and generalization accuracy
by SGD and LS-SGD. (Start from the 20-th epoch.)

6.2. Improve generalization accuracy. The skip connections in ResNet smooth
the landscape of the loss function of the classical CNN [17, 26]. This means that
ResNet has fewer sharp minima. On Cifar10 [22], we compare the performance of LS-
SGD and SGD on ResNet with the pre-activated ResNet56 as an illustration. We take
the same training strategy as that used in [17], except that we run 200 epochs with
the learning rate decaying by a factor of 5 after every 40 epochs. For ResNet, instead
of applying LS-SGD for all epochs, we only use LS-SGD in the first 40 epochs, and
the remaining training is carried out by SGD (this will save the extra computational
cost due to LS, and we noticed that the performance is similar to the case when LS
is used for the whole training process). The parameter σ is set to 1.0. Figure 9(b)
depicts one path of the training and generalization accuracy of the neural nets trained
by SGD and LS-SGD, respectively. It is seen that, even though the training accu-
racy obtained by SGD is higher than that by LS-SGD, the generalization is however
inferior to that of LS-SGD. We conjecture that this is due to the fact that SGD gets
trapped into some sharp but deeper minimum, which fits better than a flat minimum
but generalizes worse. We carry out 25 replicas of this experiments, the histograms
of the corresponding accuracy are shown in Figure 10.

6.3. Training Wassersterin GAN. Generative Adversarial Networks (GANs)
[15] are notoriously delicate and unstable to train [4]. In [27], Wasserstein-GANs
(WGANs) are introduced to combat the instability in the training GANs. In addition
to being more robust in training parameters and network architecture, WGANs pro-
vide a reliable estimate of the Earth Mover (EM) metric which correlates well with
the quality of the generated samples. Nonetheless, WGANs training becomes unsta-
ble with a large learning rate or when used with a momentum based optimizer [27].
In this section, we demonstrate that the gradient smoothing technique in this paper
alleviates the instability in the training, and improves the quality of generated sam-
ples. Since WGANs with weight clipping are typically trained with RMSProp [44], we
propose replacing the gradient g by a smoothed version gσ = A−1σ g, and also update
the running averages using gσ instead of g. We name this algorithm LS-RMSProp.

To accentuate the instability in training and demonstrate the effects of gradient
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SGD LS-SGD with σ = 1.0

Fig. 10. The histogram of the generalization accuracy of the pre-activated ResNet56 on Cifar10
trained by SGD and LS-SGD over 25 independent experiments.

smoothing, we deliberately use a large learning rate for training the generator. We
compare the regular RMSProp with the LS-RMSProp. The learning rate for the
critic is kept small and trained approximately to convergence so that the critic loss is
still an effective approximation to the Wasserstein distance. To control the number
of unknowns in the experiment and make a meaningful comparison using the critic
loss, we use the classical RMSProp for the critic, and only apply LS-RMSProp to the
generator.

RMSProp LS-RMSProp, σ = 3.0

Fig. 11. Critic loss with learning rate lrD = 0.0001, lrG = 0.005 for RMSProp (left) and LS-
RMSProp (right), trained for 20K iterations. We apply a mean filter of window size 13 for better
visualization. The loss from LS-RMSProp is visibly less noisy.

We train the WGANs on the MNIST dataset using the DCGAN [35] for both the
critic and generator. In Figure 11 (left), we observe the loss for RMSProp trained with
a large learning rate has multiple sharp spikes, indicating instability in the training
process. The samples generated are also lower in quality, containing noisy spots as
shown in Figure 12 (a). In contrast, the curve of training loss for LS-RMSProp is
smoother and exhibits fewer spikes. The generated samples as shown in Figure 12 (b)
are also of better quality and visibly less noisy. The generated characters shown in
Figure 12 (b) are more realistic compared to the ones shown in Figure 12 (a). The
effects are less pronounced with a small learning rate, but still result in a modest
improvement in sample quality as shown in Figure 12 (c) and (d).We also apply LS-
RMSProp for training the critic, but do not see a clear improvement in the quality.
This may be because the critic is already trained near optimality during each iteration,
and does not benefit much from gradient smoothing.
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RMSProp LS-RMSProp, σ = 3.0

(a) (b)
RMSProp LS-RMSProp, σ = 3.0

(c) (d)

Fig. 12. Samples from WGANs trained with RMSProp (a, c) and LS-RMSProp (b, d). The
learning rate is set to lrD = 0.0001, lrG = 0.005 for both RMSProp and LS-RMSProp in (a) and
(b). And lrD = 0.0001, lrG = 0.0001 are used for both RMSProp and LS-RMSProp in (c) and (d).
The critic is trained for 5 iterations per step of the generator, and 200 iterations per every 500 steps
of the generator.

RMSProp LS-RMSProp, σ = 1.0

Fig. 13. Durations of the cartpole game in the training procedure. Left and right are training
procedure by RMSProp and LS-RMSProp with σ = 1.0, respectively.

6.4. Deep reinforcement learning. Deep reinforcement learning (DRL) has
been applied to playing games including Cartpole [9], Atari [30], Go [42, 29]. DNN
plays a vital role in approximating the Q-function or policy function. We apply the
Laplacian smoothed gradient to train the policy function to play the Cartpole game.
We apply the standard procedure to train the policy function by using the policy
gradient [9]. And we use the following network to approximate the policy function:

input4 → fc20 → relu→ fc2 → softmax.

The network is trained by RMSProp and LS-RMSProp with σ = 1.0, respectively.
The learning rate and other related parameters are set to be the default ones in
PyTorch. The training is stopped once the average duration of 5 consecutive episodes
is more than 490. In each training episode, we set the maximal steps to be 500.
Left and right panels of Figure 13 depict a training procedure by using RMSProp
and LS-RMSProp, respectively. We see that Laplacian smoothed gradient takes fewer
episodes to reach the stopping criterion. Moreover, we run the above experiments 5
times independently, and apply the trained model to play Cartpole. The game lasts
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more than 1000 steps for all the 5 models trained by LS-RMSProp, while only 3 of
them lasts more than 1000 steps when the model is trained by vanilla RMSProp.

7. Convergence Analysis. Note that the LS matrix A−1σ is positive definite
and its largest and smallest eigenvalues are 1 and 1

1+4σ , respectively. It is straight-
forward to show that all the convergence results for (S)GD still hold for LS(S)GD. In
this section, we will show some additional convergence for LS(S)GD with a focus on
LSGD, the corresponding results for LSSGD follow in a similar way.

Proposition 7.1. Consider the algorithm wk+1 = wk−ηk(An
σ)−1∇f(wk). Sup-

pose f is L-Lipschitz smooth and 0 < η̃ ≤ η ≤ η̄ < 2
L . Then limt→∞ ‖∇f(wk)‖ → 0.

Moreover, if the Hessian ∇2f of f is continuous with w∗ being the minimizer of f ,
and η̄‖∇2f‖ < 1, then ‖wk −w∗‖An

σ
→ 0 as k →∞, and the convergence is linear.

Proof. By the Lipschitz continuity of ∇f and the descent lemma [5], we have

f(wk+1) = f(wk − ηk(An
σ)−1∇f(wk))

≤ f(wk)− ηk〈∇f(wk), (An
σ)−1∇f(wk))〉+

η2kL

2
‖(An

σ)−1∇f(wk)‖2

≤ f(wk)− ηk‖∇f(wk)‖2(An
σ)
−1 +

η2kL

2
‖∇f(wk)‖2(An

σ)
−1

≤ f(wk)− η̃
(

1− η̄L

2

)
‖∇f(wk)‖2(An

σ)
−1 .

Summing the above inequality over k, we have

η̃

(
1− η̄L

2

) ∞∑
k=0

‖∇f(wk)‖2(An
σ)
−1 ≤ f(w0)− lim

k→∞
f(wk) <∞.

Therefore, ‖∇f(wk)‖2(An
σ)
−1 → 0, and thus ‖∇f(wk)‖ → 0.

For the second claim, we have

wk+1 −w∗

= wk −w∗ − ηk(An
σ)−1(∇f(wk)−∇f(w∗))

= wk −w∗ − ηk(An
σ)−1

(∫ 1

0

∇2f(w∗ + τ(wk+1 −w∗)) · (wk −w∗)dτ

)
= wk −w∗ − ηk(An

σ)−1
(∫ 1

0

∇2f(w∗ + τ(wk+1 −w∗))dτ · (wk −w∗)

)
= (An

σ)−
1
2

(
I − ηk(An

σ)−
1
2

∫ 1

0

∇2f(w∗ + τ(wk+1 −w∗))dτ(An
σ)−

1
2 )

)
(An

σ)
1
2 (wk −w∗)

Therefore,

‖wk+1−w∗‖An
σ
≤
∥∥∥∥I − ηt(An

σ)−
1
2

∫ 1

0

∇2f(w∗ + τ(wk+1 −w∗))dτ(An
σ)−

1
2

∥∥∥∥ ‖wk−w∗‖An
σ
.

So if ηk‖∇2f‖ ≤ 1
‖(An

σ)
−1‖ = 1, the result follows.

Remark 7.2. The convergence result in Proposition 7.1 is also callHn
σ -convergence.

This is because 〈u,An
σu〉 = ‖u‖2 + σ‖Dn

+u‖2 = ‖u‖2Hnσ .

8. Discussion and Conclusion.
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8.1. Some more properties of Laplacian smoothing. In Theorem 3.4, we
established a high probability estimate of the LS operator in reducing the `2 norm of
any given vector. The `1 type of high probability estimation can be established in the
same way. These estimates will be helpful to develop privacy-preserving optimization
algorithms to train ML models that improve the utility of the trained models without
sacrifice the privacy guarantee [45].

Regarding the `1/`2 estimates of the LS operator, we further have the following
results.

Proposition 8. Given vectors g and d = A−1σ g, for any p ∈ N, it holds that
‖Dp

+d‖1 ≤ ‖D
p
+g‖1. The inequality is strict unless Dp

+g is a constant vector.

Proof. Observe that Aσ and D+ commute; therefore, for any p ∈ N, Aσ(Dp
+d) =

Dp
+g. Thus we have

(1 + 2σ)(Dp
+d)i = (Dp

+g)i + σ(Dp
+d)i+1 + σ(Dp

+d)i−1.

So
(1 + 2σ)|(Dp

+d)i| ≤ |(Dp
+g)i|+ σ|(Dp

+d)i+1|+ σ|(Dp
+d)i−1|.

The inequality is strict if there are sign changes among the (Dp
+d)i−1, (Dp

+d)i,
(Dp

+d)i+1. Summing over i and using periodicity, we have

(1 + 2σ)

m∑
i=1

|(Dp
+d)i| ≤

m∑
i=1

|(Dp
+g)i|+ 2σ

m∑
i=1

|(Dp
+d)i|,

and the result follows. The inequality is strict unless Dp
+g is a constant vector.

Proposition 8.1. Given any vector g ∈ Rm and d = (An
σ)−1g, then

(8.1) ‖g‖2 = ‖d‖2 + 2σ‖Dn
+d‖2 + σ2‖Lnd‖2,

the variance of d is much less than that of g.

Proof. Observe that g = An
σd = d + (−1)nσLnd. Therefore,

(8.2)
‖g‖2 = 〈d + (−1)nσLnd,d + (−1)nσLnd〉 = ‖d‖2 + 2(−1)nσ〈d,Lnd〉+ σ2‖Lnd‖2.

Next, note D− and D+ are commute; thus

(8.3) Ln = (D−D+) · · · (D−D+)︸ ︷︷ ︸
n

= D− · · ·D−︸ ︷︷ ︸
n

D+ · · ·D+︸ ︷︷ ︸
n

= Dn
−D

n
+.

Now, we have
(8.4)
〈d,Lnd〉 = 〈d,Dn

−D
n
+d〉 = 〈(Dn

−)Td,Dn
+d〉 = 〈(−1)nDn

+d,D
n
+d〉 = (−1)n‖Dn

+d‖2,

where we used (8.3) in the first equality and D− = −DT
+ in the second to last equality.

Substituting (8.4) into (8.2), yields (8.1).

8.2. Connection to Hamilton-Jacobi PDEs. The motivation for the pro-
posed LS-SGD comes from the Hamilton-Jacobi PDE (HJ-PDE). Consider the fol-
lowing unusual HJ-PDE with the empirical risk function, f(w), as initial condition

(8.5)

{
ut + 1

2

〈
∇wu,A

−1
σ ∇wu

〉
= 0, (w, t) ∈ Ω× [0,∞)

u(w, 0) = f(w), w ∈ Ω
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By the Hopf-Lax formula [14], the unique viscosity solution to (8.5) is represented by

u(w, t) = inf
v

{
f(v) +

1

2t

〈
v −w,Aσ(v −w)

〉}
.

This viscosity solution u(w, t) makes f(w) ”more convex”, an intuitive definition
and theoretical explanation of ”more convex” can be found in [10], by bringing down
the local maxima while retaining and widening local minima. An illustration of this
is shown in Figure 14. If we perform the smoothing GD with proper step size on the
function u(w, t), it is easier to reach the global or at least a flat minima of the original
nonconvex function f(w).

Fig. 14. f(w) = ‖w‖2
(
1 + 1

2
sin(2π‖w‖)

)
is made more convex by solving (8.5). The plot

shows the cross section of the 5D problem with σ = 1 and different t values.

Proposition 8.2. Suppose f(w) is differentiable, the LS-GD on u(w, t)

wk+1 = wk − tA−1σ ∇wu(wk, t)

is equivalent to the smoothing implicit GD on f(w)

(8.6) wk+1 = wk − tA−1σ ∇f(wk+1).

Proof. We define

z(w,v, t) := f(v) +
1

2t
〈v −w,Aσ(v −w)〉,

and rewrite u(w, t) = infv z(w,v, t) as z(w,v(w, t), t), where v(w, t) = arg minv z(w,v, t).
Then by the Euler-Lagrange equation,

∇wu(w, t) = ∇wz(w,v(w, t), t) = Jwv(w, t)∇vz(w,v(w, t), t) +∇wz(w,v(w, t), t),

where Jwv(w, t) is the Jacobian matrix of v w.r.t. w. Notice that∇vz(w,v(w, t), t) =
0,

∇wu(w, t) = ∇wz(w,v(w, t), t) = −1

t
Aσ(v(w, t)−w).

Letting w = wk and wk+1 = v(wk, t) = arg minv z(w
k,v, t) in the above equalities,

we have

∇wu(wk, t) = −1

t
Aσ(wk+1 −wk).

In summary, the gradient descent wk+1 = wk − tA−1σ ∇wu(wk, t) is equivalent to
the proximal point iteration wk+1 = arg minv f(v) + 1

2t 〈v −wk,Aσ(v −wk)〉, which
yields wk+1 = wk − tA−1σ ∇f(wk+1).
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The studied LS-GD algorithm is an explicit relaxation of the implicit algorithm
in (8.6).

8.3. Conclusion. Motivated by the theory of Hamilton-Jacobi partial differen-
tial equations, we proposed Laplacian smoothing gradient descent and its high order
generalizations. This simple modification dramatically reduces the variance and opti-
mality gap in stochastic gradient descent, allows us to take a larger step size, and helps
to find better minima. Extensive numerical examples ranging from toy cases and shal-
low and deep neural nets to generative adversarial networks and deep reinforcement
learning, all demonstrate the advantage of the proposed smoothed gradient.

9. Appendix.

9.1. Proof of Theorem 3.3. In this part, we will give a proof for Theorem 3.3.

Lemma 9.1. [1] Let t, u > 0, v be an m-dimensional standard normal random
vector, and let F : Rm → R be a function such that ‖F (x)− F (y)‖ ≤ ‖x− y‖ for all
x, y ∈ Rm. Then

(9.1) P (F (v) ≥ EF (v) + u) ≤ exp

(
−tu+

1

2

(
πt

2

)2
)
.

Taking t = 4
π2 in Lemma 9.1, we obtain

Lemma 9.2. Let u > 0, v be an m-dimensional standard normal random vector,
and let F : Rm → R be a function such that ‖F (x) − F (y)‖ ≤ ‖x − y‖ for all x,
y ∈ Rm. Then

(9.2) P (F (v) ≥ EF (v) + u) ≤ exp

(
− 2

π2
u2
)
.

Lemma 9.3. Let v be an m-dimensional standard normal random vector. Let
1 ≤ p ≤ ∞. Let 0 < u < E‖v‖`p . Let T ∈ Rm×m be such that ‖Tx‖`p ≤ ‖x‖`p for
all x ∈ Rm. Then

P
(
‖Tv‖`p ≥

E‖Tv‖`p + u

E‖v‖`p − u
‖v‖`p

)
≤ 2 exp

(
− 2

π2
u2
)
.

Proof. By Lemma 9.2,

P(‖Tv‖`p ≥ E‖Tv‖`p + u) ≤ e−
2
π2 u

2

and
P(−‖v‖`p ≥ −E‖v‖`p + u) ≤ e−

2
π2 u

2

.

The second inequality gives

P(‖v‖`p ≤ E‖v‖`p − u) ≤ e−
2
π2 u

2

.

Therefore,

P
(
‖Tv‖`p ≥

E‖Tv‖`p + u

E‖v‖`p − u
‖v‖`p

)
≤P(‖Tv‖`p ≥ E‖Tv‖`p + u) + P(‖v‖`p ≤ E‖v‖`p − u) ≤ 2e−

2
π2 u

2

.
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Lemma 9.4. Let 1 ≤ p ≤ 2. Let T ∈ Rm×m. Let v be an m-dimensional standard
normal random vector. Then

E‖Tv‖`p ≤ m
1
p−

1
2 (TraceT ∗T )

1
2 (E|v1|p)

1
p ,

where v1 is the first coordinate of v.

Proof. We write T = (Ti,j)1≤i,j≤n. Then

E‖Tv‖`p = E

 n∑
i=1

∣∣∣∣∣∣
n∑
j=1

Ti,jvj

∣∣∣∣∣∣
p

1
p

≤

 n∑
i=1

E

∣∣∣∣∣∣
n∑
j=1

Ti,jvj

∣∣∣∣∣∣
p

1
p

=

 n∑
i=1

 n∑
j=1

T 2
i,j


p
2

E|v1|p


1
p

≤

n1− p2
 ∑

1≤i,j≤n

T 2
i,j


p
2

E|v1|p


1
p

= n
1
p−

1
2 (Trace T ∗T )

1
2 (E|v1|p)

1
p ,

where the second equality follows from the assumption that v is an m-dimensional
standard normal random vector.

Lemma 9.5. Let v be an m-dimensional standard normal random vector. Then

E‖v‖`2 ≥
√
m− π.

Proof. By Lemma 9.2,

P(‖v‖`2 ≥ E‖v‖`2 + u) ≤ e−
2
π2 u

2

and

P(−‖v‖`2 ≥ −E‖v‖`2 + u) ≤ e−
2
π2 u

2

.

Thus,

P(|‖v‖`2 − E‖v‖`2 | ≥ u) ≤ 2e−
2
π2 u

2

.

Consider the random variable W = ‖v‖`2 . We have

E|W − EW |2 =

∫ ∞
0

P(|W − EW | ≥
√
u) du ≤

∫ ∞
0

2e−
2
π2 u du = π2.

Since E|W − EW |2 = EW 2 − (EW )2, we have

EW ≥ (EW 2)
1
2 − (E|W − EW |2)

1
2 ≥
√
m− π.
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Lemma 9.6. Let 0 < ε < 1− π√
m

. Let σ > 0. Let

β =
1

m

m∑
i=1

1

|1 + 2σ − σzi − σzi|2
,

where z1, . . . , zm are the m roots of unity. Let B be the circular shift operator on Rm.
Let v be an m-dimensional standard normal random vector. Then

P

(
‖((1 + 2σ)I − σB − σB∗)−1v‖`2 ≥

√
β + ε

1− π√
m
− ε
‖v‖`2

)
≤ 2e−

2
π2mε

2

.

Proof. Let T = ((1 + 2σ)I − σB − σB∗)−1. Taking u =
√
mε in Lemma 9.3, we

have

P
(
‖Tv‖`2 ≥

E‖Tv‖`2 +
√
mε

E‖v‖`2 −
√
mε
‖v‖l2

)
≤ 2e−

2
π2mε

2

.

By Lemma 9.4, E‖Tv‖`2 ≤ (TraceT ∗T )
1
2 . we have TraceT ∗T = mβ. It is easy to

show that TraceT ∗T ) = mβ So E‖Tv‖`2 ≤
√
mβ. Also by Lemma 9.5, E‖v‖`2 ≥√

m− π. Therefore,

P

(
‖((1 + 2σ)I − σB − σB∗)−1v‖`2 ≥

√
β + ε

1− π√
m
− ε
‖v‖`2

)
≤ 2e−

2
π2mε

2

.

Proof of Theorem 3.3. Theorem 3.3 follows from Lemma 9.6 by substituting v
‖v‖`2

and using homogeneity and direct calculations.

9.2. Proof of Theorem 4.1. In this part, we will give a proof for Theorem 4.1.

Lemma 9.7 ([6]). Let ≺w denotes weak majorization. Denote eigenvalues of
Hermitian matrix X, by λ1(X) ≥ . . . ≥ λm(X). For every two Hermitian positive
definite matrices A and B, we have

(λ1(AB), · · · , λm(AB)) ≺w (λ1(A)λ1(B), · · · , λm(A)λm(B)).

In particular,
m∑
j=1

λj(AB) ≤
m∑
j=1

λj(A)λj(B).

proof of Theorem 4.1. Let λ1 ≥ . . . ≥ λm denote the eigenvalues of Σ. The
eigenvalues of (Anσ)−2 are given by {[1+4nσ sin2n(πj/m)]−2}j=m−1j=0 , which we denote

by 1 = α1 ≥ . . . ≥ αm ≥ (1 + 4nσ)−2. We have

(9.3)

m∑
j=1

Var[nj ] = trace(Σ) =

m∑
j=1

λj .

On the other hand we also have

(9.4)

m∑
j=1

Var[(An
σ)−1nj ] = trace((An

σ)−1Σ(An
σ)−1) = trace((An

σ)−2Σ) ≤
m∑
j=1

αjλj ,
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where the last inequality is by lemma 9.7. Now,

m∑
j=1

λj −
m∑
j=1

αjλj =

m∑
j=1

(1− αj)λj

≥ λm(m−
m∑
j=1

αj)

=
λ1
κ

(m−
m∑
j=1

αj)

≥
∑m
j=1 λj

mκ
(m−

m∑
j=1

αj)

Rearranging and simplifying above implies that

m∑
j=1

αjλj ≤ (

m∑
j=1

λj)(1−
1

κ
+

∑m
j=1 αj

mκ
).

Substituting (9.3) and (9.4) in the above inequality, yields (4.3).

9.3. Proof of Lemma 3.4. To proof Lemma 3.4, we first introduce the following
lemma.

Lemma 9.8. For 0 ≤ θ ≤ 2π, suppose

F (θ) =
1

(1 + 2σ(1− cos(θ)))2
,

has the discrete-time Fourier transform of series f [k]. Then, for integer k,

f [k] =
(|k|+ 1)α|k|

4σ + 1
+

2σα|k|+1

(4σ + 1)3/2

where

α =
2σ + 1−

√
4σ + 1

2σ

Proof. We only proof for the case when k > 0, by definition,

(9.5) f [k] =
1

2π

∫ 2π

0

F (θ)eikθ dθ =
1

2π

∫ 2π

0

eikθ

(1 + 2σ(1− cos(θ)))2
dθ.

Set z = eiθ. Observe that cos(θ) = 0.5(z + 1/z) and dz = izdθ. We have

f [k] =
1

2π

∫ 2π

0

eikθ

(1 + 2σ(1− cos θ))
2 dθ

=
1

2πi

∮
zk+1

(z + σ(2z − z2 − 1))2
dz

=
(k + 1)αk

4σ + 1
+

2σαk+1

(4σ + 1)3/2
,
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Proof of Lemma 3.4. First observe that we can re-write the left hand side of (3.5)
as

(9.6)
1

m

m−1∑
j=0

1

(1 + 2σ(1− cos( 2πj
m )))2

.

It remains to show that the above summation is equal to the right hand side of (3.5).
This follows by lemmas 9.8 and standard sampling results in Fourier analysis (i.e.
sampling θ at points {2πj/m}m−1j=0 ). Nevertheless, we provide the details here for
completeness: Observe that that the inverse discrete-time Fourier transform of

G(θ) =

m−1∑
j=0

δ(θ − 2πj

m
).

is given by

g[k] =

{
m/2π if k divides m,

0 otherwise.

Furthermore, let

F (θ) =
1

(1 + 2σ(1− cos(θ)))2
,

and use f [k] to denote its inverse discrete-time Fourier transform. Now,

1

m

m−1∑
j=0

1

(1 + 2σ(1− cos( 2πj
m )))2

=
1

m

∫ 2π

0

F (θ)G(θ)

=
2π

m
DTFT−1[F ·G][0]

=
2π

m
(DTFT−1[F ] ∗DTFT−1[G])[0]

=
2π

m

∞∑
r=−∞

f [−r]g[r]

=
2π

m

∞∑
`=−∞

f [−`m]
m

2π

=

∞∑
`=−∞

f [−`m].

The proof is completed by substituting the result of lemma 9.8 in the above sum.
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