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Oligomers of the amyloid β-protein (Aβ) have been implicated in
the pathogenesis of Alzheimer’s disease (AD) through their toxic
action on neurons. Understanding the process of oligomerization
may contribute to the development of therapeutic agents, but this
has been difficult due to the complexity of oligomerization and the
metastability of the oligomers thus formed. One means to overcome
these difficulties is to develop models of the oligomerization process.
Here, we use experimental data from cell viability assays and proxies
for rate constants involved in monomer-dimer-trimer kinetics to de-
velop a simple mathematical model linking Aβ assembly to oligomer-
induced neuronal degeneration. This model recapitulates the rapid
growth of disease incidence with age. It does so through incorpora-
tion of age-dependent changes in rates of Aβ monomer production
and elimination. The model also describes clinical progression in ge-
netic forms of AD (e.g., Down’s syndrome), changes in hippocampal
volume, AD risk after traumatic brain injury, and spatial spreading of
the disease due to foci in which Aβ production is elevated. Contin-
ued incorporation of clinical and basic science data into the current
model will make it an increasingly relevant model system for doing
experiments that are not feasible in biological systems. In addition,
terms in the model that have particularly large effects are likely to be
especially useful therapeutic targets.
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Alzheimer’s disease (AD) currently is the 6th leading cause
of death in the U.S. and its prevalence continues increasing
rapidly (1). Thus there is a critical need for the development
of effective preventive, ameliorative, or curative therapeutics.
Unfortunately, none exist (2). A reason why is the multifac-
torial nature of AD, which makes contemporaneous study of
the entire system infeasible and requires researchers to focus
on smaller system elements. One such element is amyloid
plaque formation. Plaques in the brains of those with AD
are extracellular deposits of long protein fibrils formed by
the amyloid β-protein (Aβ) and one of the pathognomonic
features of AD. This inspired the hypothesis that fibril for-
mation is the seminal pathologic event in AD, an event that
leads to neuronal injury, death, and clinical signs (memory
loss) (3). However, this “amyloid cascade hypothesis,” has
largely been supplanted by the “oligomer cascade hypothesis,”
which suggests that pre-fibrillar structures, oligomers, are the
most important toxic agents (4). Like AD itself, the process by
which monomeric Aβ forms fibrils is complicated and involves
a multitude of small, oligomeric assemblies, as well as large,
pre-fibrillar precursor structures (5). It has been suggested
that oligomers as small as dimers may be the most important

of these assemblies (6).

Aβ oligomerization and its effect on neurons in vitro and
in vivo are being studied intensively (for recent reviews, see
(7, 8)). Studies in our group (9) and others (10–12) have
focused on the structural biology and kinetics of oligomeriza-
tion and fibril formation. These studies have sought to relate
these biophysical aspects of Aβ assembly to disease occurrence,
pathology, and progression. The results have provided insight
into the conformational features important for Aβ assembly
and toxicity and how these features control assembly kinet-
ics. Much less is known about the relationship of particular
oligomer states to the clinical development of disease. It is
clear that the constitutive level of Aβ production correlates
directly with time of onset and severity of disease. This is
particularly apparent in people with Down’s syndrome, who
possess three copies of the amyloid precursor protein gene that
encodes Aβ. Simple gene dosage extrapolation suggests that
Aβ should be produced at 150% the level found in normal
individuals. However, studies by Cheon et al. (13) have shown
that immunoreactive APP species are expressed in Down’s
syndrome brains at levels up to 3-fold higher. Higher Aβ
expression also is observed in rare familial forms of AD that
are characterized by mutations in APP or the enzymes re-
sponsible for its production (14). These mutations result in
increased concentrations of Aβ or an increase in the relative

Significance Statement

Oligomeric assemblies of Aβ are hypothesized to be seminal
pathologic agents in Alzheimer’s disease (AD). Mechanistic
studies of oligomerization and neurotoxicity in humans are cur-
rently impossible, yet such studies promise to advance efforts
toward target identification and drug development. To over-
come this hurdle, we developed a simple, mathematical model
parameterized using experimental data extant. The model en-
ables determination of age-related changes in AD risk and
hippocampal volume, the effects of traumatic brain injury on
lifetime AD risk, gene dosage effects, and the effects of spatial
variation in Aβ monomer concentrations on millimeter scales.
The model is easily interpretable and provides a foundation for
development of more comprehensive models of AD develop-
ment and progression.

All authors contributed to the model development, analysis, and writing of the manuscript.

The authors declare no conflicts of interest.

1To whom correspondence should be addressed. E-mail: mikel@math.ucla.edu

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | November 1, 2019 | vol. XXX | no. XX | 1–14

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

amount of two forms of the protein, Aβ40 and Aβ42. Aβ42
is only two amino acids longer (42 vs. 40) than Aβ40, yet its
pathogenicity is substantially higher.

Though Aβ is produced in the brain throughout life, AD
is not usually observed before age 65 (15). AD risk increases
exponentially after that, reaching approximately 30% by age
85 (16). Age is the most important risk factor for sporadic
AD (17). Apolipoprotein E, which can exist in the body
in three different forms, ApoE2, ApoE3, and ApoE4, is a
cholesterol carrier protein. The type of apolipoprotein E one
expresses also has a significant effect on risk (18) and risk is
increased substantially in individuals that express ApoE4 (18).
Blunt force trauma to the head, e.g., traumatic brain injury
(TBI) or chronic traumatic encephalopathy (CTE), now are
understood to be significant risk factors as well (19, 20).

A useful means to understand systems is to model them.
Models often are the only way to study complex systems
for which determination of the structural and dynamic rela-
tionships among elements cannot be accomplished or fully
understood experimentally. Deterministic mathematical mod-
elling can be useful in these cases and it has been applied to
studying how γ-secretase inhibition affects Aβ in the CSF and
plasma (21); studying microglia, astroglia, and neuron involve-
ments in AD inflammation (22, 23); simulating the effects
of drugs in clinical trials (24); relating blood oxygen level-
dependent functional magnetic resonance imaging to energy
metabolism in the brain (25); describing amyloid processing
(26) and prion-like spreading of AD (27); and for other uses as
well (28). Model systems for Aβ structural and conformational
studies have been created in silico and provided important
insights into factors affecting oligomerization and fibril forma-
tion (29). Simulating these processes has been particularly
useful for determining how energetics control Aβ conforma-
tion and self-association (30) and for deriving experimentally
testable hypotheses about these energetics. One intrinsic prob-
lem of in silico simulations is their inability to directly relate
natural time steps (sec) with computational time steps (fsec).
This creates difficulties when one seeks to understand how Aβ
assembly dynamics relate to the kinetics of disease progression
in humans.

Here, we report the creation of a mathematical model of
the time-dependence of AD progression and its relationship
to the kinetics of Aβ production, elimination, and toxicity.
We find the model predicts biologically significant time scales
for development of AD; offers explanations for how blunt
force trauma, Down’s syndrome, and changes in hippocampal
volume affect disease risk; and provides a glimpse into how
the disease may spread in the brain.

Assumptions and Model Development

The oligomer cascade hypothesis posits that neuronal death
in AD is due to oligomers. In our model, we are therefore
interested in describing the coupling between oligomers and
loss in neuronal viability. This also requires modelling the
kinetics of Aβ assembly.

We begin by describing the concentration of monomers
M , dimers D, and trimers L in the interstitial fluid. As a
simplification, once a trimer is formed, it is considered a plaque
without dissociation or further growth. This allows for us to
concentrate on dimers as representative oligomers and their
resulting damage to the cells. We model viable cell density

V as being lost at a rate σ times the dimer concentration as
there is not strong evidence of monomers being toxic. At each
instant, the percentage chance that one develops AD for each
one percent decrease in viable neurons is defined to be γ, what
we refer to as the neuronal death elasticity of AD risk (similar
to the economic concept of “price elasticity of demand,” the
percent change in demand for each percent increase in price
(31)). For kinetics, we stipulate that monomers are produced at
a rate S and they are cleared at a rate κ; dimerization occurs
at a rate ν, with a dissociation rate µ; and trimerization
occurs at a rate ζ. To consider the effects of diffusion, we
assign monomers a diffusivity DM and dimers a diffusivity
DD. Lastly, there is evidence for rate constants such as S
and κ being time dependent with S increasing in time and κ
decreasing. When rate time-dependence is considered, we use
linear models where λS is the time it takes for S to double
and λκ is the time when κ would reach 0 (at which point the
model is no longer accurate). See Figure 1 for a schematic of
the mechanisms involved.

Fig. 1. Model scheme. Monomers are produced at rate S and cleared at a
rate κ. Two monomers combine to form a dimer with rate constant ν and a dimer
can dissociate at rate µ into two monomers. Monomers and dimers can combine to
form trimers at rate ζ, with no backwards reactions present. Trimers are considered
plaques. Neurons are killed at a rate σ times the dimer concentration. Thus, as the
dimer concentration rises, so does the speed of neuronal death.

Full details of parameter estimation are provided in the
Supporting Information. Here, we provide an overview of the
steps taken to arrive at the parameters in Table 1. See figure
2 for an illustration. Note that a variable with a bar indicates
a representative scale/size for that variable. For instance,
monomer production S could be time-dependent and S̄ is a
representative size of S. From experiments with brain slice
cultures and mixed neuron-glial cultures, oligomer toxicity
was examined at different concentrations (32, 33), allowing us
to estimate σ̄ from a survival model (34). The loss of neurons
is coupled with increased risk of AD through the neuronal
death elasticity of AD risk γ, based on the notion that AD
develops when one or more neurons (35) critical for memory
processes dies. We estimate γ by using AD incidence data.
Literature results on Aβ monomer production rates in single
neurons (36) and knowing the density of neuron/glia cells in
Rhesus monkeys (37) allow us to estimate S̄. Further stud-
ies that show how the activity of β−secretase may increase
with age (38–40) allow us to estimate λS . Likewise, exper-
iments that show how Aβ clearance changes with age (38)
allow us to estimate κ̄ and λκ. Measured dimer (or soluble
Aβ) concentrations from the literature allow us to estimate the
characteristic scale of the dimer concentration (6, 41). Based
on some further assumptions relating to the relative speed
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Parameter Meaning Value
S̄ Baseline monomer produc-

tion rate
1.63× 10−11 M s−1

κ̄ Baseline monomer loss rate 6.17× 10−5 s−1

ν̄ Baseline monomer combina-
tion rate

2.25× 103 M−1 s−1

µ̄ Baseline dimer dissociation
rate

7.86× 101 s−1

ζ̄ Baseline monomer-dimer
combination rate

1.01× 103 M−1 s−1

λS Linear growth doubling time
of production

4.85× 109 s [154 yr]

λκ Linear decay time to zero for
clearance

3.60× 109 s [114 yr]

DM Monomer diffusivity 5.47× 10−7 cm2 s−1

DD Dimer diffusivity 4.30× 10−7 cm2 s−1

σ̄ Baseline cell-dimer damage
rate

4.94 M−1 s−1

TD Survival time after AD diag-
nosis

2.23× 109 s [7.1 yr]

TL Life expectancy in United
States

2.48× 109 s [78.5 yr]

γ Neuronal death elasticity of
AD risk#

6.00× 10−1

L̄ Characteristic plaque
(trimer) concentration

6.73× 10−7 M

M̄ Characteristic monomer con-
centration

2.64× 10−7 M

D̄ Characteristic dimer concen-
tration

1.00× 10−12 M

x̄ Characteristic lengthscale# 9.42× 10−2 cm

t̄ Characteristic timescale# 1.62× 104 s [4.5 hr]

Table 1. Values of parameters for the model. See Figure 2 for an
explanation of how these values were determined; Bars (e.g., S̄), indicate
a quantity representative of that in a healthy brain; # indicates a scaling
that was determined from the model. Note that some of these quantities
may vary in time.

of the different reactions and results pertaining to estimated
oligomer concentrations when Aβ monomer clearance is im-
paired (42), we arrive at estimates for the characteristic scale
of the monomer concentration, the trimerization rate ζ̄, dimer
dissociation rate µ̄, and dimerization rate ν̄. In modelling
prevalence, we consider the number of years a patient survives
with AD. As a simplification, we assume that after a course of
illness of length TD = 7.1 years, all AD patients die (43). We
also estimate lifetime risk by using the average life expectancy
in the United States of 78.5 years (44) and computing disease
prevalence at that age.

Monomers, Dimers, and Plaques. We denote t as time (age)
and M , D, and L as the concentrations of monomers, dimers,
and plaques, respectively. The kinetics are modelled by the
partial differential equations (PDEs) Eqs. (1)-(2).

∂M

∂t
= S +DM∆M − κM − νM2 − ζMD + 2µD [1]

∂D

∂t
= 1

2νM
2 +DD∆D − µD − ζMD [2]

The plaque concentration is described by Eq. (3)

dL
dt = ζMD [3]

as we assume plaques do not diffuse or dissociate. If only time
dynamics are considered without modelling space, Eq. (1) and
Eq. (2) are replaced by two ordinary differential equations
(ODEs):

dM
dt = S − κM − νM2 − ζMD + 2µD [4]

dD
dt = 1

2νM
2 − µD − ζMD. [5]

The symbol ∆ represents the Laplacian operator, a type of
second derivative in space defined as the sum of the second
partial derivatives with respect to each Cartesian coordinate
direction. It describes diffusive processes and its use in Eqs.
(1)-(2) ensures that species will move from regions of higher
concentration to regions of lower concentration.

It has been observed that Aβ clearance rate decreases
with age (45), whereas the activity of β-secretase increases
(38). Many forms could be chosen for S(t) and κ(t) for these
respective rates at a time t. For S(t) and κ(t), we employ linear
models using data presented in the Supporting Information to
write

S(t) = S̄(1 + t/λS) [6]
κ(t) = κ̄(1− t/λκ). [7]

The form of S(t) assumes that monomer production is directly
proportional to the activity of β-secretase. It is possible that
a combination of genetics and lifestyle factors play a role and
may modify the rates that S and κ change. It is also likely the
other rates σ, ν, µ, and ζ could vary with age. We note that
the model loses validity for t ≥ λκ ≈ 114 yr as that would
yield a zero or negative clearance rate.

Cell Viability, Incidence, and Prevalence. Over each small vol-
ume of brain tissue, we model the cell viability V in the interval
[0, 1] as the number density of viable neuronal cells divided
by the number density of neurons in perfectly healthy brain
tissue. We model the decrease in this viability with a hazard
function which is proportional to the oligomer concentration
by

dV
dt = −σDV. [8]

Viability V decreases faster the more oligomers are present and
σ is a coupling constant. Cells with better repair mechanisms
will have a smaller σ value, making them less sensitive to
the oligomers, whereas a larger σ means the cells die more
quickly due to oligomers. In principle, the viability is spatially-
dependent, as D could be spatially-dependent. Parameters for
such a model are not found in the literature, but we fit for σ
using cell viability assay data (32, 33).

As described in the Supporting Information, given the
viability model with homogeneous brain tissue, we also identify
the survivorship function H(t) (fraction of individuals who do
not have AD by age t), incidence I(t) (per capita rate of AD
development of age t individuals), prevalence P (t) (fraction of
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Fig. 2. Means of obtaining model parameters. All model parameter values were obtained from the literature. A † denotes that extra assumptions were required to
arrive at the parameter value; * denotes that the values were fitted from existing data in the literature; ** denotes that the parameter was determined from the completed model.

individuals age t with AD), and lifetime risk Υ (prevalence of
AD among those of age TL) through

H(t) = V γ [9]
I(t) = γσD [10]

P (t) = 1− H(t)
H(t− TD) [11]

Υ = P (TL), [12]

where Eqs. (9)-(11) are valid for 114 yr = λκ > t ≥ TD = 7.1
yr. The choice of γ in Table 1 is made by considering AD
incidence data.

Solutions. Solving these equations can be complicated. How-
ever, in the parameter regime considered, various approxima-
tions are possible owing to a separation of time scales. There
are fast time scales for dimer loss (centi-seconds), interme-
diate time scales for monomer decay (hours), and long time
scales for changes in kinetic rate constants and loss of neu-
ronal health (decades). The relative sizes of terms can also be
exploited. Since the losses due to trimerization are, by model
construction, negligible in the dimer evolution, the dimer con-
centration is controlled by dimerization and dimer dissociation
forcing D to scale quadratically with M . This also means
the monomer concentration is described through a balance of

production, clearance, and possibly diffusion, which can also
be solved analytically. Finally, owing to the slow changes in
rate constants, and relatively low toxicity of dimers at their
natural concentrations, over the timescales relevant to AD, the
monomers and dimers are always quasi-static and the viability
V is well-described by a simple decay with instantaneous decay
rate being proportional to the present dimer concentration.

Ordinary Differential Equations. With only time-dependence (as-
suming conditions in the brain are uniform throughout), after
the effects of initial conditions are no longer relevant (see
Supporting Information), we have

M(t) = S(t)
κ(t) [13]

D(t) = 1
2
ν(t)S2(t)
µ(t)κ2(t) [14]

L(t) =
∫ t

0

ζ(u)ν(u)S3(u)
2µ(u)κ3(u) du [15]

V (t) = exp(−
∫ t

0
U(u)du) [16]

where
U(t) = σ(t)ν(t)S2(t)

µ(t)κ2(t) . [17]
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[23]

D(x) = ν̄M(x)2

2µ̄ [24]

L(x, t) = ζ̄ν̄M(x)3

2µ̄ t [25]

V (x, t) = exp(− σ̄ν̄M(x)2

2µ̄ t). [26]

From Eq. (14) and Eq. (16), we obtain the incidence and
prevalence of the disease with Eq. (10) and Eq. (11). In the
special case that S, κ, µ, ν, ζ, σ are constant, these become

M = S̄

κ̄
D = 1

2
ν̄S̄2

µ̄κ̄2 [18]

L(t) = ζ̄ν̄S̄3

2µ̄κ̄3 t V (t) = exp(−Ūt) [19]

H(t) = exp(−γŪt) I(t) = γŪ [20]
P (t) = 1− exp(−γŪTD) Υ = 1− exp(−γŪTD), [21]

where the quantity

Ū = σ̄ν̄S̄2

2µ̄κ̄2 . [22]

The value Ū gives a baseline estimate for the rate neuronal
viability is lost in healthy brain tissue.

Partial Differential Equations. To study spatial effects, we con-
sider the question of a localized excess of Aβ monomers and
how this affects cells in the vicinity. We consider a spherically
symmetric source of excess monomers. We consider a hypo-
thetical scenario with κ = κ̄, µ = µ̄, ν = ν̄, ζ = ζ̄, and σ = σ̄.
We choose S = S̄ except over a sphere of radius X∗ = 2x̄
centered at x = 0 where the monomer production is increased
by ρ = 22.8%. There, S = S̄(1 + ρ). The choice of X∗ is
made so as to be on the order of x̄, a characteristic length a
monomer may diffuse before its clearance; and the choice of
ρ comes from our findings on traumatic brain injury where
0.228S̄ is a representative increase in monomer production.
We wish to study how the Aβ assemblies vary in space and
how the viability changes over space and time. The solutions
are presented in Eqs. (23)-(26).

Model Predictions

From the model developed, a series of comparisons can be
made between our model and clinical observations. In general,
we can consider our ODE model in two forms:

• a static model where all rate constants are constant
over a lifetime

• a dynamic model where the rate constants S and κ
vary as in Eqs. (6)-(7).

While we believe the dynamic model is more accurate, more
explicitly taking into account the aging process, it does not al-
ways lend itself to simple analysis and further assumptions may
be required. In such cases, we use the static model. We note
that the static model still involves time-dependent changes in
the brain physiology and the rate constants are representative
estimates; it simply does not include time-dependent S and κ
rates.

Our PDE model, which takes into account spatial variations
in the system, is done with the kinetic rate constants being
constant in time.

AD Incidence and Prevalence.

Clinical Data. Age is the single leading risk factor for developing
AD. In the ODE model, we can compare the predicted inci-
dence and prevalence from the model with the clinical data.
We consider the incidence rate (per person) in the United
States (46) and the AD prevalence by age range in the World
Health Organization region AMRO A (16). We investigate
these data with the ODE model.

Model. The incidence and prevalence described here are given
by Eqs. (10), (11), (20)2, and (21)1.

Static Model (κ, S constant): Over a lifetime, the incidence
would be a constant, Ī, given by

Ī = Ūγ = 9.34× 10−5 yr−1.

By Taylor expanding Eq. (21)1, the prevalence at each age is
approximately constant, P̄ , with value

P̄ = ŪγTD = 0.0663%,

where γ is chosen based on the dynamic model below.

Dynamic Model (κ, S time-dependent): Allowing the rates to
vary, we can examine how the incidence and prevalence increase
with age, which we depict in Figure 3. We choose γ so that
the dynamic model incidence at age 60 matches clinical data,
finding γ = 0.600. Using a linear best fit on the log-scale, our
dynamic model predicts doubling times for prevalence and
incidence of 12 y and 11 y, respectively. The fact that the
model’s predictions are within a factor of 2−3 of the clinically
observed times is encouraging. If other rate constants also
changed over time, it could be possible to match the data.
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Fig. 3. Incidence and prevalence. Comparison of static and dynamic models
with clinical data for AD. The dotted green lines represent the line of best fit to clinical
data on log-scale; The black solid lines are the lines of best fit to the dynamic model on
log-scale. For prevalence, the clinical doubling time is 4.9 y and our dynamic model
predicts 12 y. For incidence, the clinical doubling time is 4.9 y and our dynamic model
predicts 11 y. The value γ is chosen so that clinical and dynamic model incidence
agree at age 60.

We can also compute lifetime risk for AD in our model. It
has been reported that among those age 75−79, the prevalence
of AD is 6.5± 0.5% (SD) (16), which would include prevalence
among those age TL = 78.5 y and what we define as lifetime
risk. The results we compute from Eq. (12) are 0.0663% and
1.24% for the static and dynamic models, respectively.

Gene Dosage and Down’s Sydrome.

Clinical Data. Due to the under- or over-expression of particular
genes, the production of monomers could be altered. For
individuals with Down’s Syndrome, the trisomy of chromosome
21 results in life-long levels of Aβ production that are ≈ 1.5
times that of normal individuals and an AD incidence at least
3 times higher (47). In addition, Down’s Syndrome patients
may present symptoms of dementia as early as age 40 (48).

Model. In the ODE model, we can investigate the effect of in-
creasing the monomer production rate S(t) by 50%. In this
case, both the incidence rate and the prevalence of AD would
increase by a factor of 2.25, which is close to the ≥ 3 increased
relative risk for AD noted for Down’s Syndrome. More gen-
erally, through gene dosage, if the monomer production rate
were to change by a factor ω, the incidence and prevalence
should scale by ω2.

Hippocampal Volume (HV).

Clinical Data. Changes in HV can take place during the aging
process but these changes are particularly extensive in AD pa-
tients. Frankó et al. used MRI to estimate HV in longitudinal
studies of AD patients, mean age 75, patients with mild cogni-
tive impairment (MCI), mean age 75, and controls, mean age
76. They found that HV decreased by 42 mm3, 30 mm3, and 15
mm3 per year in the AD, MCI, and control groups, respectively.
The average HVs reported at initial scans were 3934 mm3,
4127 mm3, and 4464 mm3, respectively. Using these data, we
can estimate that around age 75, the three groups have annual
decreases in HV of 1.06% (AD), 0.727% (MCI), and 0.336%
(control). We note some studies in cognitively normal individu-
als have failed to find significant differences in HV but did find
statistically significant differences in some brain measures like
the thicknesses of the entorhinal cortex and parahippocampal
gyrus when subjects were classified into two groups Aβ+ and
Aβ− with a Pittsbug Compound B (PiB) MRI scan (49). In
a study by Gordon et al. (50), participants received MRI and
PiB/PET scans along with assays of tau and phosphorylated

tau. Patients then were classified into four disease states re-
flecting the presence/absence of amyloid (Aβ+/Aβ−) and the
presence/absence of CSF tau/phosphotau, which were used as
a proxy for neurodegeneration (ND+/ND−). We focus here
on the states 0 (Aβ−/ND−) and 2 (Aβ+/ND+), which we
consider normal or “AD.” The study found those in state 0
(mean age 63.4) had measured HVs of 7755 mm3 and those
in state 2 (mean age 71.6) had measured HVs of 7063 mm3.
Thus, the AD patients of mean age 71.6 had HVs that were
only 91.1% as large as those without AD and mean age 63.4.

Model. In the ODE model, if we assume HV is proportional to
V (t), the model yields estimates for HV changes over time. We
test our static and dynamic models against the data described
above. We find the dynamic model adequately describes cogni-
tively normal individuals. To describe the HV rate of change
in AD patients and the HV ratios at different ages, we need
to scale U(t) (Eq. (17)) up by a factor F > 1. This then leads
us to examine how a distribution of rate parameters within
the population could influence clinical outcomes. We examine
this in the more tractable static model.

Static Model (κ, S constant): With static values, each year, the
hippocampal volume should decrease by a rate

−V ′(t)
V (t) = Ū = 0.0154%y−1.

This is a factor of ≈ 22 smaller than the typical loss of HV in
non-AD patients.

Dynamic Model (κ, S time-dependent): We compare the model
predictions with clinical findings in Figure 4. We plot what the
HV would look like with the dynamic model with the relative
change (V ′(t)/V (t) = −0.29%/y) at age t = 75 y. This agrees
well (within ≈ 16%) with the rate of change of −0.336%/y in
the control group of Frankó.

Our model is attempting to describe the average patient
and their resulting HV (or neuronal viability) over a lifetime.
AD development is seen as a probabilistic event where the
probability of having AD depends on the amount of HV lost.
Our dynamic model does not match the observed rate of
−1.06%/y for the HVs in the Frankó AD patients (it is off by a
factor of ≈ 3.63). One possible means of reconciling this is by
assuming the measured AD-pathology stems from a constant
rescaling of the rate constants, i.e., U(t) is larger by a factor
F = 3.63, so as to match −1.06%/y. This AD-pathology
model with rescaled rate constants is also shown in Figure 4.

Given the dynamic model and the AD pathology model, we
can compute the ratio in HVs between those at age 71.6 years
(state 2+) to those of 63.4 years (controls). Taking the HV
ratio of our AD pathology model at age 71.6 to the dynamic
model at age 63.4 yields 0.859, which is close to the observed
0.911 ratio. We thus speculate that larger values of U(t), the
instantaneous rate of neuronal death (see Eq. (17)), are more
closely associated with AD.

Distributions of Ū values: We now ask whether the model al-
lows for those with AD to have higher values of U(t) or Ū
than the rest of the population. For simplicity, we study the
static model and assume Ū ∼ g(u) has a probability density
function with mean value U∗ and standard deviation Σ∗.

On one hand, it may seem obvious that if someone has
AD, more neurons have been destroyed and an appreciably
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above average Ū is expected (Ū describes the rate of neuronal
death). But even people with lower values of Ū can develop
AD and there are more people with average or below-average
Ū ’s than those with Ū ’s that are above the average. Thus, is
not immediately obvious that AD patients will have above-
average Ū values. This above-average Ū in the AD group turns
out to be true, however, which we show in the Supporting
Information. In particular, the mean value of Ū within the
AD population is given by

〈Ū〉AD+ ≈ U∗ + Σ∗2

U∗
, [27]

and the mean value of Ū within the non-AD population is
given by

〈Ū〉AD− ≈ U
∗. [28]

Thus, those without AD on average have a “normal” Ū but
those with AD on average have an above average Ū . This would
allow for consistency between our model and the requirement
to scale U(t) to match AD-specific data.

Assuming the F obtained from the dynamic model can
be applied to the static model, we can be very specific with
Eq. (27) about how spread out Ū -values are within the popu-
lation. We find that Σ∗2

U∗2 = F − 1 is most consistent with the
data. Numerically, with F = 3.63, we find that the standard
deviation to mean ratio Σ∗/U∗ ≈ 1.62.

Fig. 4. Hippocampal volume. Time dependence of HV for the dynamic model
with or without additional AD pathology. An HV of 1 is maximal. At age 75, the annual
changes in hippocampal volume are−0.015% (static model, not shown),−0.29%
(dynamic model), and−1.1% (AD pathology model - rates have been scaled to match
this value). The HV ratio between those at age 71.6 (AD pathology) to age 63.4 (CN)
is 0.859. We can also compare within models. The hippocampal volume ratios
between age 71.6 to age 63.4 years are as follows: 0.999 (static), 0.984 (dynamic),
and 0.944 (AD pathology).

Blunt Force Trauma.

Clinical Data. Whether the risk of developing AD definitively in-
creases as a result of Traumatic Brain Injury (TBI) is not clear
(51) as there are may factors at work: the nature of the trauma,
its location, whether consciousness was lost, and whether TBI
incidents are reported/remembered, etc. However, a more re-
cent study by Fann et al. (52) does provide data for estimated
hazard ratios of developing AD given a patient’s history of
TBI and years since their first TBI. For our study, we focus
upon the long term risk of AD given the number of TBIs using
their “model 1”, which adjusts for age, sex, marital status, and
calendar period, but does not adjust for other comorbidities

since the comorbidities may reflect physiological differences
between individuals that requires further modelling.

After an acute TBI, it has been noted that APP processing
increases, resulting in increased Aβ production and deposition
(53). In studies on pigs with a head rotational acceleration
injury, axonal damage, resulting in an accumulation of APP,
has been noted 6 months after injury (54). In humans, axonal
damage and intra-axonal Aβ accumulation can last for years
(54). It should be noted that neprilysin, an Aβ degrading
enzyme, also appears to be upregulated following TBI, which
could counteract increased Aβ production.

Model. For simplicity in the ODE model, for each TBI, we
assume the monomeric production rate S increases by a fixed
amount A, without mitigating effects, and we work with the
static model to avoid needing the age of a patient at each of
their TBIs.

Assuming that for each TBI, the monomer production rate
rises by a constant value, the relative risk (relative to having
no TBIs) after having n TBIs should be

R = (1 + n
A

S̄
)2.

This sort of model has one free parameter, a = A/S̄. In
comparing it to a naive, purely linear model where the relative
risk is 1 +mn for a constant m, the model does much better,
as seen in Figure 5. We thus venture the idea that, very
approximately, each TBI results in a long-term increase in the
monomer production rate of approximately 0.228S̄.

Fig. 5. Traumatic Brain Injury. Two fits for the relative risk R vs number of
TBIs, n. Linear fit: R(n) = 1 +mn with m to be fit. Model fit: R(n) = (1 + an)2
with a = A/S̄ to be fit. The fitted values are m = 0.520 and a = 0.228. The
respective AIC values (55) are−2.04 and−9.07. Both visually and through the AIC
values, the model significantly outperforms the naive fit.

Spatial Spreading of AD. Using the PDE model, we gain in-
sight into the effects of localized excesses of monomers. In an
idealized, spherically symmetric geometry with constant rate
constants, we consider a hypothetical scenario. We imagine
that over a radius of 2x̄, the monomer production is increased
by an amount 0.228S̄, the characteristic increase due to a TBI.
This results in a modest excess of monomers and dimers above
their baseline values. In turn, this affects the viability of cells
in that vicinity so that over a lifetime, cell damage is more
pronounced nearer to the excess monomer production. We
display the results in Figure 6. These results suggest that if
a part of the brain is damaged, resulting in a local excess of
monomers, the closer that region of damage is to neurons that
are particularly important for memory, the more likely lifetime
risk may be permanently elevated, even if these neurons were
not originally damaged.
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Fig. 6. Spatial model. Top left: the excess monomer production is taken
to be spherically symmetric. The distance (x−axis) denotes the distance from the
center of the source. The dashed circle/lines represent the boundary where excess
monomer production ceases. Top right: monomer and dimer concentrations, and
monomer production rate, versus distance from center. These values have been
nondimensionalized by M̄ , D̄, and S̄, respectively. Bottom left: accumulation
of plaques at various ages plotted against position. The concentration has been
nondimensionalized by L̄. Bottom right: viability at various ages plotted against
position.

Discussion

We have developed a mathematical model for AD risk and
progression based on the kinetics of Aβ oligomerization and
clearance and its relationship to neuronal viability. The model
predicts a doubling time for AD risk of ≈11-12 years; re-
veals that if gene dosage-mediated increases in Aβ monomer
production scale by a factor ω, then prevalence is scaled by
ω2; predicts age-related HV decreases and through these HV
changes gives understanding of possible distributions of Ū (or
U(t)) within the population; models the effect of blunt force
trauma as an increase of monomer production of approximately
0.228S̄, which yields a value for increased lifetime risk of AD;
and, with a simple spatial model of the brain parenchyma,
demonstrates a direct relationship between the proximity of
neurons to points of increased Aβ monomer production and
increased neuronal death rate.

Many of these predictions are consistent with clinical ob-
servations. Notably, the ODE model does well at describing
disease prevalence and incidence. If the model’s rate constants
accurately represent those occurring in vivo then, by Eq. (22),
the model predicts that the rate of neuronal death (and AD
incidence) is proportional to S2 (S is the Aβ monomer pro-
duction rate), ν (dimerization rate), and σ (cell sensitivity
to dimers); and inversely proportional to both κ2 (κ is the
Aβ monomer clearance rate) and µ (dimer dissociation rate).
The quadratic dependencies are most significant: If S increases
by a factor of 2 (or if κ decreases by a factor of 2), the neuronal
death rate quaduples. Treatments that lower monomer produc-
tion or increase monomer clearance thus would be predicted be
most beneficial. The other factors only influence the death rate
in direct proportion (or inverse proportion) to their value. For
instance, if µ doubles, the death rate goes down by a factor of
2. The ODE model also accounts for the loss of hippocampal
volume over a lifetime and the changes in AD risk associated
with APP gene dosage. If APP gene expression changes by
a factor ω then relative risk scales by ω2. This is consistent

with data on Down’s Sydrome, where our model predicts a
relative risk of 2.25 and clinical observation shows the relative
risk is at least 3-fold. The ODE static model also allows us
to accurately describe how TBI increases one’s lifetime risk
of AD if each TBI increases the monomer production rate by
0.228S̄. The PDE model provides an understanding of how
Aβ concentrations and cell viability could vary over millimeter
scales, leading us to speculate that the location of a TBI may
influence the increased lifetime risk of AD. In particular, even
if a brain injury occurs away from a neuron that is especially
important for memory, our model suggests that the closer the
injury is to such a neuron, the greater the long-term risk of
AD.

We emphasize that the goal of our work was to create a
simple model that could be modified in the future to account
for a greater number of factors contributing to AD etiology
and pathogenesis. This would increase the model’s sophis-
tication and provide a more accurate representation of the
kinetics of disease development. However, the results we have
at present are already encouraging. We suggest now a num-
ber of modifications that could further improve the models.
These improvements include accounting for: (1) the myriad of
enzymes involved in Aβ metabolism; (2) genetic factors; (3)
heterogeneity in brain structure (no two brains are the same);
(4) cell repair; (5) coupling monomer production rates with
the health/viability of the cells; (6) distinguishing the unique
contributions of Aβ40 and Aβ42 to the pathogenesis of AD
(both were considered together); (7) expanding anatomical con-
siderations from just interstitial fluid to the brain parenchyma
and its distinct regions (ideally accounting for stereotypical
spreading of disease (Braak staging); (8) accounting for dif-
ferences in Aβ-induced toxicity among different neuronal cell
types and brain regions; and (9) including contributions of
glial cells and microglia to disease pathogenesis.

We also would like to include more data to enable a better
accounting for nonlinearities in model results. As a heuristic
example, we found roughly that with static rate constants, the
hippocampal volume of a subject of age t would scale with
e−Ūt. Most studies had a distribution of subject ages and
HVs. For our models, we used the mean age for t as the time
variable and the mean HV as a target volume as we did not
have access to each subject’s data. However, it is not generally
true that the mean value of a nonlinear function evaluated at
a series of inputs is equal to the nonlinear function evaluated
at the mean value of the inputs.

Most of our results come from the ODE model, which de-
scribes the brain as a homogeneous volume or describes the
case in which the diffusion of monomers and dimers is infinite.
The PDE model offers more opportunity to explore spatial
effects. While our present PDE analysis did not consider the
finiteness of the brain, the model could be adapted to describe
boundary conditions such as the blood brain barrier and dif-
ferences in brain compartments such as location-dependent
rate constants, varying diffusivities, etc.

In many cases, the model’s limitations stem from a lack of
data within the scientific community pertaining to in vivo mea-
surements of Aβ kinetics and neuronal toxicity of oligomers. It
would be of particular interest if the modeling assumptions and
assumed rate constants could be validated clinically. However,
one of the benefits of such a simple model is that many results
can be obtained and understood from simple formulae, which
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could easily become intractable, and inaccurate (overfitted),
with more elements and systems included. We expect many of
the results presented would still hold, even if the rate constants
changed over one or two orders of magnitude—provided the
same processes can be deemed negligible from the larger-scale
system behavior. In this sense, the model is quite robust even
considering its limitations.

There are numerous other factors that have been implicated
in AD risk and pathogenesis. Among these are lifestyle factors
such as diet, exercise, mood, brain activity, education, and
sleep quality (impaired glymphatic clearance of Aβ monomers
during sleep (56, 57) may reduce κ, which would accelerate
neuronal damage). Of course, many other factors likely exist
about which we are unaware. These also could influence the
model’s rate parameters so that some individual’s exhibit a
faster neuronal death rate and increased risk for AD at every
age.

Conclusions and Future Work

We have developed a simple mathematical model describing
the time dependence of development of AD and the contri-
butions of Aβ monomers, dimers, and trimers to it. The
model produces explicit equations whose solutions are consis-
tent with clinical features of disease development and allow
for interpretation of individual terms and rate constants. For
example, the ratio of monomer production to monomer clear-
ance, S/κ, is a term that is highly significant, suggesting that
its reduction would lessen disease risk and slow progression.
The model serves as a starting point for numerical simulations
and in silico studies. Most importantly, the fact that such a
complicated disease process can be simplified so much and pro-
duce accurate, clinically verified predictions suggests that the
model can be used to test existing, and yield new, hypotheses
about disease causation. This would be especially valuable for
studying aspects of AD for which little experimental data are
available or the application of experimental or clinical meth-
ods of study is impractical. For example, the model could
be used to explore the effects of predetermined numbers and
magnitudes of TBIs on localized increased expression of APP
and Aβ and consequent disease initiation and progression.
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Supporting Information: Parameter Estimation

We present our analyses to estimate the model parameters. In
general, we seek to estimate parameters that are representative (per-
haps within an order of magnitude) of a healthy brain. Variations
in these parameters, which our model studies, could lead to disease.

Viability Modelling. One important metric for brain health is cell
viability, which we denote V (t) and define to be the number of viable
neurons per unit volume, relative to the optimal value in a healthy
brain with no neuronal death. Through aging and various insults,
the value of V will decrease. We let D represent the concentration
of dimers. For a given neuron, we denote T > 0 to be its age when
it dies. We use survival analysis and hazard functions to model this
(34).

Over a short time window δt, we assume
Pr(t < T ≤ t+ δt)|T ≥ t) = σDδt

for some σ > 0. In other words, given that a cell lives as long as
time t, the probability it dies over the next interval of length δt is

Oligomer
Concentration
[M]

Survival
Fraction

Standard
Error

Source

0 1 0.0256 Lambert

5× 10−9 0.862 0.0684 Lambert

5× 10−8 0.822 0.0649 Lambert

5× 10−7 0.806 0.0572 Lambert

5× 10−6 0.729 0.0890 Lambert

0 1 0.0598 Cizas

2.5× 10−7 1 0.0762 Cizas

5× 10−7 0.849 0.0918 Cizas

1× 10−6 0.275 0.0975 Cizas

2× 10−6 0.120 0.106 Cizas
Table 2. Viability Data. Data are based on work by Lambert et al. (32)
and Cizas et al. (33). The values were estimated from graphs published
in the cited works. Standard errors for the Lambert data in the control
(oligomer concentration of 0) are based on a worst-case estimate. The
figure markings obscured the errorbars and we chose the half-width of the
largest marker as the standard error as part of the calculation. The study
of Lambert et al. did not specify whether the errorbars displayed were
standard errors or standard deviations. We assume standard error. Such
variations only change σ by a modest scaling factor.

proportional to δt (and to the oligomer concentration). Alternatively
we can think that the event of cell death is instantaneously a Poisson
(memoryless) process with rate σD. As a differential equation, we
have

dV
dt

= −σDV. [29]

To estimate σ, we choose two experiments (32, 33) from the
literature studying oligomer toxicity on neurons. There are many
papers that study this phenomena, but many study neuron cultures
in isolation or at higher than biologically representative oligomeric
concentrations. The Lambert paper measured cell death on mouse
brain slice cultures subjected to various levels of oligomers for 24
hours; and the Cizas paper measured cell survival in mixed neuronal-
glial cell cultures subjected to various levels of oligomers for 24 hours.
For our fitting, we assume:

• The cell viability V begins at maximum V = 1.
• The experiments directly measure V (in expectation, the frac-

tion of surviving cells should indeed be V ).
• General oligomer toxicity and dimer toxicity are the same.
• The value σ does not vary over the duration of the experiment.

• The only observable processes taking place are cell death due to
the oligomers and thus at time t we have V (t) = exp(−σDt).

After estimating values from their respective published graphs,
converting cell death to cell survival in Lambert, and normalizing
both datasets by the survival of their respective controls (see Table
2), we fit for σ in Eq. (29) with a Maximum Likelihood estimate
(58). See Figure 7. We obtain σ̄ = 4.9± 0.4 M−1 s−1 (SD) to be
the characteristic size of the dimer toxicity.

In order to provide the survival fractions of table 2, we divided
the survival rates from the experiments by their respective controls
and added errors in quadrature to report the standard errors.

As a remark: we could allow V to be spatially dependent as well
due to D potentially varying in space. Equation Eq. (29) would be
unchanged, however, i.e. there would not be any explicit spatial-
dependence and all spatial variation would be implicit through the
varying concentration of dimers.

Incidence and Prevalence. For this modelling, we assume the brain
tissue of interest (such as the hippocampus) has a uniform distribu-
tion of monomers and oligomers and a uniform viability measure
V (t). We begin by considering H(t), the “survivorship function,”
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Fig. 7. Viabilities at various oligomer concentrations after 24
hours. We fit the model to viability data The errors bars represent two standard
errors.

being the “healthy” fraction of the population still alive at age t
that does not have AD. We have

H(t) = Pr(AD has not developed by age t|alive at age t).

We again use a survival analysis. Over a short time interval δt, we
assume

Pr(AD develops in (t, t+ δt]|no AD up to time t) =

γ
V (t)− V (t+ δt)

V (t)
,

i.e., the probability someone develops AD in the interval (t, t+ δt] if
they did not have it up to time t is proportional to the percentage
of remaining neurons lost over the interval (t, t+ δt], where γ > 0
is a dimensionless proportionality constant that we expect to be on
the order of unity. This is motivated by the fact that just a small
number of neurons may be highly influential in memory formation
(35) and we are describing the probability one of these influential
neurons dies over the interval of width δt. In expectation, and with
infinitesimal time steps,

dH
H

= γ
dV
V
.

With H(0) = 1 and V (0) = 1, the solution is that

H(t) = V (t)γ .

To model prevalence, we note that Alzheimer’s patients live,
on average, TD = 7.1 years after diagnosis. Without specifically
modelling the factors that lead to mortality, we assume that all
Alzheimer’s patients die after TD years since being diagnosed. This
factor is relevant in computing the prevalence, P (t), which should
be the fraction of the population (AD and non-AD) still alive at
age t that has AD. This can be expressed as

P (t) = H(t− TD)−H(t)
H(t− TD)

.

Neglecting the edge case of t < TD , the numerator is the fraction of
patients with AD within the population who are still alive at time t
(they cannot be diagnosed earlier than t−TD). The denominator is
all people still alive, with and without Alzheimer’s disease (to still
be alive, they must develop AD later than t− TD). The incidence
(fractional rate people are diagnosed per unit time), −H′(t)/H(t),
is

I(t) = γσD.

Monomer, Dimer, and Plaque Concentrations. We denote parameters
of interest with a bar to indicate a characteristic value in a healthy
brain.

Monomer Production Rate S̄: To obtain an estimate for S̄, we use
that the density of neuron/glia cells in the hippocampi of Rhesus
monkeys is 7 × 104 − 1.1 × 105 mm−3 (37) (we use a value of
9× 104 mm−3) and that 2− 4 monomers are released per cell per
second in rat neurons (36) (we use 3), to arrive at the value of
S̄ = 1.63× 10−11 M s−1.

It has also been found that through the aging process,
β−secretase increases in activity (38). And in AD patients the
increase in β−secretase could be 63% higher than controls (39).
Authors have attempted to measure the increase in β−secretase
activity with age and from the data it appears it increases by ap-
proximately 65% over 100 years (40). These authors also found
that β−secretase activity increases by 58% over 50 years in Down’s
Syndrome patients and that α-secretase appears to stay about the
same throughout life for those with and without Down’s Syndrome.
We assume that monomer production rate is linearly proportional
to this β-secretase activity.
Monomer Clearance Rate κ̄: Aβ monomers are cleared at a rate
κ = 5.07× 10−5 s−1 for subjects of age 30 and 2.05× 10−5 s−1 for
subjects of age 80 (45). We assume a linear decay in κ throughout
life.
Dimer Concentration D̄: Shankar et al. found Aβ-dimer concen-
trations in the range of 0.04 − 1.44 nM (6) in AD brains. We
use the geometric mean of 0.24 nM as a representative AD dimer
concentration from the Shankar study. From Lue et al., the range
of total soluble Aβ was measured to be 0 + 1.9 pg/g (healthy Aβ-42
+ Aβ-40) or 15.5 + 66.5 pg/g (AD Aβ-42 + Aβ-40) in the endorhi-
nal cortex of humans (41). With Aβ-42 having a molar mass of
4514 g/mol and Aβ-40 having a molar mass of 4329.9 g/mol, and
assuming brain tissue has a density of approximately 1 g/cm3, this
places the Lue data as 2.19× 10−13 M (healthy) and 9.16× 10−12

M (AD) of dimers. For a model value, we choose D̄ = 1 pM, which
is more on the scale of the Lue study.
Insoluble Aβ-concentration: From the Lue et al. study (41), we
can estimate the concentration of insoluble Aβ that accumulates in
the brain over a lifetime (roughly 80 years). The non-AD patients
and AD patients had insoluble Aβ concentrations of 2.02 × 10−6

M and 3.84 × 10−5 M, respectively. These concentrations reflect
the number of monomers present. A representative scale for the
plaques is chosen as L̄ = 6.73× 10−7 M (recall we model trimers as
being plaques).
Extra Assumptions. In order to estimate more parameters, we
make a series of assumptions:
1. the monomers and dimers are in fast equilibrium so the con-

tribution so that conversions from monomers to dimers and
dimers to monomers are balanced in describing the monomer
concentration;

2. the loss of monomers to forming higher order structures is
negligible in comparison to the loss due to clearance so that in
combination with the previous assumption, M̄ = S̄/κ̄;

3. the rate dimers combine with monomers to form higher order
structures ζ̄M̄D̄ is approximately 2.76 × 10−16 M s−1 by
assuming the accumulation of insoluble Aβ in healthy patients
in the Lue study is constant over 80 years;

4. the loss of dimers to forming higher order structures is negli-
gible in comparison to the loss of dimers due to dissociation:
ζ̄M̄D̄ � µ̄D̄;

5. dimer dissociation into monomers greatly exceeds dimer produc-
tion from monomers so that 1

2 ν̄M̄
2 � µ̄D̄ (this is consistent

with the dimer concentration being much smaller than the
monomer concentration (59)) and combined with the previous
assumption we have D̄ ≈ ν̄M̄2

2µ̄ ;

Monomer Concentration M̄ : From assumptions 1 and 2, we de-
duce M̄ = S̄/κ̄ = 3.21× 10−7 M.

Monomer-Dimer Combination Rate ζ̄: From assumption 3, we com-
pute ζ̄ = 860 M−1 s−1.
Ratio of Monomer-Monomer Combination to Dimer Dissociation
Rates % = ν̄/µ̄: By assumptions 4 and 5, we have that ν̄/µ̄
= 19.3 M−1.
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Dimer Dissociation Rate µ̄: By disrupting Aβ-clearance, the
synaptotoxic petide concentration can build up to 50− 500 nM (42).
By setting κ̄ to zero and looking for equilibrium concentrations of
the monomers Mc and dimers Dc, we find they satisfy

S̄ − %µ̄M2
c − ζ̄McDc + 2µ̄Dc = 0

1
2
%µ̄M2

c − µ̄Dc − ζ̄McDc = 0.

We wish for Dc to be as close to D∗c = 50 nM. We choose the scale
µ̄ = argminµ|Dc(µ)−D∗c |,

which is 20.2 s−1. At this optimal µ, the monomer concentration
would be Mc = 71.8 µM were the clearance to be inhibited. We
remark that given the previously established model values and
constraints, we were unable to match larger value of Dc, hence the
choice of 50 nM instead of 500 nM.
Monomer-Monomer Combination Rate ν: From the two preceding
results, we find ν̄ = 391. M−1 s−1.
Cross-Referencing the Rate Constants: Experiments measuring µ̄
(60) have found µ̄ = 12700 s−1. But from experiments observing
the conversion of oligomers to monomers, the time scale is on the
order of days (so µ̄ ≈ 10−5 s−1) (61). The value of µ̄ we find is
within the very wide range of estimated values. The value for ζ̄
that we obtain is at least somewhat consistent with 38 M−1 s−1

(60) only out by a factor of 23. Our estimate for ν̄ is quite different
from some estimated values, however. Indeed, it has been estimated
as 0.099 M−1 s−1 (60). However, other combination processes that
could be expected to be similar to monomer-monomer interactions
have been estimated to have drastically larger rates: monomers are
added to fibrils at an estimated rate of 90 M−1 s−1 (62).

Diffusion Coefficients. Estimates for diffusivities of monomers and
dimers are 1.4×10−6 cm2/s and 1.1×10−6 cm2/s, respectively (63).
The tortuosity of brain tissue is around 1.6 (64). And the observed
diffusivity of a chemical species D∗ is related to its unimpeded
diffusivity D and the tortuosity of its environment ι by

D∗ = D/ι2.
This results in the diffusivities used in our study.

Supporting Information: Mathematical Details

Here we provide some of the mathematical steps done to arrive at
the results presented in the main body of the paper.

Scalings. It is mathematically convenient to work in a dimensionless
framework to have better scaled variables and fewer parameters. A
dimensionless framework also allows “small” terms to be identified
which are used in formal asymptotics to furnish highly accurate but
approximate solutions. The equations presented in the main body
of the paper have been converted back to dimensional form.

We denote x for spatial position. Within equations Eq. (1),
Eq. (2), Eq. (3), and Eq. (8), we perform a change of variables
according to

t = t̄τ, x = x̄z

M(t) = M̄m(τ), D(t) = D̄d(τ), L(t) = L̄`(τ), V (t) = v(τ)
S = S̄s̃, κ = κ̄κ̃(τ), ν = ν̄ν̃(τ), µ = µ̄µ̃(τ), ζ = ζ̄ζ̃(τ),
σ = σ̄σ̃(τ),

where all overlined values represent dimensional scales, and
τ,m, d, v, z, along with all tilde-variables are dimensionless. We
remark the rate constants are allowed to be time-dependent. We
choose the scales t̄ = κ̄−1, M̄ = S̄t̄, D̄ = 1

2 ν̄t̄M̄
2, and x̄ =

√
DM t̄.

This yields the dimensionless system of equations
∂m

∂τ
= ∆zm+ s̃− κ̃m− ν0(ν̃m2 − µ̃d)− εζ0mζ̃md [30]

∂d

∂τ
= ξ2∆zd+ ε−1(ν̃m2 − µ̃d)− ζ0dζ̃md [31]

d`
dτ

= εζ0`ζ̃md [32]

dv
dτ

= −εσ0σ̃dv [33]

Parameter Definition Value

ε κ̄
µ̄

7.85× 10−7

ν0
ν̄S̄
κ̄2 9.65

ζ0m
ζ̄ν̄S̄2

2κ̄4 20.9

ζ0d
ζ̄S̄
κ̄2 4.33

ζ0`
ζ̄n̄uS̄3

2κ̄5L̄
8.19

σ0
σ̄ν̄S̄2

2κ̄4 0.102

ξ

√
DD
DM

0.887

Table 3. Dimensionless parameters. With ε� 1 chosen these serve as
constants for the asymptotic calculations.

with values appearing in Table 3. The use of 0 < ε� 1 is suggestive
of formal asymptotics.

ODEs. We first consider equations Eq. (30)-Eq. (32) in the absence
of diffusion so that the equations are ordinary differential equations
and we solve them subject to m(τ = 0) = d(τ = 0) = `(τ = 0) = 0,
with an initial concentration of monomers and dimers of zero, and
with v(τ = 0) = 1, i.e., the cell viability is initially at its maximum.
The method of dominant balance inspires the ansatz

m ∼ m0 + o(1), d ∼ d0 + o(1), ` ∼ ε`1 + o(ε).
We deal with v later.

Since the monomer clearance rate and activity of the β−secretase
varies over decades (where τ = O(1/ε)), assume a similar behaviour
in other rate constants and model this by

s̃(τ) = s̃s(ετ)
κ̃(τ) = κ̃s(ετ)
ν̃(τ) = ν̃s(ετ)
µ̃(τ) = µ̃s(ετ)
ζ̃(τ) = ζ̃s(ετ)
σ̃(τ) = σ̃s(ετ)

for O(1) functions with O(1) rates of change s̃s, κ̃s, ν̃s, µ̃s, and σ̃s,
i.e., we assume all the rates change over a slow, O(1/ε) timescale.

The system admits multiple time scales but our approach is to
treat the system as a set of inner-outer matching problems. Over a
very fast time scale, τf = τ/ε, the ODEs are

m0,τf = 0

d0,τf = ν̃m2
0 − µ̃d0

`1,τf = 0

so that from our initial conditions, m0(τf ) = d0(τf ) = `0(τf ) = 0
and nothing eventful happens (to see finer grained behaviour, we
could have chosen m = O(ε), etc., but this understanding is not
relevant). Over the “normal” timescale we have

m0,τ = s̃s(0)− κ̃s(0)m0 − µ0(ν̃s(0)m2
0 − µ̃s(0)d0)

0 = ν̃s(0)m2
0 − µ̃s(0)d0

`1,τ = ζ0,`ζ̃s(0)m0d0

which can be trivially matched to the innermost τf -region with

m0 = s̃s(0)
κ̃s(0)

(1− e−κ̃s(0)τ ) [34]

d0 = ν̃s(0)
µ̃s(0)

m2
0 [35]

`1 = ζ0,`
ζ̃s(0)ν̃s(0)s̃3s(0)
µ̃s(0)κ̃3

s(0)

(
τ + 3

κ̃s(0)
(e−κ̃s(0)τ − 1)

−
3

2κ̃s(0)
(e−2κ̃s(0)τ − 1) + 1

3κ̃s(0)
(e−3κ̃s(0)τ − 1)

)
[36]
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In order to observe the system response to changing rate constants,
we consider a slow timescale τs = ετ , now with ` ∼ `0. On this
timescale we obtain

0 = s̃s(τs)− κ̃s(τs)m0 − µ0(ν̃(τs)m2
0 − µ̃(τs)d0)

0 = ν̃(τs)m2
0 − µ̃(τs)d0

`0,τs = ζ0,`ζ̃(τs)m0(τs)d0(τs).

The first two equations do not have explicit τs-derivatives: they
are a system of algebraic equations that come about through the
long-time evolution of Eq. (34)-Eq. (35). The other can be solved
trivially by integration to give

m0 = s̃s(τs)
κ̃s(τs)

[37]

d0 = ν̃s(τs)s̃2s(τs)
µ̃s(τs)κ̃2

s(τs)
[38]

`0 = ζ0,`

∫ τs

0

ζ̃s(u)ν̃s(u)s̃3s(u)
µ̃s(u)κ̃3

s(u)
du. [39]

A composite solution on t � 1/ε can be obtained as

m ∼
s̃(τ)
κ̃(τ)

−
s̃(0)
κ̃(0)

e−κ̃(0)τ [40]

d ∼
ν̃(τ)
µ̃(τ)

(
s̃(τ)
κ̃(τ)

−
s̃(0)
κ̃(0)

e−κ̃(0)τ
)2

[41]

` ∼ εζ0,`

∫ τ

0

ν̃(u)
µ̃(u)

s̃3(u)
κ̃3(u)

du

+ εζ0,`
ζ̃(0)ν̃(0)s̃3(0)
µ̃(0)κ̃3(0)

( 3
κ̃(0)

(e−κ̃(0)τ − 1)

−
3

2κ̃(0)
(e−2κ̃(0)τ − 1) + 1

3κ̃(0)
(e−3κ̃(0)τ − 1)

)
.

[42]

From Eq. (33), we have that

v(τ) = exp
(
− εσ0

∫ τ

0
σ̃(u)(d0(u) + o(1))dy

)
This can be evaluated to

v(τ) =


1− εσ0

σ̃(0)ν̃(0)
µ̃(0)

(
s̃(0)2
κ̃(0)2 τ + 2s̃(0)

κ̃(0)2 (e−κ̃(0)τ − 1)

+ 1
2κ̃(0) (e−2κ̃(0)τ − 1)

)
+ o(ε), τ = O(1)

exp
(
− σ0

∫ ετ
0

σ̃s(u)ν̃s(u)s̃2s(u)
µ̃s(u)κ̃2

s(u) du
)

+ o(1), τ = O(1/ε).

[43]

We focus on an O(1) description of v so that a uniformly valid
approximation for τ � 1/ε is

v ∼ exp
(
− εσ0

∫ τ

0

σ̃(u)ν̃(u)s̃2(u)
µ̃(u)κ̃2(u)

du
)
. [44]

The solutions presented in the main body of the paper are for
the biologically relevent timescale of decades, i.e., τ = O(1/ε).

PDEs. In analyzing the PDE models, there are a number of asymp-
totic balances that are possible, i.e., depending on the spatial,
temporal, or concentration scales that we look at, different terms in
the equations dominate the system behaviour. We study one of the
most biologically relevant balances.

Throughout this analysis, we will focus upon the local effects of
a perturbation in the monomer production. We consider a radially
symmetric perturbation so that spherical symmetry and various
simplifications can be applied. The solutions presented are obtained
from the Green’s functions provided later.

Spatial Model Results. We posit z, τ = O(1), m ∼ m0 = O(1),
d ∼ d0 = O(1), and s̃ = O(1). Biologically this describes the system
on a length-scale of X̄ and a timescale of T̄ , with the monomers
and dimers being on their characteristic scales M̄ and D̄. Denoting
r = |z| with the centre of the disturbance at r = 0, we have

m0,τ = m0,rr + 2
r
m0,r + s̃− κ̃m0

0 = ν̃m2
0 − µ̃d0.

If s̃ = s̃0 + ρ

{
1, r < R

0, r ≥ R
then using Eq. (54) and Eq. (53)

with α = 1, β = κ̃, φ = s̃, we can explicitly solve for m0 at steady
state giving

m0(r) = s̃0

κ̃
+ ρ



e−
√
κ̃r

√
κ̃r

[
r√
κ̃

cosh(
√
κ̃r)− 1

κ̃
sinh(

√
κ̃r)
]

+ sinh(
√
κ̃r)√

κ̃r

[
re−
√
κ̃r

√
κ̃
− Re−

√
κ̃R

√
κ̃

− 1
κ̃

e−
√
κ̃R + 1

κ̃
e−
√
κ̃r

]
, r < R

e−
√
κ̃r

√
κ̃r

[
R√
κ̃

cosh(
√
κ̃R)− 1

κ̃
sinh(

√
κ̃R)
]
,

r ≥ R,
[45]

and
d0 = ν̃

µ̃
m2

0. [46]

The fact that we only consider the steady-state here is motivated
by our observation in the ODE model that over an O(1) time in τ ,
the viability loss is O(ε), which is negligible. The most important
dynamics occur over the τs timescale whereby m0 and d0 can be
taken as steady-state values.

Solutions via Green’s Functions. The preceding solutions were ob-
tained using Green’s functions. In general to solve the spherically
symmetric problem

ht = α(hrr + 2
r
hr)− βh+ φ(r, t) [47]

h(r, 0) = h0(r) [48]
h(∞, t) is bounded, hr(0, t) = 0 [49]

we find that

h(r, t) =
∫ ∞

0

∫ ∞
0

r∗2φ(r∗, t∗)G(r∗, t∗; r, t)dr∗dt∗ [50]

+
∫ ∞

0
r∗2h0(r∗)G(r∗, 0; r, t)dr∗ [51]

where

G(r∗, t∗; r, t) = Θ(t− t∗)
2
√
πα(t− t∗)rr∗

×
(

e−
(r−r∗)2
4α(t−t∗) − e−

(r+r∗)2
4α(t−t∗)

)
e−β(t−t∗). [52]

The function Θ denotes the Heaviside step function,

Θ(x) =

{
1, x ≥ 0
1/2, x = 0
0, x < 0.

Also, if φ does not depend on time, the steady-state solution can
be found from

h(r) =
∫ ∞

0
r∗2G(r∗; r)φ(r∗)dr∗ [53]

with G now given by

G(r∗; r) =


1

2
√
αβrr∗

(e−
√
β/α(r−r∗) − e−

√
β/α(r+r∗)),

r∗ < r
1

2
√
αβrr∗

(e−
√
β/α(r∗−r) − e−

√
β/α(r+r∗)),

r∗ > r.

[54]
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Supporting Information: Average Ū within AD Patients

We consider the possibility that even within the static model, Ū
has a distribution of values within the population. We suppose that
Ū ∼ g(u) with g being the probability density function (pdf) for U
and with E(Ū) = U∗ as the mean value and Var(Ū) = Σ∗2 as the
variance. To exploit various asymptotic approximations, we operate
under the assumptions:

• U∗ ∼ Σ∗ in the sense they are in the same ballpark of values,
• γTDU

∗, γTDΣ∗ � 1, and
• g(u) is exponentially small when γTDu ≥ O(1).

In practice many distributions fit this requirement. For example, g
could be a truncated (to disallow negative values) Gaussian distri-
bution with mean U∗ and variance U∗2, where γU∗TD � 1.

We wish to understand if the average value of Ū among those
with AD is higher than U∗, i.e., if those with AD may have a larger
rate of neuronal loss, on average. To this end, we seek the density

gAD+ (u) = Pr(AD at age t|Ū = u)g(u)∫∞
0 g(u) Pr( AD at age t|Ū = u)du

.

Colloquially, it is the pdf for Ū given that someone has AD. We
wish to understand if

〈Ū〉AD+ =
∫ ∞

0
ugAD(u)du

is larger than U∗, the mean value of Ū .
Under a static model, Pr(AD at age t|Ū = u) = 1− exp(γTDu)

is the prevalence of AD with Ū = u, which, by Taylor series, is
approximately γTDu, for small enough γTDu. Thus, with formal
asymptotics,

〈Ū〉AD+ ∼
∫ ∞

0

γTDu
2g(u)∫∞

0 γTDwg(w)dw
du = 1

E(Ū)

∫ ∞
0

u2g(u)du

= E(Ū2)
E(Ū)

= U∗ + Σ∗2

U∗
> U∗.

We have used Var(Ū) = E(Ū2)− E(Ū)2.
We can also compute the expected value of Ū given someone

does not have AD. We denote AD− to be the case AD is absent.
Using similar notation and approximations, we have

gAD− (u) = Pr(no AD at age t|Ū = u)g(u)∫∞
0 g(u) Pr( no AD at age t|Ū = u)du

with

〈Ū〉AD− ∼
∫ ∞

0

(u− γTDu2)g(u)∫∞
0 (1− γTDw)g(w)dw

du

= E(Ū)− γTDE(Ū2)
1− γTDE(Ū)

∼ U∗ − γTDΣ∗2 +O(γ2T 2
DŪ

2).
To leading order, this is U∗.

As a check, we have that
E(Ū) = E(Ū |AD+) Pr(AD+) + E(Ū |AD−) Pr(AD−)

∼ (U∗ + Σ∗2

U∗
)
∫ ∞

0
g(u)γuTD

+ (U∗ − γTDΣ∗2)
∫ ∞

0
g(u)(1− γuTD)du

= (U∗ + Σ∗2

U∗
)γU∗TD + (U∗ − γTDΣ∗2)(1− γŪTD)

= U∗(1 +O(γ2Σ∗2T 2
D))
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