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In this paper we develop a continuum model for the movement of agents on a lattice,

taking into account location desirability, local and far-range migration, and localized

entry and exit rates. Specifically, our motivation is to qualitatively describe the homeless
population in Los Angeles. The model takes the form of a fully nonlinear, nonlocal,

non-degenerate parabolic partial differential equation. We derive the model and prove
useful properties of smooth solutions, including uniqueness and L2-stability under certain

hypotheses. We also illustrate numerical solutions to the model and find that a simple

model can be qualitatively similar in behavior to observed homeless encampments.
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1. Introduction

Homelessness is a growing problem for society, with large cities like Los Angeles

having homeless populations of nearly 40,000 people 24. To date, correlations have
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Fig. 1. Part of a homeless encampment in a part of Los Angeles called “Skid Row.” Homeless

individuals have set up tents and makeshift shelters on the sidewalk.

been established between homeless populations in different cities; factors such as

the cost of rent, number of affordable housing units, and poverty rates 14,12 are

relevant. But outside of a few anecdotal examples in the social science literature 39,

little is known about the daily lives of the homeless, how they became homeless, and

how long they may remain homeless. There is also the question of how the homeless

population changes over time and space, which is essential for planning social sup-

port services to counteract this problem. A few studies address the dynamics of the

homeless population 27,14, but there are still many unanswered questions. Within

Los Angeles, the homeless population is a big concern. Complaints from Los An-

geles residents regarding homeless encampments (see figure 1) are among the most

common reason residents call the city 1. The encampments can form quickly and

require some careful consideration in terms of clean up 33. But the encampments

may also serve as places where the homeless themselves live preferentially, feeling

safer 16.

Human interactions with their environment can be studied both from a social

science perspective and through mathematical and statistical methodologies. Pedes-

trian travel has been studied experimentally and modelled with mathematics30, even

taking into account personal objectives of minimal travel time and avoiding high

density areas 17; and statistics can be employed to describe large crowds at special

events, including the fatal pressures that can build up in the center, asphyxiating

standing people 25. Mathematical models for riots have also been developed 3. On

a larger scale, agent-based models have been used to study residential burglary,

taking into account history-dependent target attractiveness 35,34, truncated travel

distances 31, and agents burglarizing according to independent Poisson clocks 38.

More broadly, urban crime has received a lot of attention in models that incorporate

police into the models 32,18,40,10,37,15; models that predict locations of offenders 29;

rigorous proofs of solution properties of such equations 28,5; and the study of emer-

gent patterns and behavior 19,4,11. Species aggregation has also been thoroughly

studied 7, with many authors modelling such phenomena by nonlocal differential

equations 9,2,36. On even larger scales, we can see the natural emergence of pack

formation in predator-prey systems, for sufficiently strong intraspecies competition
6; descriptions of human territorial conquest 13; and ecology models for a species
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in an environment with patchy resources 26. But to our knowledge, little has been

done directly to model homelessness, which is a growing societal concern.

In our study, we address the dynamics of the homeless population on small ge-

ographic scales, as has been studied with neural networks for Los Angeles27. We

develop an agent based model for the homeless population living on the streets,

which, in the continuum limit, yields a partial differential equation for the popu-

lation density. As in the neural network study, our data sources for the homeless

population are a collection of annual point-in-time estimates broken down by census

tract from the Los Angeles Homeless Services Authority 20,21,22,23. We remark that

accurate counting of the homeless population is challenging at best, with some au-

thors suggesting the counts could be significant underestimates 8. Our work focuses

upon building a qualitative model so absolute precision is not necessary.

This paper makes three main contributions to the scientific community: firstly,

the derivation of a new continuum partial differential equation to describe homeless

populations; secondly, rigorous analysis of basic properties of solutions; and finally,

in using the model to yield qualitatively consistent behaviors observed in the true

homeless population. The paper structure is as follows: in section 2, we derive

the model; in section 3 we prove useful properties of solutions; in section 4, we

demonstrate how the model can qualitatively describe encampment formation; and

finally, in section 5, we summarize our work and discuss future research.

2. Model Formulation

In describing the homeless population, we consider several processes taking place

at each location (see figure 2):

• Entry into population - due to local features of the area such as cost of

living, etc., individuals may become homeless;

• Exit from population - through localized social services, family support,

death, or other processes, individuals may cease to be homeless;

• Diffusive movement - a homeless individual who does not like their current

area due to lack of resources or other factors may venture to a surrounding

neighbourhood; and

• Nonlocal movement - they may intentionally travel to another part of the

city, such as through public transit.

The features of the cityscape vary by location so some areas are more residential,

some are more industrial, etc.

2.1. Derivation

We use an Eulerian frame of reference discretized by a regular lattice of points S

in Rd, with spacing of δx in each coordinate direction and volume δxd. We also

discretize time into time steps of δt with tk = kδt, k = 0, 1, 2, .... For modelling
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Fig. 2. In this model, homeless individuals may stay where they are, walk to an adjacent neigh-

borhood (turquoise), take a bus to a distant neighborhood (blue-purple), become homeless due
to external factors (red), or cease to become homeless (green). The features of the city change by

location. b

homeless populations, our main focus is d = 2, but d = 1 could describe populations

of people (or even other species) in a long/narrow geometry and d = 3 could describe

populations that can freely move in 3-dimensions such as birds or fish.

We concern ourselves with the evolution of {Nk
i }, the number of individuals

occupying site i ∈ S at time tk. Intrinsic to each site i at time tk, we denote an

“attractiveness” Aki ∈ (0, 1). This could be influenced by the resources available

at the location. In general we denote subscripts for the spatial location index and

superscripts for the time index. Over each very small time interval δt, we assume:

• people enter the population at a Poisson rate Eki ;

• people leave the entire domain at a Poisson rate Lki ;

• individuals who do not leave the population will remain at their current

location with probability Aki ;

• individuals who do not leave the population and choose to leave their cur-

rent lattice point will make deliberate travel, such as with public transit in

the case of homelessness, at a Poisson rate Γki ; and

• if an individual remains in the population, does not stay at their location,

and does not travel deliberately from their site to another, they will travel

to each neighbouring site with equal probability.

bImage credits are as follows: backpacking by Gan Khoon Lay, homeless by Ed Harrison, Bus by
Andre Buand, Cafe by Creative Mania, House by Vectors Point, and Apartment by priyanka - all
from the Noun Project.
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We incorporate all terms, allowing them to potentially be “in balance” so that

transportation and movement may be comparable to arrivals/exists. In reality some

of these effects may be negligible in describing the actual homeless population but

we opt for generality.

At each site i, up to O(δt) the following probabilities describe an individual:

Pr(leave S) = Lki δt (2.1)

Pr(stay in S) = 1− Lki δt (2.2)

Pr(stay at i | stay in S) = Aki (2.3)

Pr(stay at i and stay in S) = Aki (1− Lki δt) (2.4)

Pr(deliberate travel | stay in S) = (1−Aki )Γki δt (2.5)

Pr(deliberate travel and stay in S) = (1−Aki )Γki δt (2.6)

Pr(leave i but not travel far| stay in S) = (1−Aki )(1− Γki δt) (2.7)

Pr(leave i but not travel far and stay in S) = (1−Aki )(1− (Γki + Lki )δt) (2.8)

so that on average at site i starting at time tk, over each δt:

• Eki δt people enter the population;

• LkiNk
i δt people leave the population;

• Aki (1− Lki δt)Nk
i people remain at their current location;

• (1−Aki )(1− Lki δt)Nk
i people move to a neighbouring lattice point;

• (1−Aki )ΓkiN
k
i δt people travel deliberately to another point; and

• (1−Aki )(1− (Γki + Lki )δt)Nk
i people move to a neighbouring lattice point.

We make one further assumption that there exists a transition matrix T k =

(T kji)(j,i)∈S2 describing the probability an agent deliberately travels from site j to

site i. We denote j ∼ i to signify that i 6= j are neighbours and j → i to signify

that i 6= j and there is deliberate (potentially far-range) movement from j to i. We

also assume that each lattice point has n = 2d neighbours. Then:

Nk+1
i −Nk

i =

entry at site︷ ︸︸ ︷
Eki δt +

from neighbours︷ ︸︸ ︷∑
j∼i

1

n
(1−Akj )(1− (Γkj + Lkj )δt)Nk

j +

deliberate moves in︷ ︸︸ ︷∑
j→i

(1−Akj )ΓkjN
k
j T

k
jiδt

+

remain at location︷ ︸︸ ︷
Aki (1− Lki δt)Nk

i −

deliberate moves out︷ ︸︸ ︷
(1−Aki )ΓkiN

k
i δt −Nk

i

=
1

n

∑
j∼i

(1−Akj )Nk
j − n(1−Aki )Nk

i

+ δt

Eki +
∑
j→i

(1−Akj )ΓkjN
k
j T

k
ji


+δt

−1

n

∑
j∼i

(Γkj + Lkj )(1−Akj )Nk
j − n(Γki + Lki )(1−Aki )Nk

i

− (1−Aki )ΓkiN
k
i − LkiNk

i


The terms of the form

∑
j∼i •kj − n•ki are the discrete second-order centered
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difference Laplacian at position i and time tk multiplied by δx2. Denote the discrete

Laplacian by ∆. Dividing the equation by δt we have:

Nk+1
i −Nk

i

δt
=
δx2

nδt
∆((1−Aki )Nk

i ) + Eki +
∑
j→i

(1−Akj )ΓkjN
k
j T

k
ji − LkiNk

i

− (1−Aki )ΓkiN
k
i −

δx2

n
∆(Γki + Lki )(1−Aki )Nk

i

Under a diffusive scaling, such that δx2

nδt = D = O(1), in taking the limit we

furnish the partial differential equation

ρt = D∆((1− a)ρ) + η − ωρ+

∫
τ(y, ·, t) ((1− a)γρ) |ydy − (1− a)γρ, (2.9)

where ρ is a spatial density of agents; η is an entry rate per unit area; ω is an exit

rate; τ governs transitions from y to x at time t; γ is a travel rate term; and a is

a continuous attractiveness field. We can express (2.9) more nicely by defining the

unattractiveness

u = 1− a (2.10)

so that over a domain Ω:

ρt(x, t) = D∆(ρ(x, t)u(x, t)) + η(x, t)− ω(x, t)ρ(x, t)

+ (

∫
Ω

τ(y, x, t)γ(y, t)ρ(y, t)u(y, t)dy − γ(x, t)ρ(x, t)u(x, t)) (2.11)

subject to the normalization of τ ≥ 0:

∫
Ω

τ(y, x, t)dx = 1 (2.12)

2.2. Nondimensionalization

We begin with the PDE

ρt = D∆(ρu) + η − ωρ+ (

∫
Ω

τ(y, x, t)γ(y, t)ρ(y, t)u(x, t)dy − γρu)

(x, t) ∈ Ω× R≥0

We write x = x̄x∗, t = t̄t∗, ρ(x, t) = ρ̄ρ∗(x∗, t∗), u(x, t) = u∗(x∗, t∗), τ(y, x, t) =

τ̄ τ∗(y∗, x∗, t∗), η(x, t) = η̄η∗(x∗, t∗), ω(x, t) = ω̄ω∗(x∗, t∗), γ(x, t) = γ̄γ∗(x∗, t∗),

where the bars are scales and the asterisk variables are dimensionless. We also

define Ω∗ = 1
x̄d

Ω.
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Noting that if y = x̄y∗ then dy = x̄ddy∗, we have:

ρ∗t∗ =
Dt̄

x̄2
∆∗(u∗ρ∗) + (

η̄t̄

ρ̄
)η∗ − (ω̄t̄)ω∗ρ∗

+ (t̄γ̄τ̄ x̄d)

∫
Ω∗
τ∗(y∗, x∗, t∗)γ∗(y∗, t∗)ρ(y∗, t∗)u(y∗, t∗)dy∗ − (γ̄t̄)γ∗ρ∗u∗.

We can adopt scalings relevant homeless count data: given the homeless counts are

done annually, we choose t̄ to be 1 year. We also choose x̄ as a characteristic length

within our region of interest (later we use the geometric mean of the length/width

of the spatial domain). There is also a natural scaling for ρ̄ as the initial average

population density over the region. These choices suggest the derived scales η̄ = ρ̄/t̄,

ω̄ = γ̄ = 1/t̄, and τ̄ = 1/x̄d. Then for a constant δ = Dt̄/x̄2 and after removing the

asterisks we have:

ρt =

diffusive movement︷ ︸︸ ︷
δ∆(ρu) +

entry︷︸︸︷
η −

loss︷︸︸︷
ωρ +

nonlocal entry︷ ︸︸ ︷
I[γρu] −

loss from nonlocal movement︷︸︸︷
γρu ,

(2.13)

I[q](·) :=

∫
Ω

τ(y, ·, t)q(y, t)dy, (2.14)∫
Ω

τ(·, x, ·)dx = 1, τ ≥ 0. (2.15)

In general, the unattractiveness u may depend upon ρ and other localized features.

In section 2.3.2 we choose a particular form for u (equation (2.16)). Because of

this potential density-dependence, the system of equations is nonlinear. We can

interpret (2.13)-(2.15) as consisting of a nonlinear diffusion operator where ρu is

diffusing; a local source term η; a localized exit rate ω; a nonlocal operator I[γρu](·)
describing intentional travel, and a local loss due to intentional travel γρu. Note

that the nonlocal operator is not a convolution.

2.3. Mathematical Formulation

2.3.1. Notation

To denote solution spaces, we may explicitly label a function’s argument and specify

the continuity/differentiability assumed with a subscript with that label. We denote

f(x, t) ∈ C2
x ∩ C1

t (Ω × R≥0 → R≥0) to be a function f that is twice continuously

differentiable in x and once in t. We use similar notation for continuity in higher

derivatives. The notation C represents continuity in all arguments, possibly with

superscripts to denote the number of derivatives, e.g. C∞.

2.3.2. Assumptions

We denote our spatial domain to be Ω and assume it is bounded and sim-

ply connected. For simplicity in the analysis, we will choose Ω to be the torus
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Fig. 3. Plots of unattractiveness vs density with ρ̃ = 1. The unattractiveness increases with den-
sity for all fixed κ. It is always at least u+ − u− and never exceeds u+. As κ increases, the

unattractiveness decreases.

Td = Rd/Zd ∼= [0, 1)d for d ∈ N. Periodic boundary conditions actually exist in

cities e.g. with perimeter roads, however here the choice is more for convenience of

the mathematics. Also cities like Los Angeles can have repeating patches of resi-

dential (both affluent and disadvantaged) neighborhoods and commercial regions,

which can give the impression of a repeating pattern. For numerical studies we

sometimes use no-flux boundaries in R2, identifying a flux of −δ∇(ρu).

We denote:

• ρ(x, t) : Ω× R≥0 → R≥0, the population density (people per unit area);

• θ(x, t) : Ω × R≥0 → Rp, a features vector of size p, which can vary over

space;

• κ(θ) : Rp → [0, 1], the (dimensionless) relative capacity, to be used below;

•

u(κ, ρ) : [0, 1]× R≥0 → (0, 1)

(κ, ρ) 7→ u+ − κu−

1 + ρ/ρ̃
, (2.16)

the (dimensionless) unattractiveness for 0 < u− < u+ < 1, 0 < ρ̃ (see figure

3 for qualitative depiction);

• τ(y, x, t) : Ω×Ω×R≥0 → R≥0, the travel term (per unit area probability),

such that

∀y ∈ Ω,

∫
Ω

τ(y, x, t)dx = 1;

• η(θ, t) : Rp × R≥0 → R≥0, the entry rate (people per unit area per unit

time);

• ω(θ, t) : Rp × R≥0 → R≥0 the exit rate (per unit time); and

• γ(θ, t) : Rp × R≥0 → R≥0, the intentional travel rate (per unit time).

The fact that unattractiveness is density-dependent is motivated by a study of

homeless populations on census tracts that found homeless populations are more
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likely to decrease if they begin at an above average value 27. The potential for

including more general τ to include preferential travel to locations with a higher

population density is briefly discussed in section 3.3 as this could be a possible

mechanism 16. For simpler analysis, however, we do not consider such τ .

We operate under the hypotheses that

Hypothesis 1. The functions ρ, θ, κ, τ, η, ω, γ ∈ C∞ for all their respective argu-

ments.

Hypothesis 2. We have 0 ≤ κ ≤ 1 and there is a Ξ > 0 so that

|∇κ|, |∆κ|, |ω|, |η|, |γ|, |τ | ≤ Ξ for all x ∈ Ω, t ≥ 0.

We then consider the evolution of ρ given by equations (2.13)-(2.15), (2.16).

2.4. Model Exploration

To build a basic understanding of the model features, we study the solutions nu-

merically and vary the parameters. We do this in one dimension on the torus with

length 1. The numerical method employed is explained in Appendix 6.1.

We wish to qualitatively understand the effects of the different model features.

As part of this work, we locally perturb some features sometimes making use of the

bump function

Υ (x) =

0, |x| ≥ 1

e−1/(1−x20)∫ 1
−1

e−1/(1−x20)dx
, |x| < 1.

(2.17)

The function Υ ∈ C∞(R → R≥0) is compactly supported on the interval [−1, 1]

with a wide range of x-values where it is nearly constant (owing to the large power

of 20). We remark that Υ has a support of length 2, which is larger than the unit

torus, but by shifting and rescaling its argument, we ensure our use of Υ does not

violate the properties of the torus.

We perform a series of numerical experiments upon the model, as seen in figure

2.4 with explicit parameter listings in table 1. In particular, we study the following:

• baseline: we study how the population density evolves from an initial

distribution when all the parameter functions are constants, observing a

steady approach of the population density to a spatially constant solution

at steady-state.

• enhanced local entry: from the baseline, we increase the entry rate η in

a region and at steady-state find the population is largest where there is

more entry.

• enhanced local exit: from the baseline, we increase the exit rate ω in a

region and at steady-state find the population is reduced where there is a

greater exit rate.
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• enhanced local to far migration: from the baseline, we increase the

travel rate γ in a region and at steady-state find the population has dimin-

ished due to a higher rate of moving away from the area.

• biased transfer: from the baseline, we choose τ to be biased to relocate

individuals to one particular region; at steady-state, the population density

is higher at this destination.

• exponential decay transfer: from the baseline, we choose τ such that

from y, the probability density in moving to x decays exponentially with

|x−y|. Compared to the baseline, the change is quite small, but we observe

the population decreases slightly slower in more concentrated regions since

the people are not travelling as far.

• textured relative capacity: from the baseline, we vary the relative capac-

ity κ in an oscillatory fashion; we find that at steady-state, the population

density fluctuates with this varying relative capacity.

• enhanced diffusion: from the baseline, we raise the diffusion coefficient

and find the behavior can quickly be dominated by diffusion, resulting in

flat density profiles.

• more density sensitivity: from the baseline, we make the unattractive-

ness more sensitive to density variations by decreasing ρ̃ in (2.16). We ob-

serve the population disperses more rapidly in regions where the population

density was initially highest.

• narrow unattractiveness range: from the baseline, we modify u− and

u+ in (2.16) so that the unattractiveness is almost constant, regardless of ρ

or κ. We also perturb κ as in the “textured relative capacity” experiment.

Here we find the steady state population is much less influenced by the

relative capacity.

• region becomes uninhabitable: from the baseline, we make a region Q,

say, uninhabitable by making the relative capacity zero in Q, biasing τ to

move people away from Q, only allowing entries parts of the domain outside

of Q, and greatly increasing the travel rate in Q. We find the population

relocates to the other, more habitable part of the domain.
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Description Parameters Observations

baseline η = 2, ω = 1, γ = 1
2 ,

τ = 1, κ = 1
2 , δ = 0.02, u+ =

0.99, u− = 0.98, ρ̃ = 20

tends to flat solution

enhanced lo-

cal entry near

x = 3
4

η 7→ 2 + 5Υ(4(x− 3
4 )) population largest at

x = 3
4

enhanced

local exit near

x = 1
4

ω 7→ 1 + 5Υ(4(x− 1
4 )) population minimal

at x = 1
4

enhanced

local to far mi-

gration at x =
1
4

γ 7→ 1
2 + 4Υ(4(x− 3

4 )) population moves

away from x = 1
4

biased trans-

fer

τ 7→ 4Υ(4(x− 3
4 )) buildup of popula-

tion at bias destina-

tion

exponential

decay transfer

τ(y, x, t) 7→
e−dist(y,x)/(

∫
T e−dist(0,x′)dx′),

λ = 0.05

population slower to

decrease near con-

centration region

textured rela-

tive capacity

κ 7→ sin2(4πx) spatial

frequencies observed

in density

enhanced dif-

fusion

δ 7→ 1 population levels out

faster

more density

sensitivity

ρ̃ 7→ 1
10 population spreads

out faster

narrow

unattractive-

ness range

κ 7→ sin2(4πx), u+ 7→ 0.51,

u− 7→ 0.01

relative capacity has

smaller effect

region

becomes unin-

habitable near

x = 1
4

κ 7→ Υ(4(x− 3
4 ))/Υ(0)

τ(y, x, t) 7→ 4Υ(4(x− 3
4 ))

η 7→ 8Υ(4(x− 3
4 ))

γ 7→ 1
2 + 20Υ(4(x− 1

4 ))

population drasti-

cally drops near x =
1
4

Table 1. Numerical experiments that are run on the model in one dimension with Υ defined as in

(2.17). Plots of these experiments are given in figure 2.4.
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Fig. 4. Initial conditions are that ρ(x, 0) = 0.4 + 4Υ(8(x− 1
4

)). The scenarios depicted correspond

to those of table 1. Row 1 left: baseline; row 1 center: enhanced entry near x = 3/4; row 1
right: enhanced exit rate near x = 1/4; row 2 left: enhanced deliberate travel rate near x = 1/4;

row 2 center: transfer kernel moves people to near x = 3/4; row 2 right: transfer kernel decays

exponentially with distance; row 3 left: textured relative capacity; row 3 middle: enhanced diffusion;
row 3 right: unattractiveness becomes more sensitive to density; row 4 left: same textured relative

capacity as in row 3 left but with smaller variance in unattractiveness; row 4 center: region near

x = 1/4 becomes uninhabitable; row 4 right: time legend.

3. Properties of Smooth Periodic Solutions

We study the solutions to

ρt = δ∆(ρu) + η − ωρ+ I[γρu]− γρu, (3.1)

I[q](·) :=

∫
Ω

τ(y, ·, t)q(y, t)dy, (3.2)∫
Ω

τ(·, x, ·)dx = 1, τ ≥ 0 (3.3)

u = u(κ, ρ) = u+ − κu−

1 + ρ/ρ̃
(3.4)

for 0 < u− < u+ < 1, 0 < ρ̃, 0 < δ.
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Here we work in a spatial domain Ω = Td, the d−dimensional torus. For T > 0,

we denote

UT ≡ {ρ(x, t)|ρ(x, t) ∈ C2
x ∩ C1

t (Td × [0, T ]→ R≥0)}

with t−derivatives understood to be right-, respectively, left-derivatives at t = 0

and t = T . In general, we will be assuming the existence of solutions to (3.1)-(3.4)

within the space UT . If we write U∞ we refer to a solution that exists globally for

all time. At all times, we assume that hypotheses 1 and 2 are satisfied.

As the equations (3.1)-(3.4) are parabolic and nondegenerate (u is never zero),

we anticipate global existence of smooth solutions, without the formation of shocks

or phenomena such as finite-time blowup. However, such proofs are beyond this

paper.

Remark 3.1. The solutions we consider are continuous on the torus Td, which is

compact, so we can use sup and max, respectively, inf and min, interchangeably.

3.1. Useful Properties of ρu

The term ρu appears many times in our analysis and we make a list of some useful

properties. Note that ρu = u+ρ− κM(ρ) where we define

M(ρ) =
u−ρ

(1 + ρ/ρ̃)
. (3.5)

Observe

M ′(ρ) =
u−

(1 + ρ/ρ̃)2
, (3.6)

M ′′(ρ) =
−2u−/ρ̃

(1 + ρ/ρ̃)3
. (3.7)

Thus, for ρ ≥ 0,

0 ≤ (u+ − u−)ρ ≤ ρu (3.8)

0 ≤M(ρ) ≤ u−ρ (3.9)

0 ≤M(ρ) ≤ ρ̃u− = constant (3.10)

0 ≤M ′(ρ) ≤ u−, (3.11)

M ′′(ρ) ≤ 0. (3.12)

We also have that

∇(ρu) = (u+ − κM ′(ρ))∇ρ−M(ρ)∇κ (3.13)

∆(ρu) = (u+ − κM ′(ρ))∆ρ− κM ′′(ρ)|∇ρ|2 − 2M ′(ρ)∇κ · ∇ρ−M(ρ)∆κ (3.14)

In one spatial dimension, we also have:

(ρu)xxx = (u+ − κM ′(ρ))ρxxx − 3M ′(ρ)κxρxx − 3M ′(ρ)κxxρx −M(ρ)κxxx

− 3κM ′′(ρ)ρxρxx − 3M ′′(ρ)κxρ
2
x − κM ′′′(ρ)ρ3

x (3.15)
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Owing to (3.11), hypothesis 2, and 0 ≤ κ ≤ 1, we have:

ρ 7→ u+ρ− κM(ρ) ∈ Lipu+(R≥0) (3.16)

ρ 7→ ∇κM(ρ) ∈ LipΞu−(R≥0) (3.17)

ρ 7→ κM ′(ρ) ∈ Lip2Ξu−/ρ̃(R≥0) (3.18)

where the subscripts in the Lipschitz spaces denote the bounding constants.

3.2. Results

We have a series of results of solution properties below. All proofs are provided in

the paper, but the following lemma and subsequent three propositions are proved

in Appendix 6.2.

Lemma 3.1. Let 0 ≤ t0 < T ≤ ∞ and define S = Td × (t0, T ].

Let q(x, t) ∈ C2
x ∩ Ct(Td × [0, T ]→ R≥0) solve

qt − α∆F (q, t) + λq + Φ(∇q, x, t) = Θ

where α ∈ C(S → R≥0),

Φ ∈ C(Rd × Td × R≥0 → R) with Φ(0, ·, ·) = 0,

λ(x, t) ∈ C(S → R≥0), resp., λ ∈ C(S → R≤0),

F (q, t) ∈ C(R≥0 × [0, T ] → R≥0) with F monotonically nondecreasing with respect

to q, and

Θ[q](x, t) is an operator depending on q, x ∈ Td, and t ∈ R≥0 such that if q

achieves a global maximum over Td at x then Θ[q](x, t) ≤ 0, resp., if q achieves a

global minimum over Td at x then Θ[q](x, t) ≥ 0.

The preceding conditions force supS q = max∂∗S q, resp., infS q = min∂∗S q where

∂∗S ≡ Td × {t0}.

Remark 3.2. The zero operator can be used in lemma 3.1 and the result clearly

holds.

Proposition 3.1 (Positivity). Let T > 0 and suppose that ρ ∈ UT is a solution

to (3.1)-(3.4) with Ω = Td and ρ(x, 0) > 0 for all x ∈ Td. Then ∀t ∈ [0, T ], ρ > 0.

In particular if minTd ρ(·, 0) = ρm then ρ(x, t) ≥ ρme−(2Ξ+δΞu−)t > 0 for all x ∈
Td, t ∈ [0, T ].

Proposition 3.2 (Explicit Bound on Total Population). Let T > 0 and

suppose ρ ∈ UT is a solution to (3.1)-(3.4) with Ω = Td and ρ(x, 0) > 0 for all

x ∈ Td. Then ||ρ(·, t)||L1(Td) ≤ ||ρ(·, 0)||L1(Td) + Ξt <∞ for all t ∈ [0, T ].

Proposition 3.3 (Explicit Bound on Population Density). Let T > 0 and

suppose that ρ ∈ UT is a solution to (3.1)-(3.4) with Ω = Td, ρ(x, 0) > 0 for

all x ∈ Td, and ||ρ(·, 0)||L∞(Td) = ρM < ∞. Then ∀t ∈ [0, T ], ||ρ(·, t)||L∞(Td) ≤
ρM + Ξ3

2 t
2 + (Ξ2||ρ(·, 0)||L1(Td) + Ξ + Ξδρ̃u−)t <∞.
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Theorem 3.1 (Uniqueness of Smooth Solutions). Let T > 0 and suppose

ρ1, ρ2 ∈ UT are two solutions to (3.1)-(3.4) with Ω = Td. If ρ1 and ρ2 have identical

and strictly positive initial conditions at t = 0, then ρ1 = ρ2 on 0 ≤ t ≤ T .

Proof. From subtracting the respective PDEs, we have that

(ρ1 − ρ2)t = δu+∆(ρ1 − ρ2)− δ∆ (κ(M(ρ1)−M(ρ2)))− ω(ρ1 − ρ2)

+ I[γ(u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2))]

− γ(u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2)).

By multiplying the equation by (ρ1 − ρ2), integrating over Ω, and integrating by

parts once, we have:

d

dt

1

2

∫
Td

(ρ1 − ρ2)2dx = δ

∫
Td

(
− u+|∇(ρ1 − ρ2)|2+

∇(ρ1−ρ2)·∇(κ(M(ρ1)−M(ρ2)))︷ ︸︸ ︷
(M(ρ1)−M(ρ2))∇κ · ∇(ρ1 − ρ2) + κ(M ′(ρ1)∇ρ1 −M ′(ρ2)∇ρ2) · ∇(ρ1 − ρ2)

)
dx

−
∫
Td

(
ω(ρ1 − ρ2)2 + (ρ1 − ρ2)γ(u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2))

)
dx

+

∫
Td

(ρ1 − ρ2)

∫
Ω

τ(y, x, t)γ(u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2))|ydydx

≤ δ
∫
Td

(
− u+|∇(ρ1 − ρ2)|2 + (M(ρ1)−M(ρ2))∇κ · ∇(ρ1 − ρ2)

+ κ(M ′(ρ1)∇ρ1 −M ′(ρ2)∇ρ2) · ∇(ρ1 − ρ2)
)
dx

+

∫
Td
|ρ1 − ρ2|

∫
Td
τ(y, x, t)γ|(u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2))|dydx,

where we used the fact that (ρ1 − ρ2) and γ(ρ1u(κ, ρ1) − ρ2u(κ, ρ2)) will have the

same sign (because ρu is positive and monotonically increasing in ρ). Now, by (3.16),

||ρ1−ρ2||L1(Td) ≤ |Td|1/2||ρ1−ρ2||L2(Td) = ||ρ1−ρ2||L2(Td), and γ(y, t)τ(y, x, t) ≤ Ξ2,

we have that

∫
Td
|ρ1 − ρ2|

∫
Td
τ(y, x, t)γ

≤u+|ρ1−ρ2|︷ ︸︸ ︷
|(u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2))|dydx

≤ u+Ξ2||ρ1 − ρ2||2L2(Td) (3.19)
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Working with the derivative terms, we have∫
Td

(
−u+|∇(ρ1 − ρ2)|2 + (M(ρ1)−M(ρ2))∇κ · ∇(ρ1 − ρ2)

+ κ(M ′(ρ1)∇ρ1 −M ′(ρ2)∇ρ2) · ∇(ρ1 − ρ2)) dx

=

∫
Td

(
−u+|∇(ρ1 − ρ2)|2 + (M(ρ1)−M(ρ2))∇κ · ∇(ρ1 − ρ2)

+ κ(M ′(ρ1)∇(ρ1 − ρ2) + (M ′(ρ1)−M ′(ρ2))∇ρ2) · ∇(ρ1 − ρ2)) dx

=

∫
Td

[
−
(
u+ − κM ′(ρ1)

)
|∇(ρ1 − ρ2)|2

+
(
κ(M ′(ρ1)−M ′(ρ2))∇ρ2 +∇κ(M(ρ1)−M(ρ2))

)
· ∇(ρ1 − ρ2)

]
dx

=

∫
Td

[
−
(
u+ − κM ′(ρ1)

)
×

|
(
∇(ρ1 − ρ2)− κ(M ′(ρ1)−M ′(ρ2))∇ρ2 +∇κ(M(ρ1)−M(ρ2))

2(u+ − κM ′(ρ1))

)
|2

+
|κ(M ′(ρ1)−M ′(ρ2))∇ρ2 +∇κ(M(ρ1)−M(ρ2))|2

4(u+ − κM ′(ρ1))

]
dx

≤ K||ρ1 − ρ2||2L2(Td), (3.20)

for some K that depends on maxt∈[0,T ] ||∇ρ2(·, t)||L∞(Td). It is finite as solutions

are twice continuously differentiable in Td so the gradient cannot blow up. The last

inequality stems from the final (and positive) term in the integrand being Lipschitz:

since ∇ρ2 is bounded on Ω (ρ2 is C2 in x) and using (3.17)-(3.18), the term being

squared in the numerator is Lipschitz. Also, the denominator is bounded below by

4(u+ − u−). Whence, by combining inequalities (3.19) and (3.20):

d

dt
||ρ1 − ρ2||2L2(Td) ≤ 2(u+Ξ2 +K)||ρ1 − ρ2||2L2(Td)

and by a standard application of Grönwall’s inequality, the result is proven.

Corollary 3.1 (Continuous Dependence on Initial Conditions Given the

Solutions Exist). Let T > 0 and ρ ∈ UT be a solution to (3.1)-(3.4) with Ω = Td
and ρ(·, 0) = ρ0(·) > 0. Then ∀ε > 0, ∃ζ(T ) > 0 s.t. if % ∈ UT is a solution to

(3.1)-(3.4) also with Ω = Td, %(·, 0) = %0(·) > 0 and ||%0 − ρ0||L2(Td) < ζ(T ) then

∀0 ≤ t ≤ T , we have ||%(·, t)− ρ(·, t)||L2(Td) < ε.

Proof. The proof is trivial by using the arguments that prove 3.1: replace ρ1 with

% and ρ2 by ρ.

Theorem 3.2 (Spatially Homogeneous Forcing Induces Convergence to

Homogeneous Spatial Density in Measure). Let ρ ∈ U∞ be a solution to

(3.1)-(3.4) with Ω = Td, ρ(x, 0) > 0 for all x ∈ Td, θ = θ(t) (making κ constant

in space), η = η(t) ≥ 0, ω = ω(t) > ω− > 0 with ω− a constant, γ = γ(t) ≥ 0,
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and τ = 1. Then for all ρ(·, 0) ∈ C2, ρ(·, t) → ρ̄(t) in measure where ρ̄(t) =

e−
∫ t
0
ω(s)ds

∫ t
0
η(r)e

∫ r
0
ω(s)dsdr.

Remark 3.3. We are assuming global existence here in order for the limit to make

sense.

Proof. [Proof of theorem 3.2] Our argument will come from two parts: first,

we will establish a uniform upper bound for the solution over Td that converges

to ρ̄ as t ↑ ∞. We will then show that the solution cannot remain smaller than ρ̄

except on sets whose measure vanishes. With κ constant in space, ρu = F (ρ, t) is

monotonically increasing with ρ for each fixed t. Then (3.1)-(3.4) become

ρt = δ∆F + η − ωρ+ γ(F̄ − F ) (3.21)

where F̄ =
∫
Td Fdx is the average value of F (ρ) on Td. We wish to change variables

to remove as many terms from (3.21) as possible so as to apply the maximum

principle supplied by lemma 3.1. For smooth ξ1 and ξ2, write ρ = eξ1(t)q(x, t)+ξ2(t)

so that

ξ̇1q + qt + ξ̇2e−ξ1 = δ∆F + η − ωq − ωξ2e−ξ1 + γ(F̄ − F )e−ξ1 .

The dot signifies a time derivative. We choose

ξ̇1 = −ω, ξ1(0) = 0 (3.22)

ξ̇2 = −ωξ2 + ηeξ1 , ξ2(0) = 0 (3.23)

so that in simpler terms

qt − δ∆F = γ(F̄ − F )e−ξ1 .

Note that γe−ξ1(F̄ − F ) is an operator that satisfies the conditions of Θ in lemma

3.1. By lemma 3.1, the global maximum for q in UT is achieved at t = 0. By choice

of initial conditions (3.22)2 and (3.23)2, ρ(·, 0) = q(·, 0) and thus

ρ = eξ1q + ξ2 ≤ eξ1 max
Td

q(·, 0) + ξ2 = eξ1 max
Td

ρ(·, 0) + ξ2.

By recalling η, ω are constant in space and solving the ODEs (3.22)-(3.23), we can

precisely state that

ρ(x, t) ≤ e−
∫ t
0
ω(s)ds max

Td
ρ(·, 0) + e−

∫ t
0
ω(s)ds

∫ t

0

η(r)e
∫ r
0
ω(s)dsdr

= e−
∫ t
0
ω(s)ds max

Td
ρ(·, 0) + ρ̄(t). (3.24)

This proves directly that the set of points upon which ρ exceeds ρ̄ + ε must have

vanishing measure as t ↑ ∞ for all ε > 0. Having established an upper bound, we

now work on the second part of the proof. Integrating (3.21) over Td we have (as

in proof of proposition 3.2 in the Appendix) that

d

dt
||ρ||L1(Td) = η − ω||ρ||L1(Td)
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so

||ρ||L1(Td)(t) = e−
∫ t
0
ω(s)ds

(
||ρ||L1(Td)(0) +

∫ t

0

η(r)e
∫ r
0
ω(s)dsdr

)
. (3.25)

Let ε > 0 and define Sε(t) = {x ∈ Td|ρ(x, t) ≤ ρ̄(t) − ε}. We show that in

measure, ρ→ ρ̄(t).

Observe that by equations (3.25) and (3.24)

||ρ||L1(Td)(t) = e−
∫ t
0
ω(s)ds||ρ||L1(Td)(0) + ρ̄(t)

=

∫
Td\Sε

ρdx+

∫
Sε

ρdx

≤ |Td \ Sε|
(

e−
∫ t
0
ω(s)ds max

Td
ρ(·, 0) + ρ̄(t)

)
+ |Sε| (ρ̄(t)− ε)

= |Td|ρ̄(t) + |Td \ Sε|e−
∫ t
0
ω(s)ds max

Td
ρ(·, 0)− ε|Sε(t)|.

Rearranging the first line and the last line, using |Td| = 1, and recalling there

is an inequality produces

ε|Sε(t)| ≤ e−
∫ t
0
ω(s)ds

(
max
Td

ρ(·, 0)|Td \ Sε| − ||ρ||L1(Td)(0)

)
.

Since we assume here that ω is strictly bounded below by 0 so that
∫∞

0
ω(s)ds

diverges, the right hand side decays to zero and thus

ε|Sε(t)| ↓ 0

as t→∞ for all ε > 0.

In one dimension, we can prove a stronger result.

Theorem 3.3 (Spatially Homogeneous Forcing Induces Uniform Decay of

Gradient in One Dimension). Let ρ(x, t) ∈ C3
x ∩ C1

t (T× [0,∞)→ R≥0), having

ρxt and ρtx continuous, be a solution to (3.1)-(3.4) with Ω = T, ρ(·, 0) = ρ0 > 0

with ρ0 ∈ C3, θ = θ(t) (making κ constant in space), η = η(t) ≥ 0, ω = ω(t) ≥ 0,

γ = γ(t) ≥ 0, and τ = 1. We also assume that one of ω or γ is bounded below

by a positive constant, m. Then for all ρ(·, 0) ∈ C3, ρ(·, t) → ρ̄(t) uniformly where

ρ̄(t) = e−
∫ t
0
ω(s)ds

∫ t
0
η(r)e

∫ r
0
ω(s)dsdr.

Remark 3.4. Note that we require 3 continuous derivatives in space. Also, we

potentially allow ω = 0 here.

Proof. [Proof of theorem 3.3] We will prove that the gradient ρx tends to zero

uniformly. We can rewrite (2.13) in one spatial dimension and with the imposed

hypotheses as

ρt = δ(ρu)x + η − ωρ+ γ

∫
T
ρudy − γρu.
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We begin by taking an x−partial-derivative using (3.15) with κ, ω, and γ constant

in space to obtain:

ρtx = δ((u+ − κM ′(ρ))ρxxx − 3κM ′′(ρ)ρxρxx − κM ′′′(ρ)ρ3
x)

− ωρx − γ(u+ − κM ′(ρ))ρx

since the nonlocal operator results in a constant in space. By interchanging x-

and t− derivatives since the mixed partial derivatives are assumed continuous (and

hence equal), we rewrite the equation with ψ = ρx:

ψt = δ((u+−κM ′(ρ))ψxx−
3

2
κM ′′(ρ)(ψ2)x−κM ′′′(ρ)ψ2

x)−ωψ−γ(u+−κM ′(ρ))ψ.

Now we multiply by ψ so that

1

2
(ψ2)t = δ((u+ − κM ′(ρ))ψψxx −

3

2
κM ′′(ρ)ψ(ψ2)x − κM ′′′(ρ)ψψ2

x)

−
(
ω + γ(u+ − κM ′(ρ))

)
ψ2

Let q = 1
2ψ

2. If we can prove q → 0 uniformly over T we are done. Note that we

have

qt = δ((u+ − κM ′(ρ))(qxx − ψ2
x)− 6κM ′′(ρ)ψxq − κM ′′′(ρ)ψψ2

x)

− 2
(
ω + γ(u+ − κM ′(ρ))

)
q

Note that q ≥ 0 and if q(x, t) = r(x, t)eξt then

rt − δ(u+ − κM ′(ρ))rxx + δ(u+ − κM ′(ρ))ψ2
xre
−ξt + 6κM ′′(ρ)ψxr

− κM ′′′(ρ)ψe−ξtψ2
x = −

(
ξ + 2

(
ω + γ(u+ − κM ′(ρ))

))
r

If the supremum of r is zero, there is nothing more to prove. Otherwise, at any

nonzero local maximum for r, ψψx = 0 and since ψ 6= 0 in such a case, we have

ψx = 0. If ξ is chosen so that ξ + 2
(
ω + u+ − κM ′(ρ)

)
≥ 0 then by lemma 3.1, the

global maximum for r is achieved at t = 0. Many ξ can be chosen but to establish

decay, we choose ξ = −2m if ω ≥ m > 0 with γ reaching zero and otherwise we pick

ξ = −2m(u+ − u−). This establishes 1
2ψ

2 ≤ e−mt maxT
1
2ψ(·, 0)2 so the gradient of

ρ tends to zero uniformly. Combining this fact with theorem 3.2 proves the result.

We examine the the consequences of theorem 3.3 by plotting a solution subject to

time-dependent, but spatially constant, forcing along with the decay of its gradient.

We now turn to the problem of parameters and solutions that are time-

independent and their perturbations.

Proposition 3.4 (With constant γ and symmetric τ , steady state solutions

are stable to L2-perturbations).
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Fig. 5. Maximum of solution gradient with initial condition ρ(x, 0) = 2 sin2(2πx) with η = 2 + t,
κ = 1

2
, ω = 0.1 + 0.09 sin2 t, γ = 4e−3t, τ = 1, u+ = 0.98, u− = 0.96, ρ̃ = 20, δ = 0.02.Here

m = 0.1 since ω ≥ 0.1. The diffusion also helps to level out the solution, even more than m

accounts for.

We consider equations (3.1)-(3.4) with Ω = Td; γ = γ(x); τ time-independent

and symmetric with τ(x, y) = τ(y, x); let η(x, t) = η(x) ≥ 0, ω(x, t) = ω(x) > 0

constants in time. We let γ ≥ 0 be a constant. Suppose that ρ0 ∈ C2(Td), ρ0 > 0

obeys the steady-state equation:

0 = δ∆(ρu) + η − ωρ+ (

∫
Td
τ(y, x)γ(y)ρ(y)u(y)dy − γρu) (3.26)

alongside (2.14) and (2.15). Then, for sufficiently small, periodic ρ̄0 ∈ Td2(Ω), the

solution to (2.13) with ρ(·, 0) = ρ0 + ρ̄0 upholds ρ→ ρ0 in L2(Td) as t→∞.

Proof. We define R(x) = u+ − κM ′(ρ0) and u0 = u(κ, ρ0) so that for small ρ̄, up

to first order, (ρ0 + ρ̄)u|ρ0+ρ̄ = ρ0u0 + R(ρ0)ρ̄. We remark that R(x) > 0 for all

x ∈ Td. Now, we linearize (3.1)-(3.4) by ρ = ρ0 + ρ̄ to furnish:

ρ̄t = ∆(Rρ̄)− ωρ̄+ γ

(∫
Td
τ(y, x)Rρ̄|ydy −Rρ̄

)

Now, we multiply the equation by Rρ̄ and integrate over Td:
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∫
Td
Rρ̄ρ̄tdx =

∫
Td
Rρ̄∆(Rρ̄)dx−

∫
Td
ωRρ̄2dx

+ γ

∫
Td
Rρ̄|x

(∫
Td
τ(y, x)Rρ̄|ydy −Rρ̄|x

)
dx

=⇒ d

dt

(
1

2

∫
Td
Rρ̄2dx

)
= −

∫
Td
|∇(Rρ̄)|2dx−

∫
Td
Rωρ̄2dx

+ γ

∫
Td
Rρ̄|x

(∫
Td
τ(y, x)Rρ̄|ydy −Rρ̄|x

)
dx

=⇒ d

dt

(
1

2

∫
Td
Rρ̄2dx

)
+

∫
Td
Rωρ̄2dx ≤

γ

(∫
Td
Rρ̄|x

∫
Td
τ(y, x)Rρ̄|ydydx−

∫
Td
R2ρ̄2dx

)
We denote R = minTd R > 0, and ω = infTd ω > 0 and with the above, we apply

Cauchy-Schwarz:

R

2

d

dt
||ρ̄||2L2(Td) +Rω||ρ̄||2L2(Td) ≤

γ

(∫
Td

∫
Td
|R(x)ρ̄(x, t)R(y)ρ̄(y, t)τ(y, x)|dydx−

∫
Td
R2ρ̄2dx

)
≤ γ

(∫
Td
|R(y)ρ̄(y, t)|(

∫
Td
τ(y, x)dx)1/2(

∫
Td
R(x)2ρ̄(x, t)2τ(y, x)dx)1/2dy −

∫
Td
R2ρ̄2dx

)
= γ

(∫
Td
|R(y)ρ̄(y, t)|(

∫
Td
R(x)2ρ̄(x, t)2τ(y, x)dx)1/2dy −

∫
Td
R2ρ̄2dx

)
≤ γ(

∫
Td
R2ρ̄2dy)1/2(

∫
Td

∫
Td
R(x)2ρ̄(x, t)2τ(y, x)dxdy)1/2 − γ

∫
Td
R2ρ̄2dx

= γ(

∫
Td
R2ρ̄2dy)1/2(

∫
Td

∫
Td
R(x)2ρ̄(x, t)2τ(x, y)dydx)1/2 − γ

∫
Td
R2ρ̄2dx

= γ(

∫
Td
R2ρ̄2dy)1/2(

∫
Td
R(x)2ρ̄(x, t)2dx)1/2 − γ

∫
Td
R2ρ̄2dx = 0

Thus,

||ρ̄(·, t)||2L2(Td) + 2ω

∫ t

0

||ρ̄(·, s)||2L2(Td)ds ≤ ||ρ̄(·, 0)||2L2(Td)

We claim this proves ||ρ̄(·, t)||L2(Td) ↓ 0 as t ↑ ∞. We have that ||ρ̄(·, t)||L2(Td)

is monotonically non-increasing. Were it to not tend to zero then there must exist

ε > 0 so that limt→∞||ρ̄(·, t)||L2(Td) ≥ ε. But this would force the integral to diverge

to +∞ and we would have a contradiction to the boundedness of ||ρ̄(·, t)||L2(Td) +

2ω
∫ t

0
||ρ̄(·, s)||L2(Td)ds.
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3.3. Generalizations

Some of the proofs provided here could readily be generalized to include other

features. For example, the proof of positivity, and the bounds on the L1 and L∞

norms of solutions depended upon the positivity, normalization, and boundedness

of τ . But more complicated τ choices could also be used, such as those of the form

τ(y, x, t, ρ/||ρ||L1(Ω)) to furnish the same results, allowing effects of aggregation due

to localized peaks in the population density. Other proofs may require more control

over τ and further properties of solutions ρ.

4. Qualitative Features of Real Data

After nondimensionalization and smoothing, the homeless population densities for

four consecutive years are plotted in figure 6. Within the real data, we remark that

while some areas have high homeless population densities consistently from year

to year, encampments can form over the course of a year and a new bump in the

density appears.

The PDE model has many parameters, most of which can vary over space and

time. As such, there is a danger of overfitting. In order to illustrate qualitatively

consistent behavior in our model with the real data of encampment formation, we

restrict ourselves to describing the formation of a new encampment (a new local

maximum). To achieve this, we keep all of η, ω, γ constant in space and time and

only allow κ to vary with time. We select a travel term of

τ(y, x, t) =
κ(x, t)∫

Ω
κ(x′, t)dx′

(4.1)

and allow a localized region in the domain to increase its κ value over dimension-

less time interval of 1. Over the domain we impose no-flux boundary conditions.

This choice induces a change in homeless population density consistent with an

encampment formation. See figure 7.

5. Conclusions and Future Work

Motivated by observations that homeless populations are influenced by local geo-

graphic features, we formulated a continuum PDE model to describe the evolution

of the homeless population density. We have proven that smooth periodic solutions

to the model equations enjoy a maximum principle, a positive population density,

uniqueness, a flattening phenomena with spatially uniform forcing, and L2-stability

for constant transfer rates and symmetric travel kernels. The model is well-behaved

and for suitable choices of parameters, it can produce population changes that are

qualitatively consistent with real homeless population data.
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Fig. 6. Plots of the interpolated and smoothed homeless population densities for a subset of Los
Angeles. The population has been nondimensionalized by a scale of 68 mi−2 and the length scale is

12 mi. The data have been smoothed: population densities were interpolated onto a regular mesh

from LAHSA data and then locally averaged over a radius of 1 mi.

From this preliminary model, many new avenues of research open up. It would be

worth understanding how to empirically model the various parameters/functions in

(3.1)-(3.4) so that the model can be used in a quantitative capacity and in identifying

what can be done to combat homelessness. From the viewpoint of mathematical

analysis, a rigorous proof of existence of solutions is worth pursuing. It would also

be interesting to study this model or its natural variants as applied to other contexts.

6. Appendix

6.1. Numerical Methods

In one spatial dimension on the torus, we use semi-implicit stepping. To solve (3.1)-

(3.4), assume we have a numerical solution on a regular spatial grid at time tk, ρk.

We write u(ρ) to indicate the u-function evaluated at a given place with argument

ρ. A method-of-lines implementation with time step ∆t is to find ρk+1 that solves:

ρk+1 − ρk

∆t
= δ∆(ρk+1u(ρk))+ηk+1−ωk+1ρk+1+I[γk+1ρk+1u(ρk)]−γk+1ρk+1u(ρk).

This requires inverting a dense matrix, which is not overly costly in one dimen-
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Fig. 7. Top row: initial homeless population density at t = 0 (left) and final homeless population
density at t = 1 (right). Bottom row: initial relative capacity κ at t = 0 and final relative capacity

at t = 1. Between t = 0 and t = 1, the relative capacity was a linear interpolation between the

initial and final κ plots. Parameters are δ = 10−4, u+ = 0.999, u− = 0.998, ρ̃ = 1/20, η = 1/10,
ω = 1/100, γ = 5, with τ given by (4.1).

sion. And standard second-order quadrature (trapezoid rule) is sufficient. In two

dimensions with Neumann boundary conditions, we implement a split-step finite

difference scheme using semi-implicit stepping for the Laplacian, explicit stepping

for the travel terms, and implicit stepping for the sink terms. We adopt the same

notation as above but also allow for fractional superscripts so that ηk+1/3 means η

evaluated at tk + ∆t
3 . Our method is to

(1) solve %(1)−ρk
∆t/3 = δ∆(%(1)uk) for %(1) also with semi-implicit boundary conditions;

(2) solve %(2)−%(1)
∆t = ηk+1/3 + I[γk+1/3%(1)u(%(1)) − γk+1/3%(1)u(%(1)) for %(2) with

the quadrature described below;

(3) solve %(3)−%(2)
∆t/3 = δ∆(%(3)u(%(2))) for %(3) also with semi-implicit boundary con-

ditions;

(4) solve %(4)−%(3)
∆t = −ωk+2/3%(4);

(5) solve ρk+1−%(4)
∆t/3 = δ∆(ρk+1u(%(4))) for ρk+1 also with semi-implicit boundary

conditions.

The Laplacian term solves the equation with the appropriate boundary condi-
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tions so we split it into three so that the nonlocal stepping and stepping forward

with the sink will be done with the correct boundary conditions and so that the

output also has the proper boundary conditions. The nonlocal operator is done ex-

plicitly to avoid inverting a large dense matrix in the case of an implicit scheme. It

is combined with the positive source term η and positivity can be preserved when

done explicitly. The sink term −ωρ is dealt with implicitly to preserve positivity.

The quadrature for the nonlocal movement is delicate. In second-order quadra-

ture, values of γρu in the integral are weighted by either 1/2 or 1/4 at the boundary.

Proper mass balance is achieved by weighting the corresponding sinks of −γρu by

either 1/2 or 1/4.

6.2. Further Proofs

Proof. [Proof of lemma 3.1] We prove the sup-case as the inf-case can be done

mutatis mutandis. Let ε > 0 and write q = qε + εt. Then we have

qε,t + ε+ Φ(∇qε, x, t) + λq − α∆F (q, t) = Θ.

At a local maximum for qε within S, ∆F (q, t) ≤ 0, Φ(∇qε, x, t) = 0, qε,t ≥ 0. And

at the global maximum we know Θ ≤ 0 because the addition of the constant εt will

preserve qε + εt having a global maximum at the same point in Td. So

>0︷ ︸︸ ︷
ε+ λq − α∆F (q) =

≤0︷︸︸︷
Θ ,

a contradiction. Thus,

sup
S
q = sup

S
(qε + εt) ≤ sup

S
qε + εT = max

∂∗S
qε + εT ≤ max

∂∗S
q + εT ≤ sup

S
q + εT

Taking the limit as ε ↓ 0 furnishes that supS q = max∂∗S q and the global maximum

for q cannot be attained within S and must occur in Td × {t0}.

Proof. [Proof of proposition 3.1] Let ρ(x, t) = eξtq(x, t) for a ξ ∈ R to be

chosen judiciously. Then from (3.1)-(3.4) and expressing things in terms of q where

appropriate:

qt + ξq = δ(u+ − κM ′(ρ))∆q − δκM ′′(ρ)eξt|∇q|2 − 2δM ′(ρ)∇κ · ∇q − δM(ρ)∆κ

+ ηe−ξt − ωq + I[γqu]− γqu

so that upon rearranging:

qt + (δκM ′′(ρ)eξt|∇q|2 + 2δM ′(ρ)∇κ · ∇q) + [(ξ + γu+ ω)q − δ∆κM(ρ)]

− δ(u+ − κM ′(ρ))∆q =

≥0︷ ︸︸ ︷
ηe−ξt + I[γqu]
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Note by (3.9) and hypothesis 2 we have that |δ∆κM(ρ)| ≤ δΞu−ρ and so we choose

ξ so that

ξ + γu+ ω + δΞu−eξt ≤ 0,

which can be done by choosing ξ = −2Ξ − δΞu−. The solution q must attain

its global minimum at t = 0 by lemma 3.1. Then ρ = eξtq ≥ eξt minTd q(·, 0) =

ρme−(2Ξ+δΞu−)t > 0 since ρ(·, 0) = q(·, 0).

Proof. [Proof of proposition: 3.2] We integrate (2.13) over Ω:∫
Td
ρtdx =

∫
Td

(δ∆(ρu) + η − ωρ+ I[γρu]− γρu) dx

=

∫
Td

(η − ωρ)dx+

∫
Td

∫
Td
τ(y, x, t)γρu|ydydx−

∫
Td
γρudx

=

∫
Td

(η − ωρ)dx+

∫
Td

(

∫
Td
τ(y, x, t)dx)γρu|ydy −

∫
Td
γρudx

=

∫
Td

(η − ωρ)dx

where in getting from line 2 to 3 the boundary term vanished (they cancel due to

the periodicity) and we interchanged the order of integration, and in getting from

line 3 to 4 we used that
∫
Td τ(·, x, ·)dx = 1 so that there is a cancellation of the

integrals with γ. We find therefore that, since ρ > 0,

d

dt
||ρ||L1(Td) =

∫
Td
ηdx−

∫
Td
ωρdx ≤

∫
Td
ηdx

and thus

||ρ||L1(Td) ≤ ||ρ(x, 0)||L1(Td) +

∫ t

0

(

∫
Td
ηdx)dt ≤ ||ρ(x, 0)||L1(Td) + Ξt. (6.1)

since |Td| = 1.

Proof. [Proof of proposition 3.3] This is similar to the proof of positivity. Let

ρ(x, t) = ξ(t)+q(x, t) for smooth ξ : R→ R to be chosen judiciously. Then in terms

of q where appropriate:

qt + (δκM ′′(ρ)|∇q|2 + 2δM ′(ρ)∇κ · ∇q) + (γu+ ω)q

− δ(u+ − κM ′(ρ))∆q = η + I[γqu] + δM(ρ)∆κ− ξ′(t)

Here we choose ξ so that η+ I + δM(ρ)∆κ− ξ′(t) ≤ 0. Note that I[γρu] ≤ I[γρ] ≤
Ξ2||ρ(·, t)||L1(Td). Therefore we let ξ(t) be defined by

ξ(t) =

∫ t

0

(Ξ2||ρ(·, s)||L1(Td) + Ξ + δρ̃u−Ξ)ds ≤

(Ξ2||ρ(·, 0)||L1(Td) + Ξ + δρ̃u−Ξ)t+
Ξ3

2
t2 <∞
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owing to the bound of L1(Td) from proposition 3.2. This forces the maximum of q

to occur at t = 0 and since ||ρ(·, 0)||L∞(Td) = ||q(·, 0)||L∞(Td), we have

||ρ(·, t)||L∞(Td) ≤ ||ρ(·, 0)||L∞(Td) + (Ξ2||ρ(·, 0)||L1(Td) + Ξ + δρ̃u−Ξ)t+
Ξ3

2
t2.
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11. R. S. Cantrell, C. Cosner, and R. Manásevich. Global bifurcation of solutions for crime
modeling equations. SIAM Journal on Mathematical Analysis, 44(3):1340–1358, 2012.

12. M. Elliott and L. J. Krivo. Structural determinants of homelessness in the United
States. Social problems, 38(1):113–131, 1991.

13. R. Findlay and M. Lundahl. Towards a model of territorial expansion and the limits
of empire. In The Economics of the Frontier, pages 105–124. Springer, 2017.

14. C. Glynn and E. B. Fox. Dynamics of homelessness in urban America. The Annals of
Applied Statistics, 13(1):573–605, 2019.



November 5, 2019 12:15 WSPC/INSTRUCTION FILE
Homeless˙PDE˙Model˙M3AS

28 Lindstrom, M. R. and Bertozzi, A.L.

15. Y. Gu, Q. Wang, and G. Yi. Stationary patterns and their selection mechanism of
urban crime models with heterogeneous near-repeat victimization effect. European
Journal of Applied Mathematics, 28(1):141–178, 2017.

16. C. Herring. The new logics of homeless seclusion: Homeless encampments in America’s
west coast cities. City & Community, 13(4):285–309, 2014.

17. R. Hughes. The flow of large crowds of pedestrians. Mathematics and Computers in
Simulation, 53(4-6):367–370, 2000.

18. P. A. Jones, P. J. Brantingham, and L. R. Chayes. Statistical models of criminal
behavior: the effects of law enforcement actions. Mathematical Models and Methods
in Applied Sciences, 20(supp01):1397–1423, 2010.

19. T. Kolokolnikov, M. J. Ward, and J. Wei. The stability of steady-state hot-spot pat-
terns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical
Systems-Series B, 19(5), 2014.

20. LAHSA. 2015 homeless count full report. 2015.
21. LAHSA. 2016 homeless count full report. 2016.
22. LAHSA. 2017 homeless count full report. 2017.
23. LAHSA. 2018 homeless count full report. 2018.
24. LAHSA. 2019 Greater Los Angeles homeless count presentation, 2019.
25. R. S. Lee and R. L. Hughes. Prediction of human crowd pressures. Accident analysis

& prevention, 38(4):712–722, 2006.
26. A. E. Lindsay and M. J. Ward. An asymptotic analysis of the persistence threshold

for the diffusive logistic model in spatial environments with localized patches. Discrete
& Continuous Dynamical Systems-B, 14(3):1139–1179, 2010.

27. M. Lindstrom, R. Du, X. Ng, D. Diaz, M. Koulikova, M. Nero, A. Bertozzi, and P. J.
Brantingham. Using local geographic features to predict changes in the Los Angeles
Homeless Population. 2019.

28. R. Manasevich, Q. H. Phan, and P. Souplet. Global existence of solutions for a
chemotaxis-type system arising in crime modelling. European Journal of Applied Math-
ematics, 24(2):273–296, 2013.

29. G. O. Mohler and M. B. Short. Geographic profiling from kinetic models of criminal
behavior. SIAM Journal on Applied Mathematics, 72(1):163–180, 2012.

30. S. Motsch, M. Moussaid, E. Guillot, M. Moreau, J. Pettre, G. Theraulaz, C. Appert-
Rolland, and P. Degond. Modeling crowd dynamics through coarse-grained data anal-
ysis. Mathematical Biosciences and Engineering, 15:1271–1290, 2018.

31. C. Pan, B. Li, C. Wang, Z. Y-Q., N. Geldner, L. Wang, and A. Bertozzi. A statistical
model of criminal behavior with truncated Lévy flights. Math Models and Methods in
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