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Mean field games (MFG) and mean field control (MFC) are criti-
cal classes of multi-agent models for efficient analysis of mas-
sive populations of interacting agents. Their areas of applica-
tion span topics in economics, finance, game theory, industrial
engineering, crowd motion, and more. In this paper, we provide
a flexible machine learning framework for the numerical solu-
tion of potential MFG and MFC models. State-of-the-art numeri-
cal methods for solving such problems utilize spatial discretiza-
tion that leads to a curse-of-dimensionality. We approximately
solve high-dimensional problems by combining Lagrangian and
Eulerian viewpoints and leveraging recent advances from ma-
chine learning. More precisely, we work with a Lagrangian for-
mulation of the problem and enforce the underlying Hamilton-
Jacobi-Bellman (HJB) equation that is derived from the Eulerian
formulation. Finally, a tailored neural network parameterization
of the MFG/MFC solution helps us avoid any spatial discretiza-
tion. Our numerical results include the approximate solution of
100-dimensional instances of optimal transport and crowd mo-
tion problems on a standard work station and a validation using
a Eulerian solver in two dimensions. These results open the
door to much-anticipated applications of MFG and MFC models
that were beyond reach with existing numerical methods.

mean field games | mean field control | machine learning | optimal
transport | Hamilton-Jacobi-Bellman equations

Mean field games (MFG) (1–5) and mean field con-
trol (MFC) (6) allow one to simulate and analyze

interactions within large populations of agents. Hence,
these models have found wide spread use in economics
(7–10), finance (11–14), crowd motion (15–18), industrial
engineering (19–21), and more recently in data science
(22) and material dynamics (23).

The theoretical properties of MFG and MFC prob-
lems have been continuously developed over the last few
decades; see, e.g., (24–29). A key observation is that
both problems involve a Hamilton-Jacobi-Bellman (HJB)
equation that is coupled with a continuity equation. From
the solution of this system of partial differential equations
(PDE), each agent can infer their optimal action without
the need for individual optimization (30, 31). Reminiscent
of similar conventions in physics, we call the solution of
the HJB a potential since its gradient defines the agent’s
optimal action.

Our framework applies to a common subclass of MFGs,

namely potential MFGs, and MFCs. These problems
can be formulated as infinite-dimensional optimal control
problems in density space. Interestingly, their optimality
conditions coincide with the HJB and continuity equation.

Despite many theoretical advances, the development
of numerical methods for solving MFGs, particularly in
high-dimensional sample spaces, lags and has not kept
pace with growing data and problem sizes. A crucial dis-
advantage of most existing approaches for solving MFGs
or their underlying HJB equations is their reliance on
grids; see (32–42) and references therein. Grid-based
methods are prone to the curse of dimensionality, i.e.,
their computational complexity grows exponentially with
spatial dimension (43).

In this paper, we tackle the curse of dimensionality
in two steps. First, extending the approach in (44), we
solve the continuity equation and compute all other terms
involved in the MFG using Lagrangian coordinates. In
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practice, this requires computation of characteristic curves
and the Jacobian determinant of the induced transforma-
tion; both terms can be inferred from the potential. In
our examples, the former follows the gradient, and the
logarithm of the latter can be approximated by integrat-
ing the Laplacian of the potential. Our scheme also allows
us to control and enforce the HJB equation along the
characteristics. These computations can be performed
independently and in parallel for all agents.

Second, we parameterize the potential in space and
time using a neural network that is specifically designed
for an accurate and efficient Lagrangian scheme. With
this design, we can also directly penalize the violation
of the HJB equation. Thereby, we develop a generic
framework that transforms a wide range of MFGs into
machine learning (ML) problems.

In our numerical experiments, we solve high-
dimensional instances of the dynamical optimal transport
(OT) problem (45, 46), a prototypical instance of a po-
tential MFG, and a mean field game inspired by crowd
motion. In OT, one seeks to find the path connecting
two given densities that minimizes a kinetic energy that
models transport costs. As for other MFGs, there are
many relevant high-dimensional instances related to dy-
namical OT, e.g., in machine learning (47). We validate
our scheme using comparisons to a Eulerian method on
two-dimensional instances. Most crucially, we show the ac-
curacy and scalability of our method using OT and MFG
instances in up to one hundred space dimensions. We also
show that penalizing the HJB violations allows us to solve
the problem more accurately with less computational ef-
fort. Our results for the crowd motion problem also show
that our framework is capable of solving potential MFGs
and MFCs with nonlinear characteristics.

To enable further theoretical and computational ad-
vances as well as applications to real-world problems, we
provide our prototype implementation written in Julia (48)
as open-source software under a permissible license.

Related work

Our work lies at the interface of machine learning (ML),
partial differential equations (PDEs), and optimal control.
Recently, this area has received a lot of attention, render-
ing a comprehensive review to be beyond the scope of this
paper. The idea of solving high-dimensional PDEs and
control problems with neural networks has been pioneered
by the works (49–51) and has been further investigated
by (52). In this section, we put our contributions into
context by reviewing recent works that combine concepts
from machine learning, optimal transport, mean field
games, and Lagrangian methods for MFG.

Optimal Transport and ML. Despite tremendous theoret-
ical insight gained into the problem of optimally trans-
porting one density to match another one, its numeri-
cal solution remains challenging, particularly when the
densities live in spaces of dimension four or more. In

small-dimensional cases, there are many state-of-the-art
approaches that effectively compute the global solution;
see, e.g.,(40, 42, 53, 54) and the recent survey (55). Due to
their reliance on Euclidean coordinates, those techniques
require spatial discretization, which makes them prone
to the curse of dimensionality. An exception is the ap-
proach in (56) that uses a generative model for computing
the optimal transport. This work uses a neural network
parameterization for the density and a Lagrangian PDE
solver.

A machine learning task that bears many similari-
ties with optimal transport is variational inference with
normalizing flows (47). Roughly speaking, the goal is
to transform given samples from a typically unknown
distribution such that they are approximately normally
distributed. To this end, one trains a neural network
based flow model; hence, the name normalizing flow. The
trained flow can be used as a generative model to produce
new samples from the unknown distribution by revers-
ing the flow, starting with samples drawn from a normal
distribution. While the original formulation of the learn-
ing problem in normalizing flows does not incorporate
transport costs, (57–59) successfully apply concepts from
optimal transport to analyze and improve the learning of
flows. The approach in (59) is formulated as a point cloud
matching problem and estimates the underlying densities
using Gaussian mixture models. The works (57, 58) pro-
pose neural network models for the potential instead of
the velocity of the flow, which leads to more physically
plausible models. This parameterization has also been
used to enforce parts of the HJB equation via quadratic
penalties (58). We generalize these ideas from optimal
transport to a broader class of mean field games that nat-
urally incorporate transport costs. We also add a penalty
for the final time condition of the HJB to the training
problem.

Mean Field Games and ML. Machine learning and MFGs
have become increasingly intertwined in recent years. On
the one hand, MFG theory has been used to provide
valuable insight into the training problems in deep learn-
ing (22). On the other hand, (60–62) use machine learning
to solve MFGs in spatial dimensions up to four. The meth-
ods in (61, 62) are limited to MFGs whose formulations
do not involve the population density, whose computation
is challenging. For the time-independent second-order
problems in (62), one can express the density explicitly in
terms of the potential. Furthermore, in numerical exam-
ples for the time-dependent case in (61), the congestion
terms depend on the average positions of the population.
In this situation the congestion term can be computed
using sample-averages. Our framework does not have
the above limitations and, in particular, is applicable to
MFGs where there is no analytical formula for the den-
sity or special structure that can be used to compute the
congestion term, e.g., MFGs with nonlinear congestion
terms. We achieve this using the Lagrangian formulation

2



DRAFT

that includes an estimate of the density along the agents’
trajectories. This generality is a critical contribution of
our work.

Additionally, our neural network architecture for the
control respects the structure induced by optimality con-
ditions. We believe that this property is critical for ob-
taining accurate algorithms that scale and yield correct
geometry for the agents’ trajectories. As a result, we
use our method to approximately solve MFGs in 100
dimensions on a standard work station.

Lagrangian Methods in MFG. To the best of our knowl-
edge, the first Lagrangian method for solving MFG prob-
lems appeared in (44). Lagrangian techniques are natural
from an optimal control perspective and unavoidable for
high-dimensional problems. However, a crucial compu-
tational challenge in applying these techniques in MFG
stems from the density estimation, which is critical, e.g.,
to compute the congestion-cost incurred by an individual
agent. In (44), the authors overcome this difficulty for
non-local interactions by passing to Fourier coordinates
in the congestion term and thus avoiding the density es-
timation. Our neural network parameterization aims to
reduce the computational effort and memory footprint
of the methods in (44) and provides a tractable way to
estimate the population density.

Lagrangian methods for mass-transport problems in
image processing were proposed in (63). While the compu-
tation of the characteristics is mesh-free, the final density
is computed using a particle-in-cell method that does not
scale to high-dimensional problems.

Mathematical Modeling

This section provides a concise mathematical formulation
of MFG and MFC models and useful references; for more
details, see the monographs (3, 6). Mean field games
model large populations of rational agents that play the
non-cooperative differential game. At optimality, this
leads to a Nash equilibrium where no single agent can
do better by unilaterally changing their strategy. By
contrast, in mean field control, there is a central planner
that aims at a distributed strategy for agents to minimize
the average cost or maximize the average payoff across
the population. Starting with a microscopic description of
MFGs, we derive their macroscopic equations, introduce
the important class of potential MFGs, and briefly outline
MFCs.

Mean Field Games. Assume that a continuum population
of small rational agents plays a non-cooperative differen-
tial game on a time horizon [0, T ]. Suppose that an agent
is positioned at x ∈ Rd at time t ∈ [0, T ]. For fixed t,
we denote agents’ population density by ρ(·, t) ∈ P(Rd),
where P(Rd) is the space of all probability densities. The

tim
e −
→

←−
space −→

Fig. 1. Illustration of a one-dimensional crowd motion problem. Initially, the
crowd of agents is distributed according to ρ0 (thick blue line) and aims at
reaching the target distribution ρ1 (red solid line) while avoiding the dark regions
in the center of the space-time domain. The blue lines marked with arrows
depict the agent’s trajectories, i.e., the characteristics. The dashed blue line
depicts the push-forward of the initial densities at the final time.

agent’s cost function is given by

Jx,t(v, ρ) =
∫ T

t

L (z(s), v(s)) + F (z(s), ρ(z(s), s)) ds

+G (z(T ), ρ(z(T ), T )) ,
[1]

where v : [0, T ] → Rd is the strategy (control) of this
agent, and their position changes according to

∂tz(t) = v (t) , 0 ≤ t ≤ T, z(0) = x. [2]

In Eq. (1), L : Rd×Rd → R is a running cost incurred by
an agent based solely on their actions, F : Rd×P(Rd)→
R is a running cost incurred by an agent based on their
interaction with rest of the population, and G : Rd ×
P(Rd)→ R is a terminal cost incurred by an agent based
on their final position and the final distribution of the
whole population. The terms F and G are called mean
field terms because they encode the interaction of a single
agent with rest of the population.

The agents forecast a distribution of the population,
{ρ(·, t)}Tt=0, and aim at minimizing their cost. Therefore,
at a Nash equilibrium, we have that for every x ∈ Rd

Jx,0(v, ρ) ≤ Jx,0(v̂, ρ), ∀v̂ : [0, T ]→ R
d, [3]

where v is the equilibrium strategy of an agent at position
x. Here, we assume that agents are small, and their
unilateral actions do not alter the density ρ.

From Eq. (3) we have that individual agents solve an
optimal control problem that has a value function

Φ(x, t) = inf
v
Jx,t(v, ρ), s.t. Eq. (2). [4]

From the optimal control theory (for details see (31,
Sec. I.5-6, II.15) or (30, Sec. 10.3)), we have that Φ solves

3



DRAFT

the Hamilton-Jacobi-Bellmann (HJB) equation

−∂tΦ(x, t) +H(x,∇Φ(x, t)) =F (x, ρ(x, t)),
Φ(x, T ) =G(x, ρ(x, T )),

[5]

where the Hamiltonian, H : Rd ×Rd → R, is defined as

H(x, p) = sup
v

−p>v − L(x, v). [6]

Furthermore, the Pontryagin Maximum Principle yields
that the optimal strategy for an agent at position x ∈ Rd
and time t ∈ (0, T ] is given by the formula

v(x, t) = −∇pH(x,∇Φ(x, t)). [7]

Assuming that all agents act optimally according to
Eq. (7), the population density, ρ̂, satisfies the continuity
equation

∂tρ̂(x, t)−∇ · (ρ̂(x, t)∇pH(x,∇Φ(x, t))) =0,
ρ̂(x, 0) =ρ0(x),

[8]

where ρ0 ∈ P(Rd) is the given population density at time
t = 0. Therefore, an MFG equilibrium is a state when
the anticipated distribution coincides with the actual dis-
tribution of the population when everyone acts optimally;
that is, ρ̂ = ρ.

The above discussion suggests an alternative to opti-
mizing the strategy v individually for each agent. One
can obtain the optimal strategy for all agents simulta-
neously by solving the coupled PDE system given by
the HJB Eq. (5) and continuity Eq. (8) equations and
then use Eq. (7). Our work follows this macroscopic ap-
proach and aims at reducing the immense computational
challenges caused by the high dimension of these PDEs.

Potential Mean Field Games. Assume that there exist
functionals F , G : P(Rd)→ R such that

F (x, ρ) = δF(ρ)
δρ

(x), G(x, ρ) = δG(ρ)
δρ

(x),

where δ
δρ

is the variational derivative; i.e., for a function
w ∈ L2(Rd) and probability measure ρ(x)dx ∈ P(Rd) we
have that

lim
h→0

F(ρ+ hw)−F(ρ)
h

=
∫
Rd

F (x, ρ)w(x)dx,

and similarly for G.
In the seminal paper (3), Lasry and Lions observed

that, in this case, the MFG system Eq. (5) and Eq. (8)
coincides with first-order optimality conditions of the
infinite-dimensional constrained optimization problem

inf
ρ,v

JMFG(v, ρ)

s.t. ∂tρ(x, t) +∇ · (ρ(x, t)v(x, t)) = 0, t ∈ (0, T ]

ρ(x, 0) = ρ0(x), x ∈ Rd
[9]

whose objective functional reads

JMFG(v, ρ) =
∫ T

0

∫
Rd

L (x, v(x, t)) ρ(x, t)dxdt

+
∫ T

0
F(ρ(·, t))dt+ G(ρ(·, T )).

[10]

This important class of MFGs is called potential MFGs.
Here, the optimal strategies for all agents can be found
simultaneously by solving the variational problem Eq. (9).
This is reminiscent of potential games, whose Nash equi-
libria are critical points of a single function that is called
a potential. Remarkably, the Lagrange multiplier asso-
ciated with the constraint in Eq. (9) satisfies the HJB
equation Eq. (5).

We use Eq. (7) to re-parameterize the control in Eq. (9)
and solve the infinite-dimensional optimal control problem

inf
ρ,Φ
JMFG(−∇pH(x,∇Φ), ρ) + CHJB(Φ, ρ) s.t. Eq. (8)

[11]
where we also added a penalty term for the HJB equation
that reads

CHJB(Φ, ρ) = α1

∫ T

0

∫
Rd

C1(Φ, ρ, x, t)ρ(x, t)dxdt

+ α2

∫
Rd

C2(Φ, ρ, x)ρ(x, T )dx.
[12]

The terms penalize violations of the HJB equation in
(0, T ) and at the final time, respectively, and read

C1(Φ, ρ, x, t)
= |∂tΦ(x, t)−H(x,∇Φ(x, t)) + F (x, ρ(x, t))| [13]
C2(Φ, ρ, x) = |Φ(x, T )−G(x, ρ(x, T ))|. [14]

Adding these terms does not affect the minimizer; however,
we show in a numerical experiment that it improves the
convergence of the discretized problem. Since we penalize
the violation of the optimality conditions of the original
optimization problem, our penalty bears some similarity
with Augmented Lagrangian methods. The square of the
first term has also been used in (58). Our use of the
absolute value in both terms is similar to exact penalty
methods; see, e.g., (64, Ch. 15). Compared to the equiv-
alent problem Eq. (9), this formulation enforces Eq. (7)
by construction, which can reduce the computational cost
of a numerical solution; see (40).

Mean Field Control. Mathematically, mean field control
(MFC) models are similar to potential mean field games.
The key difference in MFC is that a central planner devises
an optimal strategy, v : Rd × [0, T ] → Rd. All agents in
the population follow this strategy in Eq. (2), resulting in
individual cost given by Eq. (1). The goal of the central
player to minimize the overall costs obtained by replacing
the running cost, F , and final cost, G, in Eq. (11) by∫

Rd

F (x, ρ(x))ρ(x)dx and
∫
Rd

G(x, ρ(x))ρ(x)dx, [15]
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respectively. This choice changes the right-hand sides in
the HJB equation Eq. (5) to

F (x, ρ) +
∫
Rd

δF

δρ
(ρ)(x)ρdx

and G(x, ρ) +
∫
Rd

δG

δρ
(ρ)(x)ρdx.

These terms are the variational derivatives of the run-
ning and final congestion costs in Eq. (15), respectively.
Similar to potential MFGs, finding the optimal strategy
v is equivalent to determining the potential Φ by solv-
ing Eq. (11).

Lagrangian Method

We follow a discretize-then-optimize-approach, to ob-
tain a finite-dimensional instance of the optimal control
problem Eq. (11). The key idea of our framework is
to overcome the curse of dimensionality by using a La-
grangian method to discretize and eliminate the continu-
ity equation Eq. (8) and all other terms of the objective
in Eq. (11). We note that the trajectories of the individual
agents Eq. (2) are the characteristic curves of the conti-
nuity equation Eq. (8). Hence, Lagrangian coordinates
are connected to the microscopic model and are a natural
way to describe MFGs. Thereby, we obtain a stable and
mesh-free discretization that parallelizes trivially.

To keep the discussion concrete and our notation brief,
from now on we consider the L2 transport costs

L(x, v) = λL

2 ‖v‖
2, [16]

where λL > 0 is a fixed parameter. Using Eq. (6), it is
easy to verify that the Hamiltonian is

H(x, p) = 1
2λL
‖p‖2. [17]

We emphasize that our framework can be adapted to
handle other choices of transport costs.

We solve the continuity equation Eq. (8) using the
method of characteristics and Jacobi’s identity (65, Ch.
10). Thereby we eliminate the density ρ by using the con-
straint in Eq. (11) and obtain an unconstrained problem
whose optimization variable is Φ. Given Φ, we obtain the
characteristics by solving the ODE

∂tz(x, t) = −∇pH(z(x, t),∇Φ(z(x, t), t))

= − 1
λL
∇Φ(z(x, t), t)

[18]

with z(x, 0) = x. The first step is derived by insert-
ing Eq. (7) into Eq. (2) and the second step follows
from Eq. (17). For clarity, we explicitly denote the de-
pendence of the characteristic on the starting point x in
the following. Along the curve z(x, ·), the solution of the
continuity equation satisfies for all t ∈ [0, T ]

ρ(z(x, t), t) det(∇z(x, t)) = ρ0(x). [19]

In some cases, e.g., optimal transport, it is known that
the characteristic curves do not intersect, which implies
that the mapping x 7→ z(x, t) is a diffeomorphism and
the Jacobian determinant is strictly positive (66, Lemma
7.2.1).

Solving the continuity equation using Eq. (19) requires
an efficient way for computing the Jacobian determinant
along the characteristics. Direct methods require in gen-
eral O(d3) floating point operations (FLOPS), which is in-
tractable when d is large. Alternatively, we follow (57, 58)
and use the Jacobi identity, which characterizes the evo-
lution of the logarithm of the Jacobian determinant along
the characteristics, i.e.,

∂tl(x, t) = −∇ · (∇pH(z(x, t),∇Φ(z(x, t), t)))

= − 1
λL

∆Φ(z(x, t), t)
[20]

with l(x, 0) = 0. Here, the second step uses Eq. (17),
∆ is the Laplace operator, and we denote l(x, t) =
log (det (∇z(x, t))). This way, we avoid computing the
determinant at the cost of numerical integration along the
characteristics followed by exponentiation; see also (65).
When the determinant is required, we recommend using
an accurate numerical integration technique to avoid large
errors arising from the exponentiation. However, we shall
see below that many problems can be solved using the
log determinant.

An obvious, yet important, observation is that La-
grangian versions of some terms of the optimal control
problems do not involve the Jacobian determinant. For ex-
ample, using Eq. (19) and applying the change of variable
formula to the first term in Eq. (10) gives∫

Rd

L (x, v(x, t)) ρ(x, t)dx [21]

=
∫
Rd

L (z(x, t), v(z(x, t), t))) ρ0(x)dx. [22]

Similarly, the Lagrangian versions of the penalty Eq. (12)
do not involve the Jacobian determinant.

Using this expression, we can obtain the accumulated
transport costs associated with x as cL(x, T )ρ0(x) where
cL is given by

∂tcL(x, t) = L(x,−∇pH(x,∇Φ(x, t)))

= 1
2λL
‖∇Φ(x, t)‖2.

[23]

Here, cL(x, 0) = 0 and as before the second step
uses Eq. (17).

We also accumulate the running costs associated with
a fixed x along the characteristics by integrating

∂tcF(x, t) = F̂ (z(x, t), ρ(z(x, t), t), t),

where cF(x, ρ0(x), 0) = 0 and F̂ denotes the integrand
obtained by applying a change of variables to the func-
tional. As this computation is application-dependent, we
postpone it until the numerical experiment section.
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We note that the trajectories associated with an opti-
mal potential Φ must satisfy the HJB equation Eq. (5).
One way to ensure this by construction is to integrate the
Hamiltonian system as also proposed in (57). As doing
so complicates the use of the Jacobi identity, we penalize
violations of the HJB along the characteristics using

∂tc1(x, t) = C1(Φ, ρ, z(x, t), t), c1(x, 0) = 0, [24]

where the right hand side is given in Eq. (13). In summary,
we compute the trajectories, log-determinant, transporta-
tion costs, running costs, and HJB violations by solving
the initial value problem

∂t


z(x, t)
l(x, t)
cL(x, t)
cF(x, t)
c1(x, t)

 =


− 1
λL
∇Φ(z(x, t), t)

− 1
λL

∆Φ(z(x, t), t)
1

2λL
‖∇Φ(z(x, t), t)‖2

F̂ (z(x, t), t)
C1(z(x, t), t)

 . [25]

As discussed above, z(x, 0) = x is the origin of the charac-
teristic and all other terms are initialized with zero. We
use the first two components of the ODE to solve the con-
tinuity equation and the last three terms to accumulate
the running costs along the characteristics.

Optimization Problem. We now approximate the integrals
in Eq. (11) using a quadrature rule. Together with the La-
grangian method Eq. (25), this leads to an unconstrained
optimization problem in the potential Φ, which we will
parameterize using a neural network in the next section.

Our approach is modular with respect to the choice of
the quadrature; however, as we are mostly interested in
high-dimensional cases, we use Monte Carlo integration,
i.e.,

min
Φ

Eρ0

(
cL(x, T ) + cF(x, T ) + Ĝ(z(x, T ))

+ α1c1(x, T ) + α2C2(Φ, ρ, z(x, T ))
)
,

[26]

where the characteristics are computed using Eq. (25) and
the change of variable used to compute Ĝ are discussed
in the numerical experiment section. The above problem
consists of minimizing the expected loss function, which
is given by the sum of the running costs, terminal costs,
and HJB penalty.

Let x1, . . . , xN ∈ Rd be random samples from the
probability distribution with density µ ∈ P(Rd); com-
mon choices for µ are uniform distribution or µ = ρ0.
Then, summarizing the computations from this section,
we obtain the optimization problem

min
Φ

N∑
k=1

vk
(
cL(xk, T ) + cF(xk, T ) + Ĝ(z(xk, T ))

+ α1c1(xk, T ) + α2C2(Φ, ρ, z(xk, T ))
)
,

[27]

where the quadrature weight for the measure I(g) =∫
Rd gρ0(x)dx associated with the kth sample point xk is

vk = ρ0(xk)
µ(xk)N . [28]

It is worth re-iterating that we transformed the orig-
inal optimal control problem Eq. (11) in Φ and ρ to an
unconstrained optimization problem in Φ. For a given
Φ, we eliminate the constraints by solving Eq. (25) in-
dependently for each point xk. In our experiments, we
use a fourth-order Runge-Kutta scheme with equidistant
time steps. Since the terms of the cost functions can be
computed individually, our scheme is trivially parallel.

Optimization algorithms for solving Eq. (27) can
roughly be divided into two classes: stochastic approxima-
tion (67) and sample average approximation (SAA) (68);
see also the recent survey (69). The further class contains,
e.g., variants of the stochastic gradient scheme. These
methods aim at iteratively solving Eq. (26) using a se-
quence of steps, each of which uses gradient information
computed using a relatively small number of sample points.
A crucial parameter in these methods is the sequence of
step sizes (also known as learning rate) that is typically
decaying. When chosen suitably, the steps reduce the ex-
pected value in Eq. (26); however, it is not guaranteed that
there exists a step size that reduces the approximation
obtained for the current sample points. This prohibits the
use of line search or trust region strategies and complicates
the application of second-order methods. By contrast, the
idea in SAA methods is to use a larger number of points
such that Eq. (27) is a suitable approximation of Eq. (26).
Then, the problem can be treated as a deterministic op-
timization problem and solved, e.g., using line-search or
Trust Region methods. We have experimented with both
types of scheme and found an SAA approach based on
quasi-Newton schemes with occasional resampling most
effective for solving MFG and MFC problems to high
accuracy; see the supplementary information (SI) for an
experimental comparison.

Machine Learning Framework for MFGs

To obtain a finite-dimensional version of Eq. (27), we pa-
rameterize the potential function using a neural network.
This enables us to penalize violations of the HJB equa-
tion Eq. (5) during training and thereby ensure that the
trained neural network accurately captures the optimality
conditions. Using a neural network in the Lagrangian
method gives us a mesh-free scheme. In this section, we
give a detailed description of our neural network models
and the computation of the characteristics.

Neural Network Models for the Potential. We now intro-
duce our neural network parameterization of the potential.
While this is not the only possible parameterization, using
neural networks to solve high-dimensional PDE problems
has become increasingly common; see, e.g., (49–52). The
novelty of our approach is the design of the neural network
architecture such that the characteristics in Eq. (25) can
be approximated accurately and efficiently.

Our network models map the input vector s = (x, t) ∈
Rd+1 to the scalar potential Φ(s). In the following, we
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denote our model as Φ(s, θ), where θ is a vector of network
parameters (also called weights) to be defined below.

The neural network processes the input features using
a number of layers, each of which combines basic oper-
ations such as affine transformations and element-wise
nonlinearities. While the size of the input and output
features is determined by our application, there is flexi-
bility in choosing the size of the hidden layers, which is
also called their widths. Altogether, the number, widths,
and specific design of the layers are referred to as the
network’s architecture.

Our base architecture is defined as follows

Φ(s, θ) = w>N(s, θN )+1
2s
> (A+A>

)
s+ c>s+ b,

θ = (w, θN , vec(A), c, b)
[29]

where for brevity, θ collects the trainable weights w ∈
Rm, θN ∈ Rp, A ∈ R(d+1)×(d+1), c ∈ Rd+1, b ∈ R. The
function N can be any neural network with (d+ 1) input
features, m output features, and parameters θN ∈ Rp.
The last two terms allow us to express quadratic potentials
easily. Our approach is modular with respect to the
network architecture. However, the design of the neural
network’s architecture is known to affect its expressibility
and the ease of training; see, e.g., (70). It is important to
note that the use of the neural network renders Eq. (27)
in general non-convex.

In this work, our network architecture is a residual
network (ResNet) (71). For a network with M layers and
a given input feature s ∈ Rd+1, we obtain N(s, θN ) = uM
as the final step of the forward propagation

u0 = σ(K0s+ b0)
u1 = u0 + hσ(K1u0 + b1)
...

...
uM = uM−1 + hσ(KMuM−1 + bM ),

[30]

where σ : R→ R is an element-wise activation function,
h > 0 is a fixed step size, and the network’s weights are
K0 ∈ Rm×(d+1), K1, . . . ,KM ∈ Rm×m, and b0, . . . , bM ∈
Rm. In our experiments we use the activation function

σ(x) = log(exp(x) + exp(−x)), [31]

which can be seen as a smoothed out absolute value. For
notational convenience, we vectorize and concatenate all
weights in the vector θN ∈ Rp. In theory, the larger the
number of layers and the larger their width, the more
expressive the resulting network. In practice, the full
expressiveness may not be realized when the learning
problem becomes too difficult and numerical schemes
find only suboptimal weights. In our numerical experi-
ments, we found a relatively shallow networks with as
little as M = 1 layers and widths of 16 to be very effec-
tive; however, this architecture may not be optimal for
other learning problems. The main difference between
the forward propagation through a ResNet and a more

traditional multilayer perceptron is the addition of the
previous feature vector in the computation of u1, . . . , uM .

ResNets have been tremendously successful in a wide
range of machine learning tasks and have been found to
be trainable even for large depths (i.e., M � 0). By
interpreting Eq. (30) as a forward Euler discretization
of an initial value problem, the continuous limit of a
ResNet is amenable to mathematical analysis (72, 73).
This observation has received a lot of attention recently
and been used, e.g., to derive maximum principle (74),
propose stable ResNet variants (73), and to accelerate
the training using multi-level (75) and parallel-in-time
schemes (76).

Characteristics Computations. To compute the character-
istic and other quantities in Eq. (25), we need to compute
the gradient and Laplacian of Φ with respect to the input
features. The perhaps simplest option is to use automatic
differentiation (AD), which has become a ubiquitous and
mature technology in most machine learning packages. We
note that this convenience comes at the cost of d separate
evaluations of directional derivatives when computing the
Laplacian. While trace estimation techniques can lower
the number of evaluations, this introduces inaccuracies in
the PDE solver. Also, we show below that computing the
Laplacian exactly is feasible for our network.

We now provide a detailed derivation of our gradient
and Laplacian computation. The gradient of our model
in Eq. (29) with respect to the input feature s is given by

∇sΦ(s, θ) = ∇sN(s, θN )w + (A+A>)s+ c. [32]

Due to the ordering in s = (x, t), the first d component
of this gradient correspond to the spatial derivatives of
the potential, and the final one is the time derivative.
We compute the gradient of the neural network Eq. (30)
in the direction w using back-propagation (also called
reverse mode differentiation)

zM = w + hK>Mdiag(σ′(KMuM−1 + bM ))w,
...

...

z1 = z2 + hK>1 diag(σ′(K1u0 + b1))z2,

z0 = K>0 diag(σ′(K0s+ b0))z1,

[33]

which gives ∇sN(s, θN )w = z0. Here, diag(v) ∈ Rm×m is
a diagonal matrix with diagonal elements given by v ∈ Rm
and σ′(·) is computed element-wise.

Next, we compute the Laplacian of the potential model
with respect to x. We first note that

∆Φ(s, θ) = tr
(
E>(∇2

s(N(s, θN )w) + (A+A>))E
)
,

where the columns of E ∈ R(d+1)×d are given by the first
d standard basis vectors in Rd+1. Computing the terms
involving A is trivial, and we now discuss how to compute
the Laplacian of the neural network in one forward pass
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through the layers. We first note that the trace of the
first layer in Eq. (30) is

t0 = tr
(
E>∇s(K>0 diag(σ′(K0s+ b0))z1)E

)
= tr

(
E>K>0 diag(σ′′(K0s+ b0)� z1)K0E

)
= (σ′′(K0s+ b0)� z1)>((K0E)� (K0E))1,

[34]

where � denotes a Hadamard product (i.e., an element-
wise product of equally-sized vectors or matrices), 1 ∈ Rd
is a vector of all ones, and in the last we used that the
middle term is a diagonal matrix. The above computation
shows that the Laplacian of the first layer can be computed
using O(m·d) FLOPS by first squaring the elements in the
first d columns of K0, then summing those columns, and
finally one inner product. The computational costs are
essentially equal to performing one single matrix-vector
product with the Hessian using AD but produces the
exact Laplacian.

To compute the Laplacian of the entire ResNet, we
continue with the remaining rows in Eq. (33) in reverse
order to obtain

∆(N(s, θN )w) = t0 + h

M∑
i=1

ti, [35]

where ti is computed as

ti = tr
(
J>i−1∇s(K>i diag(σ′(Kiui−1(s) + bi))zi+1)Ji−1

)
= tr

(
J>i−1K

>
i diag(σ′′(Kiui−1 + bi)� zi+1)KiJi−1

)
= (σ′′(Kiui−1 + bi)� zi+1)>((KiJi−1)� (KiJi−1))1.

Here, Ji−1 = ∇su>i−1 ∈ Rm×d is a Jacobian matrix, which
can be updated and over-written in the forward pass at a
computational cost of O(m2 · d) FLOPS.

To summarize the above derivations, we note that
each time step of the numerical approximation of the
characteristics involves one forward propagation Eq. (30),
one back-propagation Eq. (33) and the trace computa-
tions Eq. (35). The overall computational costs scale
as O(m2 · d ·M), i.e., linearly with respect to the input
dimension and number of layers, but quadratically with
the width of the network. This motivates the use of deep
and not wide architectures.

Numerical Experiments

We apply our method to two prototype MFG instances.
Here, we give a concise overview of the problems and
results and refer to SI A for a more detailed description
of the problem instances and results. We perform our
experiments using a prototype of our algorithm that we
implemented in the Julia programming language (48) as
an extension of the machine learning framework Flux (77).
We publish the code under a permissible open source
license at http://github.com/EmoryMLIP/MFGnet.jl.

Example 1: Dynamical Optimal Transport. Given two den-
sities ρ0, ρ1 ∈ P(Rd), the Optimal Transport (OT) prob-
lem consists of finding the transformation y : Rd → Rd

with the smallest transport costs such that the push for-
ward of ρ0 equals ρ1. The problem was introduced by
Monge (45), revolutionized by the contributions by Kan-
torovich (78), Benamou and Brenier (45). Other notable
theoretical advances include (46, 79–81).

Among the many versions of OT, we consider the fluid
dynamics formulation (45), which can be seen as a po-
tential MFG. This formulation is equivalent to a convex
optimization problem, which can be solved accurately and
efficiently if d ≤ 3; see, e.g., (54). The curse of dimen-
sionality limits applications of these methods when d > 3.
Approximately solving high-dimensional OT problems is
of key interest to machine learning and Bayesian statistics;
see some related works in (58).

We model the fluid dynamic version of optimal trans-
port in (45) as a potential mean field game by using

F(ρ) = 0, G(ρ) = λKLGKL(ρ),

where λKL > 0 is a penalty parameter, and the second
term is the Kullback Leibler divergence, which penalizes
violations of the final time constraint ρ(·, T ) = ρ1(·) and
reads

GKL(ρ) =
∫
Rd

ρ(x, T ) log ρ(x, T )
ρ1(x) dx

=
∫
Rd

log ρ(z(x, T ), T )
ρ1(z(x, T )) ρ0(x)dx

=
∫
Rd

(log ρ0(x)− l(x, T )− log ρ1(z(x, T ))) ρ0(x)dx.

[36]

Here, the log determinant, l, is given in Eq. (20). The
variational derivative of this loss function, which is used
in the computation of the penalty term in Eq. (14), is

GKL(x, ρ) = 1 + log(ρ(x))− log ρ1(x).

Note that the optimal control problem Eq. (11) is sym-
metric with respect to the roles of ρ0 and ρ1 if and only
if λKL =∞ because we relaxed the final time constraint.

We generate a synthetic test problem that enables us to
increase the dimension of the problem with only minimal
effect on its solution. For a given dimension d, we choose
the density of the Gaussian white noise distribution as
the target

ρ1(x) = ρG (x,0, 0.3 · I) .

Here, ρG(·,m,Σ) is the probability density function of
a d-variate Gaussian with mean m ∈ Rd and covariance
matrix Σ ∈ Rd×d. The initial density is the Gaussian
mixture

ρ0(x) = 1
8

8∑
j=1

ρG (x,mj , 0.3 · I) ,
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where the means of the individual terms are equally spaced
on the intersection of the sphere with radius four and the
coordinate plane in the first two space dimensions, i.e.,

mj = 4 · cos
(2π

8 j
)

e1 + 4 · sin
(2π

8 j
)

e2, j = 1, . . . , 8.

Here, e1 and e2 are the first two standard basis vectors.
The two-dimensional instances of these densities are visu-
alized in Fig. 2.

We perform four experiments to show the scalability
to high-dimensional instances, explore the benefits of
the penalty function CHJB, compare two optimization
strategies, and validate our scheme by comparing it to
a Eulerian method in d = 2, respectively. The network
architecture is almost exactly the same in all cases; see
the supplementary information (SI) for details.

We show in Fig. 2 that our network provides a mean-
ingful solution for the two-dimensional instance. The
performance can be seen by the close match of the given
ρ0 and the pull-back of ρ1, which is optimized as it enters
the terminal costs, and the similarity of the push-forward
of ρ0 and ρ1, which is computed after training. Also, the
characteristics are approximately straight. To improve the
visualization, we compute the characteristics using four
times as many time integration steps as used in training.
A close inspection of the push-forward density also shows
that the network learns to partition the target density
into eight approximately equally-sized slices, as predicted
by the theory; see Fig. 4 in the SI.

Our method obtains quantitatively similar results in
higher-dimensional instances (d = 10, 50, 100) as can be
seen in the summary of the objective function values
provided in the top half of Tab. 1. The values are com-
puted using the validation sets. The table also shows
that despite a moderate growth of the number of training
samples, the actual runtime per iteration of our prototype
implementation per iteration grows slower than expected
from our complexity analysis. We used more samples in
higher dimensions to avoid over-fitting; see Fig. 5 in the SI.
Due to the design of the problem, similar transport costs
and terminal costs are to be expected. There is a slight
increase of the terminal costs for the d = 50-dimensional
instances, but we note that, at least for projections onto
the first two coordinate dimensions, the image quality is
similar for all cases; see Fig. 4 in the SI.

In our second experiment, we show that without the
use of the HJB penalty, CHJB, the optimization can fail to
match the densities and result in curved characteristics,
which are not meaningful in OT; see Fig. 6 in the SI.
Increasing the number of time steps to discretize the
characteristics Eq. (25), improves the results, however,
the results are still inferior to the ones obtained with the
penalty, and the computational cost of training is four
times higher. Hence, in this example, using the penalty
function, we obtain a more accurate solution at reduced
computational costs.

−→
tim

e−→

initial density
, ρ0 pull-back of ρ1

push-forward
of ρ0

target densit
y, ρ1

Fig. 2. Visualization of a two-dimensional optimal transport experiment. The
left column shows the given initial density ρ0 (top) and its push-forward at
time t = 1 (bottom). The red lines represent the characteristics starting from
randomly sampled points according to ρ0. The right column shows the given
target density, ρ1, (bottom) and its pull-back (top). The black line corresponds
to the characteristics computed backward in time from the endpoints of the
red characteristics. The similarity of the images in each row and the fact that
the characteristics are almost straight lines show the success of training. Also,
since the red and black characteristics are nearly identical, the transformation
is invertible. The same color axis is used for all plots.

Our third OT experiment compares two optimization
strategies: the SAA approach with BFGS used throughout
our experiments and an SA approach with ADAM that is
common in machine learning. We note that, for the two-
dimensional instance of our problem, ADAM converges
considerably slower and is less effective in reducing the
HJB penalty at a comparable computational cost; however,
both methods lead to similar final results.

In our fourth experiment, we compare our proposed
method to a provably convergent Eulerian solver for the
d = 2-dimensional instance. To this end, the optimal
controls obtained using both methods are compared us-
ing an explicit Finite-Volume solver for the continuity
equation, which was not used during the optimization.
This step is essential to obtain a fair comparison. In
Fig. 10, Fig. 12, and Tab. 2 we show that, for this ex-
ample, our method is competitive and, as demonstrated
above, scales to dimensions that are beyond reach with
Eulerian schemes.

Example 2: Crowd Motion. We consider the motion of a
crowd of agents distributed according to an initial density
ρ0 to the desired state ρ1. In contrast to the OT problem,
the agents trade off reaching ρ1 with additional terms
that encode their spatially varying preference and their
desire to avoid crowded regions.

To force the agents to move to the target distribution,
we use the same terminal cost as in the previous example.
To express the agents’ preference to avoid congestion and
model costs associated with traveling through the center
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Example 1: Optimal Transport
d N L F G CHJB time/iter (s)
2 2,304 9.99e+00 - 7.01e-01 1.17e+00 2.038
10 6,400 1.01e+01 - 8.08e-01 1.21e+00 8.256
50 16,384 1.01e+01 - 6.98e-01 2.94e+00 81.764
100 36,864 1.01e+01 - 8.08e-01 1.21e+00 301.043

Example 2: Crowd Motion
d N L F G CHJB time/iter (s)
2 2,304 1.65e+01 2.29e+00 7.81e-01 2.27e-01 4.122
10 6,400 1.65e+01 2.22e+00 7.51e-01 3.94e-01 17.205
50 9,216 1.65e+01 1.91e+00 7.20e-01 1.21e+00 134.938
100 12,544 1.65e+01 1.49e+00 1.00e+00 2.78e+00 241.727

Table 1. Overview of numerical results for instances of the op-
timal transport and crowd motion problem in growing space di-
mensions. All values were approximated using the validation
points. Legend: d (space dimension), N (number of training
samples), L (transport costs), F (running costs), G (terminal
costs), CHJB HJB penalty

of the domain, we use the mean field potential energy

F(ρ(·, t)) = λEFE(ρ(·, t)) + λPFP(ρ(·, t)), [37]

which is a weighted sum of an entropy and preference
term defined, respectively, as

FE(ρ(·, t)) =
∫
Rd

ρ(x, t) log ρ(x, t)dx,

FP(ρ(·, t)) =
∫
Rd

Q(x)ρ(x, t)dx.

The entropy terms penalizes the accumulation of agents;
i.e., the more spread out the agents are, the smaller this
term becomes. In the third term, Q : Rd → R, models
the spatial preferences of agents; i.e., the smaller Q(x),
the more desired is the position x. Carrying out similar
steps to compute these terms in Lagrangian coordinates,
we obtain

FE(ρ(·, t)) =
∫
Rd

(log ρ0(x)− l(x, t))ρ0(x)dx, [38]

FP(ρ(·, t)) =
∫
Rd

Q(z(x, t))ρ0(x)dx. [39]

In our experiment, we control the relative influence of both
terms by choosing λE = 0.01, λP = 1 in Eq. (37), respec-
tively. To penalize the L2 transport costs, we use the La-
grangian and Hamiltonian given in Eq. (16) and Eq. (17).

Finally, we take the variational derivative to obtain
the HJB equation Eq. (5). We note that the mean field
coupling is

δF(ρ)
δρ

= F (x, ρ) = λFFE(x, ρ) + λPFP(x, ρ),

with the terms

FE(x, ρ) = log ρ(x) + 1,
FP(x, ρ) = Q(x).

in
it

ia
l

de
ns

it
y,
ρ
0

pr
ef

er
en

ce
an

d
ch

ar
ac

te
ri

st
ic

s

fin
al

de
ns

it
y,
ρ
1

pu
sh

-f
or

w
ar

d
of

ρ
0

Fig. 3. Illustration of the two-dimensional crowd motion problem. The initial
density (top left) and target density (bottom left) are Gaussians centered at
the top or bottom of the domain, respectively. The white circles depict a
contour line for the density and are added in the remaining subplots to help
visual assessment. The agents’ goal is to move from their initial distribution
approximately to the target while avoiding congestion and the obstacle in the
center of the domain (top right). There are higher costs associated with traveling
through regions where the preference function is large (represented by yellow
regions). The red lines in the right subplot show the learned trajectories. It can
be seen that the characteristics are curved to avoid the center of the domain.
We also show that the push-forward of the initial density is similar to the target
density (bottom right).

A detailed description of the experimental setup is
provided in the SI. The initial and target densities are
shifted Gaussians

ρ0 = ρG(x, 3 · e2, 0.3 · I), ρ1(x) = ρG(x,−3 · e2, 0.3 · I).

Note that for λE = λP = 0, the problem becomes a
trivial OT problem and the optimal trajectories would be
straight and parallel through the center of the domain.
To obtain a more interesting dynamic, we introduce the
preference function

Q(x) = 50 · ρG (x,0,diag(1, 0.5)) .

Since Q attains its maximum at the origin, agents have
an incentive to avoid this region, which leads to curved
characteristics. As terminal costs, we use the Kullback-
Leibler divergence Eq. (36). For the higher-dimensional
instances, we evaluate the preference function using the
first two components of x. Thereby, the preference func-
tion becomes invariant to the remaining entries and the
solutions become comparable across dimensions.
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As in the OT example, we obtain similar but not iden-
tical objective function values for the problem instances
obtained by choosing d ∈ {2, 10, 50, 100}; see bottom half
of Tab. 1. Again, we increased the number of training
samples with dimension, and we observe that the runtime
of our prototype code scales better than predicted. Fig 3
shows the optimized trajectories for the d = 2 instance;
see Fig 9 in the SI for similar visualizations for the re-
maining instances. As expected, the agents avoid the
crowded regions and prefer to spread out horizontally to
avoid congestion. We chose the starting points of the
characteristics to be symmetric about the x2-axis. As ex-
pected, this renders the learned trajectories approximately
symmetric as well. We note that the characteristics are
visually similar across dimensions and that our results are
comparable to those obtained with a provably convergent
Eulerian solver for the d = 2-dimensional instance; see
Fig. 11, Fig. 13, and Tab. 2 in the SI.

Discussion and Outlook

By combining Lagrangian PDE solvers with neural net-
works, we develop a new framework for the numerical solu-
tion of potential mean field games and mean field control
problems. Our method is geared toward high-dimensional
instances of these problems that are beyond reach with
existing solution methods. Since our method is mesh-free
and well-suited for parallel computation, we believe it pro-
vides a promising new direction toward much-anticipated
large-scale applications of MFGs. Even though our scheme
is competitive to Eulerian schemes based on convex op-
timization for the two-dimensional examples its main
advantage is the scalability to higher dimensions. We ex-
emplify the effectiveness of our method using an optimal
transport and a crowd motion problem in 100 dimensions.
Using the latter example, we also demonstrate that our
scheme can learn complex dynamics even with a relatively
simple neural network model.

The fact that our framework transforms mean field
games into novel types of machine learning problems
brings exciting opportunities to advance MFG application
and theory. While we can already leverage the many
advances made in machine learning over the last decades,
the learning problem in MFGs has some unique traits
that require further attention.

Open mathematical issues include the development of
practical convergence results for NNs in optimal control.
In fact, it is not always clear that a larger network will
perform better in practice. Our numerical experiment for
the optimal transport problem makes us optimistic that
our framework may be able to solve HJB equations in high
dimensions to practically relevant accuracy. Similarly, the
impact of regularization parameters on the optimization
deserves further attention. However, more analysis is
needed to obtain firm theoretical results for this property.

A critical computational issue is a more thorough par-
allel implementation, which may provide the speed-up

needed to solve more realistic MFG problems. Also, ad-
vances in numerical optimization for deep learning prob-
lems may help solve the learning problems more efficiently.

Open questions on the machine learning side include
the set-up of the learning problem. There are little to no
theoretical guidelines that help design network architec-
tures that generalize well. Although there is a rich body
of examples for data science applications, our learning
problem has different requirements. For example, not only
does the neural network need to be evaluated, but the La-
grangian scheme also requires its gradient and Laplacian.
A careful choice of the architecture may be necessary to
ensure the required differentiability of the network. Also,
more experiments are needed to establish deeper intuition
into the interplay between the network architecture and
other hyper-parameters, e.g., the choice of the penalty
parameter or the time discretization of the characteristics.

An obvious open question from an application perspec-
tive is the use of our framework to solve more realistic
problems. To promote progress in this area, we provide
our code under a permissible open source license.
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A. Supplemental Information for Numerical Experi-
ments

We implemented a prototype version of our framework as an
extension of the machine learning framework Flux (77) that is
written in Julia (48). Rather than giving a full description of
the code here, we publish the code at

http://github.com/EmoryMLIP/MFGnet.jl

We provide unit tests to ensure the validity of the code.
We performed our experiments on a Microway workstation

running Ubuntu Linux. The system has four Intel Xeon E5-4627
CPUs with a total of 40 cores and 1 TB of memory. The system
is shared with other users, which is why we report runtimes
as averages over the entire training as a rough measure of the
computational cost. Our code is not optimized for runtime,
and additional speedups can be achieved by exploiting the
parallelism provided by our method and by using accelerated
hardware such as Graphics Processing Units (GPU).

Dynamical Optimal Transport.

Experimental Setup. We use the ResNet model described
in Eq. (30) with a width of m = 16 and M = 1 time step
with a step size of h = 1. To be precise, this means that
the ResNet weights are K0 ∈ R16×(d+1), K1 ∈ R16×16, and
b0, b1 ∈ R16. Note that only the width of the first layer
changes with the dimension of the problem instance. The
elements in the matrices K0 and K1 are initialized by sampling
from N (0, 0.01) and the components of the vectors b0 and b1
are drawn from N (0, 0.1). The terms of the quadratic parts in
our model Eq. (29), A, c, b are initialized with zeros, and the
vector w ∈ R16 is initialized with a vector of all ones.

In the mean field objective function, the transport costs are
multiplied with λL = 2 and the terminal costs are multiplied
with λKL = 5. The penalty parameters for CHJB are α1 = 3
and α2 = 3.

Unless noted otherwise, we train our networks using an
SAA approach and re-sample the training set after every 25
iterations to reduce the risk of over-fitting. Since the num-
ber of optimization variables is relatively small (the number
of weights is between 637 and 12,223), we use BFGS with a
backtracked Armijo line search. Our implementation follows
the presentation in (64). To avoid an indefinite Hessian ap-
proximation that may arise with this simple line search, we
skip the update when the curvature along the current direction
is negative. Note that in the SAA framework, other optimiza-
tion methods can be used easily. We use a simple multilevel
strategy in which we apply 500 iterations using a relatively
small training set and then another 500 iterations using the
number of training samples reported in Tab. 1.

We compute the characteristics using a fourth-order Runge-
Kutta scheme. Our default is to use only nt = 2 time steps
with constant time step size of 1/2. Using only two time steps
is motivated by saving computational time and the known
property of the optimal solution to have straight characteristics,
which are easy to integrate accurately. We note, though, that
this property only holds for the optimal solution, which is to
be found using the neural network training. Indeed, we show
below that using two few time steps may cause the model
to learn curved characteristics and that this risk can, in our
example, be avoided by using the HJB penalty.

Our experiments focus on the scalability to higher dimen-
sions and in-depth comparisons of numerical schemes. There-
fore, we generate a test problem whose solution is similar across
different dimensions and use it throughout our experiments.
Two-dimensional projections of the initial and target densities
can be seen in the left column of Fig. 4. The initial density
is the Gaussian mixture obtained by averaging eight d-variate
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Gaussians whose means are equally spaced on the intersection
of the sphere with radius four and the x1−x2 plane. The final
density is a Gaussian centered at the origin. The covariance
matrix of all Gaussians in the initial and final densities is 0.3 ·I.
Due to the design of the initial and final density, we expect
similar solutions and objective values.

Experiment 1: Scalability. We solve 2, 10, 50, 100 dimensional
instances of our OT test problem using the BFGS approach
described above. At each iteration, we monitor the sample
average approximation (SAA) Eq. (27) of the expected value
in Eq. (26) using a validation set consisting of 4, 096 samples
drawn independently from the initial density. We choose the
number of validation samples to be 1024 for the 2-dimensional
case, and 4, 096 for the 10, 50, and 100 dimensional cases, re-
spectively. The training points used during the approximation
are drawn independently from the initial density. The quadra-
ture weights are computed using Eq. (28). It is known that the
performance of SAA approaches depends on how well the sam-
ple average approximates the expected value. As expected, we
observed that using too few training points leads to overfitting,
which can be seen by a large discrepancy between the approxi-
mation of the objective function computed using the training
and validation points. Therefore, we increase the number of
points in the training data as the dimension grows; see Tab. 1
for details.

We visualize the push-forward of the initial density, the
pull-back of the final density, and the characteristics for the
different dimensions in the columns of Fig. 4. Also, we provide
convergence plots for the objective function, the mean field
term, and the HJB penalty in Fig. 5. For d > 2, we show image
slices along the first two coordinate directions and project the
characteristics (red lines) onto the plane given by the first two
coordinate dimensions. As expected, since we compute the
terminal costs using the distance between the pull-back density
and the initial density, the images are visually almost identical;
see also reduction of JMFG in Fig. 5. The difference between
the push-forward of the initial density, which is not optimized
directly, and the target (shown in the second row) is slightly
larger. The last row shows projections of the characteristics
starting in 16 points randomly chosen from the initial density.
We observe that those points move toward the target (indicated
by a white contour line) along an almost straight trajectory.
Comparing the different columns of Fig. 4, it is noticeable
that qualitatively similar results are obtained for all spatial
dimensions, which indicated the scalability of our method in
this case. A close inspection of the push-forward densities also
indicates that the network learns to partition the target density
into eight approximately equally sized slices.

Experiment 2: Benefits of CHJB. To assess the benefits of
the HJB penalty, CHJB, we compare the results of the two-
dimensional instance of the OT problem from the previous
experiment to two experiments that do not involve the penalty
CHJB. We show the convergence of the mean field term JMFG
and visualizations of the push-forward and pull-back densities
in Fig. 6.

In the first experiment, we use the identical experimental
setting but deactivate the penalty. As can be seen in the
lower-left subplot in Fig. 6 (red line), the optimization reduces
the mean field objective substantially. However, the plots in
the third column show that the network does not solve the
problem very well. Neither the pull-back nor push-forward
densities appear similar to their respective target, and the
characteristics (computed here with eight time steps) are not
straight.

In the second experiment, we increase the number of time
steps for computing the characteristics to nt = 8. This quadru-
ples the computational cost of the training but provides more
meaningful results; see the fourth column in Fig. 6. We at-

tribute this also to the increased accuracy of the approximate
transport costs in Eq. (25), which leads to higher costs when
the characteristics are not straight. Since CHJB penalizes the
optimality conditions of the original problem, this experiment
suggests that the penalty becomes less important when using
a better time discretization. These results are similar the ones
obtained with the HJB penalty and nt = 2 time steps, which
is computationally more efficient.

Experiment 3: BFGS vs. ADAM. We use the d = 2 dimen-
sional instance of the OT problem to investigate the choice of
the training method and solve the learning problem in Experi-
ment 1 with the stochastic approximation scheme ADAM (82).
ADAM is a commonly used method in machine learning and has
also been used for high-dimensional PDE problems in (51, 52).

For ADAM, we perform 5,000 iterations with a batch size
of 1, 024 training points sampled from ρ0 and another 5,000
iterations with 2,304 samples. We experimented with the batch
size and the number of steps performed with a batch before
re-sampling. In our tests, re-sampling the batch every 25 steps
was the most effective strategy in terms of validation accuracy.
The traditional way of drawing a new batch after every step of
the method provided slightly worse performance. As before, we
use 1,024 validation points to monitor the objective function,
the mean field term, and the HJB penalty at each iteration.
The convergence plots in Fig. 7 show that for the first 500
iterations in this case, BFGS converges in fewer iterations and,
particularly, reduces the HJB penalty more drastically. Even
when the same number of training points is used, the cost
per iteration is higher for BFGS than for ADAM due to the
Hessian approximation and line searches. However, the overall
costs should be approximately comparable.

Crowd Motion. We use the same ResNet model, and in the
initialization strategy as in the OT experiment, i.e., the width
is m = 16, we use M = 1 time step with a step size of h = 1.
Also, we use the same training method, i.e., an SAA version
using BFGS, re-discretizing the objective function every 25
steps. As before, we solve 2, 10, 50, 100 dimensional instances of
the problem that are designed to lead to a comparable solution.

A notable difference is that we use more time steps in the
Runge-Kutta scheme that we use to approximate the charac-
teristics Eq. (25). Here, we use nt = 4 steps with time step
size of 1/4, since we expect the characteristics to bend around
the obstacle.

As terminal costs, we use the Kullback-Leibler diver-
gence Eq. (36) with a weight of λKL = 5. The parameters for
the HJB penalty are α1 = 10 and α2 = 1.

An alternative visualization to the d = 2-dimensional results
in Fig. 3 in the main text is provided in Fig. 8. Here it is
noticeable that the characteristics bend to avoid congestion
and the center of the domain. These two terms are modeled
by the running costs F and are the main difference between
the OT problem; for the latter, the characteristics would be
straight and parallel.

In Fig. 9, we compare the results across the tested dimen-
sions. Comparing the corresponding plots row-wise shows that,
as expected by our choice of example, our model learns similar
dynamics. Since we placed an obstacle in the center of the
domain (bright yellow colors in the top row are associated with
large travel costs) the agents avoid this region. For visual-
ization, we sampled five starting points of the characteristics
from ρ0 and then mirrored them about the x2 axis. To make
the plots comparable, we use the same starting points for all
examples, which means we pad the vectors with zeros when
d > 2. This shows that the learned characteristics are approxi-
mately symmetric. The bottom row shows the similarity the
push-forwards of ρ0 to the target density. Note that a perfect
match is not expected, since agents trade-off transport and
running costs with the terminal costs.
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ρ0, initial density

ρ1, target density

d = 2, pull back

d = 2, push fwd

d = 2, characteristics

d = 10, pull back

d = 10, push fwd

d = 10, characteristics

d = 50, pull back

d = 50, push fwd

d = 50, characteristics

d = 100, pull back

d = 100, push fwd

d = 100, characteristics

Fig. 4. Visualization of the training results for the optimal transport test problem in dimensions 2, 10, 50, 100 (left to right). For d > 2, we show slices along the
first two coordinate directions. The left column shows the initial (first row) and target density (second row) on which we superimpose contour lines for reference.
The remaining images in the first row show the pull-back of the target density computed with the trained network. As expected, since the distance between the
pull-back density and the initial density is part of the objective function, the images are visually almost identical. While the difference between the push-forward of
the initial density and the target (shown in the second row) is slightly larger, we note that the distance is not computed during the optimization. The last row shows
projections of the characteristics from 16 randomly chosen points from the initial density. We observe that those points move toward the target (see white contour
line) along an almost straight trajectory.

Comparison to Eulerian Methods. We numerically compare our
machine learning framework to a state-of-the-art Eulerian
method using the d = 2 dimensional instance of the dynamical
optimal transport and the crowd motion problem. We obtain
the Eulerian scheme by adapting the fluid dynamics approach
for the dynamical OT problem in (54) to model the variational
formulation of the mean field game in Eq. (9). To this end, we
remove the final time constraint ρ(x, 1) = ρ1(x), implement
the Kullback-Leibler term in Eq. (36) to quantify the termi-
nal costs, and add the running costs in Eq. (10). Optimizing
the momentum instead of the velocity, as originally proposed
in (45), we obtain a convex optimization problem consisting of
a smooth objective function and linear equality constraints that
model the dynamics. Since it is based on a convex formulation
of the problem, we consider the solution obtained using the
Eulerian scheme as a gold standard. Note that there is, to the
best of our knowledge, no analytic solution for our problem
instances.

We use the discretize-then-optimize approach proposed
in (54) to approximately solve the variational problem. To be
precise, we use a staggered discretization of the momentum
and density on a regular grid of the space-time domain. An
advantage of this construction is its stability and that the
resulting scheme is conservative; i.e., the numerical solution
satisfies the mass-preservation constraint ∂t

∫
Ω ρ(·, t)dx for all

t. After discretization, we obtain a finite-dimensional convex

optimization problem with linear equality constraints, to which
we apply a primal-dual Newton scheme that uses a backtracked
Armijo linesearch on the primal and dual residuals. The back-
tracking is added to ensure sufficient descent in the violation of
the optimality condition but also the positivity of the density.
As a stopping criterion we require that the Euclidean norm of
the primal residual is less than 10−8 and the norm of the dual
residual is less than 10−2.

We use a coarse-to-fine hierarchy of grids to reduce the
computational effort. The key idea of this multilevel scheme
is to limit the number of fine mesh iterations by computing
an starting guess obtained by refining results from a coarser
level. This is particularly attractive in Newton-type methods
that benefit from good initialization and is common practice,
e.g., in image processing (83). We start the optimization on a
coarse mesh consisting of only 16× 16× 8 where the first two
dimensions are the spatial dimension and the third corresponds
to time. To obtain a starting guess for the momentum and
density, we apply 10 Conjugate Gradient iterations to the
linear system given by the equality constraints and threshold
this regularized solution to ensure that the density is strictly
positive. The Lagrange multipliers are initialized with zeroes.
In our experiments, the primal-dual Newton scheme provides
an accurate approximation of the global minimizer on this
discretization level. We then re-discretize the problem on the
next finer grid, which consists of 32×32×16 cells, and solve the

15



DRAFT

0 100 200 300 400 500 100 200 300 400 500101

101.2

101.4

101.6

101.8

102 level 1 level 2

iteration
0 100 200 300 400 500 100 200 300 400 500

101.05

101.1

101.15

101.2

101.25

101.3

101.35

101.4

101.45

101.5

level 1 level 2

iteration
0 100 200 300 400 500 100 200 300 400 500

100

101

102
level 1 level 2

iteration

d=2
d=10
d=50
d=100

JMFG + CHJB, objective function JMFG, mean field objective CHJB, penalty function

Fig. 5. Comparison of the convergence of the training algorithm for the optimal transport test problem in dimensions 2, 10, 50, 100. The plot on the left shows the
value of the objective function evaluated at each iteration using the validation points. All convergence plots are subdivided into the first 500 iterations performed
using fewer training samples and the last 500 iterations with a more accurate approximation. It can be seen that the relative reduction of the objective function
is larger for the smaller dimensional instances. The remaining plots show convergence of the two terms of the objective that are associated with the MFG and
the HJB penalty, respectively. These plots show that the difference in the convergence mostly stems from the HJB penalty, which decreases more slowly for the
high-dimensional instances in this example.

optimization problem starting with the interpolated solution
from the coarse grid. We repeat this procedure until we reach
the fine grid of 128× 128× 64, where the problem has about 3
million unknowns.

We implement the above finite volume scheme as an exten-
sion of the MATLAB toolbox FAIR (83) and provide the codes
in the Github repository associated with this paper.

For the optimal transport problem, the coarse-grid iteration
terminates after 25 Newton steps at an iterate whose norm
of the primal and dual residuals are reduced from 7.8 · 10−2

and 1.9 · 104 to 5.5 · 10−17 and 1.6 · 10−3, respectively. The
number of iterations required to achieve similar reductions on
the intermediate levels are 13 and 15. On the finest level, we
perform only 10 iterations and reduce the primal and dual
residuals by about 14 and 5 orders of magnitude, respectively.
For the crowd motion problem, the number of iterations re-
quired on the respective grids are 144, 23, 17, and 5. From
these final fine-mesh iterates, we then compute the optimal
controls, i.e., the velocities on a staggered space-time grid with
128× 128× 64 cells.

To provide a direct comparison between our Lagrangian
machine learning framework and the Eulerian scheme, we solve
the continuity equation with the optimal controls on a fine
grid and numerically approximate the values of the objective
functional. It is important to solve the problems using the
exact same numerical scheme, since different discretization will
in general provide different approximations of the objective
function. Here, we use an explicit finite volume scheme for
solving the continuity equation. We obtain the optimal control
of the machine learning framework by evaluating the trained
neural network Φ(x, t) for points (x, t) chosen on the same
space-time grid used in the Eulerian scheme. Based on these
estimates, we use tri-linear interpolation to solve the continuity
equation on a mesh with 256 × 256 pixels in space and 512
time steps. The number of time steps is chosen small enough
to satisfy the CFL condition. As before, we use a conservative
finite volume scheme that, in exact arithmetics, preserves the
mass of the density.

In Tab. 2, we show the transport, running, and terminal
costs approximated by the finite-volume scheme for the optimal
transport and crowd motion problem. For the Eulerian schemes
we report the results obtained at the two finest levels and we
include all settings of the Lagrangian method listed above.
Overall, we see that the various instances of the Lagrangian
OT methods are highly competitive (and in some examples
superior) to the fine mesh OT solution. Surprisingly, the overall

lowest loss value is observed for the Lagrangian scheme with
nt = 8 time steps and no HJB penalty; however, including
CHJB and using only nt = 2 time steps is less than 1% sub-
optimal and superior to the results obtained with the Eulerian
scheme at half resolution. This is a remarkable result due to the
non-convexity of the training and the vastly reduced number
of parameters (≈ 3 million vs. 637). The performance of the
machine learning framework can also be seen in Fig. 10 and
Fig. 11, which visualize characteristics and the push-forward
and pull-back of ρ0 and ρ1, respectively.

In Figs. 12 and 13, we provide a visual comparison of the
potentials obtained using both methods for the optimal trans-
port and crowd motion problem, respectively. In the Eulerian
solver, we obtain the potential as the final Lagrange multiplier
of the primal-dual Newton scheme. In our machine learning
framework, the potential can be computed by evaluating the
trained network at the corresponding grid points. We provide
image visualizations of the potentials at the initial time and
final time as well as their absolute difference. As expected, the
potentials agree in regions where ρ(·, t) is sufficiently large but
the approximations can differ in other regions without affecting
the cost functional.
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Fig. 6. Examining the impact of the HJB penalty for the d = 2 dimensional instance of the optimal transport problem. The left column shows the initial (first row)
and target densities (second row, superimposed by contour lines for orientation) as well as a convergence plot (third row) that shows the mean field objective
function approximated using the validation set at the first 500 iterations. The second column visualizes the results obtained with the HJB penalty and nt = 2 time
steps for the Runge-Kutta time integrator. It can be seen that the pull-back of the final density is almost identical to ρ0 (first row), the push-forward of ρ0 matches
ρ1 (second row), and the characteristics are almost straight (third row). The third column visualizes the results obtained by repeating the previous experiment
without the HJB penalty. Although the reduction of the mean field objective is larger (bottom left plot), neither the pull-back nor push-forward densities appear
similar to their respective targets. Also, the characteristics are not straight (third row). In the fourth row it can be seen that adding more time steps to the time
integrator (in this case nt = 8) provides improved but, visually inferior, results to our proposed scheme, which is about four times less expensive computationally.
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Fig. 7. Convergence of BFGS and ADAM methods for the d = 2 dimensional instance of the optimal transport problem. We show the convergence of the overall
objective (left) and its two terms associated with the mean field game cost (center) and the HJB penalty (right) computed using the validation set. It can be seen
that the BFGS scheme converges in fewer iterations, and in particular leads to a more drastic reduction of the HJB penalty.
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Fig. 8. Visualization of the two-dimensional crowd motion problem. The initial density (top left) and target density (bottom right) are shifted Gaussians with identical
covariance. The push-forward of ρ0 at time t = 1 is shown in the bottom left. The red lines represent the characteristics starting from points randomly sampled
from ρ0. The pull-back of ρ1 is shown in the top right. The black lines correspond to the characteristics computed backward in time from the end points of the red
characteristics. The similarity of the images in each row and the fact that the characteristics are curved to avoid the center of the domain indicate the success of
training. Also, since the red and black characteristics are nearly identical, the transformation is invertible. The same color axis is used for all plots.
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Fig. 9. Comparison of the d = 2, 10, 50, 100 dimensional instances of the crowd motion problem (column-wise). The agents’ goal is to move from the initial
density (top left plot) approximately to the target density (bottom left plot). The white circles depict contour lines of the given densities for better comparison. The
remaining columns in the top row show the preference function (which is invariant to d) and the characteristics, whose start points are sampled symmetrically
about the x2 axis. We use the same origin for the characteristics in each example. The characteristics indicate that, for all cases, the agents learn to avoid the
center of the domain, where bright yellow colors indicate high costs. Also, the characteristics are approximately symmetric. The plots in the bottom row show the
push-forward of the initial density, ρ0, which in all cases looks similar to the final density.
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Example 1: Optimal Transport

no. of parameters nt optimization L F G JMFG

Eulerian, level 4 3,080,448 - Newton 9.799e+00 - 8.625e-01 1.066e+01 (100.00%)
Eulerian, level 3 376,960 - Newton 9.764e+00 - 1.055e+00 1.082e+01 (101.47%)
Lagrangian, ML 637 2 BFGS 9.665e+00 - 1.059e+00 1.072e+01 (100.59%)
Lagrangian, ML 637 2 BFGS (no CHJB) 1.047e+01 - 3.759e+00 1.423e+01 (133.48%)
Lagrangian, ML 637 8 BFGS (no CHJB) 9.794e+00 - 8.344e-01 1.063e+01 (99.69%)
Lagrangian, ML 637 2 ADAM 9.871e+00 - 8.294e-01 1.070e+01 (100.37%)

Example 2: Crowd Motion
Eulerian, level 4 3,080,448 - Newton 1.590e+01 2.274e+00 5.952e-01 1.877e+01 (100.00%)
Eulerian, level 3 376,960 - Newton 1.590e+01 2.270e+00 6.729e-01 1.884e+01 (100.39%)
Lagrangian, ML 637 4 BFGS 1.584e+01 2.275e+00 6.636e-01 1.878e+01 (100.08%)

Table 2. Comparison of the optimal controls obtained using the Eulerian finite-volume approach and Lagrangian machine learning
(ML) approach for the d = 2 instances of the optimal transport and crowd motion problem. Legend: FV (finite volume), ML
(machine learning), nt number of time integration steps for characteristics, L (transport costs), F (running costs), G (terminal
costs) , JMFG (objective functional)
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Fig. 10. Comparison of the d = 2 dimensional optimal transport problem
computed using the Lagrangian machine learning framework and a provably-
convergent Eulerian technique. The left column shows the initial (first row) and
target density (second row, superimposed by a white contour line for orientation).
The center column shows the pull-back, push-forward, and the characteristics
computed using the velocity provided by the proposed Lagrangian machine
learning framework with nt = 2. We compute the densities by solving the
continuity equation on a grid using explicit time-stepping and conservative finite
volume discretization. We apply the same scheme to the optimal velocities
determined by the Eulerian scheme, which is based on convex programming
and thus provably convergent; see right column. Both schemes provide visually
comparable results, and the overall objective function is about 0.59% higher for
the machine learning framework. Upon close inspection one can see that the
image similarity is higher for the ML scheme, but the transport costs are lower
for the Eulerian; see also Tab. 2
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Fig. 11. Comparison of the optimal control computed using our Lagrangian
machine learning framework and an Eulerian technique based on the dynamic
formulation of the d = 2-dimensional crowd motion problem. The left column
shows the initial (first row) and target density (second row), each superimposed
by a white contour line for orientation. The center column shows the pull-back
(top), push-forward (center), and the characteristics (bottom) computed using
the velocity provided by the proposed Lagrangian machine learning framework.
The plot of the characteristics also shows the preference function, which assigns
higher costs for travel through the center of the domain. We obtain the densities
by solving the continuity equation on a grid using explicit time-stepping and
conservative finite volume discretization. We use the same PDE solver with the
optimal velocities computed by the Eulerian scheme; see right column. Both
schemes provide visually comparable results, and the overall objective function
is about 0.39% higher for the machine learning framework; see also Tab. 2.
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ΦLag(·, t) ,Lagrangian ML ΦEul(·, t) ,Eulerian FV error, |ΦLag(·, t)− ΦEul(·, t)|

Fig. 12. Comparison of the potentials ΦLag, computed using our Lagrangian machine learning framework, and ΦEul, obtained from a provably convergent
Eulerian method for the d = 2-dimensional optimal transport example. The left column shows the initial (first row) and target density (second row). The second
column from the left shows ΦLag at the initial time (top) and final time (bottom). The third column from the left shows ΦEul at the initial time (top) and final time
(bottom). The color axis are chosen equal in both plots to simplify the comparison. The right column shows the absolute difference of the potentials obtained using
both solvers and we illustrate the support ρ(·, t) by white contour lines. As expected, the estimated potentials match closely where mass in ρ is concentrated and
differ in other regions.
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Fig. 13. Comparison of the potentials ΦLag, computed using our Lagrangian machine learning framework, and ΦEul, obtained from a provably convergent
Eulerian method for the d = 2-dimensional crowd motion problem. The left column shows the initial (first row) and target density (second row). The second column
from the left shows ΦLag at the initial time (top) and final time (bottom). The third column from the left shows ΦEul at the initial time (top) and final time (bottom).
The color axis are chosen equal in both plots to simplify the comparison. The right column shows the absolute difference of the potentials obtained using both
solvers and we illustrate the support ρ(·, t) by white contour lines. As expected, the estimated potentials match closely where mass in ρ is concentrated and differ
in other regions.
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