
Laplacian Smoothing Stochastic Gradient Markov
Chain Monte Carlo

Bao Wang∗
Department of Mathematics

University of California, Los Angeles
wangbaonj@gmail.com

Difan Zou∗
Department of Computer Science

University of California, Los Angeles
knowzou@cs.ucla.edu

Quanquan Gu†
Department of Computer Science

University of California, Los Angeles
qgu@cs.ucla.edu

Stanley J. Osher†
Department of Mathematics

University of California, Los Angeles
sjo@math.ucla.edu

November 5, 2019

Abstract

As an important Markov Chain Monte Carlo (MCMC) method, stochastic gradient Langevin dynamics
(SGLD) algorithm has achieved great success in Bayesian learning and posterior sampling. However,
SGLD typically suffers from slow convergence rate due to its large variance caused by the stochastic
gradient. In order to alleviate these drawbacks, we leverage the recently developed Laplacian Smoothing
(LS) technique and propose a Laplacian smoothing stochastic gradient Langevin dynamics (LS-SGLD)
algorithm. We prove that for sampling from both log-concave and non-log-concave densities, LS-SGLD
achieves strictly smaller discretization error in 2-Wasserstein distance, although its mixing rate can
be slightly slower. Experiments on both synthetic and real datasets verify our theoretical results, and
demonstrate the superior performance of LS-SGLD on different machine learning tasks including posterior
sampling, Bayesian logistic regression and training Bayesian convolutional neural networks. The code is
available at https://github.com/BaoWangMath/LS-MCMC.

1 Introduction
Given a dataset D = {di}ni=1, the posterior of a machine learning (ML) model’s parameters x ∈ Rd with prior
p(x) and likelihood Πn

i=1p(di|x) is computed as p(x|D) ∝ p(x)Πn
i=1p(di|x). Optimization algorithms are

used to find the maximum a posterior (MAP) estimate, xMAP = arg maxx log p(x|D). Sampling algorithms
such as Langevin Dynamics (LD) are used to sample the posterior or the log posterior. In this paper, we
consider applying LD-based MCMC algorithms to sample e−f(x), where

f(x) :=
1

n

n∑
i=1

fi(x) = − 1

n

n∑
i=1

log p(di|x). (1)

Here, we normalized the log-likelihood by a factor n for the ease of presentation in the remaining part of this
paper.

The first-order LD reads:

dXt = −∇f(Xt)dt+
√

2β−1 · dBt, (2)

∗Equal Contribution
†Co-Corresponding Authors

1

ar
X

iv
:1

91
1.

00
78

2v
1

 [
cs

.L
G

]
 2

 N
ov

 2
01

9

https://github.com/BaoWangMath/LS-MCMC

where Xt ∈ Rd denotes the point at time t, β denotes the inverse temperature and Bt ∈ Rd is the standard
Brownian term. Under certain assumptions on the negative log posterior (i.e., f(x)), the LD (2) converges
to an unique invariant distribution π ∝ e−βf(x) (Chiang et al., 1987). Therefore, one can apply numerical
integrator to approximate (2) in order to obtain samples that follow the posterior distribution. One simple
integrator is to apply the Euler-Maruyama discretization (abd E. Platen, 1992) to (2), which gives:

xk+1 = xk − η∇f(xk) +
√

2β−1η · εk, (3)

and it is known as the Langevin Monte Carlo (LMC), (a.k.a., unadjusted Langevin algorithm (Parisi, 1981)).
When the target density, i.e., posterior distribution, is strongly log-concave and log-smooth, Dalalyan (2017);
Durmus et al. (2017) proved that LMC is able to converge to the target density up to an arbitrarily small
sampling error in both total variation and 2-Wasserstein distances. Furthermore, the convergence guarantee
of LMC for sampling from non-log-concave distributions has also been established in Raginsky et al. (2017);
Xu et al. (2018).

Note that the posterior distribution is defined on the whole dataset D, which is typically extremely large in
modern ML tasks. Therefore, computing the full gradient ∇f(x) is inefficient and may dramatically slow down
the convergence of sampling algorithms. One solution is to replace the full gradient in (3) with a subsampled
one, which gives rise to Stochastic Gradient Langevin Dynamics (SGLD) (Welling and Whye, 2011). From
the theoretical perspective, the convergence guarantee of SGLD has been proved for both strongly log-concave
distributions (Dalalyan and Karagulyan, 2017) and non-log-concave distributions (Raginsky et al., 2017; Xu
et al., 2018) in 2- Wasserstein distance. Mou et al. (2017) further studied the generalization performance of
SGLD for nonconvex optimization. Although SGLD can drastically reduce the computational cost, it is also
observed to have a slow convergence rate due to the large variance caused by the stochastic gradient (Teh
et al., 2016; Vollmer et al., 2016). In order to reduce the variance of stochastic gradient as well as to improve
the convergence rate, Dubey et al. (2016) incorporated variance reduction techniques into SGLD, which gives
rise to a family of variance-reduced LD-based algorithms such as SVRG-LD and SAGA-LD. Chatterji et al.
(2018); Zou et al. (2018b, 2019a) further proved that SVRG-LD and SAGA-LD are able to converge to the
target density with fewer stochastic gradient evaluations than SGLD and LMC in certain regimes. However,
both SVRG-LD and SAGA-LD require a large amount of extra computation and memory costs and can only
be shown to achieve faster convergence on small to moderate datasets. Therefore, it is natural to ask if we
can reduce the variance of stochastic gradients while maintaining similar computation and memory costs of
SGLD?

Recently, Osher et al. (2018) integrated Laplacian smoothing and related high-order smoothing techniques
into Stochastic Gradient Descent (SGD) to reduce the variance of stochastic gradient on-the-fly. Laplacian
Smoothing SGD (LSSGD) allows us to take a significantly larger step size than vanilla SGD and reduces the
optimality gap in convex optimization when constant step size is used. Empirically, LSSGD preconditions the
gradient when the objective function has a large condition number and can avoid local minima. Because
of this, LSSGD is applicable to train a large number of deep learning models with good generalizability.
Laplacian smoothing also demonstrates some ability to avoid saddle point in gradient descent (Kreusser et al.,
2019). Most recently, Wang et al. (2019) leveraged Laplacian smoothing to improve the utility of machine
learning models trained with privacy guarantee.

In this paper, we integrate Laplacian smoothing with SGLD, and we call the resulting algorithm Laplacian
Smoothing SGLD (LS-SGLD). The extra computation of LS-SGLD compared with SGLD is that we need to
compute the products of the inverse of two circulant matrices with vectors. We leverage the Fast Fourier
Transform to develop fast algorithms to compute these matrix-vector products efficiently, and the resulting
algorithms can compute the matrix-vector products with a negligible overhead in both time and memory.

1.1 Our Contributions
We summarize the main contributions of this work as follows:

• We propose a simple modification on the SGLD, which applies the Laplacian smoothing matrix and its
squared root to the stochastic gradient and Gaussian noise vectors, respectively. The continuous and
full-gradient counter-part of the modified LS-SGLD has the same stationary distribution as the LD.

2

• We proposed FFT-based fast algorithms to compute the product of the inverse of circulant matrices
with any given vector. By leveraging the structure of eigenvalues and eigenvectors of the circulant
matrices, we can compute these products very efficiently with a negligible overhead in both time and
memory.

• We prove the convergence rate of LS-SGLD for sampling from both log-concave and non-log-concave
densities in 2-Wasserstein distance. Specifically, we decompose the sampling error into the discretization
error and the ergodicity rate. Moreover, we show that there exists a trade-off between the discretization
error and ergodicity rate of LS-SGLD, as adding Laplacian smoothing can reduce the discretization
error but slow down the mixing time.

• We conduct extensive experiments to evaluate the performance of LS-SGLD. First, we show that
compared with SGLD, LS-SGLD can achieve a significantly smaller discretization error but similar
ergodicity rate, which implies that the overall sampling error of LS-SGLD can be much smaller.
Second, we conduct experiments on both synthetic and real data for posterior sampling, Bayesian
logistic regression and training Bayesian convolutional networks, all of which demonstrate the superior
performance of LS-SGLD.

1.2 Additional Related Work
In addition to the first-order Langevin based algorithms we discussed in the introduction, there also emerges
a vast body of work focusing on higher-order Langevin based algorithms. One of the well-know high-order
MCMC method is Hamiltonian Monte Carlo (HMC) (Neal et al., 2011), which incorporates an Hamiltonian
momentum term into the first-order MCMC method in order to improve the mixing time. Similar to SGLD,
a stochastic version of HMC (namely SGHMC) has been further established in Chen et al. (2014), which was
shown to be able to achieve a faster convergence rate than SGLD in experiments. Ma et al. (2015) investigated
a family of SGHMC methods and proposed a new state-adaptive sampler on the Riemannian manifold. Chen
et al. (2015) provided theoretical convergence guarantees of SGHMC in terms of mean square error (MSE)
and proposed a 2nd-order symmetric splitting integrator to further improve the discretization error. When
the target density is strongly log-concave and log-smooth, Cheng et al. (2018b) proposed underdamped
MCMC (U-MCMC) and stochastic underdamped MCMC (SG-U-MCMC), and obtained convergence rates
in 2-Wasserstein distance. The convergence rates of these two algorithms have been further established
for sampling from non-log-concave densities (Cheng et al., 2018a). However, due to the large variance of
stochastic gradients and lacking of the Metropolis Hasting (MH) correction step, SGHMC has also been
observed to have highly biased sampling trajectory (Betancourt, 2015; Dang et al., 2019). One way to address
this issue is to make use of a variance-reduction technique to alleviate the variance of stochastic gradients in
SGHMC, which gave rise to stochastic variance-reduced HMC methods (Zou et al., 2018a; Li et al., 2018;
Zou et al., 2019b).

1.3 Organization
We organize this paper as follows: We present LS-SGLD and derive FFT-based fast algorithms for LS-SGLD
in Section 2. In Section 3, we give theoretical guarantees for the performance of LS-SGLD in both log-concave
and non-log-concave settings. In Section 4, we numerically verify the performance of LS-SGLD on sampling
different distributions, training Bayesian logistic regression, and convolutional neural nets. We conclude this
work in Section 5.

1.4 Notations
Throughout this paper we use bold upper-case letters A, B to denote matrices, bold lower-case letters x, y to
denote vectors, and lower cases letters x, y and α, β to denote scalars. For continuous-time random vectors, we
denote them with the tilt bold upper-case letters X, Y with sub/super-scripts. For vector x = (x1, . . . , xd)

>,
we use ‖x‖2 =

√
x21 + · · ·+ x2d to represent its `2-norm and use ‖x‖A =

√
x>Ax to represent its A-norm,

where A is an semi-positive definite matrix. We use P(x) to denote the distribution of x, and W2(·, ·) and

3

DKL(·||·) denote the 2-Wasserstein distance and Kullback–Leibler (KL) divergence between two distributions,
respectively. For a function f : Rd → R, we use ∇f(·) and ∇2f(·) to denote its gradient and Hessian.

2 Algorithms

2.1 Laplacian Smoothing (Stochastic) Gradient Descent
For σ ≥ 0, let Aσ := I− σL where I ∈ Rd×d and L ∈ Rd×d are the identity and the discrete one-dimensional
Laplacian matrix, respectively. Therefore,

Aσ :=


1 + 2σ −σ 0 . . . 0 −σ
−σ 1 + 2σ −σ . . . 0 0
0 −σ 1 + 2σ . . . 0 0
.
−σ 0 0 . . . −σ 1 + 2σ


d×d

(4)

To find xMAP of (1), LSSGD (Osher et al., 2018) takes the following iteration

xk+1 = xk − ηkA−1σ ∇fik(xk), (5)

where ηk > 0 is the learning rate, ik is a random sample from [n] := {1, 2, · · · , n}. When σ = 0, LSSGD
reduces to SGD. Since Aσ is a circulant matrix, for any vector v, A−1σ v := u can be computed via the FFT
in the following way

A−1σ v = u =⇒ v = Aσu = u− σd ∗ u,

where ∗ is the convolution operator, and d = [−2, 1, 0, · · · , 0, 1]T . By the convolution theorem, we have

fft(v) = fft(u)− σfft(d)fft(u).

Finally, we arrive at the following FFT-based algorithm for computing A−1σ v

A−1σ v = ifft

(
fft(v)

1− σ · fft(d)

)
,

where 1 is an all-one vector with the same dimension as v, and the division of two vectors is defined in the
coordinate-wise way. fft and ifft denote FFT and inverse FFT operators, respectively.

The Laplacian matrix A−1σ can reduce the variance of stochastic gradient and guarantee at least the same
convergence rate as SGD. Osher et al. (2018) showed that for a L-gradient Lipschitz function f(x), i.e.,
‖∇f(x)‖2 ≤ L, the largest step size for LSSGD is (1 + 4σ)1/4/L (with high probability) which is larger than
GD’s by a factor (1 + 4σ)1/4.

2.2 Laplacian Smoothing Langevin Dynamics
We integrate Laplacian smoothing with LD and obtain the following Lapacian Smoothing LD (LS-LD)

dXt = −A−1σ ∇f(Xt) +
√

2β−1A−1/2σ dBt. (6)

Note that we pre-multiply the Brownian motion term by A
−1/2
σ instead of A−1σ to guarantee that the

stationary distribution of the LS-LD remains to be exp (−βf(x)). We can easily verify that LD and LS-LD
have the same stationary distribution by looking at the associated Fokker-Planck equation. We formally state
this property in the following proposition.

Proposition 1. The stationary distribution, π, of the LS-LD, (6), satisfies π ∝ e−βf(x).

4

If we apply the Euler-Maruyama scheme to discretize (6), we end up with the following discrete algorithm,
namely Laplacian smoothing gradient Langevin dynamics (LS-GLD)

xk+1 = xk − ηA−1σ ∇f(xk) +
√

2β−1ηA−1/2σ εk, (7)

where εk ∼ N(0, Id×d). In practice, we use the mini-batch gradient gk =
∑
i∈Ik ∇fi(xk)/|Ik| with Ik ⊂ [n]

to replace the gradient in (7), and we arrive at the following LS-SGLD

xk+1 = xk − ηA−1σ gk +
√

2β−1ηA−1/2σ εk. (8)

We summarize LS-SGLD in Algorithm 1. It is worth noting that computing the inverse of both Aσ and
A

1/2
σ can be expensive. Moreover, multiplying the vectors by the inverse of these two matrices is also expensive.

So in the remaining part of this section, we will present FFT-based fast algorithms for implementing (7).

Algorithm 1 LS-SGLD
Input: Training data, learning rate η, minibatch size B, inverse temperature β, Laplacian smoothing
constant σ.
Initialization: Set x0 = 0.
for k = 0, 1, · · · ,K − 1 do

Uniformly sample Ik ⊂ [n] with |Ik| = B.
Compute the mini-batch stochastic gradient

∑
i∈Ik ∇fi(xk)/B.

xk+1 = xk − ηA−1σ gk +
√

2β−1ηA
−1/2
σ εk, where εk ∼ N(0, Id×d).

Output: x0, . . . ,xK .

2.3 FFT-based Implementation of LS-SGLD
2.3.1 Circulant Matrix and Convolutional Operation

In this subsection, we list a few results on the circulant matrix which will be the basic recipes for designing
FFT-based algorithm to solving (7).

Lemma 1 (Golub and Van Loan (1996)). The normalized eigenvectors of the following d×d circulant matrix,

C =


c0 cd−1 . . . c2 c1
c1 c0 cd−1 . . . c2
.
cd−2 cd−1
cd−1 cd−2 . . . c1 c0

 , (9)

are given by

vj =
1√
d

(
1, wj , w

2
j , · · · , wn−1j

)
, j = 0, 1, · · · , d− 1,

where wj = exp
(
i 2πjd

)
are the j-th roots of unity and i is the imaginary unit. The corresponding eigenvalues

are then given by

λj = c0 + cd−1wj + cd−2w
2
j + · · ·+ c1w

d−1
j , j = 0, 1, · · · , d− 1.

Lemma 2 (Golub and Van Loan (1996)). The inverse of a circulant matrix is circulant.

Lemma 3 (Golub and Van Loan (1996)). The square root of a circulant matrix is circulant.

Lemma 4. For any circulant matrix C of the form in (9), and for any given vector v. Let u = C−1v, then
u can be computed by the fast Fourier transform with sublinear scaling in the following way

u = ifft

(
fft(v)

fft(c)

)
, (10)

where c is the first row of the matrix C, and the division in (10) is defined coordinate-wise.

Proof. Since C is a circulant matrix we have v = Cu = c ∗ u, therefore fft(v) = fft(c) · fft(u).

5

2.3.2 Fast Algorithm for Computing the Square Root of Laplacian Smoothing

We will derive an FFT-based algorithm for computing A
−1/2
σ εk in this subsection. According to Lemmas 2

and 3, A−1/2σ is circulant. Note A−1σ is positive definite, we denote its eigen-decomposition as

A−1σ = QΛQ−1,

where Q = [v1,v2, · · · ,vd]T with vi being the eigenvector associated with the eigenvalue λi > 0, and
Λ = diag(λ1, λ2, · · · , λd). Therefore, we have

A−1/2σ = Q
√

ΛQ−1, (11)

where
√

Λ = diag(
√
λ1,
√
λ2, · · · ,

√
λd).

Furthermore, note that Aσ is symmetric, therefore Q−1 = QT . It follows that we can compute A−1/2σ without
inverting the matrix Q. By the fact that A−1/2σ is circulant, we have A

−1/2
σ εk = ifft(fft(b) · fft(εk)), where b

is the first row of A−1/2σ .

Remark 1. In computing (11), there is no need to store the matrix Q, according to Lemma 1, each row of
Q and

√
Λ can be written down explicitly which enables us to compute A

−1/2
σ quickly with negligible memory

overhead and scalable to very high dimensional problems.

3 Main Results
We first make the following three assumptions regarding the function f(x).

Assumption 1 (Dissipativeness). For any x ∈ Rd, there exist constants m and b such that

〈∇f(x),x〉 ≥ m‖x‖22 − b.

This assumption has been widely made to study the convergence of Langevin based sampling algorithms
(Mattingly et al., 2002; Raginsky et al., 2017; Xu et al., 2018; Zou et al., 2019a), which is essential to
guarantee the convergence of the continuous-time Langenvin dynamics (2).

Assumption 2 (smoothness). For any x,y ∈ Rd, there exists a positive constant M such that for all
i = 1, . . . , n, it holds that

‖∇fi(x)−∇fi(y)‖2 ≤M‖x− y‖2.

Unlike Assumption 1, Assumption 2 is made for all component function fi(x).

Assumption 3 (Bounded Variance). For any x ∈ Rd, there exists a constant ω such that the variance of
the stochastic gradient is bounded as follows,

E[‖∇fi(x)−∇f(x)‖22] ≤ dω2.

Definition 1 (Logarithmic Sobolev inequality). Let µ be a probability measure, then we say µ satisfies
logarithmic Sobolev inequality with constant λ if for any smooth function g, the following holds:∫

g2 log g2dµ−
∫
g2dµ log

∫
g2dµ ≤ λ

∫
‖∇g‖22dµ.

Then the following proposition states that if the function f(·) satisfies Assumptions 1 and 2, the target
density π ∝ e−f(x) satisfies Logarithmic Sobolev inequality.

Proposition 2 (Raginsky et al. (2017)). Under Assumptions 1 and 2, the target density π ∝ e−f(x) satisfies
Logarithmic Sobolev inequality with some constant λ > 0.

It has been shown in Durmus et al. (2017); Raginsky et al. (2017) that if the function f(x) is smooth and
strongly convex (which is stronger than Assumption 1), the logarithmic Sobolev constant λ is an universal
constant. However, if the function f(x) is nonconvex, in the worst case the logarithm Sobolev constant λ can
have exponential dependency on the problem dimension d and inverse temperature β (Bovier et al., 2004;
Raginsky et al., 2017).

6

Table 1: The values of γ2 corresponding to some σ and d.

σ 1 2 3 4 5
d = 1000 0.268 0.185 0.149 0.128 0.114
d = 10000 0.268 0.185 0.149 0.128 0.114
d = 100000 0.268 0.185 0.149 0.128 0.114

3.1 Convergence Analysis of Sampling from Log-concave Densities
In this subsection, we assume that the target density is log-concave, which is equivalent to the following
assumption on the function f(x).

Assumption 4 (Convexity). For any x,y ∈ Rd, it holds that

f(x)− f(y) ≥ 〈∇f(y),x− y〉.

Then we are ready to establish the convergence rate of LS-SGLD for sampling from log-concave densities,
which is stated in the following theorem.

Theorem 1. Under Assumptions 1, 2, 3 and 4, if set the step size η ≤ Cmβ−1/M2 for some sufficiently
small constant C, there exist constants c0 ∈ [‖Aσ‖−12 , 1], γ1 ∈ [‖Aσ‖−22 , 1] and γ2 = d−1

∑d
i=1(1 + 2σ −

2σ cos(2πi/d))−1 such that the output of LS-SGLD satisfies,

W2(P(xK), π) ≤
(

2γ1Kη
2βdω2

B

)1/2

+
[
8γ2Kη

2 · (K + 1)βdη
]1/2

+
[
2λ
(
βf(0) + log(Λ)

)]1/2 · e−c0Kη/(2βλ),
(12)

where Λ =
∫
Rd e

−βf(x)dx and λ denotes the logarithmic Sobolev constant of the target distribution π ∝ e−βf(x).

Remark 2. We emphasize that the the three terms on the R.H.S. of (12) have their respective meanings.
In particular, the first and second terms represent the discretization errors introduced by stochastic gradient
estimator and numerical integrator of (6), respectively. The third term represents the ergodicity of the
continuous-time Markov process (6), which characterizes the mixing time of LS-LD (6). Moreover, we remark
here that the convergence rate of LS-GLD (LS-SGLD with full gradient) can be directly implied from Theorem
1 by removing the first term on the R.H.S. of (12).

Based on Theorem 1, we can also derive the convergence rate of SGLD in the same setting by setting
Aσ = I (i.e., σ = 0), which implies that the constants γ1, γ2 and c0 in Theorem 1 are all 1’s. We formally
state the convergence result of SGLD in the following corollary.

Corollary 1. Under the same assumptions in Theorem 1, the output of standard SGLD, denoted by yK ,
satisfies

W2(P(yK), π) ≤
(

2Kη2dω2

B

)1/2

+
[
8Kη2 · (K + 1)β−1dη

]1/2
+
[
2λ
(
βf(0) + log(Λ)

)]1/2 · e−c0Kη/(2βλ),
(13)

Remark 3. We can now compare the convergence rates of LS-SGLD and SGLD. In terms of the discretization
error, it is clear that LS-SGLD is strictly better since the constants γ1 and γ2 are strictly less than 1 (some
values of γ2 corresponding to different choices of σ and d can be found in Table 1). In terms of the ergodicity
of the continuous-time Markov process (the third terms in (12) and (13)), LS-SGLD is worse than SGLD
due to the fact that c0 ≤ 1. Therefore, there exists a trade-off between the discretization error and the
ergodicity rate of LS-SGLD. In our experiments we will conduct numerical evaluations of these error terms
and demonstrate that LS-LD and LD achieve similar ergodicity performance (i.e., mixing time), but LS-SGLD
can achieve a significantly smaller discretization error.

7

3.2 Convergence Analysis of Sampling from Non-log-concave Densities
Here we consider the setting where the target density is no longer log-concave. The following theorem states
the convergence rate of LS-SGLD in 2-Wasserstein distance.

Theorem 2. Under Assumptions 1, 2 and 3, if set the step size η ≤ Cmβ−1/M2 for some sufficiently small
constant C, there exist constants c0 ∈ [‖Aσ‖−12 , 1], γ1 ∈ [‖Aσ‖−22 , 1], γ2 = d−1

∑d
i=1(1+2σ−2σ cos(2πi/d))−1

and Γ̄ =
(
3/2 + 2(b+ β−1d)

)1/2 such that the output of LS-SGLD satisfies,

W2

(
P(xK), π

)
≤ Γ̄(Kη)1/2

[(
γ1βdω

2

B
Kη + 2γ2M

2dKη2
)1/2

+

(
γ1βdω

2

B
Kη + 2γ2M

2dKη2
)1/4]

+
[
2λ
(
βf(0) + log(Λ)

)]1/2 · e−c0Kη/(2βλ), (14)

where Λ =
∫
Rd e

−βf(x)dx and λ denotes the logarithmic Sobolev constant of the target distribution π ∝ e−βf(x).

Remark 4. The convergence rate of SGLD in 2-Wasserstein distance can also be obtained from Theorem 2 by
setting Aσ = I, which implies that the constants c0, γ1, γ2 become all 1’s. It can be verified that the resulting
convergence rate matches that proved in Raginsky et al. (2017). As a clear comparison, the discretization
error induced by both stochastic gradient and numerical integrator of LS-SGLD (the first bracket term of
(14)) is smaller than that of SGLD, while the ergodicity term of LS-SGLD (the last term of (14)) is worse
than that of SGLD. Again, we will experimentally demonstrate that the mixing time of LS-LD is not much
slower compared with LD, but LS-SGLD can achieve significantly smaller discretization error than SGLD.

4 Numerical Results
In this section, we will perform numerical experiments on sampling 2D distributions, training Bayesian
Logistic Regression (BLR), and training Convolutional Neural Nets (CNNs). Throughout all the experiments,
we regard SGLD (Welling and Whye, 2011) and preconditioned SGLD (pSGLD) (Li et al., 2016), which
considers local curvature of f(x) with RMSProp type of adaptive step size, as benchmarks. In addition, we
also incorporated the precondition technique, proposed in Li et al. (2016), into LS-SGLD, which leads to a
variant of LS-SGLD, namely Laplacian smoothing precondictioned SGLD (LS-pSGLD).

4.1 Numerical Simulations on Synthetic Dataset
4.1.1 2D Gaussian Distribution

As a simple illustration, we apply the proposed LS-SGLD and LS-pSGLD to sample a 2D Gaussian distribution,
studied in Chen et al. (2014), with the probability density function ef(x) = exp

(
1
2x

TΣ−1x
)
with x ∈ R2

where Σ =

[
1 0.9

0.9 1

]
. We let the prior to be p(x) = N (0, ν2I) with ν = 1. For both SGLD and pSGLD, we

let the step size to be 0.19 which is obtained based on the grid search. For LS-SGLD and LS-pSGLD, we let
the Laplacian smoothing parameter σ to be 0.1 with step size to be either 0.19 or 0.19(1 + 4σ)1/4. It is worth
noting that in 2D Aσ becomes

Aσ =

[
1 + σ −σ
−σ 1 + σ

]
. (15)

To measure the quality of samples, we consider the MSE between the true and reconstructed covariance
matrices; and we calculate the autocorrelation time of the samples to verify the efficacy of different samplers
in sampling the correlated distribution above. The autocorrelation time is defined as following

τ =
1

2
+

∞∑
t=1

A(t)

A(0)
, (16)

where A(t) = E
[
(φ̄η − φ(x0))(φ̄η − φ(xt))

]
for any given bounded function φ(x), φ̄ =

∫
χ
φ(x)p(x|D)dx is

the population mean of φ, and the empirical mean φ̂ = 1
ST

∑T
t=1 ηtφ(xt) with ηt being the step size at the

t-th step and ST =
∑T
t=1 ηt.

8

Figure 1 (a) and (c) plot the first 600 samples from the target distribution by different samplers. We use the
same step size 0.19 for all the four samplers in the experiments shown in Fig. 1 (a), and use a larger step size
0.19(1 + 4σ)1/4 for LS-SGLD and LS-pSGLD in experiments shown in Fig. 1 (c). Qualitatively, Laplacian
smoothing can enhance the quality of samples, and the improvement becomes more remarkable when we
use a larger step size. Next, we draw 2× 105 samples from the target distribution by different samplers and
we use these samples to reconstruct the covariance matrix. For SGLD and pSGLD, we use a set of step
size {0.19, 0.19× 0.8, 0.19× 0.82, 0.19× 0.83, 0.19× 0.84}. For LS-SGLD and LS-pSGLD we test two sets of
step sizes: (i) {0.19, 0.19× 0.8, 0.19× 0.82, 0.19× 0.83, 0.19× 0.84}, (ii) {0.19, 0.19× 0.8, 0.19× 0.82, 0.19×
0.83, 0.19× 0.84}× (1 + 4σ)1/4. Figure 1 (b) and (d) plot the autocorrelation time v.s. reconstruction error of
the covariance matrix. In (b) we use the same set of step sizes for all the four samplers, and in (d) we use a
larger step size for LS-SGLD and LS-pSGLD. We see that reconstruction errors can be reduced significantly
when Laplacian smoothing is used. Moreover, Laplacian smoothing can also reduce the autocorrelation time
in pSGLD.

(a) Samples (b) Error v.s. ACT

(c) Samples (d) Error v.s. ACT

Figure 1: Contrasting sampling of a 2D Gaussian distribution with covariance matrix Σ, with Σ11 = Σ22 = 1
and Σ12 = Σ21 = 0.9, using different samplers. (a) and (c): the first 600 samples draw by SGLD, pSGLD. (b)
and (d): LS-SGLD, and LS-pSGLD. In (c) and (d), we multiply the step size for LS-SGLD and LS-pSGLD
by a factor (1 + 4σ)1/4.

9

4.1.2 2D Gaussian Mixture Distribution

In this subsection, we compare the performance of SGLD, pSGLD, LS-SGLD and LS-pSGLD on a Gaussian
mixture distribution. In particular, we consider the target distribution

π ∝ exp (−f(x)) = exp

(
− 1

n

n∑
i=1

fi(x)

)
, n = 500,

where each component exp (−fi(x)) is defined as

exp (−fi(x)) =
2

3
e−
‖x−ai‖

2
2

2 +
1

3
e−
‖x+ai‖

2
2

2 ,

where we sample ai by the MCMC sampler with MH correction from the following 2D Gaussian distribution

N
([

2
2

]
,

[
2 0
0 2

])
.

The function fi(x) and its gradient can be simplified as

fi(x) =
‖x− ai‖22

2
− log

(
2

3
+

1

3
exp (−2〈ai,x〉)

)
,

∇fi(x) = x− ai +
2ai

2 + exp (2〈x,ai〉)
.

It can be easily verified that if ai satisfies ‖ai‖2 > 3/2, the function fi(x) defined above is nonconvex.
Moreover, it can be seen that

〈∇fi(x),x〉 = ‖x‖22 −
exp (2〈x,ai〉)

2 + exp (2〈x,ai〉)
〈ai,x〉 ≥

1

2
‖x‖22 −

1

2
‖ai‖22,

which suggests that the function fi(x) satisfies the Dissipative Assumption 1 with m = 1
2 and b =

‖ai‖22
2 , and

it further implies that f(x) is also dissipative.

Since it takes a large number of samples to characterize the distribution, which makes repeated experiments
computationally expensive, we instead follow Bardenet et al. (2017); Zou et al. (2019a,b) to use iterates along
one Markov chain to visualize the distribution of iterates obtained by MCMC algorithms. We run the four
samplers with different numbers of iteration where we set the batch size to be 10. We plot the distributions
generated by different samplers with different numbers of iterations in Fig. 2. As shown in Fig. 2 (c), (f), and
(u), when the number of iterations is large enough, e.g. 106, the sample distributions of all the three samplers
matches well with the reference distribution (sampled by ground-truth sampler, e.g., MCMC with MH step).
However, when the number of iterations is not enough, there is a large discrepancy between the sample and
target distributions, as shown in Fig. 2 (a), (d), and (g). With a moderate number of iterations, say 5× 105,
the sample distribution from LS-SGLD is better than the other two (Fig. 2 (b), (e), and (d)).

Let us further evaluate the sample quality in a quantitative approach. We first apply the MCMC with
MH step to sample 10K samples from the above target distribution. Then we apply SGLD, pSGLD, and
LS-SGLD to sample different numbers of samples, respectively, from the target distribution. We measure
the 2-Wasserstein distance between the last 10K samples of the different number of samples by the above
three stochastic gradient samplers with the MH samples. We list the Wasserstein distance between the last
10K samples of different numbers of samples from different samplers with the MH samples in Table 2. These
results show that the samples generated by LS-SGLD are consistently closer to the samples from MCMC
with MH correction.

10

(a) SGLD (1E5) (b) SGLD (5E5) (c) SGLD (1E6)

(d) pSGLD (1E5) (e) pSGLD (5E5) (f) pSGLD (1E6)

(g) LS-SGLD (1E5) (h) LS-SGLD (5E5) (i) LS-SGLD (1E6)

Figure 2: Kernel density plots of samples generated from Gaussian mixture distribution using SGLD,
LS-SGLD, pSGLD and LS-pSGLD. We set σ = 1.0 for LS-SGLD and LS-pSGLD.

Table 2: 2-Wasserstein distance between samples sampled by MCMC with Metropolis–Hastings
correction and different stochastic gradient Langevin dynamics.

of Samples 1E5 5E5 9E5
SGLD 0.695 6.726 0.285
pSGLD 5.364 0.286 6.728
LS-SGLD 0.421 0.414 0.418

4.1.3 Comparison of the mixing time between LD and LS-LD

To verify that Laplacian smoothing does not slow down the mixing rate of the continuous-time Markov
process, we conduct the following experiments. First, we apply the MCMC with Metropolis-Hasting correction
step to sample 10K points, respectively, from the following two distributions.

• Gaussian distribution with the following probability density function

p(x, y) =
1

9π
exp

(
−
(

(x− 1)2

32
+

(y − 2)2

32

))
. (17)

• The Gaussian mixture distribution described in subsection 4.1.2.

11

Second, we use either LD or LS-LD (which can be approximated by Euler-Maruyama discretization with very
small step size), to draw samples from the above two distributions and use these samples to estimate the
mean of the target densities. Figure 3 plots the MSE between the true and reconstructed (from a different
number of samples) means, and they show that LD and LS-LD perform similarly in reconstructing the mean
of the target densities.

Figure 3: MSE between the true and reconstructed means from different numbers of samples generated by
LD and LS-LD (10 independent runs).

4.2 Bayesian Logistic Regression
Suppose we observe n i.i.d samples {di, yi}i=1,2,··· ,n where di ∈ Rd and yi ∈ {−1, 1} denote the feature and
the corresponding label of the i-th sample instance. The likelihood of BLR model is given by

p(yi|di,x) =
1

1 + exp (−yi〈di,x〉)

where x is the parameter to be learned. We use a Gamma prior p(x) ∝ ‖x‖−λ2 exp (−θ‖x‖2) with λ = 1 and
θ = 10−2. Then we formulate the logarithmic posterior distribution as follows

log [p(x|d1,d2, · · · ,dn; y1, y2, · · · , yn)] ∝ − 1

n

n∑
i=1

fi(x),

where fi(x) = n log
(
1 + e−yi〈di,x〉

)
+ λ log (‖x‖2) + θ‖x‖2.

We use SGLD, pSGLD, LS-SGLD, and LS-pSGLD with batch size 5 to train a Bayesian logistic regression
(BLR) model on the benchmark a3a dataset from the UCI machine learning repository 1. The a3a dataset
contains 3185 training data and 29376 test instances, each data instance is of dimension 122. We use the grid
search to determine the optimal learning rate for SGLD (0.001) and pSGLD (0.002), and then we multiply
them by (1 + 4σ)1/4 to get the learning rate for LS-SGLD and LS-pSGLD. We set the burn-in to be 1000 for
all these four samplers. After burn-in, we compute the moving average of the sample parameters to estimate
the regression parameters x. We plot iteration v.s. negative log-likelihood and accuracy in Fig. 4, and we see
that Laplacian smoothing reduces the negative log-likelihood and increases the accuracy. The preconditioning
accelerates mixing initially, however, the gap between sampling and target distribution is remarkably larger
than the case without preconditioning.

4.2.1 Variance reduction in stochastic gradient

We numerically verify the efficiency of variance reduction on BLR for a3a dataset classification. We first
compute a path by full batch SGLD with the same learning rate as before, and meanwhile, we record the

1https://archive.ics.uci.edu/ml/index.php

12

https://archive.ics.uci.edu/ml/index.php

(a) Log-likelihood (Training Set) (b) Training Accuracy

(c) Log-likelihood (Test Set) (d) Test Accuracy

Figure 4: Convergence comparison for Bayesian logistic regression, where the X-axis represents the number of
iterations and Y-axis represents the negative log-likelihood/accuracy. (a) Negative log-likelihood on training
dataset; (b) Accuracy on training dataset; (c) Negative log-likelihood on test dataset; (d) Accuracy on test
dataset.

Laplacian smoothing gradient on each point along the path. Then we compute the Laplacian smoothing
stochastic gradients on each point along the path by using different batch size and σ. We run 100 independent
experiments to acquire the Laplacian smoothing stochastic gradients, and then we compute the variance of
these stochastic gradients by regarding the full batch Laplacian smoothing gradient as the mean. In Table 3,
we report the maximum variance, among all coordinates of the gradient and all points on the descent path,
for each pair of batch size and σ.

Table 3: The maximum variance of the stochastic gradients generated by LS-SGLD on
training BLR on the a3a data. σ = 0 reduces to SGLD.

Batch Size 10 15 50
σ = 0 7.69E-1 3.17E-1 5.69E-2
σ = 0.5 2.56E-1 1.06E-2 1.96E-2
σ = 1.0 1.54E-1 6.37E-2 1.21E-2
σ = 2.0 8.52E-2 3.54E-2 7.04E-3

13

4.3 Bayesian Convolutional Neural Network
We consider training a CNN by SGLD, pSGLD, LS-SGLD, and LS-pSGLD on the MNIST benchmark with
batch size 100, the architecture of the CNN is

CNN: input28×28 → conv20,5,2 → conv20,20,5 → fc128 → softmax.

The notation convc,k,m denotes a 2D convolutional layer with c output channels, each of which is the sum of
a channel-wise convolution operation on the input using a learnable kernel of size k× k, it further adds ReLU
nonlinearity and max-pooling with stride size m. fc128 is an affine transformation that transforms the input
to a vector of dimension 128. Finally, the tensors are activated by a multi-class logistic function.

Similar to BLR, we use a Gamma prior p(x) ∝ ‖x‖−λ2 exp (−θ‖x‖2) with λ = 1 and θ = 5e−4. Again, we use
the grid search to find the optimal step size for SGLD and pSGLD which is 0.02 and 2e− 4, respectively.
We multiply the optimal step size for SGLD and pSGLD by a factor (1 + 4σ)1/4 to get the step size for
LS-SGLD and LS-pSGLD, and we let σ = 0.5 for Laplacian smoothing. The comparisons between different
sampling algorithms are plotted in Fig. 5, we see that Laplacian smoothing reduces the negative log-likelihood
and increases the accuracy of both training and test datasets. The preconditioning accelerates mixing and
reduces the gap between sampling and target distribution. Here, we applied early stopping in training CNN
by pSGLD and LS-pSGLD.

(a) Log-likelihood (Training Set) (b) Training Accuracy

(c) Log-likelihood (Test Set) (d) Test Accuracy

Figure 5: Convergence comparison for Bayesian convolutional neural network, where the X-axis represents the
number of iterations and Y-axis represents the negative log-likelihood/accuracy. (a) Negative log-likelihood on
training dataset; (b) Accuracy on training dataset; (c) Negative log-likelihood on test dataset; (d) Accuracy
on test dataset.

14

5 Conclusions
In this paper, we integrate Laplacian smoothing with Stochastic Gradient Langevin Dynamics (SGLD) to
reduce the gap between the sample and target distributions. The resulting algorithm also allows us to take a
larger step size. The proposed algorithm is simple to implement and the extra computation and memory
costs compared with the SGLD are negligible when the Fast Fourier Transform (FFT)-based algorithms is
employed to resolve the dynamics of the resulting Laplacian Smoothing SGLD (LS-SGLD). We show, both
theoretically and empirically, that LS-SGLD can improve the sample quality. It is straightforward to extend
Laplacian smoothing to the other Markov Chain Monte Carlo (MCMC) algorithms, e.g., the stochastic
gradient Hamiltonian Monte Carlo (Chen et al., 2014).

Acknowledgments
This material is based on research sponsored by the National Science Foundation under grant number
DMS-1924935 and DMS-1554564 (STROBE). The Air Force Research Laboratory under grant numbers
FA9550-18-0167 and MURI FA9550-18-1-0502, the Office of Naval Research under grant number N00014-18-
1-2527. QG is partially supported by the National Science Foundation under grant number SaTC-1717950.

15

A Missing proof in Section 2
In this section, we provide the proof of Proposition 1.

Proof of Proposition 1 . Let p(x, t) be the distribution ofXt. Then we know that p(x, t) satisfies the following
Fokker-Planck equation

∂p(x, t)

∂t
=

1

β
〈A−1σ ,∇2p(x, t)〉+ 〈∇, p(x, t)A−1σ ∇f(x)〉

=
1

β
〈∇,A−1σ ∇p(x, t)〉+ 〈∇, p(x, t)A−1σ ∇f(x)〉, (18)

where 〈∇,h(x)〉 denotes the divergence of the vector field h(x). Since the stationary distribution π satisfies
∂π/∂t = 0, we have

1

β
〈∇,A−1σ ∇p(x, t)〉+ 〈∇, p(x, t)A−1σ ∇f(x)〉 = 0,

which further implies that β−1∇π + π∇f(x) = 0. Solving this equation directly gives π ∝ e−βf(x), which
completes the proof.

B Proof of Main Theory
In order to bound sampling error between the distribution of the output of LS-SGLD and the target
distribution π ∝ e−βf(x), we consider a reference sequence generated by LS-LD (6), denoted by {Xt}t≥0. Let
X0 = x0, by triangle inequality, we can decompose the 2-Wasserstein distance W2(P(xK), π) as follows

W2(P(xK), π) ≤ W2(P(xK),P(XKη)) +W2(P(XKη), π).

The first term on the R.H.S. stands for the discretization error of the numerical integrator, and the second
term denotes the ergodicity of LS-LD (6), which characterizes the mixing time of LS-LD. In what follows, we
first deliver the following lemma that characterizes the error term W2(P(XKη), π).

Lemma 5. Under Assumptions 1 and 2, there exists a constant c0 ∈ [‖Aσ‖−12 , 1]

W2

(
P(XKη), π

)
≤
[
2λ
(
βf(0) + log(Λ)

)]1/2 · e−c0Kη/(2βλ),
where Λ =

∫
Rd e

−βf(x)dx and λ denotes the logarithmic Sobolev constant of the target distribution π ∝ e−βf(x).

Note that Lemma 5 does not require that the target density is log-concave, which can be utilized to
prove the convergence rate of LS-SGLD for sampling both log-concave and non-log-concave densities. In the
following, we are going to complete the proofs of Theorems 1 and 2.

B.1 Proof of Theorem 1
We first provide the following lemma which proves an upper bound of the discretization errorW2

(
P(xK), P (XKη)

)
for sampling log-concave densities.

Lemma 6. Under Assumptions 1, 2, 3 and 4, if set the step size η ≤ Cmβ−1/M2 for some sufficiently small
constant C, there exist constants γ1 ∈ [‖Aσ‖−22 , 1] and γ2 = d−1

∑d
i=1(1 + 2σ − 2σ cos(2πi/d))−1 such that

the following holds

W2

(
P(xK), P (XKη)

)
≤
(

2γ1dω
2Kη2

B

)1/2

+
[
8γ2K(K + 1)β−1dη3

]1/2
Then we can complete the proof of Theorem 1 as follows.

16

Proof of Theorem 1. By triangle inequality and Lemmas 5 and 6, it is evident that

W2(P(xK), π) ≤ W2(P(xK),P(XKη)) +W2(P(XKη), π)

≤
(

2γ1dω
2Kη2

B

)1/2

+
[
8γ2K(K + 1)β−1dη3

]1/2
+
[
2λ
(
βf(0) + log(Λ)

)]1/2 · e−c0Kη/(2βλ),
which completes the proof.

B.2 Proof of Theorem 2
Similar to the proof of Theorem 1, we provide the following lemma that characterizes the discretization error
W2

(
P(xk),P(Xkη)

)
for sampling from non-log-concave densities.

Lemma 7. Under Assumptions 1 and 2, if set the step size η ≤ Cmβ−1/M2 for some sufficiently small
constant C, there exist constants γ1 ∈ [‖Aσ‖−22 , 1], γ2 = d−1

∑d
i=1(1 + 2σ − 2σ cos(2πi/d))−1 and Γ̄ =(

3/2 + 2(b+ β−1d)
)1/2 such that the following holds,

W2

(
P(xK),P(XKη)

)
≤ Γ̄(Kη)1/2

[(
γ1βdω

2

2B
Kη + 2γ2βM

2dKη2
)1/2

+

(
γ1βdω

2

2B
Kη + 2γ2βM

2dKη2
)1/4]

.

Proof of Theorem 2. By triangle inequality and Lemmas 5 and 7, it is evident that

W2(P(xK), π) ≤ W2(P(xK),P(XKη)) +W2(P(XKη), π)

≤ Γ̄(Kη)1/2
[(

γ1βdω
2

2B
Kη + 2γ2M

2dKη2
)1/2

+

(
γ1βdω

2

2B
Kη + 2γ2M

2dKη2
)1/4]

+
[
2λ
(
βf(0) + log(Λ)

)]1/2 · e−c0Kη/(2βλ),
which completes the proof.

C Proof of lemmas in Appendix B

C.1 Proof of Lemma 5
In order to prove Lemma 5, we require the following lemma.

Lemma 8 (Theorem 9.6.1 in Bakry et al. (2013)). Suppose the target density π satisfies logarithmic Sobolev
inequality with a positive constant λ, for any density µ it holds that

W2(µ, π) ≤
√

2λDKL(µ||π).

Proof of Lemma 5. Recall that for LS-LD (6), the distribution of Xt, denoted by p(x, t), can be described
by the following Fokker-Planck equation

∂p(x, t)

∂t
=

1

β
〈A−1σ ,∇2p(x, t)〉+ 〈∇, p(x, t)A−1σ ∇f(x)〉

=
1

β
〈∇,A−1σ ∇p(x, t)〉+ 〈∇, p(x, t)A−1σ ∇f(x)〉, (19)

where 〈∇,h(x)〉 denotes the divergence of the vector field h(x). Let Pt be the short-hand notation of p(x, t),
and denote by DKL(Pt||π) the KL-divergence between the distribution Pt and the target distribution π.
Then, we have

dDKL(Pt||π)

dt
=

∫
Rd

∂

∂t

[
Pt log

(
Pt
π

)]
dx

=

∫
Rd

∂Pt
∂t

[
log(Pt) + 1− log(π)

]
dx.

17

Similar to the proof of Proposition 2 in Mou et al. (2017), by (19) we further have

dDKL(Pt||π)

dt
= −

∫
Rd

〈
1

β
A−1σ ∇Pt + PtA−1σ ∇f(x),∇ log(Pt)−∇ log(π)

〉
dx

= −
∫
Rd

〈
A−1σ

(
1

β
Pt∇ log(Pt) + Pt∇f(x)

)
,∇ log(Pt)−∇ log(π)

〉
dx,

where the second equality holds due to ∇Pt = Pt∇ log(Pt). In addition, note that π ∝ e−βf(x), we have
∇ log(π) = −β∇f(x). Then we have

dDKL(Pt||π)

dt
= − 1

β

∫
Rd

〈
A−1σ

(
∇ log(Pt)−∇ log(π)

)
,∇ log(Pt)−∇ log(π)

〉
Ptdx

= − 1

β

∫
Rd
‖∇ log(Pt)−∇ log(π)‖2

A−1
σ
Ptdx.

Since Aσ is a positive definite matrix, there exists a constant c0 ∈ [‖Aσ‖−12 , 1] such that

dDKL(Pt||π)

dt
≤ −c0

β

∫
Rd
‖∇ log(Pt)−∇ log(π)‖22Ptdx = −c0

β
I(Pt||π), (20)

where I(Pt||π) denotes the fisher information between Pt and π. By Proposition 2, we know that the target
density π satisfies logarithmic Sobolev inequality with constant λ > 0. Then, from Markowich and Villani
(1999), we have

DKL(Pt||π) ≤ 1

λ
I(Pt||π).

Plugging the above inequality into (20), we obtain

dDKL(Pt||π)

dt
≤ − c0

λβ
DKL(Pt||π),

which implies that

DKL(Pt||π) ≤ DKL(P0||π)e−c0t/(βλ).

Note that we have P0 = δ(0), where δ(·) is the Dirac delta function, thus,

DKL(P0||π) =

∫
Rd

P0

[
log(P0)− log(π)

]
dx = − log(π)|x=0 = βf(0) + log(Λ),

where Λ =
∫
Rd e

−βf(x)dx. Then by Lemma 8, we have the following regarding the 2-Wasserstein distance
W2

(
P(Xkη), π

)
,

W2

(
P(Xkη), π

)
≤
√

2λDKL(P(X0)||π) · e−c0t/(2βλ) =
[
2λ
(
βf(0) + log(Λ)

)]1/2 · e−c0t/(2βλ),
which completes the proof.

C.2 Proof of Lemma 6
We first deliver the following useful lemmas.

Lemma 9. Consider any two LS-LD sequences {Wt}t≥0 and {Vt}t≥0, and assume that Wt and Vt have
shared Brownian motion terms. Under Assumption 4, for any t > 0 it holds that,

E[‖Wt − Vt‖2Aσ
] ≤ E[‖W0 − V0‖2Aσ

].

18

Lemma 10. Under Assumptions 1 and 2, if set the step size η ≤ Cmβ−1/M2 for some sufficiently small
constant C, there exists a constant γ2 = d−1

∑d
i=1(1 + 2σ− 2σ cos(2πi/d))−1 such that for any xk with k ≥ 0,

E[‖Lηxk − Gηxk‖2Aσ
] ≤ 4γ2β

−1dη3.

Now we are ready to complete the proof of Lemma 6.

Proof of Lemma 6. For the sake of simplicity, we first define three operators Lt, Gt and St as follows: for
any x ∈ Rd we denote by Ltx the random point generated by LS-LD at time t starting from x, Gtx the
point after performing one-step LS-SGLD with full gradient at x with step size t, and Stx the point after
performing one-step LS-SGLD at x with step size t. Then we have

E[‖xK −XKη‖2Aσ
] = E[‖xK − GηxK−1 + GηxK−1 −XKη‖2Aσ

]

= E[‖xK − GηxK−1‖2Aσ
] + E[‖GηxK−1 −XKη‖2Aσ

], (21)

where the second equality follows from the fact that E[〈xK − GηxK−1,Aσ(GηxK−1 −XKη)〉] = 0 since at
any iteration the randomness of stochastic gradient is independent of the iterate. Regarding the first term on
the R.H.S. of (21), we have

E[‖xK − GηxK−1‖2Aσ
] = η2E[‖SηxK−1 − GηxK−1‖2Aσ

]

≤ η2E[‖A−1σ gK−1 −A−1σ ∇f(xK−1)‖2Aσ
]

≤ η2

B
E[‖A−1σ ∇fi(xK−1)−A−1σ ∇f(xK−1)‖2Aσ

]

≤ γ1η
2dω2

B
, (22)

where γ1 ∈ [‖Aσ‖−12 , 1) is a problem-dependent parameter, the first inequality follows the definitions of
operators Sη and Gη, the second inequality follows from Lemma A.1 in Lei et al. (2017) and the last inequality
is by Assumption 3. In terms of the second term on the R.H.S. of (21), we have

E[‖GηxK−1 −XKη‖2Aσ
] = E[‖GηxK−1 − LηxK−1 + LηxK−1 −XKη‖2Aσ

]

≤ (1 + α)E[‖GηxK−1 − LηxK−1‖2Aσ
] + (1 + 1/α)E[‖LηxK−1 − LηX(K−1)η‖2Aσ

]

≤ 4(1 + α)γ2β
−1dη3 + (1 + 1/α)E[‖xK−1 −X(K−1)η‖2Aσ

], (23)

where α is a positive constant that will be specified later, the first inequality is by Young’s inequality, and
the second inequality follows from Lemmas 9 and 10. Plugging (22) and (23) into (21) gives

E[‖xK −XKη‖2Aσ
] ≤ 4(1 + α)γ2β

−1dη3 +
γ1η

2dω2

B
+ (1 + 1/α)E[‖xK−1 −X(K−1)η‖2Aσ

].

Then, by recursively applying the above inequality, we obtain

E[‖xK −XKη‖2Aσ
] ≤ (1 + 1/α)KE[‖x0 −X0‖2Aσ

] +

K−1∑
k=0

(1 + 1/α)k
[
4(1 + α)γ2β

−1dη3 +
γ1η

2dω2

B

]
= α

[
(1 + 1/α)K − 1

]
·
[
4(1 + α)γ2β

−1dη3 +
γ1η

2dω2

B

]
.

Let α = K and apply the inequality (1 + 1/K)K − 1 ≤ e− 1 ≤ 2, the above inequality implies

E[‖xK −XKη‖2Aσ
] ≤ 2Kη2 ·

[
γ1dω

2

B
+ 4(K + 1)γ2β

−1dη

]
.

Based on the definition of 2-Wasserstein distance, we have

W2
2

(
P(xK),P(XKη)

)
≤
√
E[‖xK −XKη‖22] ≤

√
E[‖xK −XKη‖2Aσ

] ≤
(

2γ1dω
2Kη2

B

)1/2

+
[
8γ2K(K + 1)β−1dη3

]1/2
,

where the last inequality is by the fact that
√
x2 + y2 ≤ |x|+ |y|. This completes the proof.

19

C.3 Proof of Lemma 7
In order to prove Lemma 7, we require the following lemmas.

Lemma 11. Under Assumptions 1 and 2, for all k ≥ 0, there exists a constant c1 ∈ [‖Aσ‖−12 , 1) such that

E[‖xk‖22] ≤ E[‖xk‖2Aσ
] ≤ 2(2b+ β−1d)

c1m
.

Lemma 12 (Theorem 2.3 in Bolley and Villani (2005)). Let µ, ν be two probability measures with finite
exponential second moments, it holds that

W2(µ, ν) ≤ Γ
[√

DKL(µ||ν) +
[
DKL(µ||ν)

]1/4]
,

where

Γ = inf
α>0

(
1

α

(3

2
+ logEν [eα‖x‖

2
2]
))1/2

.

Lemma 13 (Lemma 4 in Wang et al. (2019)). Let ε ∼ N (0, I) be the standard Gaussian random vector with
dimension d, it holds that

E
[
‖A−1σ ε‖22

]
=

d∑
i=1

1(
1 + 2σ − 2σ cos(2πi/d)

)2 .
Lemma 14. Under Assumptions 1 and 2, let Xt denote the solution of LS-LD (6) at time t with initial
point X0 = 0. Then if the inverse temperature satisfies β ≥ 2‖Aσ‖2/m, it holds that

E[e‖Xt‖22] ≤ e2(b+β
−1d)t.

Based on the above lemmas, we are able to complete the proof of Lemma 7.

Proof of Lemma 7. By Lemma 12, we know that the 2-Wasserstein distance between any two probability
measures can be bounded by their KL divergence. Therefore, the remaining part will focus on deriving the
upper bound of the KL divergence DKL

(
P(xk)||P(Xkη)

)
. Similar to the proof technique used in Dalalyan

(2017); Raginsky et al. (2017); Xu et al. (2018), we leverage the following continuous-time interpolation of
LS-SGLD

X̃t =

∫ t

0

−A−1σ Gsds+

∫ t

0

√
2β−1A−1/2σ dBs, (24)

where Gt =
∑∞
k=0 gk1{t ∈ [kη, (k + 1)η)}. It can be easily verified that X̃kη follows the same distribution as

xk. However, it is worth noting that (24) does not form a Markov chain since it contains randomness of the
stochastic gradient. To tackle this, we leverage the results in Gyöngy (1986) and construct the following
Markov chain to mimic (24),

X̂t =

∫ t

0

−A−1σ Ĝsds+

∫ t

0

√
2β−1A−1/2σ dBs,

where Ĝs = E[Gs|X̂s = X̃s]. It was shown that X̂t and X̃t has the same one-time marginal distribution
(Gyöngy, 1986). Then let Pt and Qt denote the distribution of Xt and X̂t respectively, by Girsanov formula,
the Radon-Nikodym derivative of Pt with respect to Qt can be derived as follows,

dPt
dQt

= exp

{
β

2

∫ t

0

〈∇f(X̂s)− Ĝs,A
−1/2
σ dBs〉 −

β

4

∫ t

0

‖A−1σ ∇f(X̂s)−A−1σ Ĝs‖22ds
}
.

20

Therefore, let T = Kη, the KL divergence DKL(PT ||QT) satisfies

DKL(QT ||PT) = −
∫
Rd

log

(
dPT
dQT

)
dQT

=
β

4

∫ T

0

E
[
‖A−1σ ∇f(X̂s)−A−1σ Ĝs‖22

]
ds

=
β

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
‖A−1σ ∇f(X̃s)−A−1σ gk‖22

]
ds,

where the second equality holds due to E[〈∇f(X̂s)− Ĝs,A
−1/2
σ dBs〉] = 0 and the second equality follows

from the fact that X̂s and X̃s follow the same distribution. Using Young’s inequality, we have

E[‖A−1σ ∇f(X̃s)−A−1σ gk‖22] ≤ 2E[‖A−1σ ∇f(X̃s)−A−1σ ∇f(xk)‖22]︸ ︷︷ ︸
I1

+2E[‖A−1σ ∇f(xk)−A−1σ gk‖22]︸ ︷︷ ︸
I2

.

Then we are going to tackle I1 and I2 separately. Note that ‖A−1σ ‖2 ≤ 1, thus by Assumption 2, we have the
following for I1,

I1 ≤ E[‖∇f(X̃s)−∇f(xk)‖22] ≤M2E[‖X̃s − xk‖22].

Based on the definition of X̃s, we have X̃s−xk = (s−kη)A−1σ gk+
√

2β−1(s− kη)A
−1/2
σ εk. Since s−kη ≤ η,

it follows that

I1 ≤M2E[‖X̃s − xk‖22] ≤ η2M2E[‖A−1σ gk‖22] + 2ηM2β−1E[‖A−1/2σ εk‖22].

Regarding I2, based on Lemma A.1 in Lei et al. (2017) and Assumption 3, we have

I2 ≤
1

B
E[‖A−1σ ∇f(xk)−A−1σ ∇fi(xk)‖22] ≤ γ1dω

2

B
,

where γ1 ∈ [‖Aσ‖−22 , 1) is a problem-dependent parameter. Putting everything together, we have

DKL(QT ||PT) ≤
K−1∑
k=0

η

{
β

2
η2M2E

[
‖gk‖2A−2

σ

]
+ ηM2E

[
‖εk‖2A−1

σ

]
+
γ1βdω

2

2B

}
.

By Lemma 15 and Young’s inequality, we know that

E
[
‖gk‖2A−2

σ

]
≤ E[‖gk‖22] ≤ 2M2E[‖xk‖22] + 2G2 ≤ 4M2(2b+ β−1d)

c1m
+ 2G2,

where G = maxi∈[n] ‖∇fi(0)‖2. Then by Lemma 13, we have E[‖εk‖2A−1
σ

] ≤ γ2d with γ2 = d−1
∑d
i=1(1 + 2σ−

2σ cos(2πi/d))−1, which is strictly smaller than 1. Therefore,

DKL(QT ||PT) ≤ 2βM4(2b+ β−1d) + βc1mM
2G2

c1m
Kη3 + γ2M

2dKη2 +
γ1βdω

2

2B
Kη.

For sufficiently small step size such that

η ≤ c1β
−1γ2md

2M2(2b+ β−1d) + c1mG2
,

we have

DKL(P(xK)||P(XKη)) ≤ γ1βdω
2

2B
Kη + 2γ2M

2dKη2.

21

Then, by Lemma 12, we have

W2

(
P(xK),P(XKη)

)
≤ Γ

[√
DKL

(
P(xK)||P(XKη)

)
+
[
DKL

(
P(xK)||P(XKη)

)]1/4]
,

where Γ can be further bounded as

Γ ≤
(3

2
+ logE[e‖XKη‖22]

)1/2
≤
(
3/2 + 2(b+ βd)Kη

)1/2 ≤ (3/2 + 2(b+ βd)
)1/2 · (Kη)1/2,

where the first inequality is by the choice α = 1, the second inequality is by Lemma 14 and the last inequality
is by the assumption that Kη > 1. Therefore, define by Γ̄ =

(
3/2 + 2(b + β−1d)

)1/2 , the 2-Wasserstein
distance W2

(
P(xK),P(XKη)

)
can be bounded by

W2

(
P(xK),P(XKη)

)
≤ Γ̄(Kη)1/2

[(
γ1βdω

2

2B
Kη + 2γ2M

2dKη2
)1/2

+

(
γ1βdω

2

2B
Kη + 2γ2M

2dKη2
)1/4]

,

which completes the proof.

D Proof of Lemmas in Appendix C

D.1 Proof of Lemma 9
Proof of Lemma 9. Assuming shared Brownian motions in Wt and Vt, we have

dE[‖Wt − Vt‖2Aσ
] = −E

[〈
A−1σ

(
∇f(Wt)−∇f(Vt)

)
,Aσ(Wt − Vt)

〉]
dt

= −E
[〈(
∇f(Wt)−∇f(Vt)

)
,Wt − Vt

〉]
dt

≥ 0,

where the first equality follows from the fact that we assume shared Brownian motion terms on both dynamics
{Wt}t≥0 and {Vt}t≥0 and the inequality is due to the convexity of f(x). Therefore, it can be evidently
concluded that

E[‖Wt − Vt‖2Aσ
] ≤ E[‖W0 − V0‖2Aσ

],

which completes the proof.

D.2 Proof of Lemma 10
Proof of Lemma 10. To simplify the analysis, let x be any iterate of LS-SGLD and define x = X0. Then the
operators Gη and Lη satisfy

Gηx = X0 − ηA−1σ ∇f(X0) +
√

2β−1ηA−1/2σ ε

= X0 −
∫ η

0

A−1σ ∇f(X0)dt+

∫ η

0

√
2β−1A−1/2σ dBt;

Lηx = X0 −
∫ η

0

A−1σ ∇f(Xt)dt+

∫ η

0

√
2β−1A−1/2σ dBt.

Consider synchronous Brownian terms in Gη and Lη, we have

E[‖Lηx− Gηx‖2Aσ
] = E

[∥∥∥∥ ∫ η

0

[
A−1σ ∇f(X0)−A−1σ ∇f(Xt)

]
dt
∥∥∥∥2
Aσ

]
≤ E

[
η

∫ η

0

∥∥A−1σ [∇f(X0)−∇f(Xt)
]∥∥2

Aσ
dt
]

≤M2

[
η

∫ η

0

E[‖Xt −X0‖22]dt
]
, (25)

22

where the second inequality follows from Jensen’s inequality and the last inequality follows from Assumption
2 and the fact that ‖Aσ‖2 ≥ 1. We further have

E[‖Xt −X0‖22] = E
[∥∥∥∥ ∫ t

0

A−1σ ∇f(Xτ)dτ
∥∥∥∥2
2

]
+ 2β−1tE[‖A−1/2σ ε‖22]

≤ E
[
t

∫ t

0

‖∇f(Xτ)‖22dτ
]

+ 2γ2β
−1dt

where the inequality is by Jensen’s inequality and Lemma 13 and γ2 = d−1
∑d
i=1(1 + 2σ − 2σ cos(2πi/d))−1

is strictly smaller than 1. By Lemma 15, we have

E[‖∇f(Xτ)‖22] ≤ 2M2E[‖Xτ‖22] + 2G2.

Note that by Ito’s lemma we have for any 0 ≤ s ≤ τ ,

dE[‖Xs‖2Aσ
]

ds
= −2E[〈Xs,∇f(Xs)〉] + β−1d ≤ −2mE[‖Xs‖22] + 2b+ β−1d ≤ 2b+ β−1d,

where the second inequality follows from Assumption 1. Therefore,

E[‖Xτ‖22] ≤ E[‖Xτ‖2Aσ
] = E[‖X0‖2Aσ

] +

∫ τ

0

dE[‖Xs‖2Aσ
]

ds
ds ≤ E[‖X0‖2Aσ

] + τ(2b+ β−1d).

Note that X0 = x is a iterate of LS-SGLD, by Lemma 11 we have E[‖X0‖2Aσ
] ≤ (2b+ β−1d)/(c1m) for some

constant c1 ∈ [‖Aσ‖−12 , 1]. Therefore,

E[‖∇f(Xτ)‖22] ≤ 2M2E[‖Xτ‖22] + 2G2 ≤ 4M2(2b+ β−1d)

c1m
+ 2G2 + 2M2τ(2b+ β−1d).

Thus, it follows that

E[‖Xt −X0‖22] ≤
(

4M2(2b+ β−1d)

c1m
+ 2G2 + 2M2τ(2b+ β−1d)

)
t2 + +2γ2β

−1dt.

Note that τ, t ≤ η, plugging the above inequality into (25), we have

E[‖Lηx− Gηx‖22] ≤M2

[(
4M2(2b+ β−1d)

c1m
+ 2G2 + 2M2(2b+ β−1d)η

)
η4 + 2γ2β

−1dη3
]
.

For sufficiently small step size satisfying

η ≤ c1β
−1γ2md

4M2(2b+ β−1d) + 2c1mG2
∧

√
γ2β−1d

M2(2b+ β−1d)
,

we have

E[‖Lηx− Gηx‖22] ≤ 4γ2β
−1dη3.

This completes the proof.

D.3 Proof of Lemma 11
Lemma 15 (Lemma 3.1 in Raginsky et al. (2017)). For any x ∈ Rd and i ∈ [n], it holds that

‖∇fi(x)‖2 ≤M‖x‖2 +G,

where G = maxi∈[n] ‖∇fi(0)‖2.

23

Proof. Recall the update formula of xk,

xk+1 = xk − ηA−1σ gk +
√

2β−1ηA−1/2σ εk.

Therefore, it holds that

E[‖xk+1‖2Aσ
] =E[‖xk − ηA−1σ gk‖2Aσ

] + 2ηβ−1E[‖A−1/2σ εk‖2Aσ
]

= E[‖xk‖2Aσ
]− 2ηE[〈xk,gk〉] + η2E

[
‖gk‖2A−1

σ

]
+ 2ηβ−1d,

where the second equality follows from the fact that E[‖εk‖22] = d. Note that all eigenvalues of Aσ are greater
than 1, it follows that

E[‖xk+1‖2Aσ
] = E[‖xk‖2Aσ

]− 2ηE[〈xk,∇f(x)〉] + η2E[‖gk‖22] + 2ηβ−1d

≤ E[‖xk‖2Aσ
]− 2ηmE[‖xk‖22] + 2ηb+ 2η2(M2E[‖xk‖22] +G2) + 2ηβ−1d,

where the inequality follows from Assumption 1, Lemma 15 and Young’s inequality. Since the step size η
satisfies η ≤ m/(2M2), we further have

E[‖xk+1‖2Aσ
] ≤ E[‖xk‖2Aσ

]− ηmE[‖xk‖22] + 2η(b+ β−1d+ ηG2).

Recall that all eigenvalues of Aσ are greater than 1, there exists a constant ‖Aσ‖−12 ≤ c1 ≤ 1 such that

E[‖xk+1‖2Aσ
] ≤ (1− c1ηm)E[‖xk‖2Aσ

] + 2η(b+ β−1d+ ηG2). (26)

Since η ≤ 1/(c1m) ∧ b/G, (26) implies that the following holds for all k ≥ 0,

E[‖xk‖2Aσ
] ≤ (1− c1ηm)k‖x0‖2Aσ

+
2(2b+ β−1d)

c1m
.

Since at the initialization x0 = 0, we have

E[‖xk‖22] ≤ E[‖xk‖2Aσ
] ≤ 2(2b+ β−1d)

c1m
.

This completes the proof.

D.4 Proof of Lemma 14
Proof. We first define the function L(t) = e‖Xt‖2Aσ , then by Ito’s formula, we have

dE[L(t)] = −2E[〈AσXt,A
−1
σ ∇f(Xt)〉L(t)]dt+ E[〈4AσXtX

>
t Aσ + 2Aσ, β

−1A−1σ I〉L(t)]dt

= −2E
[(
〈Xt,∇f(Xt)〉 − β−1d− 2β−1‖Xt‖2Aσ

)
L(t)

]
dt.

By Assumption (1), we further have

dE[L(t)] ≤ 2E
[(

(−m‖Xt‖22 + 2β−1‖Xt‖2Aσ
) + b+ β−1d

)
L(t)

]
dt.

Therefore, assume β ≥ 2‖Aσ‖2/m, we have

dE[L(t)] ≤ 2(b+ β−1d)E[L(t)]dt.

Since L(t) is always positive, it holds that

E[L(t)] ≤ L(0)e2(b+β
−1d)t.

Note that ‖Xt‖2Aσ
≥ ‖Xt‖22, we immediately have

E[e‖Xt‖22] ≤ E[e‖Xt‖2Aσ] ≤ L(0)e2(b+β
−1d)t,

which completes the proof.

24

References
P. Kloeden abd E. Platen. Numerical Solution of Stochastic Differential Equations. Springer, 1992.

Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and geometry of Markov diffusion operators,
volume 348. Springer Science & Business Media, 2013.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On markov chain monte carlo methods for tall data. The
Journal of Machine Learning Research, 18(1):1515–1557, 2017.

Michael Betancourt. The fundamental incompatibility of scalable hamiltonian monte carlo and naive data
subsampling. In International Conference on Machine Learning, pages 533–540, 2015.

Francois Bolley and Cedric Villani. Weighted Csiszár-Kullback-Pinsker inequalities and applications to
transportation inequalities. Annales de la Faculté des Sciences de Toulouse. Série VI. Mathématiques, 14,
01 2005. doi: 10.5802/afst.1095.

Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein. Metastability in reversible diffusion
processes i: Sharp asymptotics for capacities and exit times. Journal of the European Mathematical Society,
6(4):399–424, 2004.

Niladri S Chatterji, Nicolas Flammarion, Yi-An Ma, Peter L Bartlett, and Michael I Jordan. On the theory
of variance reduction for stochastic gradient monte carlo. arXiv preprint arXiv:1802.05431, 2018.

Changyou Chen, Nan Ding, and Lawrence Carin. On the convergence of stochastic gradient mcmc algorithms
with high-order integrators. In Advances in Neural Information Processing Systems, pages 2278–2286, 2015.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic Gradient Hamiltonian Monte Carlo. In International
Conference on Machine Learning, 2014.

Xiang Cheng, Niladri S Chatterji, Yasin Abbasi-Yadkori, Peter L Bartlett, and Michael I Jordan. Sharp
convergence rates for langevin dynamics in the nonconvex setting. arXiv preprint arXiv:1805.01648, 2018a.

Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, and Michael I. Jordan. Underdamped Langevin mcmc:
A non-asymptotic analysis. In Proceedings of the 31st Conference On Learning Theory, volume 75, pages
300–323, 2018b.

Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. Diffusion for global optimization in rˆn. SIAM
Journal on Control and Optimization, 25(3):737–753, 1987.

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):651–676, 2017.

Arnak S Dalalyan and Avetik G Karagulyan. User-friendly guarantees for the langevin monte carlo with
inaccurate gradient. arXiv preprint arXiv:1710.00095, 2017.

Khue-Dung Dang, Matias Quiroz, Robert Kohn, Minh-Ngoc Tran, and Mattias Villani. Hamiltonian monte
carlo with energy conserving subsampling. Journal of machine learning research, 20(100):1–31, 2019.

Kumar Avinava Dubey, Sashank J Reddi, Sinead A Williamson, Barnabas Poczos, Alexander J Smola, and
Eric P Xing. Variance Reduction in Stochastic Gradient Langevin Dynamics. In Advances in Neural
Information Processing Systems, pages 1154–1162, 2016.

Alain Durmus, Eric Moulines, et al. Nonasymptotic convergence analysis for the unadjusted langevin
algorithm. The Annals of Applied Probability, 27(3):1551–1587, 2017.

Gene Golub and Charles Van Loan. Matrix Computation. Johns Hopkin, 3rd edition, 1996.

István Gyöngy. Mimicking the one-dimensional marginal distributions of processes having an itô differential.
Probability theory and related fields, 71(4):501–516, 1986.

25

Lisa Kreusser, Stanley Osher, and Bao Wang. A deterministic approach to avoid saddle points. arXiv preprint
arXiv:1901.06827, 2019.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization via scsg
methods. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 2348–2358. 2017.

Chunyuan Li, Changyou Chen, David Carlson, and Carin Lawrence. Preconditioned stochastic gradient
langevin dynamics for deep neural networks. In Association for the Advancement of Artificial Intelligence,
2016.

Zhize Li, Tianyi Zhang, and Jian Li. Stochastic Gradient Hamiltonian Monte Carlo with Variance Reduction
for Bayesian Inference. arXiv preprint arXiv:1803.11159, 2018.

Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient MCMC. In Advances in
Neural Information Processing Systems, pages 2917–2925, 2015.

Peter A Markowich and Cédric Villani. On the trend to equilibrium for the fokker-planck equation: an interplay
between physics and functional analysis. In Physics and Functional Analysis, Matematica Contemporanea
(SBM) 19. Citeseer, 1999.

Jonathan C Mattingly, Andrew M Stuart, and Desmond J Higham. Ergodicity for sdes and approximations:
locally lipschitz vector fields and degenerate noise. Stochastic processes and their applications, 101(2):
185–232, 2002.

Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng. Generalization bounds of sgld for non-convex learning:
Two theoretical viewpoints. arXiv preprint arXiv:1707.05947, 2017.

Radford M Neal et al. MCMC using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2:
113–162, 2011.

Stanley Osher, Bao Wang, Penghang Yin, Xiyang Luo, Minh Pham, and Alex Lin. Laplacian smoothing
gradient descent. arXiv preprint arXiv:1806.06317, 2018.

G Parisi. Correlation functions and computer simulations. Nuclear Physics B, 180(3):378–384, 1981.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic gradient
Langevin dynamics: a nonasymptotic analysis. In Conference on Learning Theory, pages 1674–1703, 2017.

Yee Whye Teh, Alexandre H Thiery, and Sebastian J Vollmer. Consistency and fluctuations for stochastic
gradient langevin dynamics. The Journal of Machine Learning Research, 17(1):193–225, 2016.

Sebastian J Vollmer, Konstantinos C Zygalakis, and Yee Whye Teh. Exploration of the (non-) asymptotic
bias and variance of stochastic gradient langevin dynamics. The Journal of Machine Learning Research, 17
(1):5504–5548, 2016.

Bao Wang, Quanquan Gu, March Boedihardjo, Farzin Barekat, and Stanley Osher. Dp-lssgd: A stochastic
optimization method to lift the utility in privacy-preserving erm. arXiv preprint arXiv:1906.12056, 2019.

Max Welling and Teh Yee Whye. Bayesian learning via stochastic gradient langevin dynamics. In International
Conference on Machine Learning, 2011.

Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of langevin dynamics based
algorithms for nonconvex optimization. In Advances in Neural Information Processing Systems, pages
3122–3133, 2018.

Difan Zou, Pan Xu, and Quanquan Gu. Stochastic variance-reduced Hamilton Monte Carlo methods. In
Proceedings of the 35th International Conference on Machine Learning, pages 6028–6037, 2018a.

Difan Zou, Pan Xu, and Quanquan Gu. Subsampled stochastic variance-reduced gradient Langevin dynamics.
In Proceedings of International Conference on Uncertainty in Artificial Intelligence, 2018b.

26

Difan Zou, Pan Xu, and Quanquan Gu. Sampling from non-log-concave distributions via variance-reduced
gradient langevin dynamics. In Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine
Learning Research, pages 2936–2945. PMLR, 2019a.

Difan Zou, Pan Xu, and Quanquan Gu. Stochastic gradient Hamiltonian monte carlo methods with recursive
variance reduction. In Advances in Neural Information Processing Systems 2019, 2019b.

27

	1 Introduction
	1.1 Our Contributions
	1.2 Additional Related Work
	1.3 Organization
	1.4 Notations

	2 Algorithms
	2.1 Laplacian Smoothing (Stochastic) Gradient Descent
	2.2 Laplacian Smoothing Langevin Dynamics
	2.3 FFT-based Implementation of LS-SGLD
	2.3.1 Circulant Matrix and Convolutional Operation
	2.3.2 Fast Algorithm for Computing the Square Root of Laplacian Smoothing

	3 Main Results
	3.1 Convergence Analysis of Sampling from Log-concave Densities
	3.2 Convergence Analysis of Sampling from Non-log-concave Densities

	4 Numerical Results
	4.1 Numerical Simulations on Synthetic Dataset
	4.1.1 2D Gaussian Distribution
	4.1.2 2D Gaussian Mixture Distribution
	4.1.3 Comparison of the mixing time between LD and LS-LD

	4.2 Bayesian Logistic Regression
	4.2.1 Variance reduction in stochastic gradient

	4.3 Bayesian Convolutional Neural Network

	5 Conclusions
	A Missing proof in Section ??
	B Proof of Main Theory
	B.1 Proof of Theorem ??
	B.2 Proof of Theorem ??

	C Proof of lemmas in Appendix ??
	C.1 Proof of Lemma ??
	C.2 Proof of Lemma ??
	C.3 Proof of Lemma ??

	D Proof of Lemmas in Appendix ??
	D.1 Proof of Lemma ??
	D.2 Proof of Lemma ??
	D.3 Proof of Lemma ??
	D.4 Proof of Lemma ??

