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Abstract

We introduce a framework for Newton’s flows in probability space with information metrics,
named information Newton’s flows. Here two information metrics are considered, including
both the Fisher-Rao metric and the Wasserstein-2 metric. A known fact is that overdamped
Langevin dynamics correspond to Wasserstein gradient flows of Kullback-Leibler (KL) di-
vergence. Extending this fact to Wasserstein Newton’s flows, we derive Newton’s Langevin
dynamics. We provide examples of Newton’s Langevin dynamics in both one-dimensional
space and Gaussian families. For the numerical implementation, we design sampling effi-
cient variational methods in affine models and reproducing kernel Hilbert space (RKHS) to
approximate Wasserstein Newton’s directions. We also establish convergence results of the
proposed information Newton’s method with approximated directions. Several numerical
examples from Bayesian sampling problems are shown to demonstrate the effectiveness of
the proposed method.

Keywords: Optimal transport; Information geometry; Langvien dynamics; Information
Newton’s flow; Newton’s Langvien dynamics.

1. Introduction

Optimization problems in probability space are of great interest in inverse problems, in-
formation science, physics, and scientific computing, with applications in machine learning
(Amari, 2016; Stuart, 2010; Liu, 2017; Amari, 1998; Villani, 2003). One typical problem
here comes from Bayesian inference, which provides an optimal probability formulation for
learning models from observed data. Given a prior distribution, the problem is to gener-
ate samples from a (target) posterior distribution (Stuart, 2010). From an optimization
perspective, such a problem often refers to minimizing an objective function, such as the
Kullback-Leibler (KL) divergence, in the probability space. The update relates to finding
a sampling representation for the evolution of the probability.

In practice, one often needs to transfer probability optimization problems into sampling-
based formulations, and then design efficient updates in the form of samples. Here first-order
methods, such as gradient descent methods, play essential roles. We notice that gradient
directions for samples rely on the metric over the probability space, which reflects the
change of objective/loss functions. In practice, there are several important metrics, often
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named information metrics from information geometry and optimal transport, including
the Fisher-Rao metric (Amari, 1998) and the Wasserstein-2 metric (in short, Wasserstein
metric) (Lafferty, 1988; Otto, 2001). In literature, along with a given information metric,
the probability space can be viewed as a Riemannian manifold, named density manifold
(Lafferty, 1988).

For the Fisher-Rao metric, its gradient flow, known as birth-death dynamics, are im-
portant in modeling population games and designing evolutionary dynamics (Amari, 2016).
It is also important for optimization problems in discrete probability (Malago and Pis-
tone, 2014) and machine learning (Ollivier et al., 2017). Recently, the Fisher-Rao gradient
has also been applied for accelerating Bayesian sampling problems in continuous sample
space (Lu et al., 2019). The Fisher-Rao gradient direction also inspires the design of learn-
ing algorithms for probability models. Several optimization methods in machine learning
approximate the Fisher-Rao gradient direction, including the Kronecker-factored Approx-
imate Curvature (K-FAC) (Martens and Grosse, 2015) method and adaptive estimates of
lower-order moments (Adam) method (Kingma and Ba, 2014).

For the Wasserstein metric, its gradient direction deeply connects with stochastic dif-
ferential equations and the associated Markov chain Monte Carlo methods (MCMC). An
important fact is that the Wasserstein gradient of KL divergence forms the Kolmogorov
forward generator of overdamped Langevin dynamics (Jordan et al., 1998). Hence, many
MCMC methods can be viewed as Wasserstein gradient descent methods. In recent years,
there are also several generalized Wasserstein metrics, such as Stein metric (Liu and Wang,
2016; Liu, 2017), Hessian transport (mobility) metrics (Carrillo et al., 2010; Dolbeault et al.,
2009; Li and Ying, 2019) and Kalman-Wasserstein metric (Garbuno-Inigo et al., 2019).
These metrics introduce various first-order methods with sampling efficient properties. For
instance, the Stein variational gradient descent (Liu and Wang, 2016, SVGD) introduces
a kernelized interacting Langevin dynamics. The Kalman-Wasserstein metric introduces a
particular mean-field interacting Langevin dynamics (Garbuno-Inigo et al., 2019), known
as ensemble Kalman sampling. On the other hand, many approaches design fast algorithms
on modified Langevin dynamics. These methods can also be viewed and analyzed by the
modified Wasserstein gradient descent, see details in (Ma et al., 2019; Simsekli et al., 2016;
Li, 2019). By viewing sampling as optimization problems in the probability space, many
efficient sampling algorithms are inspired by classical optimization methods. E.g., Bernton
(2018); Wibisono (2019) apply the operator splitting technique to improve the unadjusted
Langevin algorithm. Liu et al. (2018); Taghvaei and Mehta (2019); Wang and Li (2019)
study Nesterov’s accelerated gradient methods in probability space.

In optimization, the Newton’s method is a fundamental second-order method to accel-
erate optimization computations. For optimization problems in probability space, several
natural questions arise: Can we systematically design Newton’s methods to accelerate sam-
pling related optimization problems? What is the Newton’s flow in probability space under
information metrics? Focusing on the Wasserstein metric, can we extend the relation be-
tween Wasserstein gradient flow of KL divergence and Langevin dynamics? In other words,
what is the Wasserstein Newton’s flow of KL divergence and which Langevin dynamics does
it corresponds to?

In this paper, following (Li, 2018; Wang and Li, 2019), we complete these questions. We
derive Newton’s flows in probability space with general information metrics. By studying



INFORMATION NEWTON’S FLOW

these Newton’s flows, we provide the convergence analysis.Focusing on Wasserstein New-
ton’s flows of KL divergence, we derive several analytical examples in one-dimensional space
and Gaussian families. Besides, we design two algorithms as particle implementations of
Wasserstein Newton’s flows in high dimensional sample space. This is to restrict the dual
variable (cotangent vector) associated with Newton’s direction into either finite-dimensional
affine function space or RKHS. A hybrid update of Newton’s direction and gradient direction
is also introduced. For the concreteness of presentation, we demonstrate the Wasserstein
Newton’s flow of KL divergence in Theorem 1.

Theorem 1 (Wasserstein Newton’s flow of KL divergence) For a density p*(x)
exp(—f(x)) , where f is a given function, denote the KL divergence between p and p* by

Dislpl") = [ plog Ldo ~log 2. (1)
where Z = [ exp(—f(x))dx. Then the Wasserstein Newton’s flow of KL divergence follows
dips + V - (ps VONewton) — (2)

where ®NeVON sqtisfies the following equation
V2 (pV2®) =V - (0 V2 VD) =V - (V) — Ap; = 0. (3)
Here we notice that ®NV%°n i the solution to the Wasserstein Newton’s direction equation
(3). In Figure 1, we provide a sampling (particle) formulation of Wasserstein Newton’s

flows. We compare formulations among Wasserstein Newton’s flows, Wasserstein gradient
flows and overdamped Langevin dynamics.

Gradient flow Newton’s flow

Density formulation Oopt =V - (0 V) + Apy Oypy = —V - (py VdNewton)

J l

Particle formulation dX; = —Vf(X;)dt — Vlog ps(X;)dt dX; = VONewton( X, )dt

Langevin dynamics dX; = =V f(X;)dt +/2dB;

Figure 1: The relation among Wasserstein gradient flow, Newton’s flow and Langevin dy-
namics. Our approach derive the particle formulation of Wasserstein Newton’s
flow of KL divergence.

In literature, second-order methods are developed for optimization problems on Rieman-
nian manifold, see (Smith, 1994; Yang, 2007). Here we are interested in density manifolds,
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i.e., probability space with information metrics. Compared to known results in Rieman-
nian optimization, we not only develop methods in probability space but also find efficient
sampling representations of the algorithms. In discrete probability simplex with the Fisher-
Rao metric and exponential family models, the Newton’s method has also been studied by
Malago and Pistone (2014), known as the second order method in information geometry.
Also, Detommaso et al. (2018); Chen et al. (2019) design second-order methods for the Stein
variational gradient descent direction. Our approach generalizes these results to informa-
tion metrics, especially for the Wasserstein metric. On the other hand, the Newton-type
MCMC method has been studied in (Simsekli et al., 2016), known as Hessian Approximated
MCMC (HAMCMC) method. The differences between HAMCMC and our proposed New-
ton’s Langevin dynamics can be observed from evolutions in probability space. HAMCMC
utilizes the Hessian matrix of logarithm of target density function and derives the associated
drift-diffusion process. In density space, it is still a linear local partial differential equation
(PDE). Newton’s Langevin dynamics apply the Hessian operator of KL divergence based
on the Wasserstein metric. In density space, the Wasserstein Newton’s flow is a nonlocal
PDE. A careful comparison of all related Langevin dynamics in analytical (Appendix C.3)
and numerical examples are provided.

We organize this paper as follows. In section 2, we briefly review information metrics and
corresponding gradient operators in probability space. We introduce properties of Hessian
operators and derive information Newton’s flows in section 3. Focusing on Wasserstein
Newton’s flows of KLi divergence, we derive Newton’s Langevin dynamics in section 4. Two
sampling efficient numerical algorithms of Wasserstein Newton’s method are presented in
section 5. In section 6, we prove the asymptotic convergence rate of information Newton’s
method with approximated Newton’s direction. Several numerical examples for sampling
problems are provided in section 7.

2. Review on Newton’s flows and information metrics

In this section, we briefly review Newton’s methods and Newton’s flows in Euclidean spaces
and Riemannian manifolds. Then, we focus on a probability space, in which we introduce
information metrics with the associated gradient and Hessian operators. Based on them, we
will derive the Newton’s flow under information metrics later on. Throughout this paper,
we use (-,-) and || - || to denote the Euclidean inner product and norm in R?.

2.1 Finite dimensional Newton’s flow

We first briefly review Newton’s methods and Newton’s flows in Euclidean spaces. Given
an objective function f: R? — R, consider an optimization problem:

min, f(z).

The update rule of the (damped) Newton’s method follows
-1
Tpr1 =k + b, Pk = — (V2f (k)" V().

Here ap > 0 is a step size and pg is called the Newton’s direction. With o = 1, we
recover the classical Newton’s methods. By taking a limit o — 0, the Newton’s method in
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continuous-time, namely Newton’s flow, writes
T=— (VQf(x))_l Vf(z). (Euclidean Newton’s flow)

We next consider an optimization problem on a Riemannian manifold M C R%. Given

an objective function f: M — R, consider

min f(x).

min f(z)
The tangent space T, M and the cotangent space T, M at x are identical to a linear subspace
of RY. For p,q € Ty M, let (p,q), = pT G(z)q denote an inner product in tangent space Ty, M
at z. Here G(z) is called the metric tensor, which corresponds to a symmetric semi-positive
definite matrix in R%*?, For the Euclidean case, we can view T,M = TiM = R? and
G(x) = I, where I is an identity matrix. The Riemannian gradient of f at x is the unique
tangent vector v such that the following equality holds for all p € T, M.

(grad f(x),p), = lim fla+ep) = f(:):)

e—0 €

The Riemannian Hessian of f at x is a linear mapping from 7, M to T, M defined by
Hess f(z)p = Vpgrad f(z), Vpe T,M.

Here Vjgrad f(z) is the covariant derivative of grad f(z) w.r.t. the tangent vector p.
Detailed definitions of gradient and Hessian operators on a Riemannian manifold can be
found in (Huang, 2013, Chapter 1). The update rule of the Newton’s method writes

Tyt = Ry, (apr),  pe = —(Hess f(xr)) ™" grad f(zy).

Here R,, can be the exponential mapping or the retraction (first-order approximation of
the exponential mapping) at x;. Based on the Riemannian metric of M, the exponential
mapping uniquely maps a tangent vector to a point in M along the geodesic curve. Different
from the Euclidean case, the update of xj1 is based on the (approximated) geodesic curve
of M. In continuous time, the Newton’s flow follows

i = —(Hess f(z)) ' grad f(z). (Riemannian Newton’s flow)

From now on, we consider optimization problems in probability space. Suppose that sample
space () is a region in R% Let F(Q) represent the set of smooth functions on Q. Denote
the set of probability density

P(Q) = {p € F(Q): / pdr =1, p> 0}.
Q
The optimization problem in P(2) takes the form:

in E(p).
pénpl(%) (°)

Here E(p) is the objective or loss functional. It evaluates certain divergence or metric
functional between p and a target density p* € P(£2). In machine learning problems,
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typical examples of E(p) include the KL divergence, Maximum mean discrepancy (MMD),
cross entropy, etc. Similar to (Euclidean Newton’s flow) and (Riemannian Newton’s flow),
the Newton’s flow in probability space (density manifold) takes the form

Orpy = —(Hess E(p;)) ™" grad E(p;). (Information Newton’s flow)
Here grad and Hess represent the gradient and the Hessian operator with respect to certain
information metric, respectively. To understand (Information Newton’s flow), we briefly
review the information metrics with the associated gradient operators.

2.2 Information metrics

We first define the tangent space and the cotangent space in probability space. The tangent
space at p € P () is defined by

T,P(Q) = {a € F(Q) : /de _ 0} .

The cotangent space T, P(2) is equivalent to F(£2)/R, which represents the set of functions
in F(§) defined up to addition of constants.

Definition 2 (Metric in probability space) For a given p € P(QQ), a metric tensor
G(p) + T,P(Q) — T,P() is an invertible mapping from the tangent space T,P(Q) to
the cotangent space TyP(SY). This metric tensor defines the metric (inner product) on
the tangent space T,P(Y). Namely, for 1,00 € T,P(R2), we define the inner product
9p: TyP(Q) x T,P(Q2) = R by

oo, 32) = [ 0(p)osde = [ 016(p) @ad,
where ®; is the solution to o; = G(p) ™1 ®;, i =1,2.

We present two essential examples of metrics in probability space P(2): Fisher-Rao
metric and Wasserstein metric.

Example 1 (Fisher-Rao metric) The inverse of the Fisher-Rao metric tensor follows

Glp)y e =p (@ - /@pdw) , ®eT,P(Q).
The Fisher-Rao metric is defined by

95(01,02) = /<I>1<I>2pd:1c — (/ <I>1pdx> (/ q)gpdx) , 01,00 € T,P(2),

where ®; satisfies o; = p ((I)i - f @ipdx) ,1=1,2.
Example 2 (Wasserstein metric) The inverse of the Wasserstein metric tensor satisfies
GW(p) e =-V-(pV®), ®eT;P(Q).
The Wasserstein metric is given by
g, (01,02) :/P<V<I>1,V‘I)2>d$, 01,02 € T,P(Q),

where ®; is the solution to o, = =V - (pV®;), i =1,2.
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2.3 Gradient operators
The gradient operator for the objective functional E(p) in (P(2),G(p)) satisfies

L OE

grad E(p) = —G(p) 5

Here ‘;—f is the L? first variation w.r.t. p. The gradient flow follows
_10FE
Opr = — grad E(py) = —G(p) 15*-
Pt

We present gradient operators under either Fisher-Rao metric or Wasserstein metric.

Example 3 (Fisher-Rao gradient operator) The Fisher-Rao gradient operator satis-
fies

—pdx

oF oF
F — .

Example 4 (Wasserstein gradient operator) The Wasserstein gradient operator writes

E
gradV E(p) = -V - (pVip) .

3. Information Newton’s flow

In this section, we introduce and discuss properties of Hessian operators in probability
space. Then, we formulate Newton’s flows under information metrics. This is based on the
previous definition of gradient operators and the inverse of Hessian operators.

3.1 Information Hessian operators

In this subsection, we review the definition of Hessian operators in probability space and
provide the exact formulations of Hessian operators.
For o € T,P(Q2), there exists a unique geodesic curve p,, which satisfies psls—0 = p

and Osps|s=0 = 0. The Hessian operator of E(p) w.r.t. metric tensor G(p) is a mapping
Hess E(p) : T,P(2) — T,P(2), which is defined by

gp(Hess E(p)o,0) = g,(0, Hess E(p)o) = 5 E(ps)

Combining with the metric tensor, the Hessian operator uniquely defines a self-adjoint
mapping He(p) : T,P(Q) — T,P(2), which satisfies

/(I’HE(,O>(I)d.%' = g,(0,Hess E(p)o), @ =G(p)o.

In Proposition 3, we give an exact formulation of [ ®H g (p)®dx and a relationship between
HE(p) and Hess E(p).
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Proposition 3 The quantity g,(c, Hess E(p)o) is a bi-linear form of ®:
/@HE(p)@)d:c =g,(0,Hess E(p)o)

-3 [Av@.06) s [ ) (2.55) 6 0ar
2
+//(Q(p)l<1>) (y)(;pf(x,y)dy (G(p)~'@) (x)da.

Here %(w,y) is defined by

5°E 0 < 0E

- LE, _ -

where 6(x) is the Dirac delta function. Here A(p) : T, P(Q) x T, P(Q) — T,y P(Q) is a
bi-linear operator which satisfies

()5(z - y)dy) ,

1)
A(p)(®1,B2) = (sp/ 21G(p) " Brdz, V1, @2 € TIP(Q).

Moreover, the operator Hg(p) satisfies

Hi(p) = Hess E(p)G(p) . (5)
Now, we are ready to present the information Newton’s flow in probability space.

Proposition 4 (Information Newton’s flow) The Newton’s flow of E(p) in (P(2),G(p))
satisfies

_ 4 O0F
pr + (Hess E(pr)) ' G(pr) 157t =0.
This is equivalent to

Opr — Gpr) 1y = 0,
)

HE(pe) Pt + g(Pt)_léfE(Pt) =0.
Pt

In particular, we focus on Wasserstein Newton’s flow of KL divergence. Other exam-
ples of Newton’s flows of different objective functions under either Fisher-Rao metric or
Wasserstein metric are presented in Appendix B.2 and B.3.

(6)

Example 5 (Wasserstein Newton’s flow of KL divergence) In this ezample we prove
Theorem 1. As a known fact in (Otto and Villani, 2000) and Gamma calculus (Bakry and
E’mery, 1985; Li, 2018), the Hessian operator of KL divergence under the Wasserstein met-
ric follows

b (0 Hess" E(p)o) = [ (V2] + (Vo) V27 0) )i,

where 0 = =V -(pV®) and || || is the Frobenius norm of a matriz in R"*". Via integration
by parts, we validate that the operator HW (p) follows

HE (p)® = V2 : (pV?D) — V- (pV* VD). (7)
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We also present the Wasserstein Newton’s flow of KL divergence in Gaussian families.
Proposition 5 ensures the existence of information Newton’s flows in Gaussian families.

Proposition 5 Suppose that pg, p* are Gaussian distributions with zero means and their
covariance matrices are Yo and X*. E(X) evaluates the KL divergence from p to p*:

E(%) = % (tr(2(Z*)7Y) — d — logdet (Z(2%) 7)) . (8)

Let (X4, Sy) satisfy

% — 2(SE; + BS) =0,
{z 2(S%; +¥S;) =0 o)

25 SH(E*) T4 2(X%) LS Ny 4 45y = —(B(XF) 7L+ () 7Ly, - 20).

with initial values Xy|i—o = Xo and S¢li—o = 0. Thus, for any t > 0, X, is well-defined and
stays positive definite. We denote

—n/2
pi(r) = LGXP <—1:CTZ,5_13:) . Dy(x) = 2T S+ C (1),

\/det(Zt) 2

where C(t) = —t + 3 fot log det(X4(3*)~Yds. Then, p; and ®; follow the information New-
ton’s flow (3) with initial values pili—o = po and P¢li—o = 0.

4. Newton’s Langevin dynamics

In this section, we primarily focus on the Wasserstein Newton’s flow of KL divergence. We
formulate it into the Newton’s Langevin dynamics for Bayesian sampling problems. The
connection and difference with

Let the objective functional E(p) = Dk (p||p*) evaluate the KL divergence from p to a
target density p*(z) x exp(—f(z)) with [exp(—f(z))dz < co. This specific optimization
problem is important since it corresponds to sampling from the target density p*. Classi-
cal Langevin MCMC algorithms evolves samples following overdamped Langevin dynamics
(OLD), which satisfies

dX, = =V f(X;)dt + V2dB;,

where B; is the standard Brownian motion. Denote p; as the density function of the
distribution of X;. The evolution of p; satisfies the Fokker-Planck equation
Ao =V - (pV )+ Ape.

A known fact is that the Fokker-Planck equation is the Wasserstein gradient flow (WGF)
of KL divergence, i.e.

Opr = — gradW Dxw(pt]lp*)

)
:QW(pt)’lymDKL(pth*)
=V - (pV(f +logp+ 1))

=V - (0tVf) + Apt.

(10)
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where we use the fact that %DKL(ptHP*) =logp+t+ f+1and pViogp= Vp.
It is worth mentioning that OLD can be viewed as particle implementations of WGF
(10). From the viewpoint of fluid dynamics, WGF also has a Lagrangian formulation

We name above dynamics by the Lagrangian Langevin Dynamics (LLD). Here ‘Lagrangian’
refers to the Lagrangian coordinates (flow map) in fluid dynamics (Villani, 2008).

Overall, many sampling algorithms follow OLD or LLD. The evolution of corresponding
density follows the Wasserstein gradient flow (10). E.g. the classical Langevin MCMC
(unadjusted Langevin algorithm) is the time discretization of OLD. The Particle-based
Variational Inference methods (ParVI), (Liu et al., 2019) can be viewed as the discrete-time
approximation of LLD.

In short, we notice that the Langevein dynamics can be viewed as first-order methods for
Bayesian sampling problems. Analogously, the Wasserstein Newton’s flow of KL, divergence
derived in Example 5 corresponds to certain Langevin dynamics of particle systems, named
Newton’s Langevin dynamics.

Theorem 6 Consider the Newton’s Langevin dynamics
dX; = VoNevton(x,ydt, (11)
where ®NVN (1) s the solution to Wasserstein Newton’s direction equation (3):
V2 (0 V2®) = V- (V2 VD) — V- (0 V f) — Ap; = 0.

Here X follows an initial distribution p° and p; is the distribution of X;. Then, p; is the
solution to Wasserstein Newton’s flow with an initial value pg = p°.

Proof Note that p; is the distribution of X;. The dynamics of X; implies
Oips + V - (p VONewton) —

Because ®; satisfies the Wasserstein Newton’s direction equation (3), p; is the solution to
Wasserstein Newton’s flow. [ |

Remark 7 We notice that the Newton’s Langevien dynamics is different from HAMCMC
(Simsekli et al., 2016). Detailed comparisons can be found in Appendiz C.1.

The following proposition provide a closed-form formula for NLD in 1D Gaussian family.

Proposition 8 Assume that f(z) = (25%)" ' (z — p*)?, where ¥* > 0 and p* are given.
Suppose that the particle system Xy follows the Gaussian distribution. Then X; follows a
Gaussian distribution with mean py and variance ¥;. The corresponding NLD satisfies

-3 )
X; = X — * .
dXy <E*—|—Zt t 2*+2tﬂt+ﬂ>dt

10
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And the evolution of ur and Xy satisfies

DI I
dpr = (— Ndt, d¥; = 2——=Xdt.
e = (—pe + p*)dt, t ST t

The explicit solutions of uy and Xy satisfy

e—Qt(EO _ 2*)2 N 1
432 ST+

e = e (o — ) + 4, B =854 (B - Z*)e_t\/

We present discrete-time particle implementations of Newton’s Langevin dynamics in sec-
tion 5 and numerical examples in section 7.

5. Particle implementation of Wasserstein Newton’s method

In this section, we design sampling efficient implementations of Wasserstein Newton’s meth-
od. Focusing on Wasserstein Newton’s flow of KL divergence, we introduce a variational
formulation for computing the Wasserstein Newton’s direction. By restricting the domain of
the variational problem in a linear subspace or reproducing kernel Hilbert space (RKHS), we
derive sampling efficient algorithms. Besides, a hybrid method between Newton’s Langevin
dynamics and overdamped Langevin dynamics is provided.

We briefly review update rules of Newton’s methods and hybrid methods in Euclidean
space. In each iteration, the update rule of Newton’s method follows

Tha1 = T+ agpr,  pr = —V2f(2r) V().

Suppose that f(x) is strictly convex. Namely, V2f(z) is positive definite for all + € R%.
To compute the Newton’s direction py, it is equivalent to solve the following variational
problem

min p"V? f(zy)p + 2V f (2x) " p.

peR™
In practice, the Newton’s direction may not lead to the decrease in the objective function,
especially when f(z) is non-convex. Nevertheless, the Newton’s method often converges
when the update is close to the minimizer. One way to overcome this problem is the hybrid
method. Consider a hybrid update of the Newton’s direction and the gradient’s direction

Tpt1 = T + appr — YV f(zk),

where v > 0 is a parameter.

Following above ideas in Euclidean space, we present a particle implementation of in-
formation Newton’s method. Here we connect density pr € P(Q2) with a particle system
{7} . Namely, we assume that the distribution {z7})_,; follows pi(z). We update each
particle by

Ty =2 + o VO(x), i=1,2...N.

Here &, is an approximated solution to the Wasserstein Newton’s direction equation (3).
The details on obtaining &y, is left in subsection 5.1.

11
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In practice, the Wasserstein Newton’s direction may not be a descent direction if the
update is far away from the target distribution. To overcome this issue, we propose a hybrid
update of the Wasserstein Newton’s direction and the Wasserstein gradient direction.

Let v > 0 be a parameter. Here we recall that there are two choices for using the gradient
direction. Namely, if we use overdamped Langevin dynamics as the gradient direction, the
hybrid update rule follows

oy =2+ ap Vo (a) — yar Vf(2l) + /2y, (12)

where 2z ~ N(0,1). If we use Lagrangian Langevin dynamics as the gradient direction, the
hybrid update rule satisfies

w iy = af + Ve (af) —ya(VF(2}) + &(af). (13)

Here & is an approximation of V log pi. For general p; and p*, we can approximate V log pg
via kernel density estimation (KDE) (Gretton et al., 2012). Namely, we approximate
V log p, by

_ X Vb, a)
>one V(e ap)

Here k(z,y) is a given positive kernel. A typical choice of k(x,y) is a Gaussian kernel with
a bandwidth h > 0, such that

k()

_ 2
k(a,y) = (27h) "/ exp <_H9«°2hy\l> |

The overall algorithm is summarized in Algorithm 1.

Algorithm 1 Wasserstein Newton’s method with hybrid update
Require: initial positions {:Ug}fj:l, € > 0, step sizes oy, parameters \; > 0, maximum
iteration K.
1: Set k£ = 0.
2: while k£ < K and the convergence criterion is not met do
3:  Compute an approximate solution ®; to (3).
4:  Update particle positions by (12) or (13).
5
6

Set k =k + 1.
. end while

Remark 9 It worths mentioning that our algorithm corresponds to the following hybrid
Langvien dynamics

dXt = (VCIJt - "}/Vf)dt + v/ Q’YdBt,

where By is the standrad Brownian motion, v > 0 is a parameter and ®; satisfies (3).

12
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5.1 Variational formulation for Wasserstein Newton’s direction

Similar to the Euclidean case, we derive a variational formulation for estimating Wasserstein
Newton’s direction, and provide the associated particle formulations.

Proposition 10 Suppose that H : T;P(Q) — T,P is a linear self-adjoint operator and H
is positie definite. Let u € T,P. Then the minimizer of variational problem

min J(P) = / (PHP — 2ud) dz,
BT P(Q)

satisfies H® = u, where ® € T;P(Q).

Proof Since H is linear and self-adjoint, the optimal solution of satisfies

0J

Hence, ® satisfies H® = w. On the other hand, let ® satisfy H® = w. Then, for any
v e TP*P(Q), it follows

J(®+ ) = /((@ + UK (D + T) — 2u(D + 1)) da
_ / (OHD — 2ud) d + / (UHY — 20l — 2UHD) dx
—7(®) + / THdz > (D).

The last inequality is based on the fact that H is positive definite. Hence, ® is the optimal
solution to the proposed variational problem. This completes the proof. |

Suppose that f is strongly convex, or equivalent, V2 f(z) is positive definite for = € €.
Then, the operator Hg(p) defined in (7) is positive definite. In this case, proposition 10 in-
dicates that solving Wasserstein Newton’s direction equation (3) is equivalent to optimizing
the following variational problem.

: _ 2 2 2
i () = [ (Iv201% + 01, +2(91 + T log i, V8))

Here we denote ||v]|% = vT Av. For possibly non-convex f, we consider a regularized problem

: € _ 2 2 2
el () = [ (1901 + 901y +2(VF + Viogp, V0)) e (14)

Here € > 0 is a regularization parameter to ensure that V2f(z) + €l is positive definite for
x € .

13



WANG AND L1

Remark 11 Namely, we penalize the objective function by adding the squared norm of ®
induced by the Wasserstein metric. In other words,

in  J(® Vo|%ppdz.
OB B

In terms of samples, we can rewrite (14) into

1

N
: € _ - 2 ny(12 ny||2
ekt I@) = g (IV2@ ()13 + IV )32 ) et )

+2(f(af) + Vlog py(af), VO(aR)) ).

In high dimensional sample space, directly solving (15) for ® € T P(Q2) can be difficult. To
deal with this issue, we restrict the functional space of ® into a linear subspace S C T}y P(£2).
An appropriately chosen S can lead to a closed-form solution to (14). For the rest of
this section, we discuss two choices of S, including finite dimensional affine subspace and
reproducing kernel Hilbert space (RKHS).

5.2 Affine models

Consider S = span{;}I",, where 9; : Q@ — R are given basis functions. Namely, we assume
that ®(z) is a linear combination of 1, ... 1y,, such that

®(z) = (a, () = Zaﬂ/}z‘(fﬂ),

where a € R™ and ¢ (z) = [¢1(z), ¥2(x), . .. m(2)].

Proposition 12 Suppose that ®(x) = (a,(x)). Then, the optimization problem (15) with
the constraint ® € S is equivalent to

min J(a) = a’ (B + Dg)a + 2c] a,
acR™

where By, D € R™™ and ¢, € R™. The detailed formulations of By, D, and ¢ are
provided as follows.

N
Bi = > V() (V27 (af) + D) (Vo)
n=1

1 N
D($)j1,j2 :N Z tr(Vijl (x;cl)v%bjé (1)),

n=1
N

o(r) =y 30 VUER(VF(R) + Ex(af).
n=1

If By, + Dy, is positive definite, the optimal solution follows a = —(By + Di) tep. The
optimal solution ® follows ®(x) = (a,¥(x)).

14
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Proof We denote the Jacobian Vi(x) € R™*™. As a result, J(a) turns to be

2
N

1 m
T(@) =4 520 3@ V()| +a"B(ef)a+2a"e(a})
n=1||j=1 .
We can further compute that

2
m m

> ai ViRl =Y Y ay, Vi, (af) Vi, (27)ay, = a” D(a})a.
j=1

F Jj1=1j2=1

This completes the proof. |

This affine approximation technique has been used in approximating natural gradient
direction in (Li et al., 2019). Hence, we call our method affine information Newton’s method.
In particular, we set m = 2d and consider the basis

Vi(®) =25, Yipa(z) =27, 1<i<d

In other words, we assume that ®(z) takes the form ®(z) = 1z diag(s)z + b7z, where
s,b € R, For simplicity, we denote v = Vf(xp) + &(2]).

517 s 517
J(s,b) = [b] H; [b} +2 [b} (.
where we denote Hj, € R24%2d yia

o= [T SN diag(ap) (V2 (xp) + el) diag(z}) & S, diag(a}) (V2 f(2}) + eI)
¥ Lnca (V2 F(af) + ) diag(a7) ¥ L (V@) +e) ]

and uy € R%? via
1 N .
e — | ¥ S0 dine(apyor
= " .

Hence, the optimal solution for minimizing J(s,b) follows
[Sk] = —(Hyg) uy.
br

Hence, the approximate solution oy computed via the affine method follows

A

Vo (r) = diag(sg)x + b. (16)

The overall algorithm are summarized in Algorithm 2. For simplicity, we do not mention
the hybrid update.

When the optimal solution @ to (15) is highly non-linear, S in affine methods may not
be large enough to approximate ®; well.

15
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Algorithm 2 Wasserstein Newton’s method with affine models.

Require: initial positions {x{} |, € > 0, step sizes aj, maximum iteration K.
1: Set k = 0.
2: while k£ < K and the convergence criterion is not met do
3:  Compute 1ﬁ" = Vf(a})+ & (a}). Here & is an approximation of V log p.

4:  Calculate Hy by
= [ 4 S, diag(af)(V2f (o) + el) diag(e}) & S0, diag(af) (V2 (af) + )
% Soney (V2 f(2R) + el ) diag(a) % Soney (VAf(xR) + D) ’

and formulate uy by

N .
N Zn:l ,Ul?

5.  Compute s, and by by
[Sk] = —(H) g,
b

6:  Update particle positions by

Tpp1 = 2 + og(diag(sk)zy + bk).

7 Set k =k + 1.
8: end while

5.3 Kernel models

In this subsection, we approximate the Wasserstein Newton’s direction in kernel models.
Specifically, we consider S as the RKHS with an associated kernel function k(x,y) : R? x
R? — R. Compared to finite-dimensional linear subspace, RKHS can be viewed as with
infinitely many feature functions. Detailed description about RKHS and the related norm
can be found in (Berlinet and Thomas-Agnan, 2011).

To ensure the well-posedness of the optimal solution, we penalize the objective function
using the RKHS norm || - ||s. Hence, we consider a regularized variational problem based
on (14)

min / (IV2@I1% + V@I, g +2(VS, VO + Viog pi) ) pydz + A B[3

(17)
:/ (V2013 + V@I, +2(V S, V) — 208) e + A B[[3.
In terms of samples, this varitional problem becomes
1 N
: 2 ny|2 ny|12
DY (IV2e@DIF + IV R @) e gy er )

+2(Vf(xg), Vo(zy)) — 2A‘Nﬂf?)) + A3

16
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From the general representation theorem (Schélkopf et al., 2001), the minimizer of (18) can

take the form

N d d d
= Z Z am@ik(xz, ZE) + Z Z ﬁjhj%najl’hk(ﬂjz, 13) . (19)
n=1 \ =1 Jj1=1j2=1

Proposition 13 Let ¢ take the form (19). Then, (18) is equivalent to

o[ (] G (-G Bl o B B

a€ERNd BeRNd?

T KLl 12 T KLl 12
o] e e 3] 23] [ Ree] ]

Here we denote
~Vf(z) vec(Iy)
v = € RNd, € = € RNdZa
—Vf(:vév) vec(1y)
V2f(a}) + el 0 = 0
a_| 0 VHa)+d : & RN
0
0 0 V2f(a)) +el
and Pq P.q
Kl:l T K]-:N
Kp7q: 9 p7q€{1’2}
K34 ... KR

Each Kg:g, are defined by

Kbl 1,1 dxd
( nm’) = 0y jrak(af, 7} ), K, € RYY
K> = ! 1,2 dxd?
( n,m ') (1—1)d+js Oiji+djarak(@, 2k ), K € RTE,
1— 2
’ ! 2,1 d*>xd
( nn ')(J Ry = Ojy joivak(ay, xyy ), K., € RTXC
1— 27

_ no n 2,2 d?xd?
= 8i1,i27j1+d7j2+dk(xlc7$k )7 Kn,n’ eR :

()
!
W) (i —1)d+i2,(j1—1)d+j2

Here we use the notation 0;k(x,y) = Oy, k(x,y) and 0j1q = Oy;k(x,y). The optimal solution

follows
ol K127 K12 T KLl - KLl T N, o T KLl 12 KLl K1L2] [
8| =\ | k22| | K22 T | g2t g2t T gl k21 K22 K2l 22| ||

17
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Here 1 denotes the Moore pseudo-inverse. Hence the approzimated solution CiJk satisfies

Vo(z})
— Kl’la—l—Kl’Zﬁ.

Vo, (z)

To solve (20) is equivalent to solve a N(d + d?) x N(d + d?) linear system. Moreover,
this linear system is potentially to be ill-posed, especially for large N and d. Hence, we

further restrict 5 = 0 in (20) (this is equivalent to choose a smaller basis in representing
®(z)). Then, (20) reduces to

inf o' KYK*'a+ o’ KM HEY a+ N o' KM a — 20" [KYD K12 m . (21)

a€RNd

The optimal solution follows
o = (K172K271 + Kl,lHKl,l + N)\Kl’l)_l [Kl’l K1’2] I:Z:| .

Denote C = K'2K?! 4+ KU HKL + NAKY!. Hence, the approximate solution @k(mZ)
satisfies A

V()

: = KMo = KV CTY KV + K12e). (22)

V@k(l‘iv)

In practice, when N, d are large, the computation cost of K»2K?%! is quite heavy, which
is of order O(N3d*). Hence, we consider a block-diagonal approximation Cpq of C, which
is defined by

Cia 0 0
0o C
Coa=| " 2,2
: . . 0
0 0 Cnn

Here each block C;; € R%>? can be computed by

35t

N
Cii = NAKS + 3 (KUK + K2 F) K.
j=1
The computational cost of Cpq is O(N2d*). We also note that for Gaussian kernel, with
A >0, C;; is invertible. Hence, we can compute the approximate solution ®(z}) by

Vo (z})
: = KM Cp{ (K v + K 2e). (23)
Vo (z)

The overall algorithm is summarized in Algorithm 3.

18
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Algorithm 3 Wasserstein Newton’s method with RKHS.
Require: initial positions {x§}]_;,
1: Set k = 0.
2: while k£ < K and the convergence criterion is not met do
3:  Calculate H,v,e, K", K12 and K*! in Proposition 13 based on {a}} nN_l
4:  Formulate @k(:cZ) via (22) or (23).
5. Update particle positions by

€ > 0, step sizes oy, maximum iteration K.

Ty =T+ V& (2}).

6: Setk=k+1.
7. end while

Besides, we can use a sparse kernel approximation (Arbel et al., 2019; Maoutsa et al.,
2020) to further reduce the computational cost. Namely, we assume that ®(z) takes the
form

M d
2) =YY imdik(z", ). (24)

m=1 i=1

Here M < N and {z™}M_, are randomly sampled from {z?}Y . This can reduce the
computational cost to O(M N2d*) (or O(M Nd*) if we apply the block—diagonal approxima-
tion).

Remark 14 In future works, we expect to find efficient methods to approximate the solution
to (20) with low computational cost in terms of N and d.

Remark 15 We notice that our Wasserstein Newton’s method with RKHS is related to
Stein variational Newton’s method (SVN) (Detommaso et al., 2018). Here SVN restricts
the Newton’s direction of general transformation map in RKHS, while our method restricts
the potential function of gradient transportation map in RKHS. See details in the appendiz.
We also provide detailed numerical comparison of these methods in section 7.

6. Convergence analysis of Information Newton’s method

In this section, we introduce general update rules of information Newton’s method in terms
of probability densities and analyze their convergence rates in both distance and objective
function value.

We briefly review the Riemannian structure of probability space as follows. Given a
metric tensor G(p) and two probability densities pp, p1 € P(§2), we denote the distance
D(po, p1) as follows

D(po,p1)2: inf {/ /85[)5 ps) spsdxds psls=0 = POaﬁs‘s=lzpl}-

,05756 0 1

19



WANG AND L1

For the Wasserstein metric, D(pp, p1) is the Wasserstein-2 distance between py and p;.
Denote the inner product on cotangent space T P(Q) by

318, [8160) s, 01,3, < TP

and [|®|2 = (@, ®),. And we introduce the definition of the parallelism.

Definition 16 (Parallelism) We say that 7 : T,;P(Q2) — T, P(2) is a parallelism from
po to p1, if for all &1, Py € T, P(R2), it follows

<<I>1,(I)2>p0 = <’7‘¢’1,7‘(I)2>p1 .

To analyze the convergence rate, we introduce V" E(p). This is a n-form on the cotan-
gent space T, P((2), which is recursively defined by

o)
V'E(p)(®1,...,P,) = %V"*E(Expp(sq)n))(fsqn, o Ts®n)|
s=0

where 7 is the parallelism from p to Exp,(s®p).

6.1 Convergence analysis in distance

The general update rule of the information Newton’s method follows

E
198 _ 0. (25)

pr+1 = Exp,, (x®k),  He(or) Pk + G(ok) o

Here o, > 0 is a step size and Exppk(-) is the exponential map at pg.

Recall that in the convergence proof of Euclidean Newton methods, it is assumed that
V2f(x) is positive definite around a small neighbour of the optimal solution z*. In the
probability space, we assume that the following assumption holds analogously.

Assumption 1 Assume that there exists (,d1,d2,03 > 0, such that for all p satisfying
D(p, p*) < ¢ and @1, Py € TyP(Q), the following statements hold.

VZE(p)(®1,®1) > 61942, (A1)
V2E(p)(®1,®1) < 62| @12, (A2)
IV2E(p)(®1, @1, Ba)| < 03| D1 (3] P2]l,- (A3)

Relying on Assumption 1, Theorem 17 shows the quadratic convergence rate of the
Newton’s method in the probability space.

Theorem 17 Suppose that Assumption 1 holds, py satisfies D(pg, p*) < ¢ and the step size
ap = 1. Then, we have

D(pr+1,p") = O(D(pi, p*)?).
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We present a sketch of the proof. For simplicity, we denote T}, = Exp;k1 (p*).

Proposition 18 Suppose that Assumption 1 holds. Let T be the parallelism from pj to
pr+1- There exists a unique Ry € T, P(Q) such that

T, = T_lTk+1 + & + Rp.

Then, we have

d3 P
1Tkt 1ll oy < aHTkHik + (TlHRkak‘
In order to provide an estimation on ||Ry||,,, we introduce Lemma 19.

Lemma 19 For all V € T, P(2), it follows
[ #6600 Rudz = O 1T,

Taking ¥ = Ry in Lemma 19 yields || Ry||,, = O(|Tx[3,). Because the geodesic curve
has constant speed (Boothby, 1986), HTksz = D(pk, p*)%. As a result, we have

D(pit1,p") < iD(kal) )% + gjlleHpk = O(D(pk, p*)?).-

6.2 Convergence analysis in objective function value

We next analyze the convergence rate based on our approximation methods in section 5.
In practice, we use the approximated solution ®; to update pi. Here @y is the solution to
the variational problem

inf /@HE(pk)@dac+2/<I>g(pk)1(5Eda:+/\/<l>7€5¢da;. (26)
PeS 0Pk

Here H is a linear subspace of F(2), A > 0 is a regularization parameter and [ ®RsPdx
is a regularization term in S. For instance, if S is an RKHS, then [ ®Ry®dz can be the
squared norm of RKHS, i.e., ||®|%.

Suppose that P : T P(2) — S is a projection operator from T, P({2) to S and P* :

S — T, P(Q) is its adjoint operator. Then, we can write &), in the closed-form formulation:

* 1 4 0F
&, = —P(P*Hg(pr)P +Rs) ' P*G(pr) 1@- (27)
For simplicity, we use the following notations.
-1 5E * —1 p*
9k = G(pr) oo Hep=P(P"He(pr)P + Rs)™ P (28)

For the subspace S and the regularization term A [ ®Rs®dz, we further assume that the
following three statements hold.
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Assumption 2 There exists €1 > 0, for all px satisfying D(pg, p*) < ¢, such that

‘ [ 00150~ o) Myonda

< q / oM (on) " guda. (A4)

There exists €3 > 0, for all py, satisfying D(pg, p*) < ¢, such that

'/gk(HE,PHE(pk)HE,P — HE,p)grde

< 62/9k7'lE,ng:d£U- (A5)

There exists 64 > 0, for all py satisfying D(pk, p*) < ¢, such that
[e.rG(p) 0|, <519l (A6)

The update rule in terms of density follows

pr+1 = Exp,, (axPy).

Theorem 20 Under Assumption 1 and 2, for py satisfying D(pk, p*) < ¢, with oy, = 1, we
have the linear convergence rate

E(pr11) = E(p*) < (1 + &2+ e1e2)(E(pr) = E(p")) + O((E(px) — E(p"))*/?).

From Theorem 20, we note that if the linear subspace S is appropriately chosen such
that Hg p is close to HEe(pr)~! in the sense of (A4) and (A5), then €1, ey will be close
to 0. This yields a sharp asymptotic convergence rate in terms of optimality gap, i.e.,

E(px) — E(p").
Remark 21 We note that eg = O(N). This comes from the following identity.
HepHE(pr)HEP — HE,P
=P(P*Hp(pr)P + ARw) ' P*Hi(pr) P(P*HE(pr) P + ARy) ™' P*
— P(P*Hp(py)P + A\Ry) ' P*
=AP(P*Hg(pr)P + ARw) "' Rs(P*Hp(pr) P + A\Ry) ' P*.

(29)

6.3 Convergence analysis in terms of samples

In practice, we replace py in the variational problem (26) by px(z) = + Zivzl d(x —x}) to
solve ®;. Here x} ~ pr. A natural question arises: with increasing sample numbers NV,
does Cka from samples converge to @, from distribution? Under further assumptions, the
answer is yes and we postpone the justification in the appendix.

To establish the convergence rate, we further assume that the following statements hold.

Assumption 3 There exists €3 > 0, for all py satisfying D(pk, p*) < , such that

/((i)k — @) grdr — % /((i)k — &) (He,pHE(pK) + HE(pk)HE,P)grd

(AT)
€
553 / gk E (k) grda.
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There exists €4 > 0, for all py satisfying D(pk, p*) < ¢, such that

‘/(‘i’k - ‘I)k)HE(Pk)(Ci)k — ®p)dx

< e /ngE(pk-)lgkdx. (A8)
The update rule in terms of density follows

Pr+1 = Exp,, (ar®y).

Theorem 22 Under Assumption 1, 2 and 3, for py satisfying D(px, p*) < ¢, with ag, = 1,
we have the linear convergence rate

E(pri1) = E(p*) < (1 + &2 + cxea + e3 + ea) (Epr) — E(p")) + O((E(pr) — E(p*))*/?).

7. Numerical experiments

In this section, we present numerical experiments to demonstrate the strength of information
Newton’s methods.

7.1 Toy examples

We compare particle implementations among Wasserstein Newton’s methods with affine
models 2/RKHS 3 (WNewton-a/WNewton-k), Wasserstein gradient flow (WGF), Hessian
Approximated Lagrangian Langevin dynamics (HALLD) and Stein variational Newton’s
method with the scaled Hessian kernel (SVN-H) (Detommaso et al., 2018). We note that
the update rule of WGF satisfies

T = oy — an(VF(2g) + & (@))-

The update rule of HALLD follows

iy = af — gV () THVF(2R) + (aR)-

We note that the density evolution of HALLD and HAMCMC are identical to each other.
In other words, we replace the Brownian motion in HAMCMC by & in HALLD. Here & is
an approximation of Vlog pi. For all compared methods, we use constant step sizes. For
the calculation of &, we apply KDE with Gaussian kernels and the kernel bandwidth is
selected by the Brownian Motion method (Wang and Li, 2019)[section 5.1]. This method
adaptively learns the bandwidth from samples generated by Brownian motions.

We first consider a 1D target density p*(z) o< exp (—f(z)), where f(z) = £(2*—1)% For
WGF, we set ap = 0.01. For SVGD, we set oy = 0.1 and adjust the step size by Adagrad
(Duchi et al., 2011). For WNewton-a and WNewton-k, we let ap = 1, ¢ = 0 and v = 0.
Namely, we do not apply the hybrid update. For HALLD and SVN-H, we set oy, = 1.

The sample number follows N = 100. The initial distribution follows N(0,0.01). We
plot the distribution after 2,5, 10, 20 iterations in Figure 2. Although we use affine/kernel
approximations to compute the Newton’s direction, WNewton-a and WNewton-k tend to
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Figure 2: Comparison among WGF, SVGD, WNewton-a, WNewton-k, HALLD and SVN-H
in 1D toy example. Left to right: sample distribution after 2, 5,10, 20 iterations.
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converge to the target density and they are faster than WGF. SVGD has similar performance
with WGF. HALLD and SVN-H have some particle which tend to diverge. This may result
from that the target density is not log-concave.

Then, we let the target density p* to be a 2D bimodal distribution (Rezende and Mo-
hamed, 2015). For WGF, we set a = 0.1. For SVGD, we set a; = 1 and adjust the step
size via Adagrad. For WNewton-a, we apply the hybrid update and set aj = 0.2,¢ = 0 and
~v = 0.5. For WNewton-k, we set ap, = 1,¢ = 0,7 = 0. For HALLD, we set aj = 0.2. For
SVN-H, we set o = 1.

The initial distribution follows A/ ([0,10]’,I). We plot the distribution after 2,5, 10,20
iterations with N = 100 samples in Figure 3. WNewton-k converges rapidly toward the
target density. HALLD fails to converge because V2 f becomes singular on certain sample
points. SVN-H barely moves because the initial distribution is not close enough to the target
distribution. SVGD converges slower than WGF. The Wasserstein Newton’s direction helps
samples to converge faster towards the target density with robustness.

Next, we present numerical results on a 2D double-banana shape posterior density in
(Detommaso et al., 2018). For WGF, we set a; = 0.002. For SVGD, we set a; = 0.1 and
adjust the step size via Adagrad. For WNewton-a, we apply the hybrid update and set
ap = 0.2, =0 and v = 0.001. For WNewton-k, we set a = 1, = 0,7 = 0. For HALLD
and SVN-H, we set oy = 1.

Similarly, we plot the distribution after 2,5, 10,20 iterations with N = 100 samples in
Figure 4. WNewton-k and SVN-H converges toward the posterior distribution in no more
than 5 iterations. WNewton-a collapses around the center of the lower banana. WGF and
SVGD take nearly 20 iterations to converge. HALLD converges rapidly but it diverge at
iteration 20. Here we notice that WNewton does not require heavy tunes of step sizes. The
step size ap = 1 usually leads to robust performance.

7.2 Conditioned diffusion

The conditioned diffusion example is a 100-dimensional model from a Langevin SDE, with
state uy : [0,7] — R and dynamics give by

~ Bu(l —u?)

dut— 1+u2 dt+d$t, uO:O.

Here x = (2¢)t>0 is the standard Brownian motion. The goal is to infer the driving process
x; and its pushfoward to the state u. Detailed setup of this test case can be found in
(Detommaso et al., 2018).

We compare WNewton-a with WGF, SVGD, SVN-H and HALLD. We do not compare
WNewton-k because per-iteration computation cost in the current implementation is too
heavy on this test case with N = 1000 and d = 100. For WGF, we set o = 0.01. For SVGD,
we set a1 = 0.1 and adjust step sizes via Adagrad. For WNewton-a, SVN-H and HALLD,
we set oy = 1. From Figure 5, we note that the posterior mean (which captures the trends
of true path) from WNewton-a, SVN-H and HALLD almost converge in approximately 10
iterations. Meanwhile, the posterior mean from WGF and SVGD takes 50-100 iterations to
converge. Compared to SVN-H, WNewton-a tends to have narrower credible interval. The
credible interval of HALLD in [0, 0.5] after 100 iterations has larger fluctuation.
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Figure 3: Comparison among WGF, SVGD, WNewton-a, WNewton-k, HALLD and SVN-H
in 2D toy example. Left to right: sample distribution after 2, 5,10, 20 iterations.
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Figure 4: Comparison among WGF, SVGD, WNewton-a, WNewton-k, HALLD and SVN-H
in 2D double banana example. Left to right: sample distribution after 2,5,10, 20
iterations.
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Figure 5: Comparison among WGF, SVGD, WNewton-a, HALLD and SVN-H in 100D
conditioned diffusion example. Left to right: sample distribution after 10, 50, 100
iterations. Red dots: noisy observations. Purple line: ground truth. Blue line:
posterior mean. Shaded area: 90% credible interval.
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7.3 Bayesian logistic regression

We perform the standard Bayesian logistic regression experiment on the Covertype dataset,
following the settings in (Liu and Wang, 2016). We compare WNewton-a and WNewton-k
with MCMC, SVGD (Liu and Wang, 2016), and WGF. The performances of SVN-H and
HALLD on this test example are not ideal. For the calculation of £ in WGF and WNewton-
a, we use KDE with Gaussian kernel and the bandwidth is selected by the median method,
which is the same as (Liu and Wang, 2016). The sample number follows N = 50. The
mini-batch size for stochastic gradient and Hessian evaluations in each iteration is 100.

We first discuss the choice of step sizes. The initial step sizes for the compared methods
are given in Table 1. Except for SVGD, the initial step sizes are selected from {i - 107|i €
{1,2,5},5 € {-3,...,—=T}} to ensure the best performance. For SVGD, we use the initial
step size in (Liu and Wang, 2016) and adjust step sizes by Adagrad. For MCMC, WGF
and WNewton-k, the step size is multiplied by 0.9 every 100 iterations. For WNewton-a,
the step size is multiplied by 0.82 every 100 iterations.

Method MCMC | SVGD | WGF | WNewton-a | WNewton-k
Step size oy le-5 0.05 le-5 2e-3 2e-3

Table 1: Initial step sizes for algorithms in comparison.

We then elaborate on the implementation details of compared methods. For WNewton-
k, we apply the block-diagonal approximation to accelerate the computation. For WNewton-
a and WNewton-k, we set € = 1 and use the hybrid update with v = 5x 1072 and v = 1073
respectively.

From Figure 6, we observe that WNewton-k has the best performance in terms of test
accuracy and test log-likelihood and it converges much faster compared to other methods.
Namely, WNewton-k has ideal performance on test test tests in less than 200 iterations.
WNewton-a and WNewton-k achieves higher test log-likelihood. This indicates that the
approximated Wasserstein Newton’s direction leads to better generalization on the test set.

Test accuracy
=4 o
[+ ~N
& RN
Log likelihood

o
@
>

WNewton-k

Lo/
’/
)
| WNewton-a / WNewton-a
-0.64 "
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration Iteration

WNewton-k

Figure 6: Comparison of different methods on Bayesian logistic regression, averaged over
10 independent trials. The shaded areas show the variance over 10 trials. Left:
Test accuracy; Right: Test log-likelihood.
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8. Conclusion

In this paper, we introduce information Newton’s flows (second-order optimization meth-
ods) for optimization problems in probability space arising from Bayesian statistics, inverse
problems, and machine learning. Here two information metrics, such as Fisher-Rao metric
and Wasserstein-2 metric, are considered. Several examples and convergence analysis of the
proposed second-order methods are provided. Following the fact that the Wasserstein gra-
dient flow of KL divergence formulates the Langevin dynamics, we derive the Wasserstein
Newton’s flow of KL divergence as Newton’s Langevin dynamics. Focusing on Newton’s
Langevin dynamics, we study analytical examples in one-dimensional sample space and
Gaussian families. We further propose practical sampling efficient algorithms, in affine
models and RKHS, to implement Newton’s Langevin dynamics. We show the convergence
rate of information Newton’s method with approximated solutions. The numerical examples
in Bayesian sampling problems demonstrate the effectiveness of the proposed method.
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Appendix A. Definitions and notations

In this section, we present several definitions and notations used in this paper. We briefly
review the concept of self-adjoint operator.

Definition 23 (Self-adjoint) Suppose that V is a Hilbert space and let H : V — V* be a
linear operator. V* is the adjoint space of V', which consists of all linear functionals on V.
Let (f,v) = (v, f) = f(v) denote the coupling of v € V and f € V*. The adjoint operator
of H is the unique linear operator H* : V. — V*, which satisfies

(Hvi,v9) = (v1, H*v2), Voui,vy € V.
We say that H is self-adjoint if H = H*.

Remark 24 IfV = R? is the Euclidean space, then the linear operator H can be viewed as
a matriz in R, Then, to say that H is self-adjoint operator is equivalent to say that H
1S a symmetric matriz.

We define positive definite operators as follows.

Definition 25 Suppose that V is a Hilbert space and let H : V. — V* be a self-adjoint
linear operator. We say that H is positive definite, if (Hv,v) >0 for allv €V, v # 0.

Appendix B. Proofs in section 3

In this section, we present details and proofs for propositions in section 3. Proposition 26
provides a sufficient condition to ensure that the Hessian operator is injective (invertible).

Proposition 26 Suppose that g,(Hess E(p)o,o) > 0 for all 0 # 0,0 € T,P(). Namely,
Hpe(p) is positive definite. Then, Hess E(p) is injective.

Proof If there exist 01,02 € T,P(£2) such that Hess E(p)o; = Hess E(p)oa. Then,

9p((01 — 02),Hess E(p)(01 — 02)) = /(01 — 09)G(p) ' Hess E(p) (o1 — 02)dz = 0.

By our assumption g,(Hess E(p)o, o) > 0 for all o # 0, we have o1 = 0. [ |

B.1 Proof of Proposition 3

The geodesic curve p, satisfies geodesic equation
8s,55 - g(ﬁs)_l(bs = 07

15 e ) (30)
33‘135 + 55[35 </ @Sg(ps) (Psdx> = 07

with initial values ps|s—o = p and ®s|s—¢9 = ®. For the first-order derivative, it follows

d oF oF
—E(p,) = po——dr = [ ®.G(p.)" !
ds (ps) /asps 5ﬁs dx / sg(ps) (5/35 dz,

31



WANG AND L1

where we utilize the fact that G(ps) is self-adjoint. For the second-order derivative,

d? 6E 5 (d
—F As - s(I)s As -1 sAsi —F AS
0 = 000G e [ 05,5 (L5050 o

= [ A 2)360 e+ [ Ap) <<1>s, 5E> G(ps) @iz

0Ps
+ / / (G(p0) 1, <y>‘;/§<m,y> (G(ps)"10.) (x)dady.

Based on the definition of Hg(p), (4) is proved by setting s = 0 in the above formula. To
prove (5), we introduce Lemma 27.

Lemma 27 Let H be a self-adjoint linear operator from T,y P(Q2) — T,P(Q). Namely
H* =H. Suppose that [ @HOdx =0 for all & € T, P(Q). Then, H = 0.

Proof Because H is self-adjoint and linear, for any ® € 77 P(Q), it follows

13

This completes the proof. |
Note that Hess F(p) is self-adjoint w.r.t. the metric tensor G(p), namely

(Hess E(p))*G(p) = G(p) Hess E(p),  G(p)~'(Hess E(p))* = Hess E(p)G(p) ™.

where (Hess F(p))* is the adjoint operator of Hess E(p). This tells that Hess E(p)G(p) ! is
self-adjoint. We have the following relationship.

/<I>’HE(,0)<I>dx = g,(Hess E(p)o,0) = /@g(p)_l Hess E(p)®dx.
As a direct result of Proposition 26, it follows Hg(p) = Hess E(p)G(p) .

B.2 Newton’s flows under Fisher-Rao metric

For Fisher-Rao metric, the geodesic curve p satisfies
0~ o (. [ @ipuay) =0
1 2 ~
050, + 502 — ([ ®spudy) @, =00.
And the bi-linear operator A" (p) follows
AF (p)(®1, By) = B Dy — </ <I’2pdy> Py — </ <1>1pdy) Dy, (31)
For simplicity, we let E,[®] = [ ®pdz, where & € T,P(9).
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Proposition 28 (Fisher-Rao Newton’s flow) For an objective function E : P(Q2) — R,
the Fisher-Rao Newton’s flow follows

Ot — pt(Pr — Ky, [@4]) =0,

SE SE (32)
Eo)® —pp (2= —E, |22 ) =
He(p)Pr — pe <(5pt ot [5/%]) 0,

where Hi(p) : TiP(Q) — T,P(Q) defines a bi-linear form: for ® € TP(Q),

[ onkoras = [ 4%) (2.57) @ - B fol)paa

(33)
+ [ [ o)) ~ Bl 2 . u)dyolo) (00) ~ Byl
Proof Based on Proposition 3, we only need to prove that
[ o@ et ) = [ (2,57 ) 6 (o) o
The left hand side follows
[ AT @ )" ()
:/ (9% — 2E,[®]D) (‘Zf -E, [fij pdz
Jo-s (e o (- 1]
The right hand side satisfies
[ 450 (cb, ffj) G¥ ()"0
- [ (2% -5 5] o - miwi ) @ - B fo)) pa
~ [@-go) (5 -5, | 50| ) oot~ Eyl0) [ 5 (@ - B, fa]) pi
We also observe that
fsf (& — E,[®]) pdx = E, [@‘;ﬂ —E,[®]E, [‘;ﬂ - / (‘;f _E, Bﬂ) Bpdz.
Hence, the left hand side is equal to the right hand side. |

Example 6 (Fisher-Rao Newton’s flow of KL divergence) Suppose that E(p) eval-
uates the KL divergence from p to p* ~ exp(—f). This objective functional also writes

E(p) = /(plogp + fp)dz.
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We derive that

§F §*E §(z —
) = togpla) + 41 Sy = N,

Based on Proposition 28, we can compute that (4) is equivalent to

/ PHp(p)Pdx :% / (@2 — 2E,[®]®) (log p + f — E,[log p + f]) pdz

+ [ @) - B0l pta) [ ‘“fj,(yf) (B(y) — E,[2]) ply)dydz

—5 [ ogp-+ £ = Byllog -+ 1)) ¥pds

— E,[®] / (logp + f —Epllog p + f]) @pdx
+/<I>2,0d:v— (/cbpdx>2.

Hence, the operator ”Hg(p) follows

HE(p)® = (105 p+ [ ~ Eyllogp+ f1) p — </ (log p+ f — Eyflog p + fI) @pdy> .
~ SE[®] (logp+ f — Eyllogp+ f1) p+ Bp — E, (2]
:% (2+1logp+ f—Eyflogp+ f]) (& — E,[®]) p

— 5 B, [®(logp+ /)] ~ BB, [(log p + /)] p

Example 7 (Fisher-Rao Newton’s flow of interaction energy) Consider an interac-
tion enerqgy

B =5 [ [ oW plwdsdy,

where W(x,y) = W(y,x) is a kernel function. The interaction energy also formulates the
MMD, see details in (Gretton et al., 2012). We can compute that

2
if(w) :/W(ﬂc,y)p(y)dy, (;p?(x,y) =W(z,y).
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We denote (W x p)(x) = [ W(z,y)p(y)dz. Based on Proposition 28, it follows

/ DHE(p)®dx
1/1@?—2E[ JO)(W + p— E,[W + o])pda
+ [ [ @) - o)W p)po)oo) @) — 5 (0] dyds

/@2(W*p E,[W x p])pdz — E,[®] (/@(W*p—EP[W*p])pdx>
+ [ [ ot @iy + @ ol ([ [ oewpamy)
—4&@(//mmwwwwmmmmg.

Hence, the operator ’Hg(p) satisfies

HE()B(0) =30 <~ B, < oo 5 ([ 20V« B,00 « i ) o

_ %Ep[@KW #p—Eo[W 5 pl)p+ (W x (p@))p

+ Ep[W s p]Ep[@]p — B, [W + (p@)]p — Ep[@](W * p)p
=S (W s p = B[V ) (@ — B[ ])p — 5 (B, [B(W = p)] ~ E,[BIE, [V « p])

(W 5 (p®) — Eo[W # (02)])p — Eo[®] (W # p) — E,[W # ) p.

Example 8 (Fisher-Rao Newton’s flow of cross entropy) Suppose that E(p) is the

cross entropy, i.e., reverse KL divergence. It evaluates the KL divergence from a given
density p* to p

E(p) = /log <pp ) prdr = — /(logp)p*dx + /(10gp*)p*d:v-

It is equivalent to optimize E(p) = — [(log p)p*dx. We compute that
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Proposition 28 indicates that

[ orE@dn = [(@* = 2B fal0)(p /o + Bl e)pdo

+ [@@) -2 aota) [ S5 - ) (@) — B o))y

P*(y)
1

=5 (Ep[@%] — Ef [@%]) — E,[®](E,[2] — E,» [2))

+ B, [07%] — 2B, [Q]E,- [3] + (E,[9])”
:%(Ep[qﬂ] + E,[0?]) — E,[O]E,-[®].

Hence, the operator HE(p) follows

HE(p)® = ((® —Eyr[2)p + (@~ E,fa])p").

B.3 Newton’s flows under Wasserstein metric

For Wasserstein metric, the geodesic curve p; satisfies
asﬁs +V. (faqu)s) = 07
1
s + 5chI)SHQ =0.
The bi-linear operator A" (p) follows

AV (0)(®1, ®3) = (Vd1, VD,) .

Proposition 29 (Wasserstein Newton’s flow) For an objective functional E: P(Q2) —
R, the Wasserstein Newton’s flow follows

Oipe +V - (pV ;) =0,

E (34)
My (pr) @y — V- <’W5pt> =0.

Here Hp(p) : TyP(Q) — T,P(Q) defines a bi-linear form: for ® € T;P(Q),

/(I)HE ®dx—//<v® y(; 5 (wvy)V®(y)>p(x)p(y)dxdy

SE
+/<Vq>,v25pv¢>> pdz.
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Proof Based on integration by parts, we observe that

/ AW<p><<I>,¢>>gW<p>-1‘f5fdx

E
—/|yvq>||2v <pV5> da
op
oF
:/<v5 vuvq>\|2>pdx
/<v‘;E V2q>v¢>> pdz,

[ 47 (2.57) 6 () 0ao
_ /<vq> vi5>v (pV)da
= [ (V({V® V=) V) pdx
? Evg v2q>v(‘§pE>> pdx ?Lp/ <v<1> VQ(SEVCI>> pdx
’ op Y bp '

Combining above two observations with Proposition 3, we derive

/@H%V(p)q)dz :/<vq>,v2(;qu>> pdx
[ [V V0w v (e
/ / <vq> y‘; 5 (x,y)VCP(y)> p(x)p(y)dady
+/<vq>,v2‘;)v¢>> pdz.

This proves Proposition 29. |

and

Example 9 (Wasserstein Newton’s flow of interaction energy) Consider an inter-

action enerqy
/ / p(y)dxdy.

Combining with previous computations, Proposition 29 yields that
[ort@eds = [ [ (V0(@),9.9,W(@.0)70) p(a)p(u)drdy
+ (Vo [ W ptana) ) s

sy [Tatl] [FEwies) Shwin] )
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Based on integration by parts, the operator HEV(p) s given by
HE (p)® = =V - (p(V3,W % (pV®))) = V - (p(V3, W % p) V).

Example 10 (Wasserstein Newton’s flow of cross entropy) Suppose that E(p) eval-
uates the KL divergence from a given density p* to p

E(p) = —/log <pp*> prdr = — /(logp)p*dx + /(logp*)p*dfc~

It is equivalent to optimize E(p) = — [(log p)p*dx. Proposition 29 yields

ot pypde = [ V- ola)va) [ 4
—/<v<1>( ), v2( Vo (z )> p(x)dz
:/(plv - (pV®))? <v<1> v2< )vq>> pdz.

Hence, the operator HyY (p) satisfies

HY ()@ =V - (pv (Z;v : (pvq>)>> +V- <pv2 < p > vq>)

Remark 30 For simplicity of presentations, we only present the Hessian formulas for
Fisher-Rao and Wasserstein information metrics. In fact, there are many interesting gen-
eralized Hessian formulas in Li (2019) from Hessian transport metrics. We leave systematic
studies of Newton’s flows for general metrics in future works.

zi (2 — )V - (o(y) V(y))dydz

We summarize formulations of Hessian-related operators Hg(p) under both Fisher-Rao
metric and Wasserstein metric.

Objective functional E(p) HE(p)®
1
KL divergence: 2 (2+1logp+ f —Epflogp+ f]) (P — E,[®]) p
Jptogptfodz- | Lk, w(1ogp + 1))~ B [#]E[(log p + 1)) p

%(W xp— Ep[Wx p]) (2 — E,[P])p

[ }n;eraction enel(fg)yd " f% (Ep[P(W 5 p)] — E,[RIE,[W % p]) p
3 i

+(W s (p®) — Eo[W * (p®)])p
—E,[®] (W = p) — E,[W = p]) p.

Reverse KL divergence:

[ (log p* —log p)p*da: 5(@ —E,-[®])p + 5(® — E,[D])p*

Table 2: The formulation of HE(p) under the Fisher-Rao metric.
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Objective functional E(p) HY (p)®
KL divergence:
[(plogp+ fp)da.

Interaction energy:
3 J S p(@)W (@, y)p(y)dzdy
Reverse KL divergence:
J(log p* — log p)udz

V2: (pV2®) — V- (pV2fV D).

=V (VZ,W % (V8p))p) = V - (VW % pr)pV D).

v (pv (ﬁgv : (pw))) yv. (pV2 (%) vq>) .

Table 3: The formulation of #} (p) under the Wasserstein metric.

B.4 Wasserstein Newton’s flows in Gaussian families

In this subsection, we study information Newton’s flows in Gaussian families with respect
to Wasserstein metric. We leave the proof of Proposition 5 in next subsection. Let P™ and
S™ represent the space of symmetric positive definite matrices and symmetric matrices with
size n X m respectively.

We let N denote multivariate Gaussian densities with zero means. Each p € N? is
uniquely determined by its covariance matrix ¥ € P". So we can view N ~ P". The
Wasserstein metric G (p) on P(R?) induces the Wasserstein metric G (X) on P", see
(Takatsu, 2008; Modin, 2017; Malago et al., 2018). For ¥ € P™, tangent space and cotangent
space follow

TsP" ~ Ty P" ~ S™.

Definition 31 (Wasserstein metric in Gaussian families) Given X € P, the Wasser-
stein metric tensor GV (%) : S* — S" is defined by
GV (2)71s = 2(2S + SX).
It defines an inner product on the tangent space TxP". Namely, for A1, Ay € TxP™ ~ S"™
g (Aq, Ag) = tr(A;6V (2)Ag) = tr(S1G" (2)718s) = 4tr(51%5s).
Here S; € Ty P" ~ S" is the solution to discrete Lyapunov equation
A =2(2S;+ 85:%), =12

For ¥ € P", there exits a unique solution to discrete Lyapunov equation. Again, we focus
on the case where the objective functional E(X) evaluates the KL divergence from p with
covariance matrix Y to a target Gaussian density p* with covariance matrix >*. Then,
E(Y) satisfies (8).

Proposition 32 (Gradient and Hessian operators in P") The gradient operator fol-
lows
gradV B(X) =GV (2)"'VE(D) = 2(Z*) 1 + (%) 7'y — 2I.
And the Hessian operator satisfies that for all A € S,
¥ (A, Hess"W E(2)A) = 4tr(SLS(Z) 1) + 4tr(5?),

where S is the unique solution to A = 2(XS5 + S%).
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Given A € S”, the geodesic curve f]s with 23\3:0 = ¥ and 8523]320 = A follows f)s =
(I +258)%(I + 255), where S = G(X)71A is the solution to A = 2(XS + S¥). We can
compute that

E(i]s) = %(tr(([ +25S)2(I + 255)(2*)7!) — n — logdet((I + 258)S(I + 2s5)(Z*)1)).

The Taylor expansion of logdet(I + sS) w.r.t. s satisfies

2
log det(I 4 sS) = str(S) — % tr(S?) + o(s?).

Hence, the first-order derivative follows

9 ps(s))

s =tr(SL(XH) 7 + tr(ZS(EZ) 1) — 2tx(9)

s=0
=tr (S (Z(E) '+ (Z)'E-21)).

By the definition %E(Z(s))‘szo = tr(Sgrad E(X)), this yields grad E(X) = X(Z*)~! +
(*)71¥ — 2T and the second-order derivative follows

S;E(z(s)) — 4(STS(Z) ) + (S,

s=0

This completes the proof.
Similarly, let us consider the linear self-adjoint operator H% (X) : S® — S", which defines
a bi-linear form

tr(SHY (£)S) = g% (A, Hess"W E(X)A) = 4tr(SLS(X*) 1) + 4tr(S?).
We can compute that Hg(3) is uniquely defined by
Hp(X)S =288(2*) 1 4 2(X*) 7188 +48, VS es™

Because tr(SHg(X)S) = 4tr(SLS(X*)71) +4tr(S?) > 0 for S # 0,5 € S, H is injective
and invertible. Now, we are ready to present the Newton’s flow of KL divergence in Gaussian
families.

Proposition 33 The Newton’s flow of KL divergence in Gaussian families follows

{zt —2(5%, +%5,) =0, (36)

25 SH(E*) T4 2(X%) LGNy 4+ 45y = —(Z(XF) 7+ () 7Iy - 20).
Proof The Newton’s flow follows
> — (HessW E(%;)) L grad" E(%;) = 0.
We note that Hess" E(X)GW (2)~! = H¥ (2), which implies

(HessW E(X) 1 =gV (=) "HY (2)~ L
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Hence, we can reformulate the Newton’s flow by

GV (Z) 1S =0
H%V(Et)St = —gradW E(Et)

From the formulations of G(X)~!, grad"’’ E(X) and Hp(X), we obtain (36). [ ]

Example 11 In one dimensional case, the second equation in (36) has an explicit solution

Sy = —%. Let ¥y = Y2, where Y; > 0. Then, the first equation in (36) turns to

. 2*)—ly2 -1
2Y;Y; + 4Y; ( ¢ =0
e T

or equivalently,
(E*)_IY}/ o Y;:l
(=) 4y

Y; + =0. (37)

Let f(Y) = $((£)71Y? = 1 —log((X*)"'Y?)). Then, we have Vf(Y) = (£*)~1Y — Y1
and V2f(Y) = (£*)"L + Y2, Hence, the Newton’s flow (37) coincides with Newton’s flow
of f(X) in Euclidean space. We also note that (37) is identical to the evolution of ¥ in
Proposition § by substituting ¥y = Y.

B.5 Proof of Proposition 5

We first prove that >; is positive definite. We formulate that

HE(X) = tr(: S VE(D)) = 2tr(S 2 (%)~ = 7))
=tr(Sy (X (=)~ + () 7y — 21)) —tr(S(288: (X)) 4 2(2%) 7188y + 45y))
- — 4tI'(StEtSt(E ) ) 4tI‘(St ) S
As a result, F(X;) is non-increasing. Applying the idea of proof in (Wang and Li, 2019,
Theorem 1), we can establish that ¥ is positive definite. Then, we examine that ®, satisfies

(3). We observe that

V2 (0 V2®;) — V- (V2 VD) — V- (Y f) — Apy
=2V?: (Sipe(x)) = 2V - (pe(2)(Z*) 71 Spx) = V - (pe(2) (55) ') — Apy.

We note that Vpu(x) = =S, zpi(x) and V2p(x) = =37 pi(2) + 27 xS py(2). Hence,
we derive all four terms in the above equation as follows. First, it is easy to observe that

V2 (pi(@)Se) = te(S,V2pi(),  —Apr = =V (p]) = — tr(V2py(2)).
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We can also compute that

— V- (pe(27) 7' Sp)

== i(pi(z)W Spx);
i=1
= 3 [o@)u((57) " Sea)s + (WSi)idip(a)]
i=1
= — p() [tr((Z*)718p) + (%) 7' Se) " (—27 )]
= — p() tr(Sy(E) 7 (I — By taaT))
:% (265, (511 + (37) 71550 V2pr ().
Taking Sy = I into the above equation yields

SV () ) = 5 () (578 V()

Because (X, S;) satisfies (36), we have

2V2 2 (Sipe(x)) — 2V - (pe(a) (B5) 71 Spw) = V - (pu() (%) 1) — Ay
=tr((25; + SeSe(ZF) 4+ (BF) LSS + S () T+ (2% 7S — 21 V(7))
=0.

This completes the proof.

Appendix C. Details in section 4

In this section, we present detailed discussion of Wasserstein Newton’s flow and Newton’s
Langevin dynamics with particular examples.

C.1 Connections and differences with HAMCMC
HAMCMC approximates the dynamics of
dX; = —(V2f( X)) N (VF(Xy) + T(Xy)) dt + /2V2f(X;)~LdB;,

where I'j(z) = 37, a%j ((VQf(Xt))fl)ij. Here T'(x) is a correction term to ensure that

p¢ converges to p*. The evolution of p; follows
Ope =V - ((V2H)IVF+T) o) + V2 ((V2) ' pr) -
We formulate the above equation as
Oipr =V - (p(V2 )NV +Viegpr) = V- (prvi), (38)
where we denote v; = (V2f)"1(Vf + Vlog p;). Moreover, v; satisfies
—V - (pV2fve) =V - (0 V f) — Apy = 0.
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pNewton hy yNewton iy the Newton’s direction equation (3)

On the other hand, replacing V
yields

V2 2 (p Vv V- (o VEfVROn) T (Y f) — Apy = 0.

Hence, v; # vie"'on Then, (38) is different from information Newton’s flow because the
term V2 : (p, VveVton) is not considered.

C.2 Connections and differences with Newton’s flows in Euclidean space

We recall that the density evolution of particle’s gradient flow in Euclidean space corre-
sponds to the Wasserstein gradient flow (Villani, 2008). We notice that this relationship
does not hold for the Wasserstein Newton’s flow.

Consider an objective function:

where f(x) is a given smooth function. Here we notice that minimize p for E(p) in proba-
bility space is equivalent to minimize z for f(x) in Euclidean space. Namely, the support of
the optimal solution p contains all global minimizers of f(x). The gradient flow in Euclidean
space of each particle follows

dX; = =V f(Xy)dt,

A known fact is that the density evolution of particles satisfies the following continuity
equation
Oupe =V - (0 V f) = —grad" E(py),

which is the Wasserstein gradient flow of F(p) in probability space.

We next show that Newton’s flow in Euclidean space of each particle does not coincide
with the Wasserstein Newton’s flow in probability space. For simplicity, we assume that
f(x) is strictly convex so V2 f(z) is invertible for all z. Here, the Euclidean Newton’s flow
of each particle follows

dXy = —(V?f(Xy)) 'V f(Xy)dt.

The density evolution of particles satisfies the continuity equation

Opr =V - (p(V2 )TV ). (39)
On the other hand, the Wasserstein Newton’s flow writes
Ops + V - (ps VONewton) — (40)

where ®NeWton i the unique solution to
—V - (V2 V) =V - (pVf) = 0. (41)

We note that in general equation (39) can be different from equation (40). Later on
in Lemma 35, we formulate the following Hodge decomposition of the Euclidean Newton’s
direction

—(V2)7TIVS = VOt 4 g,

where V - (p;V2f€;) = 0. Here, the constraint on & does not necessarily ensure that
V - (pt&) = 0. Hence, equation (39) can be different from equation (40).
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Remark 34 In one dimensional case or f is a quadratic function, there exists ®Newton,
such that —(V2f)~IVf = VoNewton  fence equation (39) is same as equation (40). We
also show an example of € # 0. Let Q = R? and we define

() = log(exp(n) + exp(z)) + 5 (a? + 33),

where X > 0 is a parameter. For simplicity, we denote p; = exp(z1)/(exp(x1) + exp(z2))
and pa = exp(z1)/(exp(z1)+exp(z2)). Then, we can compute that the gradient and Hessian
of f(x) follows

P1 + )\.’El 2 p1ip2 + A —p1p2 :|
\Y% = , V = .
/(@) [P2 + Axg] /(@) [ —pip2 pip2+ A

Because pipa + A > 0 and det(V2f(x)) = A2 + 2\p1p2 > 0, V2f(z) is positive definite. We
note that

- 1 +A pip2 p1+ Az
V2 ly _ [P1P2
(V@) i@ A2+ 2A\p1p2 | P1p2 pip2 + A [p2 + Axa
:; [p1p2(1 + Az + x2)) + AM(p1 + /\ml)]
A2+ 2Ap1pa [P1p2(1 + A(z1 + 22)) + A(p2 + Ax2)
_ . [Fl(fﬂ)]
R

If (V2f(2))"'V f(x) is a gradient vector field, we shall have
Oy F1 () = Oy, Fa ().

However, we can examine that

83;2 Fl (1') _ P1p2

=—= (1 14+
S (L1 A ) +

22p1 (A (p1 + Az1) + papa(1 + A(wy + 952))))
A2+ 2Ap1po .

_ pip2 22p2 (A(p2 + Ax2) + p1p2(l + A(x1 + 22)))
N (1 T pa(L 4 Awr +22)) + e rn -

This indicates that (V2 f(z))~1V f(z) is not a gradient vector field. Hence, & # 0.

Lemma 35 For given p € P(RY), there exists a unique ® € T;P(Rd) (up to a constant
shrift) and a vector field &€ : R® — RY satisfying V - (pV2f€) = 0 such that

~(V2f(2)) "'V f(z) = VO(z) + £(x).
Proof We first show the existence of ® € T;P(Rd) and &. Note that ® is the solution to
—V - (pV?fV®) =V - (pV ).

Denote H® = —V - (pV2fV®). Then, for ® # 0, we have

/ PHDAx = / VoIV2fVdpds > 0.
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Hence, H is a positive definite operator and it is invertible. Thus ® = H~1 (V- (pVf))
exists. Because V2f¢ = Vf — V2fV®, it follows

V- (V2fE) =V (pVf) = V- (pV*fVE) = 0.

Hence, & also exists. We next prove the uniqueness. Suppose that V2f(z) 'V f(z) =
V®i(z)+ & (x) = VPy(z) + &2(x). Then, we have V& — VPy = &9 — £;. Hence

/(@1 — @2)7‘[(@1 — @2)d$ = /(V(I)l — V(I)g)TVQf(V% — V@g)pdaz
= /(V‘bl — V&) VA f (€2 — &1)pda = — /@1 — ®)V - (pV? f (&2 — £1))dz = 0.

Because H is positive definite, this yields that ®; — &3 = 0 (up to a spatial constant). W

C.3 Newton’s Langevin dynamics in one dimensional sample space

In this subsection, we provide examples of Newton’s Langevin dynamics in one dimensional
sample space. In particular, similar to the Ornstein—Uhlenbeck (OU) process in classical
Langevin dynamics, we derive a closed form solution to Newton’s OU process.

Here we assume that = R and f is strictly convex. The essence of Newton’s Langevin
dynamics is to compute ®N°V" from the Wasserstein Newton’s direction equation (3).
Proposition 26 ensures the uniqueness of the solution to (3). For the simplicity of notations,
we neglect the subscript ¢.

Proposition 36 Suppose that p > 0 and let w = V®. Then, the Newton’s direction equa-
tion (3) reduces to an ODE

"+ (log p)' — f'u— f — (log p) = 0. (42)
Proof In 1-dimensional case, the equation (3) follows
VA(pVi®) = V(pV VD) = V(pV f) = V?p = 0.
The above equation is equivalent to
pV3® + VpV2d — pV2fVD — pVf —Vp+C =0,

where C' is a constant. Because p € P(R) C L'(R). Hence limj; o p(z) = 0, which
indicates C' = 0. Suppose that p > 0 and let © = V®. Dividing both sides by p, we obtain

u//+u/pl/p—fHU—f/—p//pZO.

By the fact that p'/p = (log p)’, we derive (42). [ |

We consider the case where f/(z) and (log p)’(z) are affine functions. Then, ODE (42)
has a closed-form solution. Applying ODE (42), we obtain the exact formulation of Newton’s
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Langevin dynamics in Proposition 8. For the rest of this section, we present the proof of
Proposition 8.

Proof In section 3 Proposition 5, we show that if the evolution of X; follows NLD, then
X follows the Gaussian distribution. We first solve the Newton’s direction from ODE (42).
Suppose that (log p)'(z) = ¥~ (z — ). The ODE turns to be

W =S @ = ) — (59— (5 e — i) + 57 @ — ) = 0.
We can examine that the following u is a solution to the above ODE.

_ Z_l _ (E*)_l 22—1
Ton-1 + (E*)flx »-1 4 (Z*)

u(z) T+

Hence, we have ®Newton(z) — 2(22**_43) z? — 225:2 uxr + pz. As a result, NLD follows

DI I )
X = X * ) dt.
dXy < +Et#t+ﬂ>

DLITES S 3
The dynamics of pu; satisfies

PO I 23
— “dt = (— *\dt.
E*+Etut E*_thlult—f_lj’) ( Nt"‘,u)

This indicates that pu; = u* + e t(up — u*). The dynamics of ¥; follows

3y = d(E[X]] — pf) = 2E[X,dXy] — 2pudpu
DI I 23"

) 2y __ _ e~ 2 * _ _ * dt:2
E*+Et( ¢+ i) S T ut+u)]

DI I
DI DI

We can rewrite that

(Z* + ) d%y 1 1
dt = = — ) d%,.
22 — X)) %y o —%,) ax, )

Integrating both sides of the above equation yields

t —log [%" — %[ + % log ¥o = —log X" — X¢[ + %IOth, (B¢ — 5*)? = (o 502*)2 2%,
Hence, the solution 3; follows
Y =34 M + (2 — z*)e—t\/e_%(zo_E*)2 + 8
2% 432 Yo
|

Now, we are ready to compare the NLD with OLD, LLD and HAMCMC. Here we
consider f(z) = (2X*)71(z — p*)?, where ¥* > 0 and p* are given. The OLD satisfies

dX,; = — (297N (X; — p*)dt + V2dBy,
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which is also known as the Ornstein-Uhlenbeck process. And LLD writes

dX; = —(2%) 7N Xy — p*)dt + 271Xy — pe)dt.

The mean p; and variance ¥; of OLD and LLD both satisfy

On the other hand, HAMCMC follows the dynamics

e = 1t + 67(2*)_%(’“0 ), Sy =Y+ 672(2*)_%(20 — ).

dXt = _(Xt - /,L*)dt + Vv 2E*dBt

For HAMCMC, the evolution of mean p; follows

dp = dE[X¢] = —(pz — p*)dt,

and the evolution of variance Y; satisfies

A%y = d(E[X?] — pf) = 2B[X;dXy] — 2pudpuy

The mean p; and variance ¥; of HAMCMC follows

=2 [~ (S 4+ 1) + g+ S+ (e — p*)] dt = 2(5* — By)dt.

pe =t e o — pt), D= +e (Do — XH).

We summarize our results in Table 4.

Dynamics Particle Mean and variance
NLD dX, = (=2t x, _ 25" * " :_Hj i eei;(/-;() __2#*)
o= (B )| el o e
ot/ TR
OLD dX; = —(3%) 71Xy — p*)dt + V2dB, pe =+ e 0 (g — p¥)
LLD [dX, = (%) N(X, — p")dt + S, (X — ) dt | Sy = B + e 2E) 7' (5 — ¥%)
HAMCMC dX; = —(X, — p*)dt + /25*dB;. E‘f:g‘:::_;((”zoo__’gl)

Table 4: Comparison among different Langevin dynamics on 1D Gaussian family.

Compared to OLD and LLD, the exponential convergence rate of u; and ¥; in NLD
does not depend on ¥*. This fact shows that the NLD is the Newton’s flow for both the
evolution of mean and variance in Gaussian process. We also note that the convergence
rates of mean and variance are different in HAMCMC, while they are same in NLD. In
section 7, we use numerical examples to further demonstrate the differences between NLD

and HAMCMC.
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Appendix D. Connection with Stein variational Newton’s method

The Stein variational Newton’s method (SVN) is also a second-order method for sampling.
It aims to minimize J,[¢], which evaluates the change of E(p) along the transformation
map ¢ : R? — R%,

Jpl#] = E((I + ¢)#p)- (43)
Here (I + ¢)#p denotes the pushforward density of p along the map I(z) + ¢(x) and I(x)
is the identity map. In each iteration, SVN solves ¢ € S¢ via the following equation:

D?J,[0](3, ) = —DJ,[0](3), € S”. (44)

Here S is the RKHS related to a kernel function k(z,7) and S = S x --- x S. Besides,
DJ, and D2Jp denote the first and second variation of J,.
We note that the following relationships hold

D)) = [ $7(VS + Viog p)pd.

D*J,[0](3, @) = Eun ()T V2 f ()8 (2) + tr(Vp(2) Ve ())].

If we restrict 4 and ¢ to be gradient vector fields. Namely, there exists ¥(z), ®(z) : R? — R
such that ¥ (z) = VU (x) and ¢(z) = V®(z). Then, we recover the gradient and Hessian
operators in probability space with Wasserstein-2 metric.

DJ,[0][VY] :/((V¢,Vf>+A\1/)pdx=/\IfgradW E(p)dz.

D2J,[0)(V¥, Vo) :/((v%v%) + VUV V) pdx

= / UHY (p)Pda.

On the other hand, the kernelized Wasserstein Newton’s method in each step solves ® € S
from (3). Because S is a Hilbert space, this is equivalent to find ® € S such that

/\I/HessW E(p)[®]dx = —/\I/gradw E(p)dx, VYU €S,

or equivalently,
D2J,[0)(V®,V¥) = —DJ,[0](VF), YV¥eS.

This can be viewed as a restriction on (44). Namely, we solve D2.J,[0](2p, ¢) = —D.J,[0](z))
in the space {¢ = V®|® € S} instead of S.

Remark 37 We notice the differences between Wasserstein Newton and Stein variational
Newton in formulations. SVN studies the second order variations w.r.t. transportation
maps, while we focus on these wvariations w.r.t. densities. Besides, we benefit from the
utilization of gradient and Hessian operators in probability space with Wasserstein-2 metric.
This allows us to to prove the convergence rate of information Newton’s method in the sense
of density.
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Appendix E. Proofs in Section 6

In this section, we provide convergence proofs of information Newton’s method with ap-
proximated Newton’s direction in section 6.

E.1 Riemannian structure of probability space

We first provide some background knowledge for the Riemannian structure of probability
space. For simplicity, we define the exponential map and other Riemannian operators on
cotangent space.

Definition 38 (Exponential map on cotangent space and its inverse) The exponen-
tial map Exp,, is a mapping from the cotangent space Ty P(2) to P(Q2). Namely, Exp, (®) =
Psls=1. Here ps,s € [0,1] is the solution to geodesic equation (30) with initial conditions
pAs|s:O = P0, <I>s’s:0 = .

The inverse of the exponential map Exp, (p1) follows Exp;ol(pl) = G(ps)0sps|s=o0. Here
Ds, 8 € [0,1] is the solution to geodesic equation (30) with boundary conditions ps|s—o = po

and ﬁs‘szl = p1-

We also denote Expj;(®) to be the solution at time ¢ = a to the geodesic equation (30) with
initial values pp = p and &g = ®. As a known result of Riemannian geometry, the geodesic
curve has constant speed (Boothby, 1986). Namely, for ® € T,;P(£2) and o > 0, we have

Exp; (®) = Exp,(a®).
And for pg, p1 € P(12), it follows
I Exp,, (p1)l5, = Dlpo, p1)*.
We define high-order derivatives on the cotangent-space in Proposition 39.

Proposition 39 For all ® € T, P(Q), it follows

Sn—l

(n—1)!

E(Exp(®)) =E(p) + sVE(p)(®) + ... V" E(p)(®,..., D)

v %V"E(Expp(m))m@, ),

where Ty is the parallelism from p to Exp;‘(q)) and A € (0,s). Here V"E(p) defines a n-form
on the cotangent space T, P(§2). Namely, it is recursively defined by

O e
V'E(p)(®1,...,0,) = %V" 'E(Exp,(s9,))(1s®1, ..., 7s®po1)|
s=0

where 75 is the parallelism from p to Exp,(s®;,).

Proof We first show that

8 n— S n S
%V 1E(Expp(@n))(7'5¢>1, ey TsPpo1) =V E(Expp(q)n))(TsQ)l, ey Ts®@y). (45)
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From the definition, it follows that

%V"_IE(EXpZ(@n))(TSCI)l, o Ts®p 1)

= ;V”1E(Expf)+t(<1>n))(7's+t<l>1, o Tt ®n1) »

— ;V"‘lE(EXPExp;@n)(qu)n))(Tthq)h ey TiTsPr—1) i

:V"E(Expf)(@n))(Tstl)l, ey Ts®Pp).
From (45), we can recursively compute that

o E(Exp(®)) = V'"E(ExpS(®)) (75D, ...7sP).
(0s)" P P

The Taylor expansion of E(Exp;(®)) w.r.t. s completes the proof. [ ]

E.2 Cauchy-Schwarz inequality

To complete proofs in section 6, we introduce Lemma 40.

Lemma 40 (Cauchy-Schwarz inequality) Suppose that H : T, P(Q) — T,P(Q) is a
self-adjoint linear operator and H is positive definite. Then, for &1, Py € T;P(Q), we have

(/ <I>1H<I>2d:c)2 < </ <1>1’H<I>1dx) </ <1>2’H<I>2dx) .

Proof The proof is quite similar to the Euclidean space. For all s € R, we have
0< /((I)l + Sq)g)/H((I)l + S@Q)dﬁﬂ
:32/q>27-[<132da;+23/@1H®2da:+/<1>17-[®1dx.

Because the arbitrary choice of s, it follows that

<2/<I>1HE(p)<I>2dx>2 —4 (/ <I)17'[E(p)¢)1d:v> </ <I>2HE(,0)<I>2d:r> > 0.

This completes the proof. |

E.3 Proofs of Proposition 18 and Lemma 19

To prove Proposition 18, we introduce Lemma 41.
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Lemma 41 For all ® € T, P(12), it follows
1_.
VE(pr)(®) + V2 E(pi) (Ti, ®) = _ivdE(EXp,))\k)(T/\ThT)\Tka ™®),

where Ty, is the parallelism from py to Expf)}‘k (Tx) and X € (0,1).

Proof Consider an auxiliary function
A(s) = VE(Expj, (Ti))(15®).

Directly from the definition of high-order derivatives, it follows

0 s

5 AG) = V2E(Exp}, (Tx)) (75 Tk, 74),
02
052

Hence, we can compute the Taylor expansion

A(s) = VPE(ExpS, (Ti)) (7T, 7T, 7®).

VE(Exp,, (T1,))(1®) = VE(pi)(®) + VZE(pi) (Ti,, @) + %ng(EXp;\k)(TATkaTATka D).

On the other hand, we notice that

| 0E

5 dr = 0.

VE(Exp,, (Ty))(r1®) = VE(p")(11®) = / 126G (p)

This completes the proof. |
Based on Lemma 41, Note that ®; = —%E(pk)—lg(pk)—l(%. Hence, it follows

oF
He(pe)™ Tis1 = Heloe)Te + Gor) ™' — — He(or) Ry

0Pk
For arbitrary ¥ € T P(£2), we have
V2E(pr) (¥, 7 Tii1)
:/\IJ’HE(Pk)TlTkdeU
= / V(HE(pr) Tk + g(pk)lgi — HEe(pr)Ri)dz (46)

=V?E(pr) (¥, T},) + VE(p,) (V) — VE(pi) (¥, Ry)

1
=— §V3E(EXP;\,€)(7’>\\I’7TATk,T)\Tk) — V2E(pr) (¥, Ry,).

Here the last equality comes from Lemma 41. Based on the definition of parallelism, we
notice the fact
138 gy (o) = 1l Y € T3 P(9).
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Taking ¥ = 77T} in (46), applying Assumption 1 and utilizing Lemma, 40 yields
Ol Teall}, < [V2E(or) (7 Tor, 7 Ty
g% ‘V?’E(Expgk)(T)\T_lTkH, TATk,TATk)( +|V2E(pr) (77 Ths1, Ric) |
g% ‘VgE(Exp;‘k)(TAT_ITk+1, T, T/\Tk)‘

+VIV2E(or) (Ri, Ri) | V2 E(pr) (AT i1, AT Tey1)|

§53HTATkHQExp;k(q>k) HT)\TilTkJrluExp;‘k @) 0217 Tt llpi | Bicll o

=03] Tl 5, 7™ Tl + S2ll7™ Tt I Rl -

Hence, it follows

_ 3 2
ITes1llpers = 177 Thrallpe < SITel5, + 51 R -
01 01

To prove Lemma 19, we introduce the following Lemma, 42.

Lemma 42 We have following estimations

1@kllor = OUTkllp)s 1 Ths1llpes = OUTkr)-

Proof From Assumption 1 and Cauchy-Swarz inequality, it follows that

112, :/(I)kg(,ok:)_lq)kdx < 51_1/(I)kHE(Pk)(I)kde

)

_ 1 0F _
5! [ @000 e < 5l | 5
Pk Pk

0Pk

We also notice that from Lemma, 41,

H5ﬂk r VE(er) (i)

oF
V5 (T 5 ) + (\Tkn

OF
=0 (|Tk’||Pk

k pk)
As a result, we have || P, = O(

oE

k pk>

> = O (||Tk|p,)- We also note the triangle

Spk

Hépk
inequality
Tkl pe = 1@kllpr | < N Ths1llprgs < N Tkl + [Pl pr-

This yields [|Tis1 ey, = OUTklp0)- -

We finally show the estimation of ||Ry||,,. Based on the first-order approximation of the
exponential map and the parallelsim, we have the following estimations

/ V(o — pr)da = / WG (o) Tidr + O(|[ ¥ e | Tk [2,),
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/ U(ppss — pr)dar = / UG(pr) " Bpda + O(| T | 242,)

- / UG(pr) "B + O[Tl | Tel2,).

and
/\If(p* — pry1)dz = /‘Ifg(pk+1)_1Tk+1d$ + Ol pyy | T [15,.,.,)

:/qujg(pk)1T1Tk+1dx+O(”\IJ||pk”Tk+1H2 @ =77, [ T l15,.,,)

Pk+1

—/T_I‘I’g(pk)_lT_lTk+1dfv+O(H‘PHpkHTkHHﬁHI + 1l 1Pkl Tesa 15, )

P41
= / VG (o)~ Teada + Ol | T, + 19 = 77 oy 77 Tt [ )
Z/‘I’g(pk)lTlTkﬂdx + Ol 1 T 15,4, + 1ok 12 o [ Tt 1)
= [ 0G0 7 Do+ O T2,

Furthermore, we have Ry = T} — T_lTk_H — ®;. and

/‘I’(P* — pr)dz — / U(p* = pr+1)da — /‘I’(Pk+1 — pr)dz = 0.

This completes the proof.

E.4 Proof of Theorem 20
We first notice that
\E

VE()®) = [ 26() 5

By taking (47) into Lemma 19 and utilizing (A3), we note that for o € T P(€2),

dz, VQE(p)(®1,<I>1):/<I>7-[E(p)<1>da:. (47)

[ swode =~ [ HetonTiods + (ol Tl (18)

Based on the Taylor expansion on the Riemannian manifold with (A3), it follows

2
Y

_40F
E(pr+1) ZE(Pk)+ak/‘1>kg(Pk) lﬁdiﬂ' 5

. / DM (pr) Brcd + OB 2,).

Following (27) and (Ab), this yields
E(pr+1) — E(pr)

O[2
= —ag /gk%E,ngdﬂﬁ + ?k /ngE,P%E(Pk)%E,ngdJC + (9(||q)k||,?3k)
(49)

a2 —2a a?
——k Tk 5 k /ngE,pgkdx + ;/gk(HEPHE(Pk)HE,P — Hp,p)grdr + O(||@4l3,)
a% — 2a 6204% 3
Ss=—— | 9Hppadr + == [ gHpp(pr)grde + Ok, )-
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Similarly, by the Taylor expansion along with (A3), we have

E(p") — E(pr)
:/ngkd$+;/TkHE(pk)de$‘1’0(”Tk”?}k) (50)

1
-T2 /TkHE(pk)dex +O(|ITell;,)-

According to (A1), (A2) and Cauchy-Schwartz inequality, we have

1M (on) " g2, = / He(on) kG (on) He(pr) grde
<o7! / Helon) geHs (o) i (o) guda

=51 [ (o) G(00) Gor)gnds
§51_1||HE(pk)ilngpkHg(pk)gknpk'
Besides, from the proof of Lemma 42, we have

oF
1G (k) gkl o = H5P

= O([[ Tkl pr)-
Pk

This tells [|He(or) " gkl o = OUIG(ox)9kll0) = O(Tklp,)- Hence, by utilizing (48) two
times, we have

/ngE(Pk)lgkdw
- / He (o) " TiHe (o) oxd + O T2, 1He(or) " gkl
__ / Tygrda + O(| Tk 13,)

- / TiHe (o) Tide + O(|Tul3,).
This indicates

E(p*) — E(pr) = — ;/Tk’HE(Pk)TkM +O(|Tx|3,) 1)
51
—— 5 [ aHelp) gude + OUTLIE,).

Following (A6), we note that

S OF
40 = H%E,pgw) =

oF
=0|||— = O(||T; .
) (H " > (1Till)
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In summary, combining (A4), (49) and (51), we have
E(pr+1) — E(p?)
<E(pr) — E(p*) +

6104%
2

oai — 20,

5 / gHE pgrdx

+ / gkt p (o) gxdz + O(|1B]3,)

1 _ a? — 2a
Sz/ngE(Pk) Ygpda + H/ngE(Pk)gkdw

2

2
o — 2|1 _
Jog = 2arfer 5 | /Qk'HE(Pk) Ygrda +

(ar—1)2 o2 —2a4ler el +e1)ad
- 5 2 + 2

By taking aj = 1 and utilizing (51), we have
* €1+ €2 + €169 _
B(pin) — () <229 [ gt gude + O(ITLG,)

=(e1 + €2 + c1e2) (E(pr) — E(p")) + O((E(pr,) — E(p))*?).
The last equality comes from || T3]3, = O ([ TiHE(pr)Trdz) = O(E(pr) — E(p*)).

ea(1l+ el)az
2

) / geH (o) ez + O(T]2, ).

+ / aHe(or) grdz + O(|Tx]I2,)

E.5 Proof of Theorem 22

For simplicity, denote py = &), — ®;. From the previous derivation, with a; = 1, we note
that

E(pr+1) — E(pr)
1 N
=- /gk(HE,ng + pr)dr + 3 /(pk + He,pge)He(pr)(Hepgr + pr)de + O(|k|3,)

1

1
=5 /gk”HE,ngdl' +3 /gk(HE,P%E(Pk)HE,P — He,p)grdx

1
- / <gkpk; — §pk(HE(Pk)HE,P + HE,PHE(Pk))9k> dx

1 ~
+5 [ s e + O,

1 € €3+ ¢€ _ A
§2/ngE,P9k:d33+ ;/ngE,P(Pk)gkde+ 3 5 - /ngEl(Pk)gkdfb”rO(H‘I’ngk)-

The last inequality further utilizes (A7) and (A8). We also note that
1Pkl pr < IPkllor + 1Pkl -

And we have 1
lokll2, = / PG(p) e < 5 / et p(on)pida

€ _
< | gHE(pr) Fardz = O(||T3|12)-
01

Hence, || ®4|,, = OO(||Tkll5). As a result, by utilizing (51), we complete the proof.

55



WANG AND L1

E.6 Justification of Assumption 3

To justify Assumption 3, we first introduce some definitions.
For an energy function E(p), we call it well-defined w.r.t. samples if E(p) is well-defined
for p= + Zf\i 1 6(x — x;), where ¢ is the Dirac-delta distribution. We denote

P(Q2) = P(Q) { 25 i) |zi ~ p, pGP(Q)}

Remark 43 Typical examples of such energy functions include

~ [ s@pla)da
~ [ s pp(a)da

Here f(z; p) is well-defined w.r.t. samples for fized x. For instance, f(x;p) = [w(x,y)p(y)dy
for some smooth function w(z,y).

where f(x) is a smooth function. Or

We say that {p,} C P(2) weakly converges to p € P(Q) if for any smooth (test) function

Jin [ @@= [ 5@

We say that E(p) is convergent w.r.t. samples if E(p) is well-defined w.r.t. samples and

[

lim E(p.) = E(p),

n—o0

for any {p,} C C P(Q) weakly converges to p € P(Q).
For p € P(f2), we define the variational problem

J(p, ®) :/@HE(P)<I>dx+2/<I>Q( )~ 1‘; da:+)\/¢723<1>dx.

Suppose that ||®||s is a norm in S, which is independent of p. We further assumes that
|®|ls and the regularization term [ ®RsPdz satisfy Assumption 4.

Assumption 4 There exists d5,0¢ > 0 such that for all D(p, p*) < (,
06l| @[5 < (|17 < 05]| 2|3 (A9)

There exists 07 > 0, such that

/<I>Rs<1>dx < 67)|®||%. (A10)
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Suppose that for fixed ® € S, J(p,P) is convergent w.r.t. samples. Then, for fixed
p € P(Q), J(p,®) is well-defined and we denote ®(p) as the minimizer of minges J(p, ®).
Then, ®(p) is well-defined w.r.t. samples. We then show that ®(p) is convergent w.r.t.
samples.

For p € P(R) satisfying (A1), we note that

0E
J(p, ®) > (51“@”% + 2/©g(p)_1(5pdx + A/@Rg@dm.
As a result, for fixed p, J(p, ®) is 01-strictly convex in ® w.r.t. the norm || - |,, i.e.,
5J(p, ®
J(p, (I)l) — J(p, CI)Q) > /((I)l — (I)Q) E;()I)) dr + (51”‘1’1 — (I)QHi. (52)
P=0,

Similarly, for p € P(9) satisfying (A2), we note that

oF
J(p.®) < 5,]|®|2 + 2 / BG(p) 15 da + X570},

Hence, this yields

5J(p,®)

T(p,B1) —J(p, ) < / (B, — @y) 210 D)

55 dx + 02| @1 — Pa|2+ A7 ®1 — P2|5. (53)

P=>Py

Lemma 44 Suppose that S C F(2)/R is a Hilbert space. J(®) is strictly convex in & w.r.t.
some norm. For a variational problem minges J(®), the unique minimizer ®* satisfies

Jo-o 3

Proof The variational problem minges J(®P) is equivalent to

de =0, VYUeSs.
D=+

min J(®), st. &=
DEF(Q)/R,VES

Consider the Lagrangian £(®, U, \) = J(®) + [ A(® — ¥)dz. The KKT conditions include:

%+)\:0, U=, /)\\ild:c:O, YU e S.

Here the equality holds up to a spatial-shift. As a result, for the minimizer ®*, we have

/5‘] Ude =0, VU eS.

Because ¥ — ®* € S, this completes the proof. [ ]

Proposition 45 S is a Hilbert space. Suppose that (A1) and (A2) in Assumption 1 further
holds for p € P(Q). We assume the following statements hold.
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o For pecP(Q), |®(p)|s is bounded.
o For fired ® € S, J(p; ®) is convergent w.r.t. samples.
o For fired ® € S, H(I)H,% is well-defined w.r.t. samples.

Then, under Assumption 4, ®(p) is convergent w.r.t. samples.

Proof Suppose that ®(p) is not convergent w.r.t. samples. Then, there exists {p,}°2; C

P(Q) and € > 0 such that p, weakly converges to p € P(2), while ||®(p,) — ®(p)|l, > €.
We note that

(P, ®(pn)) — J(p, ©(p)) =J (pn; ®(pn)) — J(p, ®(pn)) + J(p, ®(pn)) — J(p, 2(p))
=J (P, ®(Pn)) = J (pn: ®(p)) + J(n, ®(p)) — J(p, B(p))-
Because ®(p,,) is the minimizer of J(p,, ®), by applying (52) and Lemma 44, we have

J(Pry @(pn)) — J (pns ®(p)) < —01[12(pn) — ()13,

J
J

N 010, . 5106€>
< ~8106|2(pn) = ()5 < =19 (p) — (p)l; <~
Similarly, because ®(p) is the minimizer of J(p, ®), we have
R R 5162
(o ®(p)) = J (0, 2(p)) = 61]1B(pn) — 2(p)II} = =

Because S is a Hilbert space and {®(p,)} is bounded, according to the Banach-Alaoglu
theorem, {®(p,,)} is weakly sequentially compact. Namely, there exists a weakly convergent
subsequent {®(py, )} (which is also convergent because S is a Hilbert space). Suppose that
this sequence converges to ®*. As a result,

Jim J(p, ®(pn,)) = J(p, ©7).
From (53) and Assumption 4, we have
T (Bres ®(pny)) = I (P, ) > = 82| D (o) — @713, — A7 @ () — @7II7,
> — (8205 + A07) | @ () — @73
Hence, we have
klggo I (P @(Pny)) = J(p, 7).

On the other hand, because J(p, ®) is convergent w.r.t. samples for fixed @, limy_, o0 J (pn, , P(p))—
J(p,®(p)) = 0. Hence, for sufficiently large k, we have

S (P> B(Pny ) — I (p, (p))

. . R R 810662
=T (P ®(pn)) = (0 @ (o)) + I (0, (pne)) = (0, @(p) < =55,
and R R
J(Pry,> ®(Pny)) — J(p, ®(p))
. X . . 5
=J (Pnys ®(Pny)) = J (B ®(p)) + J (P, D(p)) — I (p, ®(p)) = 513
This leads to a contradiction. [ |
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