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Abstract

We introduce a framework for Newton’s flows in probability space with information metrics,
named information Newton’s flows. Here two information metrics are considered, including
both the Fisher-Rao metric and the Wasserstein-2 metric. A known fact is that overdamped
Langevin dynamics correspond to Wasserstein gradient flows of Kullback-Leibler (KL) di-
vergence. Extending this fact to Wasserstein Newton’s flows, we derive Newton’s Langevin
dynamics. We provide examples of Newton’s Langevin dynamics in both one-dimensional
space and Gaussian families. For the numerical implementation, we design sampling effi-
cient variational methods in affine models and reproducing kernel Hilbert space (RKHS) to
approximate Wasserstein Newton’s directions. We also establish convergence results of the
proposed information Newton’s method with approximated directions. Several numerical
examples from Bayesian sampling problems are shown to demonstrate the effectiveness of
the proposed method.

Keywords: Optimal transport; Information geometry; Langvien dynamics; Information
Newton’s flow; Newton’s Langvien dynamics.

1. Introduction

Optimization problems in probability space are of great interest in inverse problems, in-
formation science, physics, and scientific computing, with applications in machine learning
(Amari, 2016; Stuart, 2010; Liu, 2017; Amari, 1998; Villani, 2003). One typical problem
here comes from Bayesian inference, which provides an optimal probability formulation for
learning models from observed data. Given a prior distribution, the problem is to gener-
ate samples from a (target) posterior distribution (Stuart, 2010). From an optimization
perspective, such a problem often refers to minimizing an objective function, such as the
Kullback-Leibler (KL) divergence, in the probability space. The update relates to finding
a sampling representation for the evolution of the probability.

In practice, one often needs to transfer probability optimization problems into sampling-
based formulations, and then design efficient updates in the form of samples. Here first-order
methods, such as gradient descent methods, play essential roles. We notice that gradient
directions for samples rely on the metric over the probability space, which reflects the
change of objective/loss functions. In practice, there are several important metrics, often
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named information metrics from information geometry and optimal transport, including
the Fisher-Rao metric (Amari, 1998) and the Wasserstein-2 metric (in short, Wasserstein
metric) (Lafferty, 1988; Otto, 2001). In literature, along with a given information metric,
the probability space can be viewed as a Riemannian manifold, named density manifold
(Lafferty, 1988).

For the Fisher-Rao metric, its gradient flow, known as birth-death dynamics, are im-
portant in modeling population games and designing evolutionary dynamics (Amari, 2016).
It is also important for optimization problems in discrete probability (Malagò and Pis-
tone, 2014) and machine learning (Ollivier et al., 2017). Recently, the Fisher-Rao gradient
has also been applied for accelerating Bayesian sampling problems in continuous sample
space (Lu et al., 2019). The Fisher-Rao gradient direction also inspires the design of learn-
ing algorithms for probability models. Several optimization methods in machine learning
approximate the Fisher-Rao gradient direction, including the Kronecker-factored Approx-
imate Curvature (K-FAC) (Martens and Grosse, 2015) method and adaptive estimates of
lower-order moments (Adam) method (Kingma and Ba, 2014).

For the Wasserstein metric, its gradient direction deeply connects with stochastic dif-
ferential equations and the associated Markov chain Monte Carlo methods (MCMC). An
important fact is that the Wasserstein gradient of KL divergence forms the Kolmogorov
forward generator of overdamped Langevin dynamics (Jordan et al., 1998). Hence, many
MCMC methods can be viewed as Wasserstein gradient descent methods. In recent years,
there are also several generalized Wasserstein metrics, such as Stein metric (Liu and Wang,
2016; Liu, 2017), Hessian transport (mobility) metrics (Carrillo et al., 2010; Dolbeault et al.,
2009; Li and Ying, 2019) and Kalman-Wasserstein metric (Garbuno-Inigo et al., 2019).
These metrics introduce various first-order methods with sampling efficient properties. For
instance, the Stein variational gradient descent (Liu and Wang, 2016, SVGD) introduces
a kernelized interacting Langevin dynamics. The Kalman-Wasserstein metric introduces a
particular mean-field interacting Langevin dynamics (Garbuno-Inigo et al., 2019), known
as ensemble Kalman sampling. On the other hand, many approaches design fast algorithms
on modified Langevin dynamics. These methods can also be viewed and analyzed by the
modified Wasserstein gradient descent, see details in (Ma et al., 2019; Simsekli et al., 2016;
Li, 2019). By viewing sampling as optimization problems in the probability space, many
efficient sampling algorithms are inspired by classical optimization methods. E.g., Bernton
(2018); Wibisono (2019) apply the operator splitting technique to improve the unadjusted
Langevin algorithm. Liu et al. (2018); Taghvaei and Mehta (2019); Wang and Li (2019)
study Nesterov’s accelerated gradient methods in probability space.

In optimization, the Newton’s method is a fundamental second-order method to accel-
erate optimization computations. For optimization problems in probability space, several
natural questions arise: Can we systematically design Newton’s methods to accelerate sam-
pling related optimization problems? What is the Newton’s flow in probability space under
information metrics? Focusing on the Wasserstein metric, can we extend the relation be-
tween Wasserstein gradient flow of KL divergence and Langevin dynamics? In other words,
what is the Wasserstein Newton’s flow of KL divergence and which Langevin dynamics does
it corresponds to?

In this paper, following (Li, 2018; Wang and Li, 2019), we complete these questions. We
derive Newton’s flows in probability space with general information metrics. By studying
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these Newton’s flows, we provide the convergence analysis.Focusing on Wasserstein New-
ton’s flows of KL divergence, we derive several analytical examples in one-dimensional space
and Gaussian families. Besides, we design two algorithms as particle implementations of
Wasserstein Newton’s flows in high dimensional sample space. This is to restrict the dual
variable (cotangent vector) associated with Newton’s direction into either finite-dimensional
affine function space or RKHS. A hybrid update of Newton’s direction and gradient direction
is also introduced. For the concreteness of presentation, we demonstrate the Wasserstein
Newton’s flow of KL divergence in Theorem 1.

Theorem 1 (Wasserstein Newton’s flow of KL divergence) For a density ρ∗(x) ∝
exp(−f(x)) , where f is a given function, denote the KL divergence between ρ and ρ∗ by

DKL(ρ‖ρ∗) =

∫
ρ log

ρ

e−f
dx− logZ, (1)

where Z =
∫

exp(−f(x))dx. Then the Wasserstein Newton’s flow of KL divergence follows

∂tρt +∇ · (ρt∇ΦNewton
t ) = 0, (2)

where ΦNewton
t satisfies the following equation

∇2 : (ρt∇2Φt)−∇ · (ρt∇2f∇Φt)−∇ · (ρt∇f)−∆ρt = 0. (3)

Here we notice that ΦNewton
t is the solution to the Wasserstein Newton’s direction equation

(3). In Figure 1, we provide a sampling (particle) formulation of Wasserstein Newton’s
flows. We compare formulations among Wasserstein Newton’s flows, Wasserstein gradient
flows and overdamped Langevin dynamics.

Gradient flow Newton’s flow

Density formulation ∂tρt = ∇ · (ρt∇f) + ∆ρt ∂tρt = −∇ · (ρt∇ΦNewton
t )

Particle formulation dXt = −∇f(Xt)dt−∇ log ρt(Xt)dt dXt = ∇ΦNewton
t (Xt)dt

Langevin dynamics dXt = −∇f(Xt)dt+
√

2dBt

Figure 1: The relation among Wasserstein gradient flow, Newton’s flow and Langevin dy-
namics. Our approach derive the particle formulation of Wasserstein Newton’s
flow of KL divergence.

In literature, second-order methods are developed for optimization problems on Rieman-
nian manifold, see (Smith, 1994; Yang, 2007). Here we are interested in density manifolds,
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i.e., probability space with information metrics. Compared to known results in Rieman-
nian optimization, we not only develop methods in probability space but also find efficient
sampling representations of the algorithms. In discrete probability simplex with the Fisher-
Rao metric and exponential family models, the Newton’s method has also been studied by
Malagò and Pistone (2014), known as the second order method in information geometry.
Also, Detommaso et al. (2018); Chen et al. (2019) design second-order methods for the Stein
variational gradient descent direction. Our approach generalizes these results to informa-
tion metrics, especially for the Wasserstein metric. On the other hand, the Newton-type
MCMC method has been studied in (Simsekli et al., 2016), known as Hessian Approximated
MCMC (HAMCMC) method. The differences between HAMCMC and our proposed New-
ton’s Langevin dynamics can be observed from evolutions in probability space. HAMCMC
utilizes the Hessian matrix of logarithm of target density function and derives the associated
drift-diffusion process. In density space, it is still a linear local partial differential equation
(PDE). Newton’s Langevin dynamics apply the Hessian operator of KL divergence based
on the Wasserstein metric. In density space, the Wasserstein Newton’s flow is a nonlocal
PDE. A careful comparison of all related Langevin dynamics in analytical (Appendix C.3)
and numerical examples are provided.

We organize this paper as follows. In section 2, we briefly review information metrics and
corresponding gradient operators in probability space. We introduce properties of Hessian
operators and derive information Newton’s flows in section 3. Focusing on Wasserstein
Newton’s flows of KL divergence, we derive Newton’s Langevin dynamics in section 4. Two
sampling efficient numerical algorithms of Wasserstein Newton’s method are presented in
section 5. In section 6, we prove the asymptotic convergence rate of information Newton’s
method with approximated Newton’s direction. Several numerical examples for sampling
problems are provided in section 7.

2. Review on Newton’s flows and information metrics

In this section, we briefly review Newton’s methods and Newton’s flows in Euclidean spaces
and Riemannian manifolds. Then, we focus on a probability space, in which we introduce
information metrics with the associated gradient and Hessian operators. Based on them, we
will derive the Newton’s flow under information metrics later on. Throughout this paper,
we use 〈·, ·〉 and ‖ · ‖ to denote the Euclidean inner product and norm in Rd.

2.1 Finite dimensional Newton’s flow

We first briefly review Newton’s methods and Newton’s flows in Euclidean spaces. Given
an objective function f : Rd → R, consider an optimization problem:

min
x∈Rd

f(x).

The update rule of the (damped) Newton’s method follows

xk+1 = xk + αkpk, pk = −
(
∇2f(xk)

)−1∇f(xk).

Here αk > 0 is a step size and pk is called the Newton’s direction. With αk = 1, we
recover the classical Newton’s methods. By taking a limit αk → 0, the Newton’s method in
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continuous-time, namely Newton’s flow, writes

ẋ = −
(
∇2f(x)

)−1∇f(x). (Euclidean Newton’s flow)

We next consider an optimization problem on a Riemannian manifold M⊂ Rd. Given
an objective function f : M→ R, consider

min
x∈M

f(x).

The tangent space TxM and the cotangent space T ∗xM at x are identical to a linear subspace
of Rd. For p, q ∈ TxM, let 〈p, q〉x = pTG(x)q denote an inner product in tangent space TxM
at x. Here G(x) is called the metric tensor, which corresponds to a symmetric semi-positive
definite matrix in Rd×d. For the Euclidean case, we can view TxM = T ∗xM = Rd and
G(x) = I, where I is an identity matrix. The Riemannian gradient of f at x is the unique
tangent vector v such that the following equality holds for all p ∈ TxM.

〈grad f(x), p〉x = lim
ε→0

f(x+ εp)− f(x)

ε
.

The Riemannian Hessian of f at x is a linear mapping from TxM to TxM defined by

Hess f(x)p = ∇p grad f(x), ∀p ∈ TxM.

Here ∇p grad f(x) is the covariant derivative of grad f(x) w.r.t. the tangent vector p.
Detailed definitions of gradient and Hessian operators on a Riemannian manifold can be
found in (Huang, 2013, Chapter 1). The update rule of the Newton’s method writes

xk+1 = Rxk(αkpk), pk = −(Hess f(xk))
−1 grad f(xk).

Here Rxk can be the exponential mapping or the retraction (first-order approximation of
the exponential mapping) at xk. Based on the Riemannian metric of M, the exponential
mapping uniquely maps a tangent vector to a point inM along the geodesic curve. Different
from the Euclidean case, the update of xk+1 is based on the (approximated) geodesic curve
of M. In continuous time, the Newton’s flow follows

ẋ = −(Hess f(x))−1 grad f(x). (Riemannian Newton’s flow)

From now on, we consider optimization problems in probability space. Suppose that sample
space Ω is a region in Rd. Let F(Ω) represent the set of smooth functions on Ω. Denote
the set of probability density

P(Ω) =
{
ρ ∈ F(Ω):

∫
Ω
ρdx = 1, ρ ≥ 0

}
.

The optimization problem in P(Ω) takes the form:

min
ρ∈P(Ω)

E(ρ).

Here E(ρ) is the objective or loss functional. It evaluates certain divergence or metric
functional between ρ and a target density ρ∗ ∈ P(Ω). In machine learning problems,
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typical examples of E(ρ) include the KL divergence, Maximum mean discrepancy (MMD),
cross entropy, etc. Similar to (Euclidean Newton’s flow) and (Riemannian Newton’s flow),
the Newton’s flow in probability space (density manifold) takes the form

∂tρt = −(HessE(ρt))
−1 gradE(ρt). (Information Newton’s flow)

Here grad and Hess represent the gradient and the Hessian operator with respect to certain
information metric, respectively. To understand (Information Newton’s flow), we briefly
review the information metrics with the associated gradient operators.

2.2 Information metrics

We first define the tangent space and the cotangent space in probability space. The tangent
space at ρ ∈ P(Ω) is defined by

TρP(Ω) =

{
σ ∈ F(Ω) :

∫
σdx = 0

}
.

The cotangent space T ∗ρP(Ω) is equivalent to F(Ω)/R, which represents the set of functions
in F(Ω) defined up to addition of constants.

Definition 2 (Metric in probability space) For a given ρ ∈ P(Ω), a metric tensor
G(ρ) : TρP(Ω) → T ∗ρP(Ω) is an invertible mapping from the tangent space TρP(Ω) to
the cotangent space T ∗ρP(Ω). This metric tensor defines the metric (inner product) on
the tangent space TρP(Ω). Namely, for σ1, σ2 ∈ TρP(Ω), we define the inner product
gρ : TρP(Ω)× TρP(Ω)→ R by

gρ(σ1, σ2) =

∫
σ1G(ρ)σ2dx =

∫
Φ1G(ρ)−1Φ2dx,

where Φi is the solution to σi = G(ρ)−1Φi, i = 1, 2.

We present two essential examples of metrics in probability space P(Ω): Fisher-Rao
metric and Wasserstein metric.

Example 1 (Fisher-Rao metric) The inverse of the Fisher-Rao metric tensor follows

GF (ρ)−1Φ = ρ

(
Φ−

∫
Φρdx

)
, Φ ∈ T ∗ρP(Ω).

The Fisher-Rao metric is defined by

gFρ (σ1, σ2) =

∫
Φ1Φ2ρdx−

(∫
Φ1ρdx

)(∫
Φ2ρdx

)
, σ1, σ2 ∈ TρP(Ω),

where Φi satisfies σi = ρ
(
Φi −

∫
Φiρdx

)
, i = 1, 2.

Example 2 (Wasserstein metric) The inverse of the Wasserstein metric tensor satisfies

GW (ρ)−1Φ = −∇ · (ρ∇Φ), Φ ∈ T ∗ρP(Ω).

The Wasserstein metric is given by

gWρ (σ1, σ2) =

∫
ρ 〈∇Φ1,∇Φ2〉 dx, σ1, σ2 ∈ TρP(Ω),

where Φi is the solution to σi = −∇ · (ρ∇Φi), i = 1, 2.
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2.3 Gradient operators

The gradient operator for the objective functional E(ρ) in (P(Ω),G(ρ)) satisfies

gradE(ρ) = −G(ρ)−1 δE

δρ
.

Here δE
δρ is the L2 first variation w.r.t. ρ. The gradient flow follows

∂tρt = − gradE(ρt) = −G(ρ)−1 δE

δρt
.

We present gradient operators under either Fisher-Rao metric or Wasserstein metric.

Example 3 (Fisher-Rao gradient operator) The Fisher-Rao gradient operator satis-
fies

gradF E(ρ) = ρ

(
δE

δρ
−
∫
δE

δρ
ρdx

)
.

Example 4 (Wasserstein gradient operator) The Wasserstein gradient operator writes

gradW E(ρ) = −∇ ·
(
ρ∇δE

δρ

)
.

3. Information Newton’s flow

In this section, we introduce and discuss properties of Hessian operators in probability
space. Then, we formulate Newton’s flows under information metrics. This is based on the
previous definition of gradient operators and the inverse of Hessian operators.

3.1 Information Hessian operators

In this subsection, we review the definition of Hessian operators in probability space and
provide the exact formulations of Hessian operators.

For σ ∈ TρP(Ω), there exists a unique geodesic curve ρ̂s, which satisfies ρ̂s|s=0 = ρ

and ∂̂sρs|s=0 = σ. The Hessian operator of E(ρ) w.r.t. metric tensor G(ρ) is a mapping
HessE(ρ) : TρP(Ω)→ TρP(Ω), which is defined by

gρ(HessE(ρ)σ, σ) = gρ(σ,HessE(ρ)σ) =
d2

ds2
E(ρ̂s)

∣∣∣∣
s=0

.

Combining with the metric tensor, the Hessian operator uniquely defines a self-adjoint
mapping HE(ρ) : T ∗ρP(Ω)→ TρP(Ω), which satisfies∫

ΦHE(ρ)Φdx = gρ(σ,HessE(ρ)σ), Φ = G(ρ)σ.

In Proposition 3, we give an exact formulation of
∫

ΦHE(ρ)Φdx and a relationship between
HE(ρ) and HessE(ρ).
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Proposition 3 The quantity gρ(σ,HessE(ρ)σ) is a bi-linear form of Φ:∫
ΦHE(ρ)Φdx =gρ(σ,HessE(ρ)σ)

=− 1

2

∫
A(ρ)(Φ,Φ)G(ρ)−1 δE

δρ
dx+

∫
A(ρ)

(
Φ,
δE

δρ

)
G(ρ)−1Φdx

+

∫ ∫ (
G(ρ)−1Φ

)
(y)

δ2E

δρ2
(x, y)dy

(
G(ρ)−1Φ

)
(x)dx.

(4)

Here δ2E
δρ2

(x, y) is defined by

δ2E

δρ2
(x, y) =

δ

δρ

(∫
δE

δρ
(y)δ(x− y)dy

)
,

where δ(x) is the Dirac delta function. Here A(ρ) : T ∗ρP(Ω) × T ∗ρP(Ω) → T ∗ρP(Ω) is a
bi-linear operator which satisfies

A(ρ)(Φ1,Φ2) =
δ

δρ

∫
Φ1G(ρ)−1Φ2dx, ∀Φ1,Φ2 ∈ T ∗ρP(Ω).

Moreover, the operator HE(ρ) satisfies

HE(ρ) = HessE(ρ)G(ρ)−1. (5)

Now, we are ready to present the information Newton’s flow in probability space.

Proposition 4 (Information Newton’s flow) The Newton’s flow of E(ρ) in (P(Ω),G(ρ))
satisfies

∂tρt + (HessE(ρt))
−1G(ρt)

−1 δE

δρt
= 0.

This is equivalent to 
∂tρt − G(ρt)

−1Φt = 0,

HE(ρt)Φt + G(ρt)
−1 δ

δρt
E(ρt) = 0.

(6)

In particular, we focus on Wasserstein Newton’s flow of KL divergence. Other exam-
ples of Newton’s flows of different objective functions under either Fisher-Rao metric or
Wasserstein metric are presented in Appendix B.2 and B.3.

Example 5 (Wasserstein Newton’s flow of KL divergence) In this example we prove
Theorem 1. As a known fact in (Otto and Villani, 2000) and Gamma calculus (Bakry and
Émery, 1985; Li, 2018), the Hessian operator of KL divergence under the Wasserstein met-
ric follows

gWρ (σ,HessW E(ρ)σ) =

∫ (
‖∇2Φ‖2F + (∇Φ)T∇2f∇Φ)

)
ρdx,

where σ = −∇·(ρ∇Φ) and ‖·‖F is the Frobenius norm of a matrix in Rn×n. Via integration
by parts, we validate that the operator HWE (ρ) follows

HWE (ρ)Φ = ∇2 : (ρ∇2Φ)−∇ · (ρ∇2f∇Φ). (7)
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We also present the Wasserstein Newton’s flow of KL divergence in Gaussian families.
Proposition 5 ensures the existence of information Newton’s flows in Gaussian families.

Proposition 5 Suppose that ρ0, ρ
∗ are Gaussian distributions with zero means and their

covariance matrices are Σ0 and Σ∗. E(Σ) evaluates the KL divergence from ρ to ρ∗:

E(Σ) =
1

2

(
tr(Σ(Σ∗)−1)− d− log det

(
Σ(Σ∗)−1

))
. (8)

Let (Σt, St) satisfy{
Σ̇t − 2(SΣt + ΣSt) = 0,

2ΣtSt(Σ
∗)−1 + 2(Σ∗)−1StΣt + 4St = −(Σt(Σ

∗)−1 + (Σ∗)−1Σt − 2I).
(9)

with initial values Σt|t=0 = Σ0 and St|t=0 = 0. Thus, for any t ≥ 0, Σt is well-defined and
stays positive definite. We denote

ρt(x) =
(2π)−n/2√

det(Σt)
exp

(
−1

2
xTΣ−1

t x

)
, Φt(x) = xTStx+ C(t),

where C(t) = −t+ 1
2

∫ t
0 log det(Σs(Σ

∗)−1)ds. Then, ρt and Φt follow the information New-
ton’s flow (3) with initial values ρt|t=0 = ρ0 and Φt|t=0 = 0.

4. Newton’s Langevin dynamics

In this section, we primarily focus on the Wasserstein Newton’s flow of KL divergence. We
formulate it into the Newton’s Langevin dynamics for Bayesian sampling problems. The
connection and difference with

Let the objective functional E(ρ) = DKL(ρ‖ρ∗) evaluate the KL divergence from ρ to a
target density ρ∗(x) ∝ exp(−f(x)) with

∫
exp(−f(x))dx < ∞. This specific optimization

problem is important since it corresponds to sampling from the target density ρ∗. Classi-
cal Langevin MCMC algorithms evolves samples following overdamped Langevin dynamics
(OLD), which satisfies

dXt = −∇f(Xt)dt+
√

2dBt,

where Bt is the standard Brownian motion. Denote ρt as the density function of the
distribution of Xt. The evolution of ρt satisfies the Fokker-Planck equation

∂tρt = ∇ · (ρt∇f) + ∆ρt.

A known fact is that the Fokker-Planck equation is the Wasserstein gradient flow (WGF)
of KL divergence, i.e.

∂tρt =− gradW DKL(ρt‖ρ∗)

=GW (ρt)
−1 δ

δρt
DKL(ρt‖ρ∗)

=∇ · (ρt∇(f + log ρt + 1))

=∇ · (ρt∇f) + ∆ρt.

(10)
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where we use the fact that δ
δρDKL(ρt‖ρ∗) = log ρ+ t+ f + 1 and ρ∇ log ρ = ∇ρ.

It is worth mentioning that OLD can be viewed as particle implementations of WGF
(10). From the viewpoint of fluid dynamics, WGF also has a Lagrangian formulation

dXt = −∇f(Xt)dt−∇ log ρt(Xt)dt.

We name above dynamics by the Lagrangian Langevin Dynamics (LLD). Here ‘Lagrangian’
refers to the Lagrangian coordinates (flow map) in fluid dynamics (Villani, 2008).

Overall, many sampling algorithms follow OLD or LLD. The evolution of corresponding
density follows the Wasserstein gradient flow (10). E.g. the classical Langevin MCMC
(unadjusted Langevin algorithm) is the time discretization of OLD. The Particle-based
Variational Inference methods (ParVI), (Liu et al., 2019) can be viewed as the discrete-time
approximation of LLD.

In short, we notice that the Langevein dynamics can be viewed as first-order methods for
Bayesian sampling problems. Analogously, the Wasserstein Newton’s flow of KL divergence
derived in Example 5 corresponds to certain Langevin dynamics of particle systems, named
Newton’s Langevin dynamics.

Theorem 6 Consider the Newton’s Langevin dynamics

dXt = ∇ΦNewton
t (Xt)dt, (11)

where ΦNewton
t (x) is the solution to Wasserstein Newton’s direction equation (3):

∇2 : (ρt∇2Φt)−∇ · (ρt∇2f∇Φt)−∇ · (ρt∇f)−∆ρt = 0.

Here X0 follows an initial distribution ρ0 and ρt is the distribution of Xt. Then, ρt is the
solution to Wasserstein Newton’s flow with an initial value ρ0 = ρ0.

Proof Note that ρt is the distribution of Xt. The dynamics of Xt implies

∂tρt +∇ · (ρt∇ΦNewton
t ) = 0.

Because Φt satisfies the Wasserstein Newton’s direction equation (3), ρt is the solution to
Wasserstein Newton’s flow.

Remark 7 We notice that the Newton’s Langevien dynamics is different from HAMCMC
(Simsekli et al., 2016). Detailed comparisons can be found in Appendix C.1.

The following proposition provide a closed-form formula for NLD in 1D Gaussian family.

Proposition 8 Assume that f(x) = (2Σ∗)−1(x − µ∗)2, where Σ∗ > 0 and µ∗ are given.
Suppose that the particle system X0 follows the Gaussian distribution. Then Xt follows a
Gaussian distribution with mean µt and variance Σt. The corresponding NLD satisfies

dXt =

(
Σ∗ − Σ

Σ∗ + Σt
Xt −

2Σ∗

Σ∗ + Σt
µt + µ∗

)
dt.

10
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And the evolution of µt and Σt satisfies

dµt = (−µt + µ∗)dt, dΣt = 2
Σ∗ − Σt

Σ∗ + Σt
Σtdt.

The explicit solutions of µt and Σt satisfy

µt = e−t(µ0 − µ∗) + µ∗, Σt = Σ∗ + (Σ0 − Σ∗)e−t

√
e−2t(Σ0 − Σ∗)2

4Σ2
0

+
1

Σ0Σ∗
.

We present discrete-time particle implementations of Newton’s Langevin dynamics in sec-
tion 5 and numerical examples in section 7.

5. Particle implementation of Wasserstein Newton’s method

In this section, we design sampling efficient implementations of Wasserstein Newton’s meth-
od. Focusing on Wasserstein Newton’s flow of KL divergence, we introduce a variational
formulation for computing the Wasserstein Newton’s direction. By restricting the domain of
the variational problem in a linear subspace or reproducing kernel Hilbert space (RKHS), we
derive sampling efficient algorithms. Besides, a hybrid method between Newton’s Langevin
dynamics and overdamped Langevin dynamics is provided.

We briefly review update rules of Newton’s methods and hybrid methods in Euclidean
space. In each iteration, the update rule of Newton’s method follows

xk+1 = xk + αkpk, pk = −∇2f(xk)
−1∇f(x).

Suppose that f(x) is strictly convex. Namely, ∇2f(x) is positive definite for all x ∈ Rd.
To compute the Newton’s direction pk, it is equivalent to solve the following variational
problem

min
p∈Rn

pT∇2f(xk)p+ 2∇f(xk)
T p.

In practice, the Newton’s direction may not lead to the decrease in the objective function,
especially when f(x) is non-convex. Nevertheless, the Newton’s method often converges
when the update is close to the minimizer. One way to overcome this problem is the hybrid
method. Consider a hybrid update of the Newton’s direction and the gradient’s direction

xk+1 = xk + αkpk − αkγ∇f(xk),

where γ > 0 is a parameter.

Following above ideas in Euclidean space, we present a particle implementation of in-
formation Newton’s method. Here we connect density ρk ∈ P(Ω) with a particle system
{xnk}Ni=1. Namely, we assume that the distribution {xnk}Nn=1 follows ρk(x). We update each
particle by

xnk+1 = xnk + αk∇Φ̂k(x
n
k), i = 1, 2 . . . N.

Here Φ̂k is an approximated solution to the Wasserstein Newton’s direction equation (3).
The details on obtaining Φ̂k is left in subsection 5.1.

11
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In practice, the Wasserstein Newton’s direction may not be a descent direction if the
update is far away from the target distribution. To overcome this issue, we propose a hybrid
update of the Wasserstein Newton’s direction and the Wasserstein gradient direction.

Let γ ≥ 0 be a parameter. Here we recall that there are two choices for using the gradient
direction. Namely, if we use overdamped Langevin dynamics as the gradient direction, the
hybrid update rule follows

xnk+1 = xnk + αk∇Φ̂k(x
n
k)− γαk∇f(xnk) +

√
2γαkzk, (12)

where zk ∼ N (0, I). If we use Lagrangian Langevin dynamics as the gradient direction, the
hybrid update rule satisfies

xnk+1 = xnk + αk∇Φ̂k(x
n
k)− γαk(∇f(xnk) + ξk(x

n
k)). (13)

Here ξk is an approximation of ∇ log ρk. For general ρk and ρ∗, we can approximate ∇ log ρk
via kernel density estimation (KDE) (Gretton et al., 2012). Namely, we approximate
∇ log ρk by

ξk(x) =

∑N
n=1∇yk(x, xnk)∑N
n=1∇k(x, xnk)

.

Here k(x, y) is a given positive kernel. A typical choice of k(x, y) is a Gaussian kernel with
a bandwidth h > 0, such that

k(x, y) = (2πh)−n/2 exp

(
−‖x− y‖

2

2h

)
.

The overall algorithm is summarized in Algorithm 1.

Algorithm 1 Wasserstein Newton’s method with hybrid update

Require: initial positions {xn0}Nn=1, ε ≥ 0, step sizes αk, parameters λk ≥ 0, maximum
iteration K.

1: Set k = 0.
2: while k < K and the convergence criterion is not met do
3: Compute an approximate solution Φk to (3).
4: Update particle positions by (12) or (13).
5: Set k = k + 1.
6: end while

Remark 9 It worths mentioning that our algorithm corresponds to the following hybrid
Langvien dynamics

dXt = (∇Φt − γ∇f)dt+
√

2γdBt,

where Bt is the standrad Brownian motion, γ ≥ 0 is a parameter and Φt satisfies (3).

12
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5.1 Variational formulation for Wasserstein Newton’s direction

Similar to the Euclidean case, we derive a variational formulation for estimating Wasserstein
Newton’s direction, and provide the associated particle formulations.

Proposition 10 Suppose that H : T ∗ρP(Ω) → TρP is a linear self-adjoint operator and H
is positive definite. Let u ∈ TρP. Then the minimizer of variational problem

min
Φ∈T ∗ρP(Ω)

J(Φ) =

∫
(ΦHΦ− 2uΦ) dx,

satisfies HΦ = u, where Φ ∈ T ∗ρP(Ω).

Proof Since H is linear and self-adjoint, the optimal solution of satisfies

0 =
δJ

δΦ
= 2HΦ− 2u.

Hence, Φ satisfies HΦ = u. On the other hand, let Φ satisfy HΦ = u. Then, for any
Ψ ∈ T ∗ρP(Ω), it follows

J(Φ + Ψ) =

∫
((Φ + Ψ)H(Φ + Ψ)− 2u(Φ + Ψ)) dx

=

∫
(ΦHΦ− 2uΦ) dx+

∫
(ΨHΨ− 2uΨ− 2ΨHΦ) dx

=J(Φ) +

∫
ΨHΨdx ≥ J(Φ).

The last inequality is based on the fact that H is positive definite. Hence, Φ is the optimal
solution to the proposed variational problem. This completes the proof.

Suppose that f is strongly convex, or equivalent, ∇2f(x) is positive definite for x ∈ Ω.
Then, the operator HE(ρ) defined in (7) is positive definite. In this case, proposition 10 in-
dicates that solving Wasserstein Newton’s direction equation (3) is equivalent to optimizing
the following variational problem.

min
Φ∈T ∗ρkP(Ω)

J(Φ) =

∫ (
‖∇2Φ‖2F + ‖∇Φ‖2∇2f + 2 〈∇f +∇ log ρk,∇Φ〉

)
ρkdx.

Here we denote ‖v‖2A = vTAv. For possibly non-convex f , we consider a regularized problem

min
Φ∈T ∗ρkP(Ω)

J ε(Φ) =

∫ (
‖∇2Φ‖2F + ‖∇Φ‖2∇2f+εI + 2 〈∇f +∇ log ρk,∇Φ〉

)
ρkdx. (14)

Here ε ≥ 0 is a regularization parameter to ensure that ∇2f(x) + εI is positive definite for
x ∈ Ω.

13
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Remark 11 Namely, we penalize the objective function by adding the squared norm of Φ
induced by the Wasserstein metric. In other words,

min
Φ∈T ∗ρkP(Ω)

J(Φ) + ε

∫
‖∇Φ‖2ρkdx.

In terms of samples, we can rewrite (14) into

min
Φ∈T ∗ρkP(Ω)

J ε(Φ) =
1

N

N∑
n=1

(
‖∇2Φ(xnk)‖2F + ‖∇Φ(xnk)‖2∇2f(xnk )+εI

+ 2 〈∇f(xnk) +∇ log ρk(x
n
k),∇Φ(xnk)〉

)
.

(15)

In high dimensional sample space, directly solving (15) for Φ ∈ T ∗ρkP(Ω) can be difficult. To
deal with this issue, we restrict the functional space of Φ into a linear subspace S ⊆ T ∗ρkP(Ω).
An appropriately chosen S can lead to a closed-form solution to (14). For the rest of
this section, we discuss two choices of S, including finite dimensional affine subspace and
reproducing kernel Hilbert space (RKHS).

5.2 Affine models

Consider S = span{ψi}mi=1, where ψi : Ω→ R are given basis functions. Namely, we assume
that Φ(x) is a linear combination of ψ1, . . . ψm, such that

Φ(x) = 〈a, ψ(x)〉 =
m∑
i=1

aiψi(x),

where a ∈ Rm and ψ(x) = [ψ1(x), ψ2(x), . . . ψm(x)].

Proposition 12 Suppose that Φ(x) = 〈a, ψ(x)〉. Then, the optimization problem (15) with
the constraint Φ ∈ S is equivalent to

min
a∈Rm

J ε(a) = aT (Bk + Dk)a + 2cTk a,

where Bk,Dk ∈ Rm×m and ck ∈ Rm. The detailed formulations of Bk,Dk and ck are
provided as follows.

Bk =
1

N

N∑
n=1

∇ψ(xnk)(∇2f(xnk) + εI)(∇ψ(xnk))T ,

D(x)j1,j2 =
1

N

N∑
n=1

tr(∇2ψj1(xnk)∇2ψj2(xnk)),

c(x) =
1

N

N∑
n=1

∇ψ(xnk)(∇f(xnk) + ξk(x
n
k)).

If Bk + Dk is positive definite, the optimal solution follows a = −(Bk + Dk)
−1ck. The

optimal solution Φ̂ follows Φ̂(x) = 〈a, ψ(x)〉 .

14
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Proof We denote the Jacobian ∇ψ(x) ∈ Rn×m. As a result, J(a) turns to be

J ε(a) =

 1

N

N∑
n=1

∥∥∥∥∥∥
m∑
j=1

aj∇2ψj(x
n
k)

∥∥∥∥∥∥
2

F

+ aTB(xnk)a + 2aT c(xnk)

 .

We can further compute that∥∥∥∥∥∥
m∑
j=1

aj∇2ψj(x
n
k)

∥∥∥∥∥∥
2

F

=
m∑
j1=1

m∑
j2=1

aj1∇2ψj1(xnk)∇2ψj2(xnk)aj2 = aTD(xnk)a.

This completes the proof.

This affine approximation technique has been used in approximating natural gradient
direction in (Li et al., 2019). Hence, we call our method affine information Newton’s method.

In particular, we set m = 2d and consider the basis

ψi(x) = xi, ψi+d(x) = x2
i , 1 ≤ i ≤ d.

In other words, we assume that Φ(x) takes the form Φ(x) = 1
2x diag(s)x + bTx, where

s, b ∈ Rd. For simplicity, we denote vnk = ∇f(xnk) + ξk(x
n
k).

J ε(s, b) =

[
s
b

]T
Hk

[
s
b

]
+ 2

[
s
b

]T
uk.

where we denote Hk ∈ R2d×2d via

Hk =

[
I + 1

N

∑N
n=1 diag(xnk)(∇2f(xnk) + εI) diag(xnk) 1

N

∑N
n=1 diag(xnk)(∇2f(xnk) + εI)

1
N

∑N
n=1(∇2f(xnk) + εI) diag(xnk) 1

N

∑N
n=1(∇2f(xnk) + εI)

]
,

and uk ∈ R2d via

uk =

[
1
N

∑N
n=1 diag(xnk)vnk
1
N

∑N
n=1 v

n
k

]
.

Hence, the optimal solution for minimizing J(s, b) follows[
sk
bk

]
= −(Hk)

−1uk.

Hence, the approximate solution Φ̂k computed via the affine method follows

∇Φ̂k(x) = diag(sk)x+ bk. (16)

The overall algorithm are summarized in Algorithm 2. For simplicity, we do not mention
the hybrid update.

When the optimal solution Φk to (15) is highly non-linear, S in affine methods may not
be large enough to approximate Φk well.
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Algorithm 2 Wasserstein Newton’s method with affine models.

Require: initial positions {xi0}Ni=1, ε ≥ 0, step sizes αk, maximum iteration K.
1: Set k = 0.
2: while k < K and the convergence criterion is not met do
3: Compute vnk = ∇f(xnk) + ξk(x

n
k). Here ξk is an approximation of ∇ log ρk.

4: Calculate Hk by

Hk =

[
I + 1

N

∑N
n=1 diag(x

n
k )(∇2f(xnk ) + εI) diag(xnk )

1
N

∑N
n=1 diag(x

n
k )(∇2f(xnk ) + εI)

1
N

∑N
n=1(∇

2f(xnk ) + εI) diag(xnk )
1
N

∑N
n=1(∇

2f(xnk ) + εI)

]
,

and formulate uk by

uk =

[
1
N

∑N
n=1 diag(xnk)vnk
1
N

∑N
n=1 v

n
k

]
.

5: Compute sk and bk by [
sk
bk

]
= −(Hk)

−1uk.

6: Update particle positions by

xnk+1 = xnk + αk(diag(sk)x
n
k + bk).

7: Set k = k + 1.
8: end while

5.3 Kernel models

In this subsection, we approximate the Wasserstein Newton’s direction in kernel models.
Specifically, we consider S as the RKHS with an associated kernel function k(x, y) : Rd ×
Rd → R. Compared to finite-dimensional linear subspace, RKHS can be viewed as with
infinitely many feature functions. Detailed description about RKHS and the related norm
can be found in (Berlinet and Thomas-Agnan, 2011).

To ensure the well-posedness of the optimal solution, we penalize the objective function
using the RKHS norm ‖ · ‖S . Hence, we consider a regularized variational problem based
on (14)

min
Φ∈H

∫ (
‖∇2Φ‖2F + ‖∇Φ‖2∇2f+εI + 2 〈∇f,∇Φ +∇ log ρk〉

)
ρkdx+ λ‖Φ‖2S

=

∫ (
‖∇2Φ‖2F + ‖∇Φ‖2∇2f+εI + 2 〈∇f,∇Φ〉 − 2∆Φ

)
ρkdx+ λ‖Φ‖2S .

(17)

In terms of samples, this varitional problem becomes

min
Φ∈H

1

N

N∑
n=1

(
‖∇2Φ(xnk)‖2F + ‖∇Φ(xnk)‖2∇2f(xnk )+εI

+ 2 〈∇f(xnk),∇Φ(xnk)〉 − 2∆Φ(xnk)
)

+ λ‖Φ‖2S .

(18)
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From the general representation theorem (Schölkopf et al., 2001), the minimizer of (18) can
take the form

Φ(x) =
N∑
n=1

 d∑
i=1

αi,n∂ik(xnk , x) +
d∑

j1=1

d∑
j2=1

βj1,j2,n∂j1,j2k(xnk , x)

 . (19)

Proposition 13 Let Φ take the form (19). Then, (18) is equivalent to

inf
α∈RNd,β∈RNd2

[
α
β

]T [
K1,2

K2,2

] [
K1,2

K2,2

]T [
α
β

]
+

[
α
β

]T [
K1,1

K2,1

]
H

[
K1,1

K2,1

]T [
α
β

]
+Nλ

[
α
β

]T [
K1,1 K1,2

K2,1 K2,2

] [
α
β

]
− 2

[
α
β

]T [
K1,1 K1,2

K2,1 K2,2

] [
v
e

]
.

(20)

Here we denote

v =

−∇f(x1
k)

...
−∇f(xNk )

 ∈ RNd, e =

vec(Id)
...

vec(Id)

 ∈ RNd
2
,

H =


∇2f(x1

k) + εI 0 . . . 0

0 ∇2f(x2
k) + εI

. . .
...

...
. . .

. . . 0
0 . . . 0 ∇2f(xNk ) + εI

 ∈ RNd×Nd,

and

Kp,q =

K
p,q
1,1 . . . Kp,q

1,N
...

. . .
...

Kp,q
N,1 . . . Kp,q

N,N

 , p, q ∈ {1, 2}.

Each Kp,q
n,n′ are defined by(

K1,1
n,n′

)
i,j

= ∂i,j+dk(xnk , x
n′
k ), K1,1

n,n′ ∈ Rd×d,(
K1,2
n,n′

)
i,(j1−1)d+j2

= ∂i,j1+d,j2+dk(xnk , x
n′
k ), K1,2

n,n′ ∈ Rd×d
2
,(

K2,1
n,n′

)
(j1−1)d+j2,i

= ∂j1,j2,i+dk(xnk , x
n′
k ), K2,1

n,n′ ∈ Rd
2×d,(

K2,2
n,n′

)
(i1−1)d+i2,(j1−1)d+j2

= ∂i1,i2,j1+d,j2+dk(xnk , x
n′
k ), K2,2

n,n′ ∈ Rd
2×d2 .

Here we use the notation ∂ik(x, y) = ∂xik(x, y) and ∂j+d = ∂yjk(x, y). The optimal solution
follows

[
α
β

]
=

([
K1,2

K2,2

] [
K1,2

K2,2

]T
+

[
K1,1

K2,1

]
H

[
K1,1

K2,1

]T
+Nλ

[
α
β

]T [
K1,1 K1,2

K2,1 K2,2

])† [
K1,1 K1,2

K2,1 K2,2

] [
v
e

]
.
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Here † denotes the Moore pseudo-inverse. Hence the approximated solution Φ̂k satisfies∇Φ̂k(x
1
k)

...

∇Φ̂k(x
N
k )

 = K1,1α+K1,2β.

To solve (20) is equivalent to solve a N(d + d2) × N(d + d2) linear system. Moreover,
this linear system is potentially to be ill-posed, especially for large N and d. Hence, we
further restrict β = 0 in (20) (this is equivalent to choose a smaller basis in representing
Φ(x)). Then, (20) reduces to

inf
α∈RNd

αTK1,2K2,1α+ αTK1,1HK1,1α+NλαTK1,1α− 2αT
[
K1,1 K1,2

] [v
e

]
. (21)

The optimal solution follows

α = (K1,2K2,1 +K1,1HK1,1 +NλK1,1)−1
[
K1,1 K1,2

] [v
e

]
.

Denote C = K1,2K2,1 + K1,1HK1,1 + NλK1,1. Hence, the approximate solution Φ̂k(x
n
k)

satisfies ∇Φ̂k(x
1
k)

...

∇Φ̂k(x
N
k )

 = K1,1α = K1,1C−1(K1,1v +K1,2e). (22)

In practice, when N, d are large, the computation cost of K1,2K2,1 is quite heavy, which
is of order O(N3d4). Hence, we consider a block-diagonal approximation Cbd of C, which
is defined by

Cbd =


C1,1 0 . . . 0

0 C2,2
. . .

...
...

. . .
. . . 0

0 . . . 0 CN,N

 .
Here each block Ci,i ∈ Rd×d can be computed by

Ci,i = NλK1,1
i,i +

N∑
j=1

(
K1,2
i,j K

2,1
j,i +K1,1

i,j ∇
2f(xjk)K

1,1
j,i

)
.

The computational cost of Cbd is O(N2d4). We also note that for Gaussian kernel, with
λ > 0, Ci,i is invertible. Hence, we can compute the approximate solution Φ̂k(x

n
k) by∇Φ̂k(x

1
k)

...

∇Φ̂k(x
N
k )

 = K1,1C−1
bd (K1,1v +K1,2e). (23)

The overall algorithm is summarized in Algorithm 3.
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Algorithm 3 Wasserstein Newton’s method with RKHS.

Require: initial positions {xn0}Nn=1, ε ≥ 0, step sizes αk, maximum iteration K.
1: Set k = 0.
2: while k < K and the convergence criterion is not met do
3: Calculate H, v, e,K1,1, K1,2 and K2,1 in Proposition 13 based on {xnk}Nn=1.

4: Formulate Φ̂k(x
n
k) via (22) or (23).

5: Update particle positions by

xnk+1 = xnk + αk∇Φ̂k(x
n
k).

6: Set k = k + 1.
7: end while

Besides, we can use a sparse kernel approximation (Arbel et al., 2019; Maoutsa et al.,
2020) to further reduce the computational cost. Namely, we assume that Φ(x) takes the
form

Φ(x) =
M∑
m=1

d∑
i=1

αi,m∂ik(zm, x). (24)

Here M � N and {zm}Mm=1 are randomly sampled from {xnk}Nn=1. This can reduce the
computational cost to O(MN2d4) (or O(MNd4) if we apply the block-diagonal approxima-
tion).

Remark 14 In future works, we expect to find efficient methods to approximate the solution
to (20) with low computational cost in terms of N and d.

Remark 15 We notice that our Wasserstein Newton’s method with RKHS is related to
Stein variational Newton’s method (SVN) (Detommaso et al., 2018). Here SVN restricts
the Newton’s direction of general transformation map in RKHS, while our method restricts
the potential function of gradient transportation map in RKHS. See details in the appendix.
We also provide detailed numerical comparison of these methods in section 7.

6. Convergence analysis of Information Newton’s method

In this section, we introduce general update rules of information Newton’s method in terms
of probability densities and analyze their convergence rates in both distance and objective
function value.

We briefly review the Riemannian structure of probability space as follows. Given a
metric tensor G(ρ) and two probability densities ρ0, ρ1 ∈ P(Ω), we denote the distance
D(ρ0, ρ1) as follows

D(ρ0, ρ1)2 = inf
ρ̂s,s∈[0,1]

{∫ 1

0

∫
∂sρ̂sG(ρ̂s)

−1∂sρ̂sdxds : ρ̂s|s=0 = ρ0, ρ̂s|s=1 = ρ1

}
.
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For the Wasserstein metric, D(ρ0, ρ1) is the Wasserstein-2 distance between ρ0 and ρ1.
Denote the inner product on cotangent space T ∗ρP(Ω) by

〈Φ1,Φ2〉ρ =

∫
Φ1G(ρ)−1Φ2dx, Φ1,Φ2 ∈ T ∗ρP(Ω),

and ‖Φ‖2ρ = 〈Φ,Φ〉ρ. And we introduce the definition of the parallelism.

Definition 16 (Parallelism) We say that τ : Tρ0P(Ω) → Tρ1P(Ω) is a parallelism from
ρ0 to ρ1, if for all Φ1,Φ2 ∈ Tρ0P(Ω), it follows

〈Φ1,Φ2〉ρ0 = 〈τΦ1, τΦ2〉ρ1 .

To analyze the convergence rate, we introduce ∇nE(ρ). This is a n-form on the cotan-
gent space T ∗ρP(Ω), which is recursively defined by

∇nE(ρ)(Φ1, . . . ,Φn) =
∂

∂s
∇n−1E(Expρ(sΦn))(τsΦ1, . . . , τsΦn−1)

∣∣∣∣
s=0

,

where τs is the parallelism from ρ to Expρ(sΦn).

6.1 Convergence analysis in distance

The general update rule of the information Newton’s method follows

ρk+1 = Expρk(αkΦk), HE(ρk)Φk + G(ρk)
−1 δE

δρk
= 0. (25)

Here αk > 0 is a step size and Expρk(·) is the exponential map at ρk.
Recall that in the convergence proof of Euclidean Newton methods, it is assumed that

∇2f(x) is positive definite around a small neighbour of the optimal solution x∗. In the
probability space, we assume that the following assumption holds analogously.

Assumption 1 Assume that there exists ζ, δ1, δ2, δ3 > 0, such that for all ρ satisfying
D(ρ, ρ∗) < ζ and Φ1,Φ2 ∈ T ∗ρP(Ω), the following statements hold.

∇2E(ρ)(Φ1,Φ1) ≥ δ1‖Φ1‖2ρ, (A1)

∇2E(ρ)(Φ1,Φ1) ≤ δ2‖Φ1‖2ρ, (A2)

|∇3E(ρ)(Φ1,Φ1,Φ2)| ≤ δ3‖Φ1‖2ρ‖Φ2‖ρ. (A3)

Relying on Assumption 1, Theorem 17 shows the quadratic convergence rate of the
Newton’s method in the probability space.

Theorem 17 Suppose that Assumption 1 holds, ρk satisfies D(ρk, ρ
∗) < ζ and the step size

αk = 1. Then, we have
D(ρk+1, ρ

∗) = O(D(ρk, ρ
∗)2).
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We present a sketch of the proof. For simplicity, we denote Tk = Exp−1
ρk

(ρ∗).

Proposition 18 Suppose that Assumption 1 holds. Let τ be the parallelism from ρk to
ρk+1. There exists a unique Rk ∈ T ∗ρkP(Ω) such that

Tk = τ−1Tk+1 + Φk +Rk.

Then, we have

‖Tk+1‖ρk+1
≤ δ3

δ1
‖Tk‖2ρk +

δ2

δ1
‖Rk‖ρk .

In order to provide an estimation on ‖Rk‖ρk , we introduce Lemma 19.

Lemma 19 For all Ψ ∈ T ∗ρkP(Ω), it follows∫
ΨG(ρk)

−1Rkdx = O(‖Ψ‖ρk‖Tk‖
2
ρk

).

Taking Ψ = Rk in Lemma 19 yields ‖Rk‖ρk = O(‖Tk‖2ρk). Because the geodesic curve
has constant speed (Boothby, 1986), ‖Tk‖2ρk = D(ρk, ρ

∗)2. As a result, we have

D(ρk+1, ρ
∗) ≤ δ2

δ1
D(ρk, ρ

∗)2 +
δ3

δ1
‖Rk‖ρk = O(D(ρk, ρ

∗)2).

6.2 Convergence analysis in objective function value

We next analyze the convergence rate based on our approximation methods in section 5.
In practice, we use the approximated solution Φk to update ρk. Here Φk is the solution to
the variational problem

inf
Φ∈S

∫
ΦHE(ρk)Φdx+ 2

∫
ΦG(ρk)

−1 δE

δρk
dx+ λ

∫
ΦRSΦdx. (26)

Here H is a linear subspace of F(Ω), λ ≥ 0 is a regularization parameter and
∫

ΦRSΦdx
is a regularization term in S. For instance, if S is an RKHS, then

∫
ΦRHΦdx can be the

squared norm of RKHS, i.e., ‖Φ‖2S .

Suppose that P : T ∗ρkP(Ω) → S is a projection operator from T ∗ρkP(Ω) to S and P ∗ :

S → TρkP(Ω) is its adjoint operator. Then, we can write Φ̂k in the closed-form formulation:

Φk = −P (P ∗HE(ρk)P +RS)−1P ∗G(ρk)
−1 δE

δρk
. (27)

For simplicity, we use the following notations.

gk = G(ρk)
−1 δE

δρk
, HE,P = P (P ∗HE(ρk)P +RS)−1P ∗. (28)

For the subspace S and the regularization term λ
∫

ΦRSΦdx, we further assume that the
following three statements hold.
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Assumption 2 There exists ε1 ≥ 0, for all ρk satisfying D(ρk, ρ
∗) < ζ, such that∣∣∣∣∫ gk(HE,P −HE(ρk)

−1)gkdx

∣∣∣∣ ≤ ε1

∫
gkHE(ρk)

−1gkdx. (A4)

There exists ε2 ≥ 0, for all ρk satisfying D(ρk, ρ
∗) < ζ, such that∣∣∣∣∫ gk(HE,PHE(ρk)HE,P −HE,P )gkdx

∣∣∣∣ ≤ ε2

∫
gkHE,P gkdx. (A5)

There exists δ4 ≥ 0, for all ρk satisfying D(ρk, ρ
∗) < ζ, such that∥∥HE,PG(ρ)−1Φ

∥∥
ρk
≤ δ4 ‖Φ‖ρk . (A6)

The update rule in terms of density follows

ρk+1 = Expρk(αkΦk).

Theorem 20 Under Assumption 1 and 2, for ρk satisfying D(ρk, ρ
∗) < ζ, with αk = 1, we

have the linear convergence rate

E(ρk+1)− E(ρ∗) ≤ (ε1 + ε2 + ε1ε2)(E(ρk)− E(ρ∗)) +O((E(ρk)− E(ρ∗))3/2).

From Theorem 20, we note that if the linear subspace S is appropriately chosen such
that HE,P is close to HE(ρk)

−1 in the sense of (A4) and (A5), then ε1, ε2 will be close
to 0. This yields a sharp asymptotic convergence rate in terms of optimality gap, i.e.,
E(ρk)− E(ρ∗).

Remark 21 We note that ε2 = O(λ). This comes from the following identity.

HE,PHE(ρk)HE,P −HE,P
=P (P ∗HE(ρk)P + λRH)−1P ∗HE(ρk)P (P ∗HE(ρk)P + λRH)−1P ∗

− P (P ∗HE(ρk)P + λRH)−1P ∗

=λP (P ∗HE(ρk)P + λRH)−1RS(P ∗HE(ρk)P + λRH)−1P ∗.

(29)

6.3 Convergence analysis in terms of samples

In practice, we replace ρk in the variational problem (26) by ρ̂k(x) = 1
N

∑N
n=1 δ(x− xnk) to

solve Φ̂k. Here xnk ∼ ρk. A natural question arises: with increasing sample numbers N ,

does Φ̂k from samples converge to Φk from distribution? Under further assumptions, the
answer is yes and we postpone the justification in the appendix.

To establish the convergence rate, we further assume that the following statements hold.

Assumption 3 There exists ε3 ≥ 0, for all ρk satisfying D(ρk, ρ
∗) < ζ, such that∣∣∣∣∫ (Φ̂k − Φk)gkdx−

1

2

∫
(Φ̂k − Φk)(HE,PHE(ρk) +HE(ρk)HE,P )gkdx

∣∣∣∣
≤ε3

2

∫
gkHE(ρk)

−1gkdx.

(A7)
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There exists ε4 ≥ 0, for all ρk satisfying D(ρk, ρ
∗) < ζ, such that∣∣∣∣∫ (Φ̂k − Φk)HE(ρk)(Φ̂k − Φk)dx

∣∣∣∣ ≤ ε4

∫
gkHE(ρk)

−1gkdx. (A8)

The update rule in terms of density follows

ρk+1 = Expρk(αkΦ̂k).

Theorem 22 Under Assumption 1, 2 and 3, for ρk satisfying D(ρk, ρ
∗) < ζ, with αk = 1,

we have the linear convergence rate

E(ρk+1)− E(ρ∗) ≤ (ε1 + ε2 + ε1ε2 + ε3 + ε4)(E(ρk)− E(ρ∗)) +O((E(ρk)− E(ρ∗))3/2).

7. Numerical experiments

In this section, we present numerical experiments to demonstrate the strength of information
Newton’s methods.

7.1 Toy examples

We compare particle implementations among Wasserstein Newton’s methods with affine
models 2/RKHS 3 (WNewton-a/WNewton-k), Wasserstein gradient flow (WGF), Hessian
Approximated Lagrangian Langevin dynamics (HALLD) and Stein variational Newton’s
method with the scaled Hessian kernel (SVN-H) (Detommaso et al., 2018). We note that
the update rule of WGF satisfies

xnk+1 = xnk − αk(∇f(xnk) + ξk(x
n
k)).

The update rule of HALLD follows

xnk+1 = xnk − αk∇2f(xnk)−1(∇f(xnk) + ξk(x
n
k)).

We note that the density evolution of HALLD and HAMCMC are identical to each other.
In other words, we replace the Brownian motion in HAMCMC by ξk in HALLD. Here ξk is
an approximation of ∇ log ρk. For all compared methods, we use constant step sizes. For
the calculation of ξk, we apply KDE with Gaussian kernels and the kernel bandwidth is
selected by the Brownian Motion method (Wang and Li, 2019)[section 5.1]. This method
adaptively learns the bandwidth from samples generated by Brownian motions.

We first consider a 1D target density ρ∗(x) ∝ exp (−f(x)), where f(x) = 1
2(x2−1)2. For

WGF, we set αk = 0.01. For SVGD, we set α1 = 0.1 and adjust the step size by Adagrad
(Duchi et al., 2011). For WNewton-a and WNewton-k, we let αk = 1, ε = 0 and γ = 0.
Namely, we do not apply the hybrid update. For HALLD and SVN-H, we set αk = 1.

The sample number follows N = 100. The initial distribution follows N (0, 0.01). We
plot the distribution after 2, 5, 10, 20 iterations in Figure 2. Although we use affine/kernel
approximations to compute the Newton’s direction, WNewton-a and WNewton-k tend to
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Figure 2: Comparison among WGF, SVGD, WNewton-a, WNewton-k, HALLD and SVN-H
in 1D toy example. Left to right: sample distribution after 2, 5, 10, 20 iterations.
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converge to the target density and they are faster than WGF. SVGD has similar performance
with WGF. HALLD and SVN-H have some particle which tend to diverge. This may result
from that the target density is not log-concave.

Then, we let the target density ρ∗ to be a 2D bimodal distribution (Rezende and Mo-
hamed, 2015). For WGF, we set αk = 0.1. For SVGD, we set α1 = 1 and adjust the step
size via Adagrad. For WNewton-a, we apply the hybrid update and set αk = 0.2, ε = 0 and
γ = 0.5. For WNewton-k, we set αk = 1, ε = 0, γ = 0. For HALLD, we set αk = 0.2. For
SVN-H, we set α = 1.

The initial distribution follows N ([0, 10]′, I). We plot the distribution after 2, 5, 10, 20
iterations with N = 100 samples in Figure 3. WNewton-k converges rapidly toward the
target density. HALLD fails to converge because ∇2f becomes singular on certain sample
points. SVN-H barely moves because the initial distribution is not close enough to the target
distribution. SVGD converges slower than WGF. The Wasserstein Newton’s direction helps
samples to converge faster towards the target density with robustness.

Next, we present numerical results on a 2D double-banana shape posterior density in
(Detommaso et al., 2018). For WGF, we set αk = 0.002. For SVGD, we set α1 = 0.1 and
adjust the step size via Adagrad. For WNewton-a, we apply the hybrid update and set
αk = 0.2, ε = 0 and γ = 0.001. For WNewton-k, we set αk = 1, ε = 0, γ = 0. For HALLD
and SVN-H, we set αk = 1.

Similarly, we plot the distribution after 2, 5, 10, 20 iterations with N = 100 samples in
Figure 4. WNewton-k and SVN-H converges toward the posterior distribution in no more
than 5 iterations. WNewton-a collapses around the center of the lower banana. WGF and
SVGD take nearly 20 iterations to converge. HALLD converges rapidly but it diverge at
iteration 20. Here we notice that WNewton does not require heavy tunes of step sizes. The
step size αk = 1 usually leads to robust performance.

7.2 Conditioned diffusion

The conditioned diffusion example is a 100-dimensional model from a Langevin SDE, with
state ut : [0, T ]→ R and dynamics give by

dut =
βu(1− u2)

1 + u2
dt+ dxt, u0 = 0.

Here x = (xt)t≥0 is the standard Brownian motion. The goal is to infer the driving process
xt and its pushfoward to the state u. Detailed setup of this test case can be found in
(Detommaso et al., 2018).

We compare WNewton-a with WGF, SVGD, SVN-H and HALLD. We do not compare
WNewton-k because per-iteration computation cost in the current implementation is too
heavy on this test case with N = 1000 and d = 100. For WGF, we set αk = 0.01. For SVGD,
we set α1 = 0.1 and adjust step sizes via Adagrad. For WNewton-a, SVN-H and HALLD,
we set αk = 1. From Figure 5, we note that the posterior mean (which captures the trends
of true path) from WNewton-a, SVN-H and HALLD almost converge in approximately 10
iterations. Meanwhile, the posterior mean from WGF and SVGD takes 50-100 iterations to
converge. Compared to SVN-H, WNewton-a tends to have narrower credible interval. The
credible interval of HALLD in [0, 0.5] after 100 iterations has larger fluctuation.
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Figure 3: Comparison among WGF, SVGD, WNewton-a, WNewton-k, HALLD and SVN-H
in 2D toy example. Left to right: sample distribution after 2, 5, 10, 20 iterations.
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Figure 4: Comparison among WGF, SVGD, WNewton-a, WNewton-k, HALLD and SVN-H
in 2D double banana example. Left to right: sample distribution after 2, 5, 10, 20
iterations.
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Figure 5: Comparison among WGF, SVGD, WNewton-a, HALLD and SVN-H in 100D
conditioned diffusion example. Left to right: sample distribution after 10, 50, 100
iterations. Red dots: noisy observations. Purple line: ground truth. Blue line:
posterior mean. Shaded area: 90% credible interval.
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7.3 Bayesian logistic regression

We perform the standard Bayesian logistic regression experiment on the Covertype dataset,
following the settings in (Liu and Wang, 2016). We compare WNewton-a and WNewton-k
with MCMC, SVGD (Liu and Wang, 2016), and WGF. The performances of SVN-H and
HALLD on this test example are not ideal. For the calculation of ξk in WGF and WNewton-
a, we use KDE with Gaussian kernel and the bandwidth is selected by the median method,
which is the same as (Liu and Wang, 2016). The sample number follows N = 50. The
mini-batch size for stochastic gradient and Hessian evaluations in each iteration is 100.

We first discuss the choice of step sizes. The initial step sizes for the compared methods
are given in Table 1. Except for SVGD, the initial step sizes are selected from {i · 10j |i ∈
{1, 2, 5}, j ∈ {−3, . . . ,−7}} to ensure the best performance. For SVGD, we use the initial
step size in (Liu and Wang, 2016) and adjust step sizes by Adagrad. For MCMC, WGF
and WNewton-k, the step size is multiplied by 0.9 every 100 iterations. For WNewton-a,
the step size is multiplied by 0.82 every 100 iterations.

Method MCMC SVGD WGF WNewton-a WNewton-k

Step size α1 1e-5 0.05 1e-5 2e-3 2e-3

Table 1: Initial step sizes for algorithms in comparison.

We then elaborate on the implementation details of compared methods. For WNewton-
k, we apply the block-diagonal approximation to accelerate the computation. For WNewton-
a and WNewton-k, we set ε = 1 and use the hybrid update with γ = 5×10−3 and γ = 10−3

respectively.

From Figure 6, we observe that WNewton-k has the best performance in terms of test
accuracy and test log-likelihood and it converges much faster compared to other methods.
Namely, WNewton-k has ideal performance on test test tests in less than 200 iterations.
WNewton-a and WNewton-k achieves higher test log-likelihood. This indicates that the
approximated Wasserstein Newton’s direction leads to better generalization on the test set.

Figure 6: Comparison of different methods on Bayesian logistic regression, averaged over
10 independent trials. The shaded areas show the variance over 10 trials. Left:
Test accuracy; Right: Test log-likelihood.
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8. Conclusion

In this paper, we introduce information Newton’s flows (second-order optimization meth-
ods) for optimization problems in probability space arising from Bayesian statistics, inverse
problems, and machine learning. Here two information metrics, such as Fisher-Rao metric
and Wasserstein-2 metric, are considered. Several examples and convergence analysis of the
proposed second-order methods are provided. Following the fact that the Wasserstein gra-
dient flow of KL divergence formulates the Langevin dynamics, we derive the Wasserstein
Newton’s flow of KL divergence as Newton’s Langevin dynamics. Focusing on Newton’s
Langevin dynamics, we study analytical examples in one-dimensional sample space and
Gaussian families. We further propose practical sampling efficient algorithms, in affine
models and RKHS, to implement Newton’s Langevin dynamics. We show the convergence
rate of information Newton’s method with approximated solutions. The numerical examples
in Bayesian sampling problems demonstrate the effectiveness of the proposed method.
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Appendix A. Definitions and notations

In this section, we present several definitions and notations used in this paper. We briefly
review the concept of self-adjoint operator.

Definition 23 (Self-adjoint) Suppose that V is a Hilbert space and let H : V → V ∗ be a
linear operator. V ∗ is the adjoint space of V , which consists of all linear functionals on V .
Let (f, v) = (v, f) = f(v) denote the coupling of v ∈ V and f ∈ V ∗. The adjoint operator
of H is the unique linear operator H∗ : V → V ∗, which satisfies

(Hv1, v2) = (v1,H∗v2), ∀v1, v2 ∈ V.

We say that H is self-adjoint if H = H∗.

Remark 24 If V = Rd is the Euclidean space, then the linear operator H can be viewed as
a matrix in Rd×d. Then, to say that H is self-adjoint operator is equivalent to say that H
is a symmetric matrix.

We define positive definite operators as follows.

Definition 25 Suppose that V is a Hilbert space and let H : V → V ∗ be a self-adjoint
linear operator. We say that H is positive definite, if (Hv, v) > 0 for all v ∈ V , v 6= 0.

Appendix B. Proofs in section 3

In this section, we present details and proofs for propositions in section 3. Proposition 26
provides a sufficient condition to ensure that the Hessian operator is injective (invertible).

Proposition 26 Suppose that gρ(HessE(ρ)σ, σ) > 0 for all σ 6= 0, σ ∈ TρP(Ω). Namely,
HE(ρ) is positive definite. Then, HessE(ρ) is injective.

Proof If there exist σ1, σ2 ∈ TρP(Ω) such that HessE(ρ)σ1 = HessE(ρ)σ2. Then,

gρ((σ1 − σ2),HessE(ρ)(σ1 − σ2)) =

∫
(σ1 − σ2)G(ρ)−1 HessE(ρ)(σ1 − σ2)dx = 0.

By our assumption gρ(HessE(ρ)σ, σ) > 0 for all σ 6= 0, we have σ1 = σ2.

B.1 Proof of Proposition 3

The geodesic curve ρ̂s satisfies geodesic equation
∂sρ̂s − G(ρ̂s)

−1Φs = 0,

∂sΦs +
1

2

δ

δρ̂s

(∫
ΦsG(ρ̂s)

−1Φsdx

)
= 0,

(30)

with initial values ρ̂s|s=0 = ρ and Φs|s=0 = Φ. For the first-order derivative, it follows

d

ds
E(ρ̂s) =

∫
∂sρ̂s

δE

δρ̂s
dx =

∫
ΦsG(ρ̂s)

−1 δE

δρ̂s
dx,
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where we utilize the fact that G(ρ̂s) is self-adjoint. For the second-order derivative,

d2

ds2
E(ρ̂s) =

∫
∂sΦsG(ρ̂s)

−1 δE

δρ̂s
dx+

∫
∂sρ̂s

δ

δρ̂s

(
d

ds
E(ρ̂s)

)
dx

=− 1

2

∫
A(ρ̂s)(Φs,Φs)G(ρ̂s)

−1 δE

δρ̂s
dx+

∫
A(ρ̂s)

(
Φs,

δE

δρ̂s

)
G(ρ̂s)

−1Φsdx

+

∫ ∫ (
G(ρ̂s)

−1Φs

)
(y)

δ2E

δρ̂2
s

(x, y)
(
G(ρ̂s)

−1Φs

)
(x)dxdy.

Based on the definition of HE(ρ), (4) is proved by setting s = 0 in the above formula. To
prove (5), we introduce Lemma 27.

Lemma 27 Let H be a self-adjoint linear operator from T ∗ρP(Ω) → TρP(Ω). Namely
H∗ = H. Suppose that

∫
ΦHΦdx = 0 for all Φ ∈ T ∗ρP(Ω). Then, H = 0.

Proof Because H is self-adjoint and linear, for any Φ ∈ T ∗ρP(Ω), it follows

HΦ =
1

2

δ

δΦ

∫
ΦHΦdx = 0.

This completes the proof.

Note that HessE(ρ) is self-adjoint w.r.t. the metric tensor G(ρ), namely

(HessE(ρ))∗G(ρ) = G(ρ) HessE(ρ), G(ρ)−1(HessE(ρ))∗ = HessE(ρ)G(ρ)−1.

where (HessE(ρ))∗ is the adjoint operator of HessE(ρ). This tells that HessE(ρ)G(ρ)−1 is
self-adjoint. We have the following relationship.∫

ΦHE(ρ)Φdx = gρ(HessE(ρ)σ, σ) =

∫
ΦG(ρ)−1 HessE(ρ)Φdx.

As a direct result of Proposition 26, it follows HE(ρ) = HessE(ρ)G(ρ)−1.

B.2 Newton’s flows under Fisher-Rao metric

For Fisher-Rao metric, the geodesic curve ρ̂s satisfies
∂sρ̂s − ρs

(
Φs −

∫
Φsρ̂sdy

)
= 0,

∂sΦs +
1

2
Φ2
s −

(∫
Φsρ̂sdy

)
Φs = 0.

And the bi-linear operator AF (ρ) follows

AF (ρ)(Φ1,Φ2) = Φ1Φ2 −
(∫

Φ2ρdy

)
Φ1 −

(∫
Φ1ρdy

)
Φ2. (31)

For simplicity, we let Eρ[Φ] =
∫

Φρdx, where Φ ∈ T ∗ρP(Ω).
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Proposition 28 (Fisher-Rao Newton’s flow) For an objective function E : P(Ω)→ R,
the Fisher-Rao Newton’s flow follows

∂tρt − ρt(Φt − Eρt [Φt]) = 0,

HFE(ρt)Φt − ρt
(
δE

δρt
− Eρt

[
δE

δρt

])
= 0,

(32)

where HFE(ρ) : T ∗ρP(Ω)→ TρP(Ω) defines a bi-linear form: for Φ ∈ T ∗ρP(Ω),∫
ΦHFE(ρ)Φdx =

1

2

∫
AF (ρ)

(
Φ,
δE

δρ

)
(Φ− Eρ[Φ])ρdx

+

∫ ∫
ρ(y)(Φ(y)− Eρ[Φ])

δ2E

δρ2
(x, y)dyρ(x)(Φ(x)− Eρ[Φ])dx.

(33)

Proof Based on Proposition 3, we only need to prove that∫
AF (ρ)(Φ,Φ)GF (ρ)−1 δE

δρ
dx =

∫
AF (ρ)

(
Φ,
δE

δρ

)
GF (ρ)−1Φdx.

The left hand side follows∫
AF (ρ)(Φ,Φ)GF (ρ)−1 δE

δρ
dx

=

∫ (
Φ2 − 2Eρ[Φ]Φ

)(δE
δρ
− Eρ

[
δE

δρ

])
ρdx

=

∫
(Φ− Eρ[Φ])

(
δE

δρ
− Eρ

[
δE

δρ

])
Φρdx− Eρ[Φ]

∫ (
δE

δρ
− Eρ

[
δE

δρ

])
Φρdx.

The right hand side satisfies∫
AF (ρ)

(
Φ,
δE

δρ

)
GF (ρ)−1Φdx

=

∫ (
Φ
δE

δρ
− Eρ

[
δE

δρ

]
Φ− Eρ[Φ]

δE

δρ

)
(Φ− Eρ[Φ]) ρdx

=

∫
(Φ− Eρ[Φ])

(
δE

δρ
− Eρ

[
δE

δρ

])
Φρdx− Eρ[Φ]

∫
δE

δρ
(Φ− Eρ[Φ]) ρdx.

We also observe that∫
δE

δρ
(Φ− Eρ[Φ]) ρdx = Eρ

[
Φ
δE

δρ

]
− Eρ[Φ]Eρ

[
δE

δρ

]
=

∫ (
δE

δρ
− Eρ

[
δE

δρ

])
Φρdx.

Hence, the left hand side is equal to the right hand side.

Example 6 (Fisher-Rao Newton’s flow of KL divergence) Suppose that E(ρ) eval-
uates the KL divergence from ρ to ρ∗ ∼ exp(−f). This objective functional also writes

E(ρ) =

∫
(ρ log ρ+ fρ)dx.
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We derive that

δE

δρ
(x) = log ρ(x) + f + 1,

δ2E

δρ2
(x, y) =

δ(x− y)

ρ(y)
.

Based on Proposition 28, we can compute that (4) is equivalent to

∫
ΦHE(ρ)Φdx =

1

2

∫ (
Φ2 − 2Eρ[Φ]Φ

)
(log ρ+ f − Eρ[log ρ+ f ]) ρdx

+

∫
(Φ(x)− Eρ[Φ]) ρ(x)

∫
δ(y − x)

ρ(y)
(Φ(y)− Eρ[Φ]) ρ(y)dydx

=
1

2

∫
(log ρ+ f − Eρ[log ρ+ f ]) Φ2ρdx

− Eρ[Φ]

∫
(log ρ+ f − Eρ[log ρ+ f ]) Φρdx

+

∫
Φ2ρdx−

(∫
Φρdx

)2

.

Hence, the operator HFE(ρ) follows

HFE(ρ)Φ =
1

2
(log ρ+ f − Eρ[log ρ+ f ]) Φρ− 1

2

(∫
(log ρ+ f − Eρ[log ρ+ f ]) Φρdy

)
ρ

− 1

2
Eρ[Φ] (log ρ+ f − Eρ[log ρ+ f ]) ρ+ Φρ− Eρ[Φ]ρ

=
1

2
(2 + log ρ+ f − Eρ[log ρ+ f ]) (Φ− Eρ[Φ]) ρ

− 1

2
(Eρ[Φ(log ρ+ f)]− Eρ[Φ]Eρ[(log ρ+ f)]) ρ.

Example 7 (Fisher-Rao Newton’s flow of interaction energy) Consider an interac-
tion energy

E(ρ) =
1

2

∫ ∫
ρ(x)W (x, y)ρ(y)dxdy,

where W (x, y) = W (y, x) is a kernel function. The interaction energy also formulates the
MMD, see details in (Gretton et al., 2012). We can compute that

δE

δρ
(x) =

∫
W (x, y)ρ(y)dy,

δ2E

δρ2
(x, y) = W (x, y).
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We denote (W ∗ ρ)(x) =
∫
W (x, y)ρ(y)dx. Based on Proposition 28, it follows

∫
ΦHFE(ρ)Φdx

=
1

2

∫
(Φ2 − 2Eρ[Φ]Φ)(W ∗ ρ− Eρ[W ∗ ρ])ρdx

+

∫ ∫
(Φ(y)− Eρ[Φ])W (x, y)ρ(y)ρ(x)(Φ(x)− Eρ[Φ])dydx

=
1

2

∫
Φ2(W ∗ ρ− Eρ[W ∗ ρ])ρdx− Eρ[Φ]

(∫
Φ(W ∗ ρ− Eρ[W ∗ ρ])ρdx

)
+

∫ ∫
Φ(x)ρ(x)W (x, y)Φ(y)ρ(y)dxdy + (Eρ[Φ])2

(∫ ∫
ρ(x)W (x, y)ρ(y)dxdy

)
− 2Eρ[Φ]

(∫ ∫
ρ(x)W (x, y)Φ(x)ρ(y)dxdy

)
.

Hence, the operator HFE(ρ) satisfies

HFE(ρ)Φ(x) =
1

2
(W ∗ ρ− Eρ[W ∗ ρ])ρΦ− 1

2

(∫
Φ(W ∗ ρ− Eρ[W ∗ ρ])ρdy

)
ρ

− 1

2
Eρ[Φ](W ∗ ρ− Eρ[W ∗ ρ])ρ+ (W ∗ (ρΦ))ρ

+ Eρ[W ∗ ρ]Eρ[Φ]ρ− Eρ[W ∗ (ρΦ)]ρ− Eρ[Φ](W ∗ ρ)ρ

=
1

2
(W ∗ ρ− Eρ[W ∗ ρ])(Φ− Eρ[Φ])ρ− 1

2
(Eρ[Φ(W ∗ ρ)]− Eρ[Φ]Eρ[W ∗ ρ]) ρ

+ (W ∗ (ρΦ)− Eρ[W ∗ (ρΦ)])ρ− Eρ[Φ] ((W ∗ ρ)− Eρ[W ∗ ρ]) ρ.

Example 8 (Fisher-Rao Newton’s flow of cross entropy) Suppose that E(ρ) is the
cross entropy, i.e., reverse KL divergence. It evaluates the KL divergence from a given
density ρ∗ to ρ

E(ρ) = −
∫

log

(
ρ

ρ∗

)
ρ∗dx = −

∫
(log ρ)ρ∗dx+

∫
(log ρ∗)ρ∗dx.

It is equivalent to optimize E(ρ) = −
∫

(log ρ)ρ∗dx. We compute that

δE

δρ
(x) = −ρ

∗(x)

ρ(x)
,

δ2E

δρ2
(x, y) =

ρ∗(y)

ρ2(y)
δ(x− y).
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Proposition 28 indicates that∫
ΦHFE(ρ)Φdx =

1

2

∫
(Φ2 − 2Eρ[Φ]Φ)(−ρ∗/ρ+ Eρ[ρ∗/ρ])ρdx

+

∫
(Φ(x)− Eρ[Φ])ρ(x)

∫
ρ∗(y)

ρ2(y)
δ(x− y)(Φ(y)− Eρ[Φ])ρ(y)dydx

=
1

2

∫
Φ2(ρ− ρ∗)dx− Eρ[Φ]

∫
Φ(ρ− ρ∗)dx+

∫
(Φ− Eρ[Φ])2ρ∗dx

=
1

2
(Eρ[Φ2]− Eρ∗ [Φ2])− Eρ[Φ](Eρ[Φ]− Eρ∗ [Φ])

+ Eρ∗ [Φ2]− 2Eρ[Φ]Eρ∗ [Φ] + (Eρ[Φ])2

=
1

2
(Eρ[Φ2] + Eρ∗ [Φ2])− Eρ[Φ]Eρ∗ [Φ].

Hence, the operator HFE(ρ) follows

HFE(ρ)Φ =
1

2
((Φ− Eρ∗ [Φ])ρ+ (Φ− Eρ[Φ])ρ∗).

B.3 Newton’s flows under Wasserstein metric

For Wasserstein metric, the geodesic curve ρ̂s satisfies∂sρ̂s +∇ · (ρ̂s∇Φs) = 0,

∂sΦs +
1

2
‖∇Φs‖2 = 0.

The bi-linear operator AW (ρ) follows

AW (ρ)(Φ1,Φ2) = 〈∇Φ1,∇Φ2〉 .

Proposition 29 (Wasserstein Newton’s flow) For an objective functional E : P(Ω)→
R, the Wasserstein Newton’s flow follows

∂tρt +∇ · (ρ∇Φt) = 0,

HWE (ρt)Φt −∇ ·
(
ρt∇

δE

δρt

)
= 0.

(34)

Here HE(ρ) : T ∗ρP(Ω)→ TρP(Ω) defines a bi-linear form: for Φ ∈ T ∗ρP(Ω),

∫
ΦHWE (ρ)Φdx =

∫ ∫ 〈
∇Φ(x),∇x∇y

δ2E

δρ2
(x, y)∇Φ(y)

〉
ρ(x)ρ(y)dxdy

+

∫ 〈
∇Φ,∇2 δE

δρ
∇Φ

〉
ρdx.

(35)
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Proof Based on integration by parts, we observe that∫
AW (ρ)(Φ,Φ)GW (ρ)−1 δE

δρ
dx

=−
∫
‖∇Φ‖2∇ ·

(
ρ∇δE

δρ

)
dx

=

∫ 〈
∇δE
δρ
,∇‖∇Φ‖2

〉
ρdx

=2

∫ 〈
∇δE
δρ
,∇2Φ∇Φ

〉
ρdx,

and ∫
AW (ρ)

(
Φ,
δE

δρ

)
GW (ρ)−1Φdx

=−
∫ 〈
∇Φ,∇δE

δρ

〉
∇ · (ρ∇Φ)dx

=

∫ 〈
∇
〈
∇Φ,∇δE

δρ

〉
,∇Φ

〉
ρdx

=

∫ 〈
∇Φ,∇2Φ∇δE

δρ

〉
ρdx+

∫ 〈
∇Φ,∇2 δE

δρ
∇Φ

〉
ρdx.

Combining above two observations with Proposition 3, we derive∫
ΦHWE (ρ)Φdx =

∫ 〈
∇Φ,∇2 δE

δρ
∇Φ

〉
ρdx

+

∫ ∫
∇ · (ρ∇Φ)(y)

δ2E

δρ2
(x, y)∇ · (ρ∇Φ)(x)dxdy

=

∫ ∫ 〈
∇Φ(x),∇x∇y

δ2E

δρ2
(x, y)∇Φ(y)

〉
ρ(x)ρ(y)dxdy

+

∫ 〈
∇Φ,∇2 δE

δρ
∇Φ

〉
ρdx.

This proves Proposition 29.

Example 9 (Wasserstein Newton’s flow of interaction energy) Consider an inter-
action energy

E(ρ) =
1

2

∫ ∫
ρ(x)W (x, y)ρ(y)dxdy.

Combining with previous computations, Proposition 29 yields that∫
ΦHWE (ρ)Φdx =

∫ ∫
〈∇Φ(x),∇x∇yW (x, y)∇Φ(y)〉 ρ(x)ρ(y)dxdy

+

∫ 〈
∇Φ(x),

∫
∇2
xW (x, y)ρ(y)dy∇Φ(x)

〉
ρ(x)dx

=
1

2
Ex,y∼ρ

[
∇Φ(x)
∇Φ(y)

]T [∇2
xxW (x, y) ∇2

xyW (x, y)

∇2
yxW (x, y) ∇2

yyW (x, y)

] [
∇Φ(x)
∇Φ(y)

]
.
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Based on integration by parts, the operator HWE (ρ) is given by

HWE (ρ)Φ = −∇ · (ρ(∇2
xyW ∗ (ρ∇Φ)))−∇ · (ρ(∇2

xxW ∗ ρ)∇Φ).

Example 10 (Wasserstein Newton’s flow of cross entropy) Suppose that E(ρ) eval-
uates the KL divergence from a given density ρ∗ to ρ

E(ρ) = −
∫

log

(
ρ

ρ∗

)
ρ∗dx = −

∫
(log ρ)ρ∗dx+

∫
(log ρ∗)ρ∗dx.

It is equivalent to optimize E(ρ) = −
∫

(log ρ)ρ∗dx. Proposition 29 yields∫
ΦHWE (ρ)Φdx =

∫
∇ · (ρ(x)∇Φ(x))

∫
ρ∗(y)

ρ2(y)
δ(x− y)∇ · (ρ(y)∇Φ(y))dydx

−
∫ 〈
∇Φ(x),∇2

x

(
ρ∗(x)

ρ(x)

)
∇Φ(x)

〉
ρ(x)dx

=

∫
(ρ−1∇ · (ρ∇Φ))2ρ∗dx−

∫ 〈
∇Φ,∇2

(
ρ∗

ρ

)
∇Φ

〉
ρdx.

Hence, the operator HWE (ρ) satisfies

HWE (ρ)Φ = ∇ ·
(
ρ∇
(
ρ∗

ρ2
∇ · (ρ∇Φ)

))
+∇ ·

(
ρ∇2

(
ρ∗

ρ

)
∇Φ

)
.

Remark 30 For simplicity of presentations, we only present the Hessian formulas for
Fisher-Rao and Wasserstein information metrics. In fact, there are many interesting gen-
eralized Hessian formulas in Li (2019) from Hessian transport metrics. We leave systematic
studies of Newton’s flows for general metrics in future works.

We summarize formulations of Hessian-related operators HE(ρ) under both Fisher-Rao
metric and Wasserstein metric.

Objective functional E(ρ) HFE(ρ)Φ

KL divergence:∫
(ρ log ρ+ fρ)dx.

1

2
(2 + log ρ+ f − Eρ[log ρ+ f ]) (Φ− Eρ[Φ]) ρ

−1

2
(Eρ[Φ(log ρ+ f)]− Eρ[Φ]Eρ[(log ρ+ f)]) ρ.

Interaction energy:
1
2

∫ ∫
ρ(x)W (x, y)ρ(y)dxdy

1

2
(W ∗ ρ− Eρ[W ∗ ρ])(Φ− Eρ[Φ])ρ

−1

2
(Eρ[Φ(W ∗ ρ)]− Eρ[Φ]Eρ[W ∗ ρ]) ρ

+(W ∗ (ρΦ)− Eρ[W ∗ (ρΦ)])ρ

−Eρ[Φ] ((W ∗ ρ)− Eρ[W ∗ ρ]) ρ.

Reverse KL divergence:∫
(log ρ∗ − log ρ)ρ∗dx

1
2(Φ− Eρ∗ [Φ])ρ+ 1

2(Φ− Eρ[Φ])ρ∗.

Table 2: The formulation of HFE(ρ) under the Fisher-Rao metric.
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Objective functional E(ρ) HWE (ρ)Φ

KL divergence:∫
(ρ log ρ+ fρ)dx.

∇2 : (ρ∇2Φ)−∇ · (ρ∇2f∇Φ).

Interaction energy:
1
2

∫ ∫
ρ(x)W (x, y)ρ(y)dxdy

−∇ · ((∇2
xyW ∗ (∇Φρ))ρ)−∇ · ((∇2

xxW ∗ ρt)ρ∇Φ).

Reverse KL divergence:∫
(log ρ∗ − log ρ)µdx

∇ ·
(
ρ∇
(
ρ∗

ρ2
∇ · (ρ∇Φ)

))
+∇ ·

(
ρ∇2

(
ρ∗

ρ

)
∇Φ
)
.

Table 3: The formulation of HWE (ρ) under the Wasserstein metric.

B.4 Wasserstein Newton’s flows in Gaussian families

In this subsection, we study information Newton’s flows in Gaussian families with respect
to Wasserstein metric. We leave the proof of Proposition 5 in next subsection. Let Pn and
Sn represent the space of symmetric positive definite matrices and symmetric matrices with
size n× n respectively.

We let N 0
n denote multivariate Gaussian densities with zero means. Each ρ ∈ N 0

n is
uniquely determined by its covariance matrix Σ ∈ Pn. So we can view N 0

n ' Pn. The
Wasserstein metric GW (ρ) on P(Rd) induces the Wasserstein metric GW (Σ) on Pn, see
(Takatsu, 2008; Modin, 2017; Malagò et al., 2018). For Σ ∈ Pn, tangent space and cotangent
space follow

TΣPn ' T ∗ΣPn ' Sn.

Definition 31 (Wasserstein metric in Gaussian families) Given Σ ∈ Pn, the Wasser-
stein metric tensor GW (Σ) : Sn → Sn is defined by

GW (Σ)−1S = 2(ΣS + SΣ).

It defines an inner product on the tangent space TΣPn. Namely, for A1, A2 ∈ TΣPn ' Sn

gWΣ (A1, A2) = tr(A1GW (Σ)A2) = tr(S1GW (Σ)−1S2) = 4 tr(S1ΣS2).

Here Si ∈ T ∗ΣPn ' Sn is the solution to discrete Lyapunov equation

Ai = 2(ΣSi + SiΣ), i = 1, 2.

For Σ ∈ Pn, there exits a unique solution to discrete Lyapunov equation. Again, we focus
on the case where the objective functional E(Σ) evaluates the KL divergence from ρ with
covariance matrix Σ to a target Gaussian density ρ∗ with covariance matrix Σ∗. Then,
E(Σ) satisfies (8).

Proposition 32 (Gradient and Hessian operators in Pn) The gradient operator fol-
lows

gradW E(Σ) = GW (Σ)−1∇E(Σ) = Σ(Σ∗)−1 + (Σ∗)−1Σ− 2I.

And the Hessian operator satisfies that for all A ∈ Sn,

gWΣ (A,HessW E(Σ)A) = 4 tr(SΣS(Σ∗)−1) + 4 tr(S2),

where S is the unique solution to A = 2(ΣS + SΣ).
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Given A ∈ Sn, the geodesic curve Σ̂s with Σ̂s|s=0 = Σ and ∂sΣ̂s|s=0 = A follows Σ̂s =
(I + 2sS)Σ(I + 2sS), where S = G(Σ)−1A is the solution to A = 2(ΣS + SΣ). We can
compute that

E(Σ̂s) =
1

2
(tr((I + 2sS)Σ(I + 2sS)(Σ∗)−1)− n− log det((I + 2sS)Σ(I + 2sS)(Σ∗)−1)).

The Taylor expansion of log det(I + sS) w.r.t. s satisfies

log det(I + sS) = s tr(S)− s2

2
tr(S2) + o(s2).

Hence, the first-order derivative follows

∂

∂s
E(Σ(s))

∣∣∣∣
s=0

= tr(SΣ(Σ∗)−1) + tr(ΣS(Σ∗)−1)− 2 tr(S)

= tr
(
S
(
Σ(Σ∗)−1 + (Σ∗)−1Σ− 2I

))
.

By the definition ∂
∂sE(Σ(s))

∣∣
s=0

= tr(S gradE(Σ)), this yields gradE(Σ) = Σ(Σ∗)−1 +
(Σ∗)−1Σ− 2I and the second-order derivative follows

∂2

∂s2
E(Σ(s))

∣∣∣∣
s=0

= 4 tr(SΣS(Σ∗)−1) + 4 tr(S2).

This completes the proof.
Similarly, let us consider the linear self-adjoint operatorHWE (Σ) : Sn → Sn, which defines

a bi-linear form

tr(SHWE (Σ)S) = gWΣ (A,HessW E(Σ)A) = 4 tr(SΣS(Σ∗)−1) + 4 tr(S2).

We can compute that HE(Σ) is uniquely defined by

HE(Σ)S = 2ΣS(Σ∗)−1 + 2(Σ∗)−1SΣ + 4S, ∀S ∈ Sn.

Because tr(SHE(Σ)S) = 4 tr(SΣS(Σ∗)−1) + 4 tr(S2) > 0 for S 6= 0, S ∈ Sn, HE is injective
and invertible. Now, we are ready to present the Newton’s flow of KL divergence in Gaussian
families.

Proposition 33 The Newton’s flow of KL divergence in Gaussian families follows{
Σ̇t − 2(SΣt + ΣSt) = 0,

2ΣtSt(Σ
∗)−1 + 2(Σ∗)−1StΣt + 4St = −(Σt(Σ

∗)−1 + (Σ∗)−1Σt − 2I).
(36)

Proof The Newton’s flow follows

Σ̇t − (HessW E(Σt))
−1 gradW E(Σt) = 0.

We note that HessW E(Σ)GW (Σ)−1 = HWE (Σ), which implies

(HessW E(Σ))−1 = GW (Σ)−1HWE (Σ)−1.
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Hence, we can reformulate the Newton’s flow by{
Σ̇t − GW (Σt)

−1St = 0,

HWE (Σt)St = − gradW E(Σt).

From the formulations of G(Σ)−1, gradW E(Σ) and HE(Σ), we obtain (36).

Example 11 In one dimensional case, the second equation in (36) has an explicit solution

St = − (Σ∗)−1Σt−1
2((Σ∗)−1Σt+1)

. Let Σt = Y 2
t , where Yt > 0. Then, the first equation in (36) turns to

2YtẎt + 4Y 2
t

(Σ∗)−1Y 2
t − 1

2((Σ∗)−1Y 2
t + 1)

= 0,

or equivalently,

Ẏt +
(Σ∗)−1Yt − Y −1

t

(Σ∗)−1 + Y −2
t

= 0. (37)

Let f(Y ) = 1
2((Σ∗)−1Y 2 − 1 − log((Σ∗)−1Y 2)). Then, we have ∇f(Y ) = (Σ∗)−1Y − Y −1

and ∇2f(Y ) = (Σ∗)−1 + Y −2. Hence, the Newton’s flow (37) coincides with Newton’s flow
of f(X) in Euclidean space. We also note that (37) is identical to the evolution of Σt in
Proposition 8 by substituting Σt = Y 2

t .

B.5 Proof of Proposition 5

We first prove that Σt is positive definite. We formulate that

∂tE(Σt) = tr(∂tΣt∇E(Σt)) = 2 tr(StΣt((Σ
∗)−1 − Σ−1

t ))

= tr(St(Σt(Σ
∗)−1 + (Σ∗)−1Σt − 2I)) = − tr(S(2ΣSt(Σ

∗)−1 + 2(Σ∗)−1StΣt + 4St))

=− 4 tr(StΣtSt(Σ
∗)−1)− 4 tr(S2

t ) ≤ 0.

As a result, E(Σt) is non-increasing. Applying the idea of proof in (Wang and Li, 2019,
Theorem 1), we can establish that Σt is positive definite. Then, we examine that Φt satisfies
(3). We observe that

∇2 : (ρt∇2Φt)−∇ · (ρt∇2f∇Φt)−∇ · (ρt∇f)−∆ρt

=2∇2 : (Stρt(x))− 2∇ · (ρt(x)(Σ∗)−1Stx)−∇ · (ρt(x)(Σ∗)−1x)−∆ρt.

We note that ∇ρt(x) = −Σ−1
t xρt(x) and ∇2ρt(x) = −Σ−1

t ρt(x) + Σ−1
t xxTΣ−1

t ρt(x). Hence,
we derive all four terms in the above equation as follows. First, it is easy to observe that

∇2 : (ρt(x)St) = tr(St∇2ρt(x)), −∆ρt = −∇2 : (ρtI) = − tr(∇2ρt(x)).
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We can also compute that

−∇ · (ρt(Σ∗)−1Stx)

=−
n∑
i=1

∂i(ρt(x)WStx)i

=−
n∑
i=1

[
ρt(x)∂i((Σ

∗)−1Stx)i + (WStx)i∂iρt(x)
]

=− ρt(x)
[
tr((Σ∗)−1St) + ((Σ∗)−1Stx)T (−Σ−1

t x)
]

=− ρt(x) tr(St(Σ
∗)−1(I − Σ−1

t xxT ))

=
1

2
tr((ΣtSt(Σ

∗)−1 + (Σ∗)−1StΣt)∇2ρt(x)).

Taking St = I into the above equation yields

−∇ · (ρt(Σ∗)−1x) =
1

2
tr((Σt(Σ

∗)−1 + (Σ∗)−1Σt)∇2ρt(x)).

Because (Σt, St) satisfies (36), we have

2∇2 : (Stρt(x))− 2∇ · (ρt(x)(Σ∗)−1Stx)−∇ · (ρt(x)(Σ∗)−1x)−∆ρt

= tr((2St + ΣtSt(Σ
∗)−1 + (Σ∗)−1StΣt + Σt(Σ

∗)−1 + (Σ∗)−1Σt − 2I)∇2ρt(x))

=0.

This completes the proof.

Appendix C. Details in section 4

In this section, we present detailed discussion of Wasserstein Newton’s flow and Newton’s
Langevin dynamics with particular examples.

C.1 Connections and differences with HAMCMC

HAMCMC approximates the dynamics of

dXt = −(∇2f(Xt))
−1 (∇f(Xt) + Γ(Xt)) dt+

√
2∇2f(Xt)−1dBt,

where Γi(x) =
∑

j=1
∂
∂xj

((
∇2f(Xt)

)−1
)
i,j

. Here Γ(x) is a correction term to ensure that

ρt converges to ρ∗. The evolution of ρt follows

∂tρt = ∇ ·
((

(∇2f)−1∇f + Γ
)
ρt
)

+∇2 :
(
(∇2f)−1ρt

)
.

We formulate the above equation as

∂tρt = ∇ · (ρt(∇2f)−1(∇f +∇ log ρt)) = ∇ · (ρtvt), (38)

where we denote vt = (∇2f)−1(∇f +∇ log ρt). Moreover, vt satisfies

−∇ · (ρt∇2fvt)−∇ · (ρt∇f)−∆ρt = 0.
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On the other hand, replacing ∇ΦNewton
t by vNewton

t in the Newton’s direction equation (3)
yields

∇2 : (ρt∇vNewton
t )−∇ · (ρt∇2fvNewton

t )−∇ · (ρt∇f)−∆ρt = 0.

Hence, vt 6= vNewton
t . Then, (38) is different from information Newton’s flow because the

term ∇2 : (ρt∇vNewton
t ) is not considered.

C.2 Connections and differences with Newton’s flows in Euclidean space

We recall that the density evolution of particle’s gradient flow in Euclidean space corre-
sponds to the Wasserstein gradient flow (Villani, 2008). We notice that this relationship
does not hold for the Wasserstein Newton’s flow.

Consider an objective function:

E(ρ) =

∫
ρ(x)f(x)dx,

where f(x) is a given smooth function. Here we notice that minimize ρ for E(ρ) in proba-
bility space is equivalent to minimize x for f(x) in Euclidean space. Namely, the support of
the optimal solution ρ contains all global minimizers of f(x). The gradient flow in Euclidean
space of each particle follows

dXt = −∇f(Xt)dt,

A known fact is that the density evolution of particles satisfies the following continuity
equation

∂tρt = ∇ · (ρt∇f) = − gradW E(ρt),

which is the Wasserstein gradient flow of E(ρ) in probability space.
We next show that Newton’s flow in Euclidean space of each particle does not coincide

with the Wasserstein Newton’s flow in probability space. For simplicity, we assume that
f(x) is strictly convex so ∇2f(x) is invertible for all x. Here, the Euclidean Newton’s flow
of each particle follows

dXt = −(∇2f(Xt))
−1∇f(Xt)dt.

The density evolution of particles satisfies the continuity equation

∂tρt = ∇ · (ρt(∇2f)−1∇f). (39)

On the other hand, the Wasserstein Newton’s flow writes

∂tρt +∇ · (ρt∇ΦNewton
t ) = 0, (40)

where ΦNewton
t is the unique solution to

−∇ · (ρt∇2f∇Φ)−∇ · (ρt∇f) = 0. (41)

We note that in general equation (39) can be different from equation (40). Later on
in Lemma 35, we formulate the following Hodge decomposition of the Euclidean Newton’s
direction

−(∇2f)−1∇f = ∇ΦNewton
t + ξt,

where ∇ · (ρt∇2fξt) = 0. Here, the constraint on ξt does not necessarily ensure that
∇ · (ρtξt) = 0. Hence, equation (39) can be different from equation (40).
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Remark 34 In one dimensional case or f is a quadratic function, there exists ΦNewton,
such that −(∇2f)−1∇f = ∇ΦNewton. Hence equation (39) is same as equation (40). We
also show an example of ξ 6= 0. Let Ω = R2 and we define

f(x) = log(exp(x1) + exp(x2)) +
λ

2
(x2

1 + x2
2),

where λ > 0 is a parameter. For simplicity, we denote p1 = exp(x1)/(exp(x1) + exp(x2))
and p2 = exp(x1)/(exp(x1)+exp(x2)). Then, we can compute that the gradient and Hessian
of f(x) follows

∇f(x) =

[
p1 + λx1

p2 + λx2

]
, ∇2f(x) =

[
p1p2 + λ −p1p2

−p1p2 p1p2 + λ

]
.

Because p1p2 + λ > 0 and det(∇2f(x)) = λ2 + 2λp1p2 > 0, ∇2f(x) is positive definite. We
note that

(∇2f(x))−1∇f(x) =
1

λ2 + 2λp1p2

[
p1p2 + λ p1p2

p1p2 p1p2 + λ

] [
p1 + λx1

p2 + λx2

]
=

1

λ2 + 2λp1p2

[
p1p2(1 + λ(x1 + x2)) + λ(p1 + λx1)
p1p2(1 + λ(x1 + x2)) + λ(p2 + λx2)

]
= :

[
F1(x)
F2(x)

]
.

If (∇2f(x))−1∇f(x) is a gradient vector field, we shall have

∂x2F1(x) = ∂x1F2(x).

However, we can examine that

∂x2
F1(x) =

p1p2

λ+ 2p1p2

(
1 + p1(1 + λ(x1 + x2)) +

2λp1(λ(p1 + λx1) + p1p2(1 + λ(x1 + x2)))

λ2 + 2λp1p2

)
.

∂x1
F2(x) =

p1p2

λ+ 2p1p2

(
1 + p2(1 + λ(x1 + x2)) +

2λp2(λ(p2 + λx2) + p1p2(1 + λ(x1 + x2)))

λ2 + 2λp1p2

)
.

This indicates that (∇2f(x))−1∇f(x) is not a gradient vector field. Hence, ξ 6= 0.

Lemma 35 For given ρ ∈ P(Rd), there exists a unique Φ ∈ T ∗ρP(Rd) (up to a constant

shrift) and a vector field ξ : Rd → Rd satisfying ∇ · (ρ∇2fξ) = 0 such that

−(∇2f(x))−1∇f(x) = ∇Φ(x) + ξ(x).

Proof We first show the existence of Φ ∈ T ∗ρP(Rd) and ξ. Note that Φ is the solution to

−∇ · (ρ∇2f∇Φ) = ∇ · (ρ∇f).

Denote HΦ = −∇ · (ρ∇2f∇Φ). Then, for Φ 6= 0, we have∫
ΦHΦdx =

∫
∇ΦT∇2f∇Φρdx > 0.
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Hence, H is a positive definite operator and it is invertible. Thus Φ = H−1 (∇ · (ρ∇f))
exists. Because ∇2fξ = ∇f −∇2f∇Φ, it follows

∇ · (∇2fξ) = ∇ · (ρ∇f)−∇ · (ρ∇2f∇Φ) = 0.

Hence, ξ also exists. We next prove the uniqueness. Suppose that ∇2f(x)−1∇f(x) =
∇Φ1(x) + ξ1(x) = ∇Φ2(x) + ξ2(x). Then, we have ∇Φ1 −∇Φ2 = ξ2 − ξ1. Hence∫

(Φ1 − Φ2)H(Φ1 − Φ2)dx =

∫
(∇Φ1 −∇Φ2)T∇2f(∇Φ1 −∇Φ2)ρdx

=

∫
(∇Φ1 −∇Φ2)T∇2f(ξ2 − ξ1)ρdx = −

∫
(Φ1 − Φ2)∇ · (ρ∇2f(ξ2 − ξ1))dx = 0.

Because H is positive definite, this yields that Φ1 − Φ2 = 0 (up to a spatial constant).

C.3 Newton’s Langevin dynamics in one dimensional sample space

In this subsection, we provide examples of Newton’s Langevin dynamics in one dimensional
sample space. In particular, similar to the Ornstein–Uhlenbeck (OU) process in classical
Langevin dynamics, we derive a closed form solution to Newton’s OU process.

Here we assume that Ω = R and f is strictly convex. The essence of Newton’s Langevin
dynamics is to compute ΦNewton

t from the Wasserstein Newton’s direction equation (3).
Proposition 26 ensures the uniqueness of the solution to (3). For the simplicity of notations,
we neglect the subscript t.

Proposition 36 Suppose that ρ > 0 and let u = ∇Φ. Then, the Newton’s direction equa-
tion (3) reduces to an ODE

u′′ + u′(log ρ)′ − f ′′u− f ′ − (log ρ)′ = 0. (42)

Proof In 1-dimensional case, the equation (3) follows

∇2(ρ∇2Φ)−∇(ρ∇2f∇Φ)−∇(ρ∇f)−∇2ρ = 0.

The above equation is equivalent to

ρ∇3Φ +∇ρ∇2Φ− ρ∇2f∇Φ− ρ∇f −∇ρ+ C = 0,

where C is a constant. Because ρ ∈ P(R) ⊂ L1(R). Hence lim|x|→∞ ρ(x) = 0, which
indicates C = 0. Suppose that ρ > 0 and let u = ∇Φ. Dividing both sides by ρ, we obtain

u′′ + u′ρ′/ρ− f ′′u− f ′ − ρ′/ρ = 0.

By the fact that ρ′/ρ = (log ρ)′, we derive (42).

We consider the case where f ′(x) and (log ρ)′(x) are affine functions. Then, ODE (42)
has a closed-form solution. Applying ODE (42), we obtain the exact formulation of Newton’s
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Langevin dynamics in Proposition 8. For the rest of this section, we present the proof of
Proposition 8.
Proof In section 3 Proposition 5, we show that if the evolution of Xt follows NLD, then
Xt follows the Gaussian distribution. We first solve the Newton’s direction from ODE (42).
Suppose that (log ρ)′(x) = Σ−1(x− µ). The ODE turns to be

u′′ − u′Σ−1(x− µ)− (Σ∗)−1u− (Σ∗)−1(x− µ∗) + Σ−1(x− µ) = 0.

We can examine that the following u is a solution to the above ODE.

u(x) =
Σ−1 − (Σ∗)−1

Σ−1 + (Σ∗)−1
x− 2Σ−1

Σ−1 + (Σ∗)−1
µ+ µ∗.

Hence, we have ΦNewton(x) = Σ∗−Σ
2(Σ∗+Σ)x

2 − 2Σ∗

Σ∗+Σµx+ µ∗x. As a result, NLD follows

dXt =

(
Σ∗ − Σt

Σ∗ + Σt
Xt −

2Σ∗

Σ∗ + Σt
µt + µ∗

)
dt.

The dynamics of µt satisfies

dµt = dE[Xt] = E[dXt] =

(
Σ∗ − Σt

Σ∗ + Σt
µt −

2Σ∗

Σ∗ + Σt
µt + µ∗

)
dt = (−µt + µ∗)dt.

This indicates that µt = µ∗ + e−t(µ0 − µ∗). The dynamics of Σt follows

dΣt = d(E[X2
t ]− µ2

t ) = 2E[XtdXt]− 2µtdµt

=2

[
Σ∗ − Σt

Σ∗ + Σt

(
Σt + µ2

t

)
− 2Σ∗

Σ∗ + Σt
µ2
t + µ∗µt − µt(−µt + µ∗)

]
dt = 2

Σ∗ − Σt

Σ∗ + Σt
Σtdt.

We can rewrite that

dt =
(Σ∗ + Σt)dΣt

2(Σ∗ − Σt)Σt
=

(
1

(Σ∗ − Σt)
+

1

2Σt

)
dΣt.

Integrating both sides of the above equation yields

t− log |Σ∗ −Σ0|+
1

2
log Σ0 = − log |Σ∗ −Σt|+

1

2
log Σt, (Σt −Σ∗)2 =

(Σ0 − Σ∗)2

Σ0
e−2tΣt.

Hence, the solution Σt follows

Σt = Σ∗ +
e−2t(Σ0 − Σ∗)2

2Σ0
+ (Σ0 − Σ∗)e−t

√
e−2t(Σ0 − Σ∗)2

4Σ2
0

+
Σ∗

Σ0
.

Now, we are ready to compare the NLD with OLD, LLD and HAMCMC. Here we
consider f(x) = (2Σ∗)−1(x− µ∗)2, where Σ∗ > 0 and µ∗ are given. The OLD satisfies

dXt = −(Σ∗)−1(Xt − µ∗)dt+
√

2dBt,
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which is also known as the Ornstein-Uhlenbeck process. And LLD writes

dXt = −(Σ∗)−1(Xt − µ∗)dt+ Σ−1
t (Xt − µt)dt.

The mean µt and variance Σt of OLD and LLD both satisfy

µt = µ∗ + e−(Σ∗)−1t(µ0 − µ∗), Σt = Σ∗ + e−2(Σ∗)−1t(Σ0 − Σ∗).

On the other hand, HAMCMC follows the dynamics

dXt = −(Xt − µ∗)dt+
√

2Σ∗dBt.

For HAMCMC, the evolution of mean µt follows

dµt = dE[Xt] = −(µt − µ∗)dt,

and the evolution of variance Σt satisfies

dΣt = d(E[X2
t ]− µ2

t ) = 2E[XtdXt]− 2µtdµt

=2
[
−
(
Σt + µ2

t

)
+ µ∗µt + Σ∗ + µt(µt − µ∗)

]
dt = 2(Σ∗ − Σt)dt.

The mean µt and variance Σt of HAMCMC follows

µt = µ∗ + e−t(µ0 − µ∗), Σt = Σ∗ + e−2t(Σ0 − Σ∗).

We summarize our results in Table 4.

Dynamics Particle Mean and variance

NLD dXt =
(

Σ∗−Σt

Σ∗+Σt
Xt − 2Σ∗

Σ∗+Σt
µt + µ∗

)
dt

µt = µ∗ + e−t(µ0 − µ∗)
Σt−Σ∗

Σ0−Σ∗ = e−2t(Σ0−Σ∗)
2Σ0

+e−t
√

e−2t(Σ0−Σ∗)2

4Σ2
0

+ Σ∗

Σ0

OLD dXt = −(Σ∗)−1(Xt − µ∗)dt+
√

2dBt µt = µ∗ + e−(Σ∗)−1t(µ0 − µ∗)

LLD dXt = −(Σ∗)−1(Xt − µ∗)dt+ Σ−1
t (Xt − µt)dt Σt = Σ∗ + e−2(Σ∗)−1t(Σ0 − Σ∗)

HAMCMC dXt = −(Xt − µ∗)dt+
√

2Σ∗dBt.
µt = µ∗ + e−t(µ0 − µ∗)

Σt = Σ∗ + e−2t(Σ0 − Σ∗)

Table 4: Comparison among different Langevin dynamics on 1D Gaussian family.

Compared to OLD and LLD, the exponential convergence rate of µt and Σt in NLD
does not depend on Σ∗. This fact shows that the NLD is the Newton’s flow for both the
evolution of mean and variance in Gaussian process. We also note that the convergence
rates of mean and variance are different in HAMCMC, while they are same in NLD. In
section 7, we use numerical examples to further demonstrate the differences between NLD
and HAMCMC.
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Appendix D. Connection with Stein variational Newton’s method

The Stein variational Newton’s method (SVN) is also a second-order method for sampling.
It aims to minimize Jρ[φ], which evaluates the change of E(ρ) along the transformation
map φ : Rd → Rd.

Jρ[φ] = E((I + φ)#ρ). (43)

Here (I +φ)#ρ denotes the pushforward density of ρ along the map I(x) +φ(x) and I(x)
is the identity map. In each iteration, SVN solves φ ∈ Sd via the following equation:

D2Jρ[0](ψ,φ) = −DJρ[0](ψ), ψ ∈ Sd. (44)

Here S is the RKHS related to a kernel function k(x, y) and Sd = S × · · · × S. Besides,
DJρ and D2Jρ denote the first and second variation of Jρ.

We note that the following relationships hold

DJρ[0][ψ] =

∫
ψT (∇f +∇ log ρ)ρdx.

D2Jρ[0](ψ,φ) = Ex∼ρ[φ(x)T∇2f(x)ψ(x) + tr(∇φ(x)∇ψ(x))].

If we restrict ψ and φ to be gradient vector fields. Namely, there exists Ψ(x),Φ(x) : Rd → R
such that ψ(x) = ∇Ψ(x) and φ(x) = ∇Φ(x). Then, we recover the gradient and Hessian
operators in probability space with Wasserstein-2 metric.

DJρ[0][∇Ψ] =

∫
(〈∇ψ,∇f〉+ ∆Ψ)ρdx =

∫
Ψ gradW E(ρ)dx.

D2Jρ[0](∇Ψ,∇Φ) =

∫ (〈
∇2Ψ,∇2Φ

〉
+∇ΨT∇2f∇Φ

)
ρdx

=

∫
ΨHWE (ρ)Φdx.

On the other hand, the kernelized Wasserstein Newton’s method in each step solves Φ ∈ S
from (3). Because S is a Hilbert space, this is equivalent to find Φ ∈ S such that∫

Ψ HessW E(ρ)[Φ]dx = −
∫

Ψ gradW E(ρ)dx, ∀Ψ ∈ S,

or equivalently,
D2Jρ[0](∇Φ,∇Ψ) = −DJρ[0](∇Ψ), ∀Ψ ∈ S.

This can be viewed as a restriction on (44). Namely, we solve D2Jρ[0](ψ,φ) = −DJρ[0](ψ)
in the space {φ = ∇Φ|Φ ∈ S} instead of Sd.

Remark 37 We notice the differences between Wasserstein Newton and Stein variational
Newton in formulations. SVN studies the second order variations w.r.t. transportation
maps, while we focus on these variations w.r.t. densities. Besides, we benefit from the
utilization of gradient and Hessian operators in probability space with Wasserstein-2 metric.
This allows us to to prove the convergence rate of information Newton’s method in the sense
of density.
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Appendix E. Proofs in Section 6

In this section, we provide convergence proofs of information Newton’s method with ap-
proximated Newton’s direction in section 6.

E.1 Riemannian structure of probability space

We first provide some background knowledge for the Riemannian structure of probability
space. For simplicity, we define the exponential map and other Riemannian operators on
cotangent space.

Definition 38 (Exponential map on cotangent space and its inverse) The exponen-
tial map Expρ0 is a mapping from the cotangent space T ∗ρ0P(Ω) to P(Ω). Namely, Expρ0(Φ) =
ρ̂s|s=1. Here ρ̂s, s ∈ [0, 1] is the solution to geodesic equation (30) with initial conditions
ρ̂s|s=0 = ρ0, Φs|s=0 = Φ.

The inverse of the exponential map Expρ0(ρ1) follows Exp−1
ρ0 (ρ1) = G(ρ̂s)∂sρ̂s|s=0. Here

ρ̂s, s ∈ [0, 1] is the solution to geodesic equation (30) with boundary conditions ρ̂s|s=0 = ρ0

and ρ̂s|s=1 = ρ1.

We also denote Expαρ (Φ) to be the solution at time t = α to the geodesic equation (30) with
initial values ρ̂0 = ρ and Φ0 = Φ. As a known result of Riemannian geometry, the geodesic
curve has constant speed (Boothby, 1986). Namely, for Φ ∈ T ∗ρP(Ω) and α > 0, we have

Expαρ (Φ) = Expρ(αΦ).

And for ρ0, ρ1 ∈ P(Ω), it follows

‖Exp−1
ρ0 (ρ1)‖2ρ0 = D(ρ0, ρ1)2.

We define high-order derivatives on the cotangent-space in Proposition 39.

Proposition 39 For all Φ ∈ T ∗ρP(Ω), it follows

E(Expsρ(Φ)) =E(ρ) + s∇E(ρ)(Φ) + . . .
sn−1

(n− 1)!
∇n−1E(ρ)(Φ, . . . ,Φ)

+
sn

n!
∇nE(Expρ(λΦ))(τλΦ, . . . , τλΦ),

where τλ is the parallelism from ρ to Expλρ(Φ) and λ ∈ (0, s). Here ∇nE(ρ) defines a n-form
on the cotangent space T ∗ρP(Ω). Namely, it is recursively defined by

∇nE(ρ)(Φ1, . . . ,Φn) =
∂

∂s
∇n−1E(Expρ(sΦn))(τsΦ1, . . . , τsΦn−1)

∣∣∣∣
s=0

,

where τs is the parallelism from ρ to Expρ(sΦn).

Proof We first show that

∂

∂s
∇n−1E(Expsρ(Φn))(τsΦ1, . . . , τsΦn−1) = ∇nE(Expsρ(Φn))(τsΦ1, . . . , τsΦn). (45)
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From the definition, it follows that

∂

∂s
∇n−1E(Expsρ(Φn))(τsΦ1, . . . , τsΦn−1)

=
∂

∂t
∇n−1E(Exps+tρ (Φn))(τs+tΦ1, . . . , τs+tΦn−1)

∣∣∣∣
t=0

=
∂

∂t
∇n−1E(ExptExpsρ(Φn)(τsΦn))(τtτsΦ1, . . . , τtτsΦn−1)

∣∣∣∣
t=0

=∇nE(Expsρ(Φn))(τsΦ1, . . . , τsΦn).

From (45), we can recursively compute that

∂n

(∂s)n
E(Expsρ(Φ)) = ∇nE(Expsρ(Φ))(τsΦ, . . . τsΦ).

The Taylor expansion of E(Expsρ(Φ)) w.r.t. s completes the proof.

E.2 Cauchy-Schwarz inequality

To complete proofs in section 6, we introduce Lemma 40.

Lemma 40 (Cauchy-Schwarz inequality) Suppose that H : T ∗ρP(Ω) → TρP(Ω) is a
self-adjoint linear operator and H is positive definite. Then, for Φ1,Φ2 ∈ T ∗ρP(Ω), we have

(∫
Φ1HΦ2dx

)2

≤
(∫

Φ1HΦ1dx

)(∫
Φ2HΦ2dx

)
.

Proof The proof is quite similar to the Euclidean space. For all s ∈ R, we have

0 ≤
∫

(Φ1 + sΦ2)H(Φ1 + sΦ2)dx

=s2

∫
Φ2HΦ2dx+ 2s

∫
Φ1HΦ2dx+

∫
Φ1HΦ1dx.

Because the arbitrary choice of s, it follows that(
2

∫
Φ1HE(ρ)Φ2dx

)2

− 4

(∫
Φ1HE(ρ)Φ1dx

)(∫
Φ2HE(ρ)Φ2dx

)
≥ 0.

This completes the proof.

E.3 Proofs of Proposition 18 and Lemma 19

To prove Proposition 18, we introduce Lemma 41.
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Lemma 41 For all Φ ∈ T ∗ρkP(Ω), it follows

∇E(ρk)(Φ) +∇2E(ρk)(Tk,Φ) = −1

2
∇3E(Expλρk)(τλTk, τλTk, τλΦ),

where τλ is the parallelism from ρk to Expλρk(Tk) and λ ∈ (0, 1).

Proof Consider an auxiliary function

A(s) = ∇E(Expsρk(Tk))(τsΦ).

Directly from the definition of high-order derivatives, it follows

∂

∂s
A(s) = ∇2E(Expsρk(Tk))(τsTk, τsΦ),

∂2

∂s2
A(s) = ∇3E(Expsρk(Tk))(τsTk, τsTk, τsΦ).

Hence, we can compute the Taylor expansion

∇E(Exp1
ρk

(Tk))(τ1Φ) = ∇E(ρk)(Φ) +∇2E(ρk)(Tk,Φ) +
1

2
∇3E(Expλρk)(τλTk, τλTk, τλΦ).

On the other hand, we notice that

∇E(Exp1
ρk

(Tk))(τ1Φ) = ∇E(ρ∗)(τ1Φ) =

∫
τ1ΦG(ρ)−1 δE

δρ∗
dx = 0.

This completes the proof.

Based on Lemma 41, Note that Φk = −HE(ρk)
−1G(ρk)

−1 δE
δρk

. Hence, it follows

HE(ρk)τ
−1Tk+1 = HE(ρk)Tk + G(ρk)

−1 δE

δρk
−HE(ρk)Rk.

For arbitrary Ψ ∈ T ∗ρkP(Ω), we have

∇2E(ρk)(Ψ, τ
−1Tk+1)

=

∫
ΨHE(ρk)τ

−1Tk+1dx

=

∫
Ψ(HE(ρk)Tk + G(ρk)

−1 δE

δρk
−HE(ρk)Rk)dx

=∇2E(ρk)(Ψ, Tk) +∇E(ρk)(Ψ)−∇2E(ρk)(Ψ, Rk)

=− 1

2
∇3E(Expλρk)(τλΨ, τλTk, τλTk)−∇2E(ρk)(Ψ, Rk).

(46)

Here the last equality comes from Lemma 41. Based on the definition of parallelism, we
notice the fact

‖τλΨ‖Expλρk
(Φk) = ‖Ψ‖ρk , ∀Ψ ∈ T ∗ρkP(Ω).
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Taking Ψ = τ−1Tk+1 in (46), applying Assumption 1 and utilizing Lemma 40 yields

δ1‖τ−1Tk+1‖2ρk ≤
∣∣∇2E(ρk)(τ

−1Tk+1, τ
−1Tk+1)

∣∣
≤1

2

∣∣∣∇3E(Expλρk)(τλτ
−1Tk+1, τλTk, τλTk)

∣∣∣+
∣∣∇2E(ρk)(τ

−1Tk+1, Rk)
∣∣

≤1

2

∣∣∣∇3E(Expλρk)(τλτ
−1Tk+1, τλTk, τλTk)

∣∣∣
+
√
|∇2E(ρk)(Rk, Rk)| |∇2E(ρk)(τλτ−1Tk+1, τλτ−1Tk+1)|

≤δ3‖τλTk‖2Expλρk
(Φk)
‖τλτ−1Tk+1‖Expλρk

(Φk) + δ2‖τ−1Tk+1‖ρk‖Rk‖ρk

=δ3‖Tk‖2ρk‖τ
−1Tk+1‖ρk + δ2‖τ−1Tk+1‖ρk‖Rk‖ρk .

Hence, it follows

‖Tk+1‖ρk+1
= ‖τ−1Tk+1‖ρk ≤

δ3

δ1
‖Tk‖2ρk +

δ2

δ1
‖Rk‖ρk .

To prove Lemma 19, we introduce the following Lemma 42.

Lemma 42 We have following estimations

‖Φk‖ρk = O(‖Tk‖ρk), ‖Tk+1‖ρk+1
= O(‖Tk‖ρk).

Proof From Assumption 1 and Cauchy-Swarz inequality, it follows that

‖Φk‖2ρk =

∫
ΦkG(ρk)

−1Φkdx ≤ δ−1
1

∫
ΦkHE(ρk)Φkdx

=δ−1
1

∫
ΦkG(ρk)

−1 δE

δρk
dx ≤ δ−1

1 ‖Φk‖ρk

∥∥∥∥ δEδρk
∥∥∥∥
ρk

.

We also notice that from Lemma 41,∥∥∥∥ δEδρk
∥∥∥∥2

ρk

= ∇E(ρk)

(
δE

δρk

)
=∇2E(ρk)

(
Tk,

δE

δρk

)
+O

(
‖Tk‖2ρk

∥∥∥∥ δEδρk
∥∥∥∥
ρk

)

=O

(
‖Tk‖ρk

∥∥∥∥ δEδρk
∥∥∥∥
ρk

)
.

As a result, we have ‖Φk‖ρk = O

(∥∥∥ δEδρk ∥∥∥ρk
)

= O (‖Tk‖ρk). We also note the triangle

inequality
|‖Tk‖ρk − ‖Φk‖ρk | ≤ ‖Tk+1‖ρk+1

≤ ‖Tk‖ρk + ‖Φk‖ρk .
This yields ‖Tk+1‖ρk+1

= O(‖Tk‖ρk).

We finally show the estimation of ‖Rk‖ρk . Based on the first-order approximation of the
exponential map and the parallelsim, we have the following estimations∫

Ψ(ρ∗ − ρk)dx =

∫
ΨG(ρk)

−1Tkdx+O(‖Ψ‖ρk‖Tk‖
2
ρk

),
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∫
Ψ(ρk+1 − ρk)dx =

∫
ΨG(ρk)

−1Φkdx+O(‖Ψ‖ρk‖Φk‖2ρk)

=

∫
ΨG(ρk)

−1Φkdx+O(‖Ψ‖ρk‖Tk‖
2
ρk

),

and ∫
Ψ(ρ∗ − ρk+1)dx =

∫
ΨG(ρk+1)−1Tk+1dx+O(‖Ψ‖ρk+1

‖Tk+1‖2ρk+1
)

=

∫
τ−1ΨG(ρk)

−1τ−1Tk+1dx+O(‖Ψ‖ρk‖Tk+1‖2ρk+1
+ ‖Ψ− τ−1Ψ‖ρk‖Tk+1‖2ρk+1

)

=

∫
τ−1ΨG(ρk)

−1τ−1Tk+1dx+O(‖Ψ‖ρk‖Tk+1‖2ρk+1
+ ‖Ψ‖ρk‖Φk‖ρk‖Tk+1‖2ρk+1

)

=

∫
ΨG(ρk)

−1τ−1Tk+1dx+O(‖Ψ‖ρk‖Tk+1‖2ρk+1
+ ‖Ψ− τ−1Ψ‖ρk‖τ

−1Tk+1‖ρk)

=

∫
ΨG(ρk)

−1τ−1Tk+1dx+O(‖Ψ‖ρk‖Tk+1‖2ρk+1
+ ‖Ψ‖ρk‖Φk‖ρk‖Tk+1‖ρk+1

)

=

∫
ΨG(ρk)

−1τ−1Tk+1dx+O(‖Ψ‖ρk‖Tk‖
2
ρk

).

Furthermore, we have Rk = Tk − τ−1Tk+1 − Φk and∫
Ψ(ρ∗ − ρk)dx−

∫
Ψ(ρ∗ − ρk+1)dx−

∫
Ψ(ρk+1 − ρk)dx = 0.

This completes the proof.

E.4 Proof of Theorem 20

We first notice that

∇E(ρ)(Φ) =

∫
ΦG(ρ)−1 δE

δρ
dx, ∇2E(ρ)(Φ1,Φ1) =

∫
ΦHE(ρ)Φdx. (47)

By taking (47) into Lemma 19 and utilizing (A3), we note that for σ ∈ T ∗ρkP(Ω),∫
gkσdx = −

∫
HE(ρk)Tkσdx+O(‖σ‖ρk‖Tk‖

2
ρk

). (48)

Based on the Taylor expansion on the Riemannian manifold with (A3), it follows

E(ρk+1) =E(ρk) + αk

∫
ΦkG(ρk)

−1 δE

δρk
dx+

α2
k

2

∫
ΦkHE(ρk)Φkdx+O(‖Φk‖3ρk).

Following (27) and (A5), this yields

E(ρk+1)− E(ρk)

=− αk
∫
gkHE,P gkdx+

α2
k

2

∫
gkHE,PHE(ρk)HE,P gkdx+O(‖Φk‖3ρk)

=
α2
k − 2αk

2

∫
gkHE,P gkdx+

α2
k

2

∫
gk(HE,PHE(ρk)HE,P −HE,P )gkdx+O(‖Φk‖3ρk)

≤
α2
k − 2αk

2

∫
gkHE,P gkdx+

ε2α
2
k

2

∫
gkHE,P (ρk)gkdx+O(‖Φk‖3ρk).

(49)
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Similarly, by the Taylor expansion along with (A3), we have

E(ρ∗)− E(ρk)

=

∫
gkTkdx+

1

2

∫
TkHE(ρk)Tkdx+O(‖Tk‖3ρk)

=− 1

2

∫
TkHE(ρk)Tkdx+O(‖Tk‖3ρk).

(50)

According to (A1), (A2) and Cauchy-Schwartz inequality, we have

‖HE(ρk)
−1gk‖2ρk =

∫
HE(ρk)

−1gkG(ρk)
−1HE(ρk)

−1gkdx

≤δ−1
1

∫
HE(ρk)

−1gkHE(ρk)HE(ρk)
−1gkdx

=δ−1
1

∫
gkHE(ρk)

−1G(ρk)
−1G(ρk)gkdx

≤δ−1
1 ‖HE(ρk)

−1gk‖ρk‖G(ρk)gk‖ρk .

Besides, from the proof of Lemma 42, we have

‖G(ρk)gk‖ρk =

∥∥∥∥ δEδρk
∥∥∥∥
ρk

= O(‖Tk‖ρk).

This tells ‖HE(ρk)
−1gk‖ρk = O(‖G(ρk)gk‖ρk) = O(‖Tk‖ρk). Hence, by utilizing (48) two

times, we have ∫
gkHE(ρk)

−1gkdx

=−
∫
HE(ρk)

−1TkHE(ρk)gkdx+O(‖Tk‖2ρk‖HE(ρk)
−1gk‖ρk)

=−
∫
Tkgkdx+O(‖Tk‖3ρk)

=

∫
TkHE(ρk)Tkdx+O(‖Tk‖3ρk).

This indicates

E(ρ∗)− E(ρk) =− 1

2

∫
TkHE(ρk)Tkdx+O(‖Tk‖3ρk)

=− 1

2

∫
gkHE(ρk)

−1gkdx+O(‖Tk‖3ρk).

(51)

Following (A6), we note that

‖Φk‖ρk =

∥∥∥∥HE,PG(ρk)
−1 δE

δρk

∥∥∥∥
ρk

= O

(∥∥∥∥ δEδρk
∥∥∥∥
ρk

)
= O(‖Tk‖ρk).
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In summary, combining (A4), (49) and (51), we have

E(ρk+1)− E(ρ∗)

≤E(ρk)− E(ρ∗) +
α2
k − 2αk

2

∫
gkHE,P gkdx

+
ε1α

2
k

2

∫
gkHE,P (ρk)gkdx+O(‖Φk‖3ρk)

≤1

2

∫
gkHE(ρk)

−1gkdx+
α2
k − 2αk

2

∫
gkHE(ρk)gkdx

+
|α2
k − 2αk|ε1

2

∫
gkHE(ρk)

−1gkdx+
ε2(1 + ε1)α2

k

2

∫
gkHE(ρk)

−1gkdx+O(‖Tk‖3ρk)

=

(
(αk − 1)2

2
+
|α2
k − 2αk|ε1

2
+
ε2(1 + ε1)α2

k

2

)∫
gkHE(ρk)

−1gkdx+O(‖Tk‖3ρk).

By taking αk = 1 and utilizing (51), we have

E(ρk+1)− E(ρ∗) ≤ε1 + ε2 + ε1ε2
2

∫
gkHE(ρk)

−1gkdx+O(‖Tk‖3ρk)

=(ε1 + ε2 + ε1ε2)(E(ρk)− E(ρ∗)) +O((E(ρk)− E(ρ∗))3/2).

The last equality comes from ‖Tk‖2ρk = O
(∫
TkHE(ρk)Tkdx

)
= O(E(ρk)− E(ρ∗)).

E.5 Proof of Theorem 22

For simplicity, denote pk = Φ̂k − Φk. From the previous derivation, with αk = 1, we note
that

E(ρk+1)− E(ρk)

=−
∫
gk(HE,P gk + pk)dx+

1

2

∫
(pk +HE,P gk)HE(ρk)(HE,P gk + pk)dx+O(‖Φ̂k‖3ρk)

=
1

2

∫
gkHE,P gkdx+

1

2

∫
gk(HE,PHE(ρk)HE,P −HE,P )gkdx

−
∫ (

gkpk −
1

2
pk(HE(ρk)HE,P +HE,PHE(ρk))gk

)
dx

+
1

2

∫
pkHE(ρk)pkdx+O(‖Φ̂k‖3ρk)

≤1

2

∫
gkHE,P gkdx+

ε2
2

∫
gkHE,P (ρk)gkdx+

ε3 + ε4
2

∫
gkH−1

E (ρk)gkdx+O(‖Φ̂k‖3ρk).

The last inequality further utilizes (A7) and (A8). We also note that

‖Φ̂k‖ρk ≤ ‖pk‖ρk + ‖Φk‖ρk .

And we have

‖pk‖2ρk =

∫
pkG(ρk)

−1pkdx ≤
1

δ1

∫
pkHE(ρk)pkdx

≤ ε4
δ1

∫
gkHE(ρk)

−1gkdx = O(‖Tk‖2ρk).

Hence, ‖Φ̂k‖ρk = OO(‖Tk‖ρk). As a result, by utilizing (51), we complete the proof.
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E.6 Justification of Assumption 3

To justify Assumption 3, we first introduce some definitions.

For an energy function E(ρ), we call it well-defined w.r.t. samples if E(ρ̂) is well-defined
for ρ̂ = 1

N

∑N
i=1 δ(x− xi), where δ is the Dirac-delta distribution. We denote

P̂(Ω) = P(Ω) ∪

{
ρ̂ =

1

N

N∑
i=1

δ(x− xi)|xi ∼ ρ, ρ ∈ P(Ω)

}
.

Remark 43 Typical examples of such energy functions include

E(ρ) =

∫
f(x)ρ(x)dx,

where f(x) is a smooth function. Or

E(ρ) =

∫
f(x; ρ)ρ(x)dx.

Here f(x; ρ) is well-defined w.r.t. samples for fixed x. For instance, f(x; ρ) =
∫
w(x, y)ρ(y)dy

for some smooth function w(x, y).

We say that {ρ̂n} ⊆ P̂(Ω) weakly converges to ρ ∈ P(Ω) if for any smooth (test) function
f ,

lim
N→∞

∫
f(x)ρ̂N (x)dx =

∫
f(x)ρ(x)dx.

We say that E(ρ) is convergent w.r.t. samples if E(ρ) is well-defined w.r.t. samples and

lim
n→∞

E(ρ̂n) = E(ρ),

for any {ρ̂n} ⊆ P̂(Ω) weakly converges to ρ ∈ P(Ω).

For ρ ∈ P̂(Ω), we define the variational problem

J(ρ,Φ) =

∫
ΦHE(ρ)Φdx+ 2

∫
ΦG(ρ)−1 δE

δρ
dx+ λ

∫
ΦRSΦdx.

Suppose that ‖Φ‖S is a norm in S, which is independent of ρ. We further assumes that
‖Φ‖S and the regularization term

∫
ΦRSΦdx satisfy Assumption 4.

Assumption 4 There exists δ5, δ6 > 0 such that for all D(ρ, ρ∗) < ζ,

δ6‖Φ‖2S ≤ ‖Φ‖2ρ ≤ δ5‖Φ‖2S . (A9)

There exists δ7 ≥ 0, such that ∫
ΦRSΦdx ≤ δ7‖Φ‖2S . (A10)
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Suppose that for fixed Φ ∈ S, J(ρ,Φ) is convergent w.r.t. samples. Then, for fixed
ρ ∈ P̂(Ω), J(ρ,Φ) is well-defined and we denote Φ(ρ) as the minimizer of minΦ∈S J(ρ,Φ).
Then, Φ(ρ) is well-defined w.r.t. samples. We then show that Φ(ρ) is convergent w.r.t.
samples.

For ρ ∈ P̂(Ω) satisfying (A1), we note that

J(ρ,Φ) ≥ δ1‖Φ‖2ρ + 2

∫
ΦG(ρ)−1 δE

δρ
dx+ λ

∫
ΦRSΦdx.

As a result, for fixed ρ, J(ρ,Φ) is δ1-strictly convex in Φ w.r.t. the norm ‖ · ‖ρ, i.e.,

J(ρ,Φ1)− J(ρ,Φ2) ≥
∫

(Φ1 − Φ2)
δJ(ρ,Φ)

δΦ

∣∣∣∣
Φ=Φ2

dx+ δ1‖Φ1 − Φ2‖2ρ. (52)

Similarly, for ρ ∈ P̂(Ω) satisfying (A2), we note that

J(ρ,Φ) ≤ δ2‖Φ‖2ρ + 2

∫
ΦG(ρ)−1 δE

δρ
dx+ λδ7‖Φ‖2S .

Hence, this yields

J(ρ,Φ1)−J(ρ,Φ2) ≤
∫

(Φ1−Φ2)
δJ(ρ,Φ)

δΦ

∣∣∣∣
Φ=Φ2

dx+δ2‖Φ1−Φ2‖2ρ+λδ7‖Φ1−Φ2‖2S . (53)

Lemma 44 Suppose that S ⊆ F(Ω)/R is a Hilbert space. J(Φ) is strictly convex in Φ w.r.t.
some norm. For a variational problem minΦ∈S J(Φ), the unique minimizer Φ∗ satisfies∫

(Ψ− Φ∗)
δJ

δΦ

∣∣∣∣
Φ=Φ∗

dx = 0, ∀Ψ ∈ S.

Proof The variational problem minΦ∈S J(Φ) is equivalent to

min
Φ∈F(Ω)/R,Ψ∈S

J(Φ), s.t. Φ = Ψ.

Consider the Lagrangian L(Φ,Ψ, λ) = J(Φ) +
∫
λ(Φ−Ψ)dx. The KKT conditions include:

δJ

δΦ
+ λ = 0, Ψ = Φ,

∫
λΨ̃dx = 0, ∀Ψ̃ ∈ S.

Here the equality holds up to a spatial-shift. As a result, for the minimizer Φ∗, we have∫
δJ

δΦ

∣∣∣∣
Φ=Φ∗

Ψ̃dx = 0, ∀Ψ̃ ∈ S.

Because Ψ− Φ∗ ∈ S, this completes the proof.

Proposition 45 S is a Hilbert space. Suppose that (A1) and (A2) in Assumption 1 further
holds for ρ ∈ P̂(Ω). We assume the following statements hold.
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• For ρ ∈ P̂(Ω), ‖Φ(ρ)‖S is bounded.

• For fixed Φ ∈ S, J(ρ; Φ) is convergent w.r.t. samples.

• For fixed Φ ∈ S, ‖Φ‖2ρ is well-defined w.r.t. samples.

Then, under Assumption 4, Φ(ρ) is convergent w.r.t. samples.

Proof Suppose that Φ(ρ) is not convergent w.r.t. samples. Then, there exists {ρ̂n}∞n=1 ⊆
P̂(Ω) and ε > 0 such that ρ̂n weakly converges to ρ ∈ P(Ω), while ‖Φ(ρ̂n) − Φ(ρ)‖ρ > ε.
We note that

J(ρ̂n,Φ(ρ̂n))− J(ρ,Φ(ρ)) =J(ρ̂n,Φ(ρ̂n))− J(ρ,Φ(ρ̂n)) + J(ρ,Φ(ρ̂n))− J(ρ,Φ(ρ))

=J(ρ̂n,Φ(ρ̂n))− J(ρ̂n,Φ(ρ)) + J(ρ̂n,Φ(ρ))− J(ρ,Φ(ρ)).

Because Φ(ρ̂n) is the minimizer of J(ρ̂n,Φ), by applying (52) and Lemma 44, we have

J(ρ̂n,Φ(ρ̂n))− J(ρ̂n,Φ(ρ)) ≤ −δ1‖Φ(ρ̂n)− Φ(ρ)‖2ρ̂n

≤ −δ1δ6‖Φ(ρ̂n)− Φ(ρ)‖2S ≤ −
δ1δ6

δ5
‖Φ(ρ̂n)− Φ(ρ)‖2ρ ≤ −

δ1δ6ε
2

δ5
.

Similarly, because Φ(ρ) is the minimizer of J(ρ,Φ), we have

J(ρ̂n,Φ(ρ))− J(ρ,Φ(ρ)) ≥ δ1‖Φ(ρ̂n)− Φ(ρ)‖2ρ ≥
δ1ε

2

2
.

Because S is a Hilbert space and {Φ(ρ̂n)} is bounded, according to the Banach-Alaoglu
theorem, {Φ(ρ̂n)} is weakly sequentially compact. Namely, there exists a weakly convergent
subsequent {Φ(ρ̂nk)} (which is also convergent because S is a Hilbert space). Suppose that
this sequence converges to Φ∗. As a result,

lim
k→∞

J(ρ,Φ(ρ̂nk)) = J(ρ,Φ∗).

From (53) and Assumption 4, we have

J(ρ̂nk ,Φ(ρ̂nk))− J(ρ̂nk ,Φ
∗) ≥− δ2‖Φ(ρ̂nk)− Φ∗‖2ρ̂nk − λδ7‖Φ(ρ̂nk)− Φ∗‖2ρ̂nk
≥− (δ2δ5 + λδ7)‖Φ(ρ̂nk)− Φ∗‖2S .

Hence, we have
lim
k→∞

J(ρ̂nk ,Φ(ρ̂nk)) = J(ρ,Φ∗).

On the other hand, because J(ρ,Φ) is convergent w.r.t. samples for fixed Φ, limk→∞ J(ρ̂nk ,Φ(ρ))−
J(ρ,Φ(ρ)) = 0. Hence, for sufficiently large k, we have

J(ρ̂nk ,Φ(ρ̂nk))− J(ρ,Φ(ρ))

=J(ρ̂nk ,Φ(ρ̂nk))− J(ρ,Φ(ρ̂nk)) + J(ρ,Φ(ρ̂nk))− J(ρ,Φ(ρ)) ≤ −δ1δ6ε
2

2δ5
,

and
J(ρ̂nk ,Φ(ρ̂nk))− J(ρ,Φ(ρ))

=J(ρ̂nk ,Φ(ρ̂nk))− J(ρ̂nk ,Φ(ρ)) + J(ρ̂nk ,Φ(ρ))− J(ρ,Φ(ρ)) ≥ δ1

2
ε2.

This leads to a contradiction.
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