
APAC-Net: Alternating the Population and Agent
Control via Two Neural Networks to Solve

High-Dimensional Stochastic Mean Field Games

Alex Tong Lin∗ Samy Wu Fung∗ Wuchen Li Levon Nurbekyan Stanley Osher

Department of Mathematics
University of California, Los Angeles

{atlin,swufung,wcli,lnurbek,sjo}@math.ucla.edu

June 19, 2020

Abstract

We present APAC-Net, an alternating population and agent control neural network
for solving stochastic mean field games (MFGs). Our algorithm is geared toward high-
dimensional instances of MFGs that are beyond reach with existing solution methods.
We achieve this in two steps. First, we take advantage of the underlying variational
primal-dual structure that MFGs exhibit and phrase it as a convex-concave saddle
point problem. Second, we parameterize the value and density functions by two neural
networks, respectively. By phrasing the problem in this manner, solving the MFG can
be interpreted as a special case of training a generative adversarial network (GAN).
We show the potential of our method on up to 100-dimensional MFG problems.

1 Introduction

Mean field games (MFGs) are a class of problems that model large populations of interacting
agents. They have been widely used in economics [2, 3, 28, 31], finance [3, 9, 12, 24],
industrial engineering [20, 27, 36], swarm robotics [22, 44], epidemic modelling [13, 39] and
data science [10, 33, 59]. In mean field games, a continuum population of small rational
agents play a non-cooperative differential game on a time horizon r0, T s. At the optimum,
the agents reach a Nash equilibrium, where they can no longer unilaterally improve their
objectives. Given the initial distribution of agents ρ0 P PpRnq, where PpRnq is the space of
all probability densities, the solution to MFGs are obtained by solving the system of partial
differential equations (PDEs),

´ Btφ´ ν∆φ`Hpx,∇φq “ fpx, ρq (HJB)
Btρ´ ν∆ρ´ divpρ∇pHpx,∇φqq “ 0 (FP)
ρpx, 0q “ ρ0, φpx, T q “ gpx, ρp¨, T qq

(1.1)

which couples a Hamilton-Jacobi-Bellman (HJB) equation and a Fokker-Planck (FP) equa-
tion. Here, φ : Rn ˆ r0, T s Ñ R is the value function, i.e., the policy that guides the agents,
H : Rn ˆ Rn Ñ R is the Hamiltonian, which describes the physics of the environment,
ρp¨, tq P PpRnq is the distribution of agents at time t, f : Rn ˆ PpRnq Ñ R denotes the
interaction between the agents and the population, and g : RnˆPpRnq Ñ R is the terminal

∗Equal contribution.

1

condition, which guides the agents to the final distribution. Under standard assumptions,
i.e., convexity of H, and monotonicity of f and g, the solution to (1.1) exists and is unique.
See [15, 37, 38] for more details. Although there is a plethora of fast solvers for the so-
lution of (1.1) in two and three dimensions [1, 7, 15, 16, 17, 35], numerical methods for
solving (1.1) in high dimensions are practically nonexistent due to the need for grid-based
spatial discretization. These grid-based methods are prone to the curse of dimensionality,
i.e., their computational complexity grows exponentially with spatial dimension [6]. Thus,
grid-based methods cannot be tractably used on, e.g., modeling an energy efficient heating,
ventilation, and air conditioning system in a complex building, where the dimensions can
be as high as 1000 [40].

Our Contribution We present APAC-Net, an alternating population and agent control
neural network approach for tractably solving high-dimensional MFGs in the stochastic case
(ν ą 0). To this end, we phrase the MFG problem as a saddle-point problem [7, 18, 38]
and parameterize the value function and the density function. This formulation allows us
to circumvent using spatial grids or uniformly sampling in high dimensions, i.e., the curse of
dimensionality. While spatial grids for MFGs are also avoided in [52], their work is limited
to the deterministic setting pν “ 0q. Thus, to the best of our knowledge, APAC-Net is the
first model that solves high-dimensional MFGs in the stochastic setting pν ą 0q. APAC-Net
does this by drawing from a natural connection between MFGs and generative adversarial
neural networks (GANs) [29] (see 3), a powerful class of generative models that have shown
remarkable success on various types of datasets [5, 11, 21, 29, 32, 42].

2 Variational Primal-Dual Formulation of Mean Field
Games

We derive the mathematical formulation of MFGs for our framework; in particular, we arrive
at a primal-dual convex-concave formulation tailored for our alternating networks approach.
An MFG system (1.1) is called potential, if there exist functionals F ,G such that

δρF “ fpx, ρq and δρG “ gpx, ρq, (2.1)

where

xδρFpρq, µy “ lim
hÑ0

Fpρ` hµq ´ Fpρq
h

, xδρGpρq, µy “ lim
hÑ0

Gpρ` hµq ´ Gpρq
h

, @ µ. (2.2)

That is, there exist functionals F ,G such that their variational derivatives with respect to
ρ are the interaction and terminal costs f and g from (1.1). A critical feature of potential
MFGs is that the solution to (1.1) can be formulated as the solution to a convex-concave
saddle point optimization problem. To this end, we begin by stating (1.1) as a variational
problem [7, 38] akin to the Benamou-Brenier formulation for the Optimal Transport (OT)
problem:

inf
ρ,v

ż T

0

"
ż

Ω

ρpx, tqLpx, vpx, tqqdx ` Fpρp¨, tqq
*

dt` Gpρp¨, T qq

s.t. Btρ´ ν∆ρ`∇ ¨ pρvq “ 0, ρpx, 0q “ ρ0pxq,

(2.3)

where L : RnˆRn Ñ R is the Lagrangian function corresponding to the Legendre transform
of the Hamiltonian H, and F ,G : Rn ˆ PpRnq Ñ R are mean field interaction terms, and
v : Rn ˆ r0, T s Ñ Rn is the velocity field. This formulation can be viewed as a multi-agent
reinforcement learning (RL) problem where there are infinitely many players [10, 33, 52], the
key difference is that unlike in RL, the reward function and the dynamics (FP) are known

2

in our setting. Next, setting φ as a Lagrange multiplier, we insert the PDE constraint into
the objective to get

sup
φ

inf
ρpx,0q“ρ0pxq,v

ż T

0

"
ż

Ω

ρpx, tqLpx, vpx, tqqdx ` Fpρp¨, tqq
*

dt` Gpρp¨, T qq

´

ż T

0

ż

Ω

φpx, tq pBtρ´ ν∆ρ`∇ ¨ pρpx, tqvpx, tqq dx dt.
(2.4)

Finally, integrating by parts and minimizing with respect to v to obtain the Hamiltonian
via Hpx, pq “ infv t´p ¨ v ` Lpx, vqu, we obtain

inf
ρpx,0q“ρ0pxq

sup
φ

ż T

0

"
ż

Ω

pBtφ` ν∆φ´Hpx,∇φqq ρpx, tq dx` Fpρp¨, tqq
*

dt

`

ż

Ω

φpx, 0qρ0pxqdx` Gpρp¨, T qq ´
ż

Ω

φpx, T qρpx, T qdx.

(2.5)

This formula can also be obtained in the context of HJB equations in density spaces [17], or
by integrating the HJB and the FP equations in (1.1) with respect to ρ and φ, respectively
[18]. In [18], it was observed that all MFG systems admit an infinite-dimensional two-player
general-sum game formulation, and the potential MFGs are the ones that correspond to
zero-sum games. In this interpretation, Player 1 represents the mean-field or the population
as a whole and their strategy is the population density ρ. Furthermore, Player 2 represents
the generic agent and their strategy is the value function φ. The aim of Player 2 is to
provide a strategy that yields the best response of a generic agent against the population.
This interpretation is in accord with the intuition behind generative adversarial networks
(GANs), as the key observation is that under mild assumptions on F and G, each spatial
integral is really an expectation from ρ. The formulation (2.5) is the cornerstone of our
method.

3 Connections to GANs

Generative Adversarial Networks In GANs [29], we have a discriminator and gener-
ator, and the goal is to obtain a generator that is able to produce samples from a desired
distribution. The generator does this by taking samples from a known distribution N and
transforming them into samples from the desired distribution. Meanwhile, the purpose of
the discriminator is to aid the optimization of the generator. Given a generator network Gθ
and a discriminator network Dω, the original GAN objective is to find an equilibrium to the
minimax problem

inf
Gθ

sup
Dω

Ex„ρ0 rlogDωpxqs ` Ez„N rlogp1´DωpGθpzqqqs . (3.1)

Here, the discriminator acts as a classifier that attempts to distinguish real images from
fake/generated images, and the goal of the generator is to produce samples that “fool" the
discriminator.

Wasserstein GANs In Wasserstein GANs [5], the motivation is drawn from OT theory,
where now the objective function is changed to the Wasserstein-1 (W1) distance in the
Kantorovich-Rubenstein dual formulation

inf
Gθ

sup
Dω

Ex„ρ0 rDωpxqs ´ Ez„N rDωpGθpzqqs , s.t. }∇D} ď 1, (3.2)

and the discriminator is required to be 1-Lipschitz. In this setting, the goal of the discrimi-
nator is to compute the W1 distance between the distribution of ρ0 and Gθpzq. In practice,

3

using the W1 distance helps prevent the generator from suffering "mode collapse," a situa-
tion where the generator produces samples from only one mode of the distribution ρ0; for
instance, if ρ0 is the distribution of images of handwritten digits, then mode collapse entails
producing only, say, the 0 digit. Originally, weight-clipping was to enforce the Lipschitz
condition of the discriminator network [5], but an improved method using a penalty on the
gradient was used in [32].

GANs Ø MFGs A Wasserstein GAN can be seen as a particular instance of a deter-
ministic MFG [7, 8, 38]. Specifically, consider the MFG (2.5) in the following setting. Let
ν “ 0, G be a hard constraint with target measure ρT (as in optimal transport), and let H
be the Hamiltonian defined by

Hpx, pq “ 1}p}ď1 “

#

0 }p} ď 1

8 otherwise
, (3.3)

where we note that this Hamiltonian arises when the Lagrangian is given by Lpx, vq “ }v}2.
Then (2.5) reduces to,

sup
φ

ż

Ω

φpxqρ0pxq dx´

ż

Ω

φpxqρT pxq dx

s.t. }∇φpxq} ď 1,

(3.4)

where we note that the optimization in ρ leads to Btφ ´Hpx,∇φq “ 0. And since Hppq “
1}p}ď1, we have that Btφ “ 0, and φpx, tq “ φpxq for all t. We observe that the above is
precisely the Wasserstein-1 distance in the Kantorovich-Rubenstein duality [57].

4 APAC-Net

The training process for our MFG is similar to that of GANs. We initialize neural networks
Nωpx, tq and Nθpz, tq. We then let

φωpx, tq “ p1´ tqNωpx, tq ` tgpxq, Gθpz, tq “ p1´ tqz ` tNθpz, tq, (4.1)

where z „ ρ0 are samples drawn from the initial distribution. Thus, Gθ is the pushforward of
ρ0. One difference between our formulation and GANs is that φω automatically encodes the
terminal condition by design. More generally, APAC-Net encodes the underlying structure
of MFGs via (2.5) and (4.1), which absolves the network from learning the entire MFG
solution from the ground up.

Our strategy for training this GAN-like MFG consists of alternately training Gθ (the
population), and φω (the value function for an individual agent). Intuitively, this means we
are alternating the population and agent control neural networks (APAC-Net) in order to find
the equilibrium. Specifically, we train φω by first sampling a batch tzbuBb“1 from the given
initial density ρ0, and ttbuBb“1 uniformly from r0, 1s. Next, we compute the push-forward
xb “ Gθpzb, tbq for b “ 1, . . . , B. We then compute the loss,

lossφ “
1

B

B
ÿ

b“1

φωpxb, 0q `
1

B

B
ÿ

b“1

Btφωpxb, tbq ` ν∆φωpxb, tbq ´Hp∇xφωpxb, tbqq (4.2)

where we can optionally add a regularization term

λ
1

B

B
ÿ

b“1

}Btφωpxb, tbq ` ν∆φωpxb, tbq ´Hp∇xφωpxb, tbqq ` fpxb, tbq} (4.3)

4

Algorithm 1 APAC-Net
Require: ν diffusion parameter, g terminal cost, H Hamiltonian, f interaction term.
Require: Initialize neural networks Nω and Nθ, batch size B
Require: Set φω and Gθ as in (4.1)
while not converged do
train φω:
Sample batch tpzb, tbquBb“1 where zb „ ρ0 and tb „ Unifp0, T q
xb Ð Gθpzb, tbq for b “ 1, . . . , B.
`0 Ð

1
B

řB
b“1 φωpxb, 0q

`t Ð
1
B

řB
b“1 Btφωpxb, tbq ` ν∆φωpxb, tbq ´Hp∇xφωpxb, tbqq

`HJB Ð λ 1
B

řB
b“1 }Btφωpxb, tbq ` ν∆φωpxb, tbq ´Hp∇xφωpxb, tbqq ` fpxb, tbq}

Backpropagate the loss `total “ `0 ` `t ` `HJB to ω weights.

train Gθ:
Sample batch tpzb, tbquBb“1 where zb „ ρ0 and tb „ Unifp0, T q
`t Ð

1
B

řB
b“1 BtφωpGθpzb, tbq, tbq ` ν∆φωpGθpzb, tbq, tbq ´ Hp∇xφωpGθpzb, tbq, tbqq `

fpGθpzb, tbq, tbq
Backpropagate the loss `total “ `t to θ weights.

end while

to penalize deviations from the HJB equations [46, 52]. This extra regularization term has
also been found effective in, e.g., Wasserstein GANs [31], where the norm of the gradient
(i.e., the HJB equations) is penalized. Finally, we backpropagate the loss to the weights of
φw. To train the generator, we again sample tzbuBb“1 and ttbuBb“1 as before, and compute

lossG “
1

B

B
ÿ

b“1

BtφωpGθpzbq, tbq ` ν∆φωpGθpzbq, tbq ´Hp∇xφωpGθpzbq, tbqq ` fpGθpzbq, tbq.

(4.4)
Finally, we backpropagate this loss with respect to the weights of Gθ (see Alg 1).

5 Related Works

High-dimensional MFGs and Optimal Control To the best of our knowledge, the
first work to solve MFGs efficiently in high dimensions (d “ 100) was done in [52]. Their
work consisted of using Lagrangian coordinates and parameterizing the value function using
a neural network. Finally, to estimate the densities, the instantaneous change of variables
formula [14]. This combination allowed them to successfully avoid using spatial grids when
solving deterministic MFG problems pν “ 0q with quadratic Hamiltonians. Besides only
computing MFGs with ν “ 0, another limitation is that for non-quadratic Hamiltonians,
the instantaneous change of variables formula may lead to high computational costs when
estimating the density. APAC-Net circumvents this limitation by rephrasing the MFG as a
saddle point problem (2.5) and using a GAN-based approach to train two neural networks
instead. For problems involving high-dimensional optimal control and differential games,
spatial grids were also avoided [15, 16, 17, 19, 41]. However, these methods are based
on generating individual trajectories per agent, and cannot be directly applied to MFGs
without spatial discretization of the density, thus limiting their use in high dimensions.

Reinforcement Learning Our work bears connections with multi-agent reinforcement
learning (RL), where neither the Lagrangian L nor the dynamics (constraint) in (2.3) are
known. Here, a key difference is that multi-agent RL generally considers a finite number of
players. [58] proposes a primal-dual distributed method for multi-agent RL. [33] proposes a

5

Q-Learning approach to solve these multi-agent RL problems. [10] studies the convergence
of policy gradient methods on mean field reinforcement learning (MFRL) problems, i.e.,
problems where the agents try instead to learn the control which is socially optimal for the
entire population. [60] uses an inverse reinforcement learning approach to learn the MFG
model along with its reward function. [25] proposes an actor-critic method for finding the
Nash equilibrium in linear-quadratic mean field games and establish linear convergence.

Generative Modeling with Optimal Transport There is a class of works that focus
on using OT, a class of MFGs, to solve problems arising in data science, and in particular,
GANs. [26] presents a tractable method to train large scale generative models using the
Sinkhorn distance, which consist of loss functions that interpolate between Wasserstein
(OT) distance and Maximum Mean Discrepancy (MMD). [53] proposes a mini-batch MMD-
based distance to improve training GANs. [54] proposes a class of regularized Wasserstein
GAN problems with theoretical guarantees. [56] uses a trained discriminator from GANs to
further improve the quality of generated samples. [43] phrases the adversarial problem as
a matching problem in order to avoid solving a minimax problem. Finally, [49] provides an
excellent survey on recent numerical methods for OT and their applications to GANs.

GAN-based Approach for MFGs Our work is most similar to [8], where a connection
between MFGs and GANs is also made. However, APAC-Net differs from [8] in two fun-
damental ways. First, instead of choosing the value function to be the generator, we set
the density function as the generator. This choice is motivated by the fact that the gener-
ator outputs samples from a desired distribution. It is also aligned with other generative
modeling techniques arising in continuous normalizing flows [23, 30, 45, 46]. Second, rather
than setting the generator/discriminator losses as the residual errors of (1.1), we follow
the works of [7, 17, 18, 38] and utilize the underlying variational primal-dual structure of
MFGs, see (2.5); this allows us to arrive at the Kantorovich-Rubenstein dual formulation of
Wasserstein GANs [57].

6 Numerical Experiments

We demonstrate the potential of APAC-Net on a series of high-dimensional MFG problems.
We also illustrate the behavior the MFG solutions for different values of ν and use an
analytical solution to illustrate the accuracy of APAC-Net. We also provide additional
high-dimensional results in App. B.

Experimental Setup We assume without loss of generality T “ 1. In all experiments,
our neural networks have three hidden layers, with 100 hidden units per layer. We use a
residual neural network (ResNet) for both networks, with skip connection weight 0.5. For
φω, we use the Tanh activation function, and for Gθ, we use the ReLU activation function.
For training, we use ADAM with β “ p0.5, 0.9q, learning rate 5ˆ 10´4 for φω, learning rate
1ˆ 10´4 for Gθ, weight decay of 10´4 for both networks, batch size 50, and λ “ 1 (the HJB
penalty parameter) in Algorithm 1.

The Hamiltonians in our experiments have the form

Hpx, p, tq “ c}p}2 ` fpx, ρpx, tqq, (6.1)

where fpx, ρpx, tqq varies with the environment (either avoiding obstacles, or avoiding con-
gestion, etc.), and c is a constant (that represents maximal speed). Furthermore, we choose
as terminal cost

Gpρp¨, T qq “
ż

Ω

}x´ xT }2ρpx, T qdx, (6.2)

6

ν “ 0 ν “ 0.2 ν “ 0.4 ν “ 0.6

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Figure 1: Comparison of 2D solutions for different values of ν. The agents start at the blue points
pt “ 0q and end at the red points pt “ 1q.

d “ 2 d “ 50 d “ 100 Log HJB Residual Error

ν
“

0

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0 50 100 150 200 250 300
iteration (thousands)

2

1

0

1
2 dim
50 dim
100 dim

ν
“

0
.4

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0 50 100 150 200 250 300
iteration (thousands)

2

1

0

1
2 dim
50 dim
100 dim

Figure 2: Computation of the obstacle problem in dimensions 2, 50, and 100 with stochasticity
parameter ν “ 0 and 0.4. For dimension 50 and 100, we plot the first two dimensions.

which is the distance between the population and a target destination. To allow for veri-
fication of the high-dimensional solutions, we set the obstacle and congestion costs to only
affect the first two dimensions. In Figs. 1, 2, 3, and 4, time is represented by color. Specifi-
cally, blue denotes starting time, red denotes final time, and the intermediate colors denote
intermediate times. We also plot the HJB residual error, that is, `HJB in Alg. 1, on 4096
fixed sampled points which helps us monitor the convergence of APAC-Net. As in standard
machine learning methods, all the plots in this section are generated using validation data,
i.e., data not used in training, in order to gauge generalizability of APAC-Net. Further
details as well as additional experiments can be found in the appendix.

Effect of Stochasticity Parameter ν We investigate the effect of the stochasticity
parameter ν on the behavior of the MFG solutions. In Fig. 1, we show the solutions for
2-dimensional MFGs using ν “ 0, 0.2, 0.4, and 0.6. As ν increases, the density of agents
widens along the paths due to the added the added diffusion term in the HJB and FP
equations in (1.1). These results are consistent with those in [47].

Obstacles We compute the solution to a MFG where the agents are required to avoid
obstacles. In this case, we let

fpx1, x2, . . . , xdq “ γobstpmaxtf1px1, x2q, 0u `maxtf2px1, x2q, 0uq (6.3)

with γobst “ 5, and denoting R “
´

cospθq ´ sinpθq
sinpθq cospθq

¯

with θ “ π{5, Q “ p 5 0
0 0 q, and b “ p0, 2q,

then
f1px1, x2q “ ´v

JQv ´ b ¨ v ´ 1, with v “ ppx1, x2q ´ p´2, 0.5qqR. (6.4)

7

d “ 2 d “ 50 d “ 100 Log HJB residual error

ν
“

0
3 2 1 0 1 2 3

3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0 100 200 300 400 500
iteration (thousands)

1.5

1.0

0.5

0.0

0.5 2 dim
50 dim
100 dim

ν
“

0
.4

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0 100 200 300 400 500
iteration (thousands)

1.5

1.0

0.5

0.0

0.5

1.0 2 dim
50 dim
100 dim

Figure 3: Computation of the congestion problem in dimensions 2, 50, and 100 with stochasticity
parameter ν “ 0 and 0.4. For dimensions 50 and 100, we plot the first two dimensions.

Similarly, we let

f2px1, x2q “ ´w
JQw ` b ¨ w ´ 1, with w “ ppx1, x2q ´ p2,´0.5qqR. (6.5)

The obstacles f1 and f2 are shown in hatched markings in Fig. 2. Our initial density ρ0

is a Gaussian centered at p´2,´2, 0, . . . , 0q with standard deviation 1{
?

10 « 0.32, and the
terminal function is gpxq “ }px1, x2q ´ p2, 2q}2. We chose c “ 8 in (6.1). The numerical
results are shown in Fig. 2. Observe that results are similar across dimensions, verifying
our high-dimensional computation. We run the two-dimensional problem for 200k iterations
and the 50 and 100-dimensional problems for 300k iterations.

Congestion We choose the interaction term to penalize congestion, so that the agents are
encouraged to spread out. In particular, we have

Fpρpx, tqq “
ż

Ω

ż

Ω

1

}px1, x2q ´ py1, y2q}
2 ` 1

dρpx, tq dρpy, tq, (6.6)

which is the (bounded) inverse squared distance, averaged over pairs of agents. Computa-
tionally, we sample from ρ twice and then calculate the integrand. Here, our initial density
ρ0 is a Gaussian centered at p´2, 0,´2, . . . ,´2q with standard deviation 1{

?
10 « 0.32, the

terminal function is Gpxq “ }px1, x2q ´ p2, 0q}2, and we chose c “ 5 in (6.1). Results are
shown in Fig. 3, where we see qualitatively similar results across dimensions. We run the
two-dimensional problem for 100k iterations and the 50 and 100-dimensional problems for
500k iterations.

Congestion with Bottleneck Obstacle We combine the congestion problem with a
bottleneck obstacle. The congestion penalization is the same as (B.1), and the obstacle rep-
resents a bottleneck – thus agents are encouraged to spread out, but must squeeze together
to avoid the obstacle. The initial density, terminal functions, c in (6.1), and the expression
penalizing congestion are the same as in the congestion experiment above. The obstacle is
chosen to be

fpvq “ γobst max

"

´vJ
ˆ

5 0
0 ´1

˙

v ´ 0.1, 0

*

, with v “ px1, x2q (6.7)

with γobst “ 5. As intuitively expected, the agents spread out before and after the bot-
tleneck, but squeeze together in order to avoid the obstacle (see Fig. 4). We run the two-
dimensional problem for 100k iterations and the 50 and 100-dimensional problems for 500k
iterations. We observe similar results across dimensions.

8

d “ 2 d “ 50 d “ 100 Log HJB Residual Error

ν
“

0
3 2 1 0 1 2 3

3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0 100 200 300 400 500
iteration (thousands)

1.5
1.0
0.5
0.0
0.5
1.0
1.5 2 dim

50 dim
100 dim

ν
“

0
.1

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0 100 200 300 400 500 600 700 800
iteration (thousands)

1.5
1.0
0.5
0.0
0.5
1.0
1.5 2 dim

50 dim
100 dim

Figure 4: Computation of the congestion problem with a bottleneck in dimensions 2, 50, and
100 with stochasticity parameter ν “ 0 and 0.1. For dimensions 50 and 100, we plot the first two
dimensions.

Analytic Comparison As a last experiment, we verify our method by comparing it to
an analytic solution for dimensions 2, 50, and 100 with congestion pγ “ 0.1q and without
congestion pγ “ 0q. For

f “ γ lnpρq, Hpx, pq “
}p}2

2
´
β}x}2

2
, gpxq “

α|x|2

2
´

ˆ

νdα`
γd

2
ln

α

2πν

˙

(6.8)

and ν “ β “ 1 in (1.1), the explicit formula for φ is given by

φpx, tq “
α|x|2

2
´

ˆ

dα`
γd

2
ln

α

2π

˙

t, ρpx, tq “
´ α

2π

¯
d
2

e´
α|x|2

2 , (6.9)

where α “ ´γ`
?
γ2`4

2 . For the γ “ 0.1 case, we use Kernel Density Estimation [48, 50] to
estimate ρ from samples of the generator. The derivation of the analytic solution can be
found in App. A.

For d “ 2, we compute the relative error on a grid of size 32ˆ32ˆ16, where we discretize
the spatial domain Ω “ r´2, 2s2 with 32 ˆ 32 points and the time domain r0, 1s with 16
points. Note here that the grid points are validation points, i.e., points that were not used in
training. For d “ 50 and d “ 100, we use 4096 sampled points for validation since we cannot
build a grid. We run a total of 30k and 60k iterations for γ “ 0 and γ “ 0.1, respectively.
We validate every 1k iterations. Fig. 5 shows that our learned model approaches the true
solution across all dimensions for both values of γ, indicating that APAC-Net generalizes
well.

7 Conclusion

We present APAC-Net, an alternating population-agent control neural network for solving
high-dimensional stochastic mean field games. To this end, our algorithm avoids the use of
spatial grids by parameterizing the controls, φ and ρ, using two neural networks, respectively.
Consequently, our method is geared toward high-dimensional instances of these problems
that are beyond reach with existing grid-based methods. APAC-Net therefore sets the
stage for solving realistic high-dimensional MFGs arising in, e.g., economics [2, 3, 28, 31],
swarm robotics [22, 44], and perhaps most important/relevant, epidemic modelling [13,
39]. Our method also has natural connections with Wasserstein GANs, where ρ acts as a
generative network and φ acts as a discriminative network. Unlike GANs, however, APAC-
Net incorporates the structure of MFGs via (2.5) and (4.1), which absolves the network

9

Log relative error pγ “ 0q Log relative error pγ “ 0.1q

0 5 10 15 20 25 30
iteration (thousands)

5

4

3

2

1

0 2 dim
50 dim
100 dim

0 10 20 30 40 50 60
iteration (thousands)

5

4

3

2

1

0 2 dim
50 dim
100 dim

Figure 5: log relative errors in 2, 50, and 100 dimensions, and for γ “ 0, 0.1. Here, γ “ 0 means
no interaction. For the d “ 2 case, we compute the validation on a 32ˆ 32 grid over 16 uniformly-
spaced timesteps with the true φ from eq. (6.9). For the d “ 50 and 100 case, we compute on a
sample of 4096 sample points, sampled from the initial density.

from learning an entire MFG solution from the ground up. Our experiments show that
our method is able to solve 100-dimensional MFGs. As a future direction, we intend to
investigate guidelines on the design of more effective network architectures, e.g., PDE-based
networks [34, 51], neural ODEs [14], or sorting networks [4]. We also intend to use of our
framework to solve more realistic problems.

Acknowledgments and Disclosure of Funding

The authors are supported by AFOSR MURI FA9550-18-1-0502, AFOSR Grant No.
FA9550-18-1-0167, and ONR Grant No. N00014-18-1-2527.

References
[1] Yves Achdou and Italo Capuzzo-Dolcetta. Mean field games: numerical methods. SIAM

Journal on Numerical Analysis, 48(3):1136–1162, 2010.

[2] Yves Achdou, Francisco J. Buera, Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin
Moll. Partial differential equation models in macroeconomics. Philos. Trans. R. Soc.
Lond. Ser. A Math. Phys. Eng. Sci., 372(2028):20130397, 19, 2014. ISSN 1364-503X.
doi: 10.1098/rsta.2013.0397. URL https://doi.org/10.1098/rsta.2013.0397.

[3] Yves Achdou, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin Moll.
Income and wealth distribution in macroeconomics: A continuous-time approach.
Working Paper 23732, National Bureau of Economic Research, August 2017. URL
http://www.nber.org/papers/w23732.

[4] Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function approxima-
tion. In International Conference on Machine Learning, pages 291–301, 2019.

[5] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adver-
sarial networks. In International Conference on Machine Learning, pages 214–223,
2017.

[6] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[7] Jean-David Benamou, Guillaume Carlier, and Filippo Santambrogio. Variational mean
field games. In Active Particles, Volume 1, pages 141–171. Springer, 2017.

10

https://doi.org/10.1098/rsta.2013.0397
http://www.nber.org/papers/w23732

[8] Haoyang Cao, Xin Guo, and Mathieu Laurière. Connecting gans and mfgs.
arXiv:2002.04112, 2020.

[9] Pierre Cardaliaguet and Charles-Albert Lehalle. Mean field game of controls and
an application to trade crowding. Math. Financ. Econ., 12(3):335–363, 2018. ISSN
1862-9679. doi: 10.1007/s11579-017-0206-z. URL https://doi.org/10.1007/
s11579-017-0206-z.

[10] René Carmona, Mathieu Laurière, and Zongjun Tan. Linear-quadratic mean-field rein-
forcement learning: convergence of policy gradient methods. arXiv:1910.04295, 2019.

[11] Kenji Fukumizu Casey Chu, Kentaro Minami. Smoothness and stability in gans.
arXiv:2002.04185, 2020.

[12] Philippe Casgrain and Sebastian Jaimungal. Algorithmic trading in competitive mar-
kets with mean field games. SIAM News, 52(2), 2019.

[13] Sheryl L Chang, Mahendra Piraveenan, Philippa Pattison, and Mikhail Prokopenko.
Game theoretic modelling of infectious disease dynamics and intervention methods: a
review. Journal of Biological Dynamics, 14(1):57–89, 2020.

[14] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. In Advances in Neural Information Processing Systems,
pages 6571–6583, 2018.

[15] Yat Tin Chow, Jérôme Darbon, Stanley Osher, and Wotao Yin. Algorithm for over-
coming the curse of dimensionality for time-dependent non-convex hamilton–jacobi
equations arising from optimal control and differential games problems. Journal of
Scientific Computing, 73(2-3):617–643, 2017.

[16] Yat Tin Chow, Jérôme Darbon, Stanley Osher, and Wotao Yin. Algorithm for over-
coming the curse of dimensionality for certain non-convex hamilton–jacobi equations,
projections and differential games. Annals of Mathematical Sciences and Applications,
3(2):369–403, 2018.

[17] Yat Tin Chow, Wuchen Li, Stanley Osher, and Wotao Yin. Algorithm for hamilton–
jacobi equations in density space via a generalized hopf formula. Journal of Scientific
Computing, 80(2):1195–1239, 2019.

[18] Marco Cirant and Levon Nurbekyan. The variational structure and time-periodic solu-
tions for mean-field games systems. Minimax Theory Appl., 3(2):227–260, 2018. ISSN
2199-1413.

[19] Jérôme Darbon and Stanley Osher. Algorithms for overcoming the curse of dimen-
sionality for certain hamilton–jacobi equations arising in control theory and elsewhere.
Research in the Mathematical Sciences, 3(1):19, 2016.

[20] A. De Paola, V. Trovato, D. Angeli, and G. Strbac. A mean field game approach
for distributed control of thermostatic loads acting in simultaneous energy-frequency
response markets. IEEE Transactions on Smart Grid, 10(6):5987–5999, Nov 2019. ISSN
1949-3061. doi: 10.1109/TSG.2019.2895247.

[21] Yonatan Dukler, Wuchen Li, Alex Lin, and Guido Montufar. Wasserstein of wasserstein
loss for learning generative models. In International Conference on Machine Learning,
pages 1716–1725, 2019.

[22] Karthik Elamvazhuthi and Spring Berman. Mean-field models in swarm robotics: a
survey. Bioinspiration & Biomimetics, 15(1):015001, 2019.

11

https://doi.org/10.1007/s11579-017-0206-z
https://doi.org/10.1007/s11579-017-0206-z

[23] Chris Finlay, Björn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How
to train your neural ode. arXiv:2002.02798, 2020.

[24] D. Firoozi and P. E. Caines. An optimal execution problem in finance targeting the
market trading speed: An mfg formulation. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pages 7–14, Dec 2017.

[25] Zuyue Fu, Zhuoran Yang, Yongxin Chen, and Zhaoran Wang. Actor-critic provably
finds nash equilibria of linear-quadratic mean-field games. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
H1lhqpEYPr.

[26] Aude Genevay, Gabriel Peyre, and Marco Cuturi. Learning generative models with
sinkhorn divergences. In Proceedings of the Twenty-First International Conference on
Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning
Research, pages 1608–1617. PMLR, 2018.

[27] Diogo A. Gomes and J. Saúde. A mean-field game approach to price formation in
electricity markets. arXiv:1807.07088, 2018.

[28] Diogo A Gomes, Levon Nurbekyan, and Edgard A Pimentel. Economic models and
mean-field games theory. IMPA Mathematical Publications. Instituto Nacional de
Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2015.

[29] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[30] Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Du-
venaud. FFJORD: Free-form continuous dynamics for scalable reversible generative
models. International Conference on Learning Representations (ICLR), 2019.

[31] Olivier Guéant, Jean-Michel Lasry, and Pierre-Louis Lions. Mean field games and
applications. In Paris-Princeton lectures on mathematical finance 2010, pages 205–
266. Springer, 2011.

[32] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. In Advances in neural information
processing systems, pages 5767–5777, 2017.

[33] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. Learning mean-field games. In
Advances in Neural Information Processing Systems, pages 4967–4977, 2019.

[34] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse
Problems, 34(1):014004, 2017.

[35] Matt Jacobs, Flavien Léger, Wuchen Li, and Stanley Osher. Solving large-scale opti-
mization problems with a convergence rate independent of grid size. SIAM Journal on
Numerical Analysis, 57(3):1100–1123, 2019.

[36] Arman C. Kizilkale, Rabih Salhab, and Roland P. Malhamé. An integral control for-
mulation of mean field game based large scale coordination of loads in smart grids.
Automatica, 100:312 – 322, 2019. ISSN 0005-1098. doi: https://doi.org/10.1016/
j.automatica.2018.11.029. URL http://www.sciencedirect.com/science/article/
pii/S0005109818305612.

[37] Jean-Michel Lasry and Pierre-Louis Lions. Jeux à champ moyen. ii–horizon fini et
contrôle optimal. Comptes Rendus Mathématique, 343(10):679–684, 2006.

12

https://openreview.net/forum?id=H1lhqpEYPr
https://openreview.net/forum?id=H1lhqpEYPr
http://www.sciencedirect.com/science/article/pii/S0005109818305612
http://www.sciencedirect.com/science/article/pii/S0005109818305612

[38] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Jpn. J. Math., 2(1):
229–260, 2007. ISSN 0289-2316. doi: 10.1007/s11537-007-0657-8. URL https://doi.
org/10.1007/s11537-007-0657-8.

[39] Wonjun Lee, Siting Liu, Hamidou Tembine, and Stanley Osher. Controlling propagation
of epidemics via mean-field games. UCLA CAM preprint:20-19, 2020.

[40] Sisi Li, Shengbo Eben Li, and Kun Deng. Mean-field control for improving energy
efficiency. In Automotive Air Conditioning, pages 125–143. Springer, 2016.

[41] Alex Tong Lin, Yat Tin Chow, and Stanley J Osher. A splitting method for overcoming
the curse of dimensionality in hamilton–jacobi equations arising from nonlinear optimal
control and differential games with applications to trajectory generation. Communica-
tions in Mathematical Sciences, 16(7), 2018.

[42] Alex Tong Lin, Wuchen Li, Stanley Osher, and Guido Montúfar. Wasserstein proximal
of gans. UCLA CAM preprint:18-53, 2018.

[43] Jingrong Lin, Keegan Lensink, and Eldad Haber. Fluid flow mass transport for gener-
ative networks. arXiv:1910.01694, 2019.

[44] Zhiyu Liu, Bo Wu, and Hai Lin. A mean field game approach to swarming robots
control. In 2018 Annual American Control Conference (ACC), pages 4293–4298. IEEE,
2018.

[45] Derek Onken and Lars Ruthotto. Discretize-optimize vs. optimize-discretize for time-
series regression and continuous normalizing flows. arXiv:2005.13420, 2020.

[46] Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. OT-Flow: Fast and
accurate continuous normalizing flows via optimal transport. arXiv:2006.00104, 2020.

[47] Christian Parkinson, David Arnold, Andrea L Bertozzi, and Stanley Osher. A model
for optimal human navigation with stochastic effects. arXiv:2005.03615, 2020.

[48] Emanuel Parzen. On estimation of a probability density function and mode. Ann.
Math. Statist., 33(3):1065–1076, 09 1962. doi: 10.1214/aoms/1177704472. URL https:
//doi.org/10.1214/aoms/1177704472.

[49] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Foundations
and Trends R© in Machine Learning, 11(5-6):355–607, 2019.

[50] Murray Rosenblatt. Remarks on some nonparametric estimates of a density function.
Ann. Math. Statist., 27(3):832–837, 09 1956. doi: 10.1214/aoms/1177728190. URL
https://doi.org/10.1214/aoms/1177728190.

[51] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential
equations. Journal of Mathematical Imaging and Vision, pages 1–13, 2019.

[52] Lars Ruthotto, Stanley J Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu Fung.
A machine learning framework for solving high-dimensional mean field game and mean
field control problems. Proceedings of the National Academy of Sciences, 117(17):9183–
9193, 2020.

[53] Tim Salimans, Han Zhang, Alec Radford, and Dimitris Metaxas. Improving GANs
using optimal transport. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rkQkBnJAb.

[54] Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, and Jason D Lee. On the convergence
and robustness of training gans with regularized optimal transport. In Advances in
Neural Information Processing Systems, pages 7091–7101, 2018.

13

https://doi.org/10.1007/s11537-007-0657-8
https://doi.org/10.1007/s11537-007-0657-8
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177728190
https://openreview.net/forum?id=rkQkBnJAb

[55] David W Scott and Stephan R Sain. Multidimensional density estimation. Handbook
of statistics, 24:229–261, 2005.

[56] Akinori Tanaka. Discriminator optimal transport. In Advances in Neural Information
Processing Systems, pages 6813–6823, 2019.

[57] Cédric Villani. Topics in Optimal Transportation. American Mathematical Soc., 2003.

[58] Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, and Mingyi Hong. Multi-agent reinforce-
ment learning via double averaging primal-dual optimization. In Advances in Neural
Information Processing Systems, pages 9649–9660, 2018.

[59] E Weinan, Jiequn Han, and Qianxiao Li. A mean-field optimal control formulation of
deep learning. Research in the Mathematical Sciences, 6(1):10, 2019.

[60] Jiachen Yang, Xiaojing Ye, Rakshit Trivedi, Huan Xu, and Hongyuan Zha. Deep
mean field games for learning optimal behavior policy of large populations. In Inter-
national Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=HktK4BeCZ.

14

https://openreview.net/forum?id=HktK4BeCZ
https://openreview.net/forum?id=HktK4BeCZ

A Derivation of Analytic Solution

We derive explicit formulas used to test our approximate solutions in Sec. 6. Assume that
ν, β ą 0, γ ě 0 and

Hpx, p, tq “
|p|2

2
´
β|x|2

2
, fpx, ρq “ γ ln ρ. (A.1)

Then (1.1) becomes

´Btφ´ ν∆φ`
|∇φ|2

2
´
β|x|2

2
“ γ ln ρ,

Btρ´ ν∆ρ´ divpρ∇φq “ 0,

ρpx, 0q “ ρ0, φpx, T q “ Ψpxq.

(A.2)

We find solutions to this system by searching for stationary solutions first:

´ν∆φ`
|∇φ|2

2
´
β|x|2

2
“ γ ln ρ` H̄,

´ν∆ρ´ divpρ∇φq “ 0,

(A.3)

and then writing
φpx, tq “ φpxq ´ tH̄, ρpx, tq “ ρpxq. (A.4)

The second equation in (A.3) yields ρ “ ce´
φ
ν , where c is chosen so that

ş

ρ “ 1. Plugging
this in the first equation in (A.3) we obtain

´ν∆φ`
|∇φ|2

2
´
β|x|2

2
“ γ ln c´

γ

ν
φ` H̄. (A.5)

Now we make an ansatz that φpxq “ α|x|2

2 . Then we have that ∆φ “ dα, ∇φ “ αx, and
obtain

´νdα`
α2|x|2

2
´
β|x|2

2
“ γ ln c´

γα|x|2

2ν
` H̄. (A.6)

Therefore, we have that

α2 `
γα

ν
“ β, H̄ “ ´νdα´ γ ln c. (A.7)

From the first equation, we obtain that

α “
´γ `

a

γ2 ` 4ν2β

2ν
. (A.8)

On the other hand, we have that
ż

ρ “ c

ż

e´
α|x|2

2ν dx “ c

ˆ

2πν

α

˙
d
2

“ 1, (A.9)

so

c “
´ α

2πν

¯
d
2

and H̄ “ ´νdα´
γd

2
ln

α

2πν
. (A.10)

Summarizing, we get that for any ν, β ą 0, γ ě 0 the following is a solution for (A.2)

φpx, tq “
α|x|2

2
´

ˆ

νdα`
γd

2
ln

α

2πν

˙

t, ρpx, tq “
´ α

2πν

¯
d
2

e´
α|x|2

2ν (A.11)

where α is given by (A.8), and

gpxq “
α|x|2

2
´

ˆ

νdα`
γd

2
ln

α

2πν

˙

T, ρ0pxq “
´ α

2πν

¯
d
2

e´
α|x|2

2ν . (A.12)

Choosing β “ ν “ 1, (A.11) gives the analytic solution used in Sec. 6.

15

B Details on Numerical Results and More Experiments

Congestion Here we elaborate on how we compute the congestion term,

Fpρpx, tqq “
ż

Ω

ż

Ω

1

}px1, x2q ´ py1, y2q}
2 ` 1

dρpx, tq dρpy, tq, (B.1)

We do this by first using the batch tzbuBb“1, which was used for training (and sampled from
ρ0), and then compute another batch tybuBb“1 again sampled from ρ0. Letting ttbuBb“1 be a
batch of time-points uniformly sampled in r0, 1s, we estimate the interaction cost with,

Fpρpx, tqq «
B
ÿ

i“1

1

}Gθpzb, tbq ´Gθpyb, tbq}2 ` 1
. (B.2)

Congestion with Bottleneck Obstacle and Higher Stochasticity As mentioned in
the main text, when choosing a stochasticity parameter ν ą 0.1, the stochasticity dominates
the dynamics and the obstacles do not interact as much with the obstacle. We plot these
results in Fig. 6, where for 2 dimensions, we trained for 150k iterations, and for 50 and 100
dimensions, we trained for 800k iterations. All environment and training parameters are
the same as in the main text, except that now ν “ 0.4.

d “ 2 d “ 50 d “ 100 Log HJB Residual Error

ν
“

0
.4

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0 100 200 300 400 500 600 700 800
iteration (thousands)

1.5

1.0

0.5

0.0

0.5

1.0

1.5 2 dim
50 dim
100 dim

Figure 6: Computation of the congestion problem with a bottleneck in dimensions 2, 50, and 100
with stochasticity parameter ν “ 0.4. For dimensions 50 and 100, we plot the first two dimensions.

Analytic Comparison Here we mention specifically how we performed Kernel Density
Estimation. Namely, in order to estimate the density ρ, we take a batch of samples tzbuBb“1

(during training, this is the training batch). Then at uniformly spaced time-points ttbub“1 Ď

r0, 1s, we estimate the density with the formula,

ρpzb, tbq «
1

B

1

pσh
?

2πqd

B
ÿ

i“1

B
ÿ

j“1

exp
ˆ

}zi ´ zj}
2

phσq2

˙

(B.3)

where we choose σ “
a

γ
ν , and d is the dimension, and h “ B´

1
d`4 , in accordance with

Scott’s rule for multivariate kernel density estimation [55].

Density Splitting via Symmetric Obstacle Here we compute an example where we
have a symmetric obstacle, and thus the generator will learn to split the density. Agents
will go left or right of the obstacle depending on their starting position. Here we chose the
obstacle as,

fpx1, x2, . . . , xdq “ αobst max

´vJQv ` 0.1, 0
(

, Q “

ˆ

1 0.8
0.8 1

˙

, v “ px1, x2q. (B.4)

and we choose γobst “ 20. The environment and training parameters are the same as in the
main text, except we choose the HJB penalty λ in Alg. 1 to be 0.1. Qualitatively, we see the

16

solution agrees with our intuition: the agents will go left or right depending on their starting
position. Note that the results are similar across dimensions, verifying our computation.
For the 2d, ν “ 0 case we trained for 100k iterations, for the 2d, ν “ 0.1 case we trained fro
300k iterations, for the 50d and 100d, ν “ 0 case we trained for 500k iterations, for the 50d
ν “ 0.1 case we trained for 1000k iterations, and the for the 100d, ν “ 0.1 case we trained
for 2000k iterations.

d “ 2 d “ 50 d “ 100 Log HJB Residual Error
ν
“

0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500
iteration (thousands)

2.0

1.5

1.0

0.5

0.0

0.5

1.0
2 dim
50 dim
100 dim

ν
“

0
.1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0 250 500 750 10001250150017502000
iteration (thousands)

2.0

1.5

1.0

0.5

0.0
2 dim
50 dim
100 dim

Figure 7: Computation of the an obstacle problem where the obstacle is symmetric. We plot the
results for dimensions 2 and 100, and for ν “ 0 and ν “ 0.1.

17

	Introduction
	Variational Primal-Dual Formulation of Mean Field Games
	Connections to GANs
	APAC-Net
	Related Works
	Numerical Experiments
	Conclusion
	Derivation of Analytic Solution
	Details on Numerical Results and More Experiments

