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Abstract

In this paper, we develop and analyze numerical methods for high dimensional Fokker-Planck equa-
tions by leveraging generative models from deep learning. Our starting point is a formulation of the
Fokker-Planck equation as a system of ordinary differential equations (ODEs) on finite-dimensional pa-
rameter space with the parameters inherited from generative models such as normalizing flows. We call
such ODEs neural parametric Fokker-Planck equation. The fact that the Fokker-Planck equation can
be viewed as the L2-Wasserstein gradient flow of Kullback–Leibler (KL) divergence allows us to derive
the ODEs as the constrained L2-Wasserstein gradient flow of KL divergence on the set of probability
densities generated by neural networks. For numerical computation, we design a variational semi-implicit
scheme for the time discretization of the proposed ODE. Such an algorithm is sampling-based, which
can readily handle Fokker-Planck equations in higher dimensional spaces. Moreover, we also establish
bounds for the asymptotic convergence analysis of the neural parametric Fokker-Planck equation as well
as its error analysis for both the continuous and discrete (forward-Euler time discretization) versions.
Several numerical examples are provided to illustrate the performnace of the proposed algorithms and
analysis.

Keywords Optimal transport; Transport information geometry; Deep learning; Neural parametric
Fokker-Planck equation; Variational semi-implicit-Euler scheme; Numerical analysis.

1 Introduction
Fokker-Planck equation is a parabolic evolution partial differential equation (PDE) that plays a crucial role
in stochastic calculus, statistical physics, biology and modeling [33, 39, 43]. Recently, it has seen many
applications in machine learning as well [29, 36, 48]. Fokker-Planck equation describes the evolution of
the probability density of a stochastic differential equation (SDE). In this research, we mainly focus on the
following linear Fokker-Planck equation

∂ρ(t, x)

∂t
=∇ · (ρ(t, x)∇V (x)) + β∆ρ(t, x), (1)

where x ∈ Rd, V : Rd → R is a given potential function and β > 0 is a diffusion coefficient. In numerical
algorithms, there exist several classical methods [38] such as finite difference [10] or finite element [21] for
solving the Fokker Planck equation. These methods are grid based, which may be able to approximate the
solution accurately if the grid sizes become small. However, they find limited usage in high dimensional
problems, especially for d > 3, because the number of unknowns grows exponentially fast as the dimension
increases. This is known as the curse of dimensionality. The main goal of this paper is providing an
alternative strategy, with provable error estimates, to solve the Fokker-Planck equation in high dimensions.
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1.1 Neural parametric Fokker-Planck equation
To overcome the challenges imposed by high dimensionality, we leverage the generative models in machine
learning [41] and a new interpretation of the Fokker-Planck equation in the theory of optimal transport [51].
We first introduce the KL divergence defined as:

DKL(ρ||ρ∗) =

∫
ρ(x) log

(
ρ(x)

ρ∗(x)

)
dx ρ∗(x) =

1

Zβ
e−

V
β , with Zβ =

∫
e−

V (x)
β dx.

Here ρ∗(x) is the Gibbs distribution. A well-known fact is that the Fokker-Planck equation (1) can be viewed
as the gradient flow of the functional β DKL(ρ||ρ∗) (also known as relative entropy) on the probability space
P equipped with Wasserstein metric [16, 34]. Recently, this line of research has been extended to parameter
space in the field of information geometry [1, 2, 5], leading to an emergent area called transport information
geometry [23, 28, 26, 27].

Inspired by aforementioned work, we study the Fokker-Planck equation defined on parametric space Θ
equipped with metric tensor G which is compatible with the Wasserstein metric. In this paper, we focus on
the parameter space from generative models using neural networks. Our line of thoughts can be summarized
as following, we start with a given reference distribution p, and consider a suitable family of parametric
pushforward map {Tθ}θ∈Θ. The so-called pushforward operator T# : Θ → P(θ 7→ Tθ#p) can be treated as
an immersion from parametric manifold Θ to probability manifold P. We derive the metric tensor G(θ) by
pulling back the Wasserstein metric via immersion T#. Once we have established (Θ, G), we compute the
G-gradient flow of function H(θ) = β DKL(Tθ#p||ρ∗) defined on the parameter manifold. This leads to an
ODE system that can be viewed as a parametric version of Fokker Planck equation:

θ̇t = −G(θt)
−1∇θH(θt), (2)

in which we use notation ρθ = Tθ#p. The solution {ρθt} can be used as an approximation to the solution ρt
in (1).

1.2 Computational method
For the computation of (2), we want to point out that metric tensor G(θ) doesn’t have an explicit form and
thus the direct computation of G(θ)−1∇θH(θ) is not tractable. To deal with this issue, we design a numerical
algorithm based on the semi-implicit Euler scheme of (2) with time step size h. To be more precise, at each
time step, the algorithm seeks to solve the following saddle point problem:

θk+1 = argmin
θ∈Θ

max
φ

{∫
2∇φ(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))ρθk(x) dx−

∫
|∇φ(x)|2ρθk(x) dx+ 2hH(θ)

}
. (3)

Here φ : Rd → R is the Kantorovich dual potential variable for constrained probability models in optimal
transport theory. Hence (3) is derived following the semi-implicit Euler scheme in the dual variable. The
advantage of using this formulation is that it allows us to design an efficient implementation, purely based on
sampling techniques which are computational friendly in high dimensional problems, to compute the solution
of the parameteric Fokker-Planck equation (2).

In our implementation, we endow the pushforward map Tθ with certain kinds of deep neural network
known as Normalizing Flow [42], because it is friendly to our scheme evaluations. The dual variable φ in
the inner maximization is parametrized by the deep Rectified Linear Unit (ReLU) networks [37] . Once the
network structures for Tθ and φ are chosen, the optimizations are carried out by stochastic gradient descent
method [46], in which all terms involved can by computed using samples from the reference distribution p.
We stress that this is critical in scaling up the computations in high dimensions. It is worth mentioning that
we use neural network as a computational tool without any actual data. Such "data-poor" computation is
in significant contrast to the mainstream of deep learning research.

1.3 Major innovations of the proposed method
There are two main innovative points regarding our proposed method:
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• (Dimension reduction) Reducing the high dimensional evolution PDE to a finite dimensional ODE
system on parameter space. Equivalently, we use the dynamics in a finite dimensional parametric
space to approximate the density evolution of particles that follow the Vlasov-type SDE

Ẋt = −∇V (Xt)− β∇ log ρt(Xt),

whose density function ρt corresponds to the Fokker-Planck equation (1).

• (Sampling-friendly) We distill the information of ρt into parameters {θt} by solving the parametric
Fokker-Planck equation (2). By doing so, we are able to obtain an efficient sampling technique to
generate samples from ρt for any time step t. To be more precise, we solve (2) for time-dependent
parameters {θt}, and we can then generate samples from ρt by pushing forward the samples drawn
from a reference distribution p using the pushforward map Tθt . It worth mentioning that our method
is very different from Langevin Monte Carlo (LMC, MALA) methods [14, 44], which aims at targeting
the stationary distribution of the SDE associated to (1); or momentum methods [39] , which focuses
on keeping track of certain statistical information of the density ρt.

1.4 Sketch of numerical analysis
In addition to the methods proposed for solving (1), we also conducted a mathematical analysis on our
algorithms. Specifically, we established asymptotic convergence and error analysis results for the continuous
version of the parametric Fokker-Planck equation. They are summarized in the following two theorems:

Theorem 1 (Asymptotic convergence analysis for continuous version). Consider Fokker-Planck equation
(1) with V smooth and strictly convex outside a finite ball. Suppose {θt} solves (2). Let ρ∗(x) = 1

Zβ
e−V (x)/β

be the Gibbs distribution of original equation (1). Then we have the inequality:

DKL(ρθt‖ρ∗) ≤
δ0

λ̃ββ2
(1− e−βλ̃βt) + DKL(ρθ0‖ρ∗)e−βλ̃βt.

Here λ̃β > 0 is a constant related to potential function V and β. δ0 is a constant depending on the
approximation power of pushforward map Tθ.

Theorem 2 (Error analysis for continuous version). Assume {θt}t≥0 solves (2); and {ρt}t≥0 solves (1).
Assume that the Hessian of the potential function V in (1) is bounded below by a constant λ, i.e. ∇2V � λ I.
Then:

W2(ρθt , ρt) ≤
√
δ0
λ

(1− e−λt) + e−λtW2(ρθ0 , ρ0).

In general cases, λ is not guaranteed to be positive and the error bound in Theorem 2 increases to +∞
as t → ∞. However, we can improved this result by establishing a uniformly small error bound, this is
summarized in the following theorem:

Theorem 3 (Main result on error analysis). Suppose we keep all the notations in Theorem 1 and 2, then
for any time t > 0, the 2-Wasserstein error W2(ρθt , ρt) can be bounded above by K(E0 +

√
δ0)α with some

0 < α ≤ 1. Here E0 = W2(ρθ0 , ρ0), K is a positive constant independent of time t.

This result generally illustrates that under ideal assumption that both the initial error E0 and
√
δ0 are small

enough, we will establish a uniformly small upper bound for the error termW2(ρθt , ρt) at all time t > 0. Most
of the techniques used in our analysis for establishing such result rely on the theories of optimal transport
and Wasserstein manifold, which are still not common in today’s relevant literature. Besides error analysis
for the continuous version of (2), we are also able to verify the order of W2-error for the discrete version of
(2). To be more precise, we apply forward-Euler algorithm to (2) and obtain {θk} at different time nodes
{tk}, we can show that error at tk: W2(ρθk , ρtk) is of order O(

√
δ0) +O(CNh) +O(E0) for finite time t. This

is summarized in the following theorem:
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Theorem 4. We assume that λI � ∇2V � ΛI. The time step size is h. Assume {ρt}t≥0 solves (1), {θk}Nk=0

is the numerical solution of (2) at time nodes tk = kh for k = 0, 1, ..., N computed by forward Euler scheme.
Suppose we keep the notation δ0 and E0 in previous theorems. Then:

W2(ρθk , ρtk) ≤ (
√
δ0h+ CNh

2)
(1− e−λtk)

1− e−λh
+ e−λtkE0 ∼ O(

√
δ0) +O(CNh) +O(E0), 0 ≤ k ≤ N.

Here CN is some constant depending on N and h. As a result, the W2-error is dominated by three
different error terms: O(

√
δ0) is the essential error that originates from the approximation mechanism of

parametric Fokker-Planck equation; O(CNh) term is induced by the finite difference scheme; and O(E0)
term is the initial error.

It worth mentioning that we establish Theorem 4 based on different techniques used for Theorem 3. Since
the ODE (2) contains the term G(θ)−1∇θH(θ), which is difficult to deal with, we decide to switch to particle
point of view of the ODE (2) and establish corresponding analysis there and finally combine the results to
get the desired Theorem 4. Theorem 4 is compatible with Theorem 2 as time stepsize h→ 0. Currently, we
are not able to establish discrete version of Theorem 1 and thus a discrete version of Theorem 3. This might
be one of our future research directions.

1.5 Literature review
We should point out that there are previous works on applying neural networks to solve PDE of various types
[52, 40, 18, 19, 54]. Among them, [52] and [19] focuses on high dimensional parabolic partial differential
equations. We point out that our approaches differ from these existing works in many aspects, especially
the purposes, ways of applying neural networks and the associated numerical analysis.

For example, in [52], the authors are inspired by the non-linear Feynmann-Kac formula that relates
the certain parabolic PDE to the Backward Stochastic Differential Equation (BSDE). They reformulate the
BSDE as an optimal control problem (also known as reinforcement learning in machine learning community).
By applying deep neural network as the control function and optimizing over network parameters, they are
able to evaluate the function value of the solution at certain space-time location. Another example is [19],
they mainly focus on computing for the committor function that solves a steady-state (time-independent)
Fokker-Planck equation with specific boundary conditions. This committor function can be treated as the
solution to a variational problem associated with a certain energy functional. They plug neural network into
this variational problem and optimize over network parameter to acquire an approximation to the committor
function.

In this paper, we handles the other parabolic PDE, i.e. the time dependent Fokker-Planck equation,
which actually differs from the parabolic PDEs considered in [52] and steady-state equation treated in [19].
Here we focus on designing a sampling-friendly method. Our numerical solutions as a stream of probability
distributions are presented in sample forms, given by deep learning generative models. Despite all above
mentioned works apply deep neural networks as computational tools, our approaches are different in terms
of how deep networks are leveraged to approximate the solution to the PDE: We use pushforward of a given
reference measure by neural networks to create a generative model. This is to approximate the stream of
probability distributions; [52] uses networks to approximate the optimal control of a reinforcement learning
problem and [19] directly use the network to approximate the solution. More importantly, we provide several
numerical analysis on the asymptotic convergence and error control of machine learning approaches. To name
a few: Theorem 1 guarantees the entropy-dissipative property of our proposed neural parametric Fokker-
Planck equation, Theorem 3 together with Theorem 4 provide upper bounds for the L2-Wasserstein error
between our numerical solution and real solution for both continuous and discrete schemes.

1.6 Organization of this paper
We organize the paper as follows: In section 2, we briefly introduce some background knowledge of Fokker-
Planck equation, including its relation with SDE and its Wasserstein gradient flow structure; Then in section
3, we introduce the Wasserstein statistical manifold (Θ, G) and derive our parametric Fokker-Planck equation
as the manifold gradient flow of relative entropy on Θ. We study the geometric property of this equation; An
insightful particle point of view of the parametric Fokker-Planck equation will also be provided; In section 4,
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we design a numerical scheme that is tractable for computing our parametric Fokker-Planck equation under
deep learning framework. Some important details of implementation will also be discussed; We present
asymptotic convergence analysis and error analysis for the parametric Fokker-Planck equation in section 5;
Some numerical examples will be exhibited in section 6.

2 Background on Fokker-Planck equation
In this section, we review some basic knowledge about Fokker-Planck equations that will be used in future
discussion. In 2.1, we introduce the relationship between Fokker-Planck equation and Stochastic Differential
Equations (SDE); then in 2.2.1, we briefly introduce the Wasserstein manifold (P, gW ); finally, in 2.2.2 we
show that Fokker-Planck equation can be treated as the manifold gradient flow of relative entropy functional
on (P, gW ).

2.1 As the density evolution of stochastic differential equation
The general form of Fokker-Planck equation is:

∂ρ(x, t)

∂t
= −∇ · (ρ(x, t)µ(x, t)) +

1

2
∇ · (D(x, t)∇ρ(x, t)) ρ(x, 0) = ρ0(x).

Here ∇·, ∇ is the divergence and gradient operator in Rd, µ is the drift function and D = σσT is the
diffusion tensor. Here σ(x, t) is a d × d̃ matrix. The derivation of Fokker-Planck Equation originates from
considering the following stochastic differential equation(SDE) [43]:

dXt = µ(Xt, t) dt+ σ(Xt, t) dBt, X0 ∼ ρ0.

Here {Bt}t≥0 is the standard Brownian motion in Rd̃. It is well known that the evolution of the density ρ(x, t)
of the stochastic process {Xt}t≥0 is described by the Fokker-Planck equation, i.e. suppose Xt ∼ ρ(t, odt),
then ρ satisfies (2.1).

In this paper, we consider a more specific type of (2.1) by setting µ(x, t) = −∇V (x), σ(x, t) =
√

2β Id×d
(β > 0) and so D = 2β Id×d. Here Id×d is the d by d identity matrix. Then (2.1) is:

dXt = −∇V (Xt) dt+
√

2β dBt X0 ∼ ρ0. (4)

The above is also called over-damped Langevin dynamics with broad applications in computational physics,
computational biology, Bayesian statistics etc. [14, 47, 53]. The corresponding Fokker-Planck equation
simplifies to

∂ρ(x, t)

∂t
= ∇ · (ρ(x, t)∇V (x)) + β∆ρ(x, t), ρ(x, 0) = ρ0(x). (5)

We should also mention that, despite (4), there is a Vlasov-type SDE corresponding to the Fokker-Planck
equation (5):

dXt

dt
= −∇V (Xt)− β ∇ log ρ(Xt, t) X0 ∼ ρ0 (6)

Here we denote ρ(·, t) as the density of distribution of Xt. Suppose (6) admits a valid solution, then one
can show that the density ρ(·, t) solves Fokker-Planck equation (5). This Vlasov-type SDE (6) will be very
useful in our further discussions.

2.2 As the Wasserstein gradient flow of relative entropy
A useful viewpoint of (5) is to treat it as the Wasserstein gradient flow of relative entropy. We briefly present
some of the notations and basic results in this regard.
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2.2.1 Wasserstein manifold

Denote the probability space supported on Rd with densities and finite second order momentum as:

P =

{
ρ :

∫
ρ(x)dx = 1, ρ(x) ≥ 0,

∫
|x|2ρ(x) dx <∞

}
.

We define the so-called Wasserstein distance (also known as L2-Wasserstein distance) on P as [51]:

W2(ρ1, ρ2) =

(
inf

π∈Π(ρ1,ρ2)

∫∫
|x− y|2 dπ(x, y)

)1/2

. (7)

Here Π(ρ1, ρ2) is the set of joint distributions defined on Rd × Rd with fixed marginal distributions whose
densities are ρ1, ρ2. If we treat P as an infinite dimensional manifold, then the Wasserstein distance W2

can induce a metric gW on the tangent bundle TP and then P becomes a Riemmanian manifold. We now
directly give the definition of gW : One can identify the tangent space at ρ as:

TρP =

{
ρ̇ :

∫
ρ̇(x)dx = 0

}
.

Now for a specific ρ ∈ P and ρ̇i ∈ TρP, i = 1, 2, we define the Wasserstein metric tensor gW as: [22, 34]

gW (ρ)(ρ̇1, ρ̇2) =

∫
∇ψ1(x) · ∇ψ2(x)ρ(x) dx, (8)

where ψ1, ψ2 satisfies
ρ̇i = −∇ · (ρi∇ψi) i = 1, 2, (9)

with boundary conditions
lim
x→∞

ρ(x)∇ψi(x) = 0 i = 1, 2.

Use the above definition, we can also write:

gW (ρ)(ρ̇1, ρ̇2) =

∫
ψ1(−∇ · (ρ∇ψ2)) dx =

∫
(−∇ · (ρ∇))−1(ρ̇1) · ρ̇2 dx.

Thus, we can identify gW (ρ) as (−∇·(ρ∇))−1. When supp(ρ) = Rd, gW (ρ) is a positive definite bilinear form
defined on tangent bundle TP = {(ρ, ρ̇) : ρ ∈ P, ρ̇ ∈ TρP} and we can treat P as a Riemannian manifold.
From now on, we call the manifold (P, gW ) Wasserstein manifold [34].

2.2.2 Wasserstein gradient

We denote the Wasserstein gradient gradW as manifold gradient on (P, gW ). In Riemannian geometry, the
manifold gradient should be compatible with the metric, which implies that for any smooth F defined on P
and for any ρ ∈ P, consider arbitrary differentiable curve {ρt}t∈(−δ,δ) with ρ0 = ρ, we always have:

d

dt
F(ρt)

∣∣∣
t=0

= gW (ρ)(gradWF(ρ), ρ̇0).

Since we can write
d

dt
F(ρt)

∣∣∣
t=0

=

∫
δF(ρ)

δρ(x)
(x) · ρ̇0(x) dx =

〈
δF(ρ)

δρ
, ρ̇0

〉
L2

,

here δF(ρ)
δρ(x) (x) is the L2 variation of F at point x ∈ Rd, we then have〈

δF(ρ)

δρ
, ρ̇0

〉
L2

= gW (ρ)(gradWF(ρ), ρ̇0) ∀ ρ̇0 ∈ TρP.
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This leads to the following useful formula for computing Wasserstein gradient of functional F :

gradWF(ρ) =gW (ρ)
−1
(
δF
δρ

)
(x)

=−∇ ·
(
ρ(x)∇ δF(ρ)

δρ(x)
(x)

)
,

(10)

In particular, consider the KL divergence functional [17]:

DKL

(
ρ
∣∣∣∣∣∣ρ∗) =

∫
ρ(x) log

(
ρ(x)

ρ∗(x)

)
dx =

∫
1

β
V (x)ρ(x) + ρ(x) log ρ(x) dx+ logZβ (11)

Here we denote ρ∗(x) = 1
Zβ
e−

V (x)
β with Zβ =

∫
e−

V (x)
β dx.

In the following discussion, we denote:

H(ρ) = β DKL

(
ρ
∣∣∣∣∣∣ρ∗) =

∫
V (x)ρ(x) + βρ(x) log ρ(x) dx+ β logZβ

for shorthand. H is also known as the relative entropy functional.
Then we have ∇ δH(ρ)

δρ = ∇V + β∇ log ρ. Using (10), the Wasserstein gradient flow of H can be written as:

∂ρ

∂t
= −gradWH(ρ) = ∇ · (ρ∇V ) + β∇ · (ρ∇ log ρ)).

Notice ∇ log ρ = ∇ρ
ρ , then ∇ · (ρ∇ log ρ) = ∇ · (∇ρ) = ∆ρ. The above equation is exactly the Fokker-Planck

equation (5).

3 Parametric Fokker-Planck equation
In this section, we provide detailed derivations and related discussions for our parametric Fokker-Planck
equation in this section. In 3.1, we first introduce the parameter space Θ and compute the metric tensor
G by pulling back Wasserstein metric gW from P to Θ; Then in 3.2 we define our parametric Fokker-
Planck equation by computing the manifold gradient flow of relative entropy functional on (Θ, G). Some
properties related to submanifold geometry will also be provided; in 3.3 we discover a particle formulation
for our parametric Fokker-Planck equation. It relates our parametric equation to a "projected" Vlasov-type
Stochastic Differential Equation; An illustrative and analytical example is provided in 3.4.

3.1 Wasserstein statistical manifold
Consider a parameter space Θ as an open set in Rm, and assume the sample space is Rd. Let Tθ be a map
from Rd to Rd parametrized by θ. In our discussion, we will always assume that Tθ is invertible and smooth
with respect to parameter θ and variable x.

Remark 1. There are many different choices for Tθ:

• We can set Tθ(x) = Ux+ b, with θ = (U, b), U ∈ GLd(R), b ∈ Rd;

• We may also choose Tθ as the linear combination of basis functions Tθ(x) =
∑m
k=1 θk

~Φk(x), where
{~Φk}mk=1 are the basis functions and the parameter θ will be the coefficients: θ = (θ1, ..., θm);

• We can also treat Tθ as neural network. Its general structure can be written as the composition of
l affine and non-linear activation functions: Tθ(x) = σl(Wl(σl−1(...σ1(W1x + b1)...)) + bl). In this
case, the parameter θ will be the weight matrices and bias vectors of the neural network, i.e. θ =
(W1, b1, ...,Wl, bl).

We introduce the pushforward operation:
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Definition 1. Suppose X,Y are two measurable spaces, λ is a probability measure defined on X; let T :
X → Y be a measurable map. We define T#λ as: T#λ(E) = λ(T−1(E)) for all measurable E ⊂ Y . We call
T#p the pushforward of measure p by map T .

Let p ∈ P as a reference probability measure with positive density defined on Rd. For example, we
can choose p as the standard Gaussian. We denote ρθ as the density of Tθ#p. Such kind of mechanism
of producing parametric probability distributions is also known as generative model, which has broad
applications in deep learning research [13, 4, 7]. We further require:∫

|z|2ρθ(z) dz =

∫
|Tθ(x)|2 dp(x) <∞ ∀ θ ∈ Θ. (12)

This ensures that ρθ ∈ P for each θ ∈ Θ. In order to introduce Wasserstein metric defined in previous section
to the parameter space Θ, we need to add mild condition on ∂θTθ. Notice that ∂θTθ : Rd → Rd×m. Assume
there exists an L1(p) function L(x) that can bound the Frobenius norm ‖∂θTθ(x)‖F , i.e.,

∃ L(x), s.t. ‖∂θTθ(x)‖F ≤ L(x) ∀x ∈ Rd, θ ∈ Θ and
∫
L(x) dp(x) <∞. (13)

Now suppose the parameter space Θ satisfies conditions (12) and (13). We denote the parametric submanifold
PΘ ⊂ P as:

PΘ = {ρθ is density function of Tθ#p | θ ∈ Θ}.

The connection between P and Θ is the pushforward operation T# : Θ → PΘ ⊂ P, θ 7→ ρθ. In order to
introduce the Wasserstein metric to parameter space Θ, it is natural to treat the map T# as an isometric
immersion from Θ to P, then the pullback (T#)∗gW of the Wasserstein metric gW by T# should be the
metric tensor on Θ. Let us denote G = (T#)∗gW . Then for each θ, G(θ) is a bilinear form on TθΘ ' Rm,
thus G(θ) can be identified as an m×m matrix. The formula for G(θ) is established in the following theorem:

Theorem 5. Assume Θ satisfies (12),(13). Suppose Tθ is invertible and smooth with respect to θ and x.
We equip Θ with the metric G = (T#)∗gW . Then the metric tensor G(θ) at θ ∈ Θ is m ×m non-negative
definite symmetric matrix of the form:

G(θ) =

∫
∇Ψ(Tθ(x))∇Ψ(Tθ(x))T dp(x), (14)

Or in entry-wised form:

Gij(θ) =

∫
∇ψi(Tθ(x)) · ∇ψj(Tθ(x)) dp(x), 1 ≤ i, j ≤ m.

Here Ψ = (ψ1, · · · , ψm)T and ∇Ψ is m × d Jacobian matrix of Ψ. For each j = 1, 2, · · · ,m, ψj solves the
following equation:

∇ · (ρθ∇ψj(x)) = ∇ · (ρθ ∂θjTθ(T−1
θ (x))). (15)

with boundary conditions
lim
x→∞

ρθ(x)∇ψj(x) = 0.

Proof. Suppose ξ ∈ TΘ is a vector field on Θ, for a fixed θ ∈ Θ, we first compute the pushforward (T#|θ)∗ξ(θ)
of ξ at point θ: We choose any smooth curve {θt}t≥0 on Θ with θ0 = θ and θ̇0 = ξ(θ). If we denote
ρθt = Tθt#p, then we have (T#)∗ξ(θ) =

∂ρθt
∂t

∣∣∣
t=0

.

To compute ∂ρθt
∂t

∣∣∣
t=0

, we consider an arbitrary φ ∈ C∞0 (M). On one hand, ρθ∆t (y)−ρθ0 (y)

∆t = ∂
∂tρ(θt̃1 , y),

where t̃1 is some point between 0,∆t, since φ ∈ C∞0 and ρ(θt, y) is smooth with respect to t, y, we can show
that the function ϕ(x) = sups∈[0,∆t] |φ(x) ∂∂tρ(θs, y)| is continuous on a compact set and thus is integrable on
Rd. Using dominant convergence theorem, we have:

∂

∂t

(∫
φ(y)ρθt(y) dy

) ∣∣∣
t=0

=

∫
φ(y)

∂ρθt(y)

∂t

∣∣∣
t=0

dy. (16)
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On the other hand, we have:

φ(Tθ∆t(y))− φ(Tθ0(y))

∆t
= θ̇Tt̃2 ∂θTθt̃2 (x)T ∇φ(Tθt̃2 (y)),

here t̃2 is between 0,∆t. For any ∆t small enough and t̃, we can easily find an upper bound for ‖θ̇t̃‖ ≤ A
and since φ ∈ C∞0 , we can bound ‖∇φ(·)‖∞ ≤ B. Then using (13) we can bound:

|θ̇Tt̃ ∂θTθt̃(x)T ∇φ(Tθt̃(y))| ≤ AB‖∂θTθt̃(x)‖F ≤ ABL(x).

Since the right hand side is L1(p), applying dominated convergence theorem, we have:

∂

∂t

(∫
φ(Tθt(x))dp

) ∣∣∣
t=0

=

∫
θ̇t
T
∂θTθt(x)T∇φ(Tθt(x))|t=0dp. (17)

Now since ∂
∂t

∫
φ(y)ρθt(y) dy = ∂

∂t

∫
φ(Tθt(x)) dp(x), we can equate (16) and (17) to get:∫

φ(y)
∂ρθt
∂t

(y)
∣∣∣
t=0

dy =

∫
θ̇t
T
∂θTθt(x)T∇φ(Tθt(x))|t=0 dp(x)

=

∫
θ̇Tt ∂θTθt(T

−1
θt

(x))T∇φ(x) ρθt(x)|t=0 dx

=

∫
φ(x)

(
−∇ · (ρθt∂θTθt(T−1

θt
(x))T θ̇t)

)
|t=0 dx.

This weak formulation reveals that

(T#|θ)∗ξ(θ) =
∂ρθt
∂t

∣∣∣
t=0

= −∇ · (ρθ ∂θTθ(T−1
θ (x))T ξ(θ)). (18)

Now let us compute the metric tensor G. Since T# is isometric immersion from Θ to P, the pullback of gW
by T# gives G, i.e. (T#)∗gW = G. By definition of pullback map, for any ξ ∈ TΘ and for any θ ∈ Θ, we
have:

G(θ)(ξ(θ), ξ(θ)) = gW (ρθ)((T#|θ)∗ξ(θ), (T#|θ)∗ξ(θ)) (19)

To compute the right hand side of (19), recall (8), we need to solve for ϕ from:

∂ρθt
∂t

∣∣∣
t=0

= −∇ · (ρθ∇ϕ(x)) (20)

By (18), (20) is:
∇ · (ρθ∇ϕ(x)) = ∇ · (ρθ∂θTθ(T−1

θ (·))T ξ(θ)). (21)

We can straightforwardly check that ϕ(x) = ΨT (x)ξ(θ) is the solution of (21). Then G(θ) is computed as:

G(θ)(ξ, ξ) =

∫
|∇ϕ(y)|2 ρθ(y) dy =

∫
|∇ϕ(Tθ(x))|2 dp(x)

=

∫
|∇Ψ(Tθ(x))T ξ|2dp(x) = ξT

(∫
∇Ψ(Tθ(x))∇Ψ(Tθ(x))T dp(x)

)
ξ.

Thus we can verify that:

G(θ) =

∫
∇Ψ(Tθ(x))∇Ψ(Tθ(x))T dp(x),

completing the proof.

Generally speaking, the metric tensor G does not have an explicit form when d ≥ 2; but for d = 1, G has
an explicit form and can be computed directly.

Corollary 5.1. When dimension d = 1, the metric tensor G(θ) has the following explicit form:

G(θ) =

∫
∂θTθ(x)T∂θTθ(x) dp(x). (22)
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Proof. When d = 1, (15) is

d

dx

(
ρθ(x)

d

dx
ψk(x)

)
=

d

dx

(
ρθ(x)

∂Tθ
∂θk

(T−1
θ (x))

)
, (23)

with boundary conditions limx→±∞ ρθ(x)ψ′k(x) = 0. And using (13), we know ∂θTθ is L1(p) integrable and so
ρθ(·)∂θTθ(T−1

θ (·)) is Lebesgue integrable, we can find a sequence {xm} → −∞, such that ρθ(xm)∂θkTθ(T
−1
θ (xm))→

0 as m→∞. Now for any x ∈ R, integrate (23) from xm to x and send m→∞ we get:

ρθ(x)ψ′k(x) = ρθ(x)∂θkTθ(T
−1
θ (x)).

Now, on the support on ρθ, we have ψ′k(x) = ∂θkTθ(T
−1
θ (x)), thus we have:

Gij(θ) =

∫
ψ′i(x)ψ′j(x)ρθ(x) dx =

∫
∂θiTθ(x)∂θjTθ(x) dp(x),

completing the proof.

The following theorem mentioned in [25] ensures the positive definiteness of the metric tensor G:

Theorem 6. We follow the notations and conditions in this section. Then G is Riemmanian metric if and
only if For each θ ∈ Θ, for any ξ ∈ TθΘ (ξ 6= 0), we can find z ∈M such that ∇· (ρθ(z)∂θTθ(T−1

θ (z))ξ) 6= 0.

Proof. We first establish the following identity: according to Theorem 5, for any θ, ξ, x,

∇ · (ρθ(x)∇(ξTΨ(x))) = ∇ · (ρθ(x)∂θTθ(T
−1
θ (x))ξ). (24)

(⇐): suppose for any θ ∈ Θ and ξ ∈ TθΘ, at certain z ∈ Rd, ∇ · (ρθ(z)∂θTθ(T−1
θ (z)ξ) 6= 0, then ∇ ·

(ρθ(z)∇(ξTΨ(z))) 6= 0, thus ρθ∇(ξTΨ) is not identically 0. Using continuity of ρθ∇(ξTΨ), we know that:
|∇(ξTΨ(x))|2ρθ(x) > 0 in some small neighbourhood of z. Thus we have:

ξTG(θ)ξ =

∫
|∇Ψ(x)T ξ|2ρθ(x) dx > 0, (25)

holds for any θ and ξ, this leads to the positive definiteness of G.
(⇒): Now, (25) holds for all θ, ξ. We have∫

−∇ · (ρθ(x)∇(ξTΨ(x))) · ξTΨ(x) dx > 0.

This leads to the existence of a z ∈ Rd such that −∇ · (ρθ(z)∇(ξTΨ(z))) 6= 0. Combining (24) completes
the proof.

A more intuitive way to understand the positive definiteness ofG(θ) is illustrated in the following theorem:

Theorem 7. For θ ∈ Θ, let us recall the definition of {ψk}mk=1 in (15), then G(θ) is positive definite if and
only if {∇ψk}mk=1 as m vectors in the space L2(Rd;Rd, ρθk), are linearly independent.

For most of the common choices of Tθ like linear combination of basis functions or smooth invertible
neural networks, we may assume Theorem 6, 7 holds. To keep our discussion concise, in the following
sections, we will always assume G(θ) is positive definite for every θ ∈ Θ.

3.2 Parametric Fokker-Planck equation
Recall the relative entropy functional H defined in (11), we consider H = H ◦ T# : Θ→ R. Then:

H(θ) = H(ρθ) =

∫
V (x)ρθ(x) dx+ β

∫
ρθ(x) log ρθ(x) dx =

∫
V (Tθ(x)) + β log ρθ(Tθ(x)) dp(x). (26)
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As in [1], the gradient flow of H on Wasserstein statistical manifold (Θ, G) satisfies

θ̇ = −G(θ)−1∇θH(θ)1. (27)

We call (27) parametric Fokker-Planck equation. The ODE (27) as the Wasserstein gradient flow on parameter
space (Θ, G) is closely related to Fokker-Planck equation on probability submanifold PΘ. We have the
following theorem, which is a natural result derived from submanifold geometry:

Theorem 8. Suppose {θt}t≥0 solves (27). Then {ρθt} is the gradient flow of H on probability submanifold
PΘ. Here we always assume that PΘ inherits the metric of P. Furthermore, at any time t,ρ̇θt = d

dtρθt ∈
TρθtPΘ is the orthogonal projection of −gradWH(ρθt) ∈ TρθtP onto the subspace TρθtPΘ with respect to the
Wasserstein metric gW .

Theorem 8 easily follows from the following two general results about manifold gradient:

Theorem 9. Suppose (N, gN ), (M, gM ) are Riemannian Manifolds. Suppose ϕ : N → M is isometry.
Consider F ∈ C∞(M), define F = F ◦ ϕ ∈ C∞(N). Suppose {xt}t≥0 is the gradient flow of F on N :

ẋ = −gradNF (x).

Then {yt = ϕ(xt)}t≥0 is the gradient flow of F on M . That is, {yt} satisfies ẏ = −gradMF(y).

Proof. Since we always have ẏt = ϕ∗ẋt = −ϕ∗gradNF (xt), we only need to show that ϕ∗gradNF (xt) =
gradMF(ϕ(xt)). Fix the time t, consider any curve {ξτ} on N passing through xt at τ = 0, since ϕ is
isometry, we have gN = ϕ∗gM , thus:

d

dτ
F (ξτ )

∣∣∣
τ=0

= gN (gradNF (xt), ξ̇0) = ϕ∗gM (gradNF (xt), ξ̇0) = gM (ϕ∗gradNF (xt), ϕ∗ξ̇0).

On the other hand, denote ητ = ϕ(ξτ ), we have:

d

dτ
F (ξτ )

∣∣∣
τ=0

=
d

dτ
F(ητ )

∣∣∣
τ=0

= gM (gradMF(yt), η̇0) = gM (gradMF(yt), ϕ∗ξ̇0).

As a result, gM (ϕ∗gradNF (xt)− gradMF(yt), ϕ∗ξ̇0) = 0 for all ξ̇0 ∈ TxtN .
Since ϕ∗ is surjective, thus ϕ∗gradNF (xt) = gradMF(ϕ(xt)).

Theorem 10. Suppose (M, gM ) is Riemannian manifold, Msub ⊂M is the submanifold ofM . AssumeMsub
inherits metric gM , i.e. define ι : Msub →M as the inclusion map, then ι is isometry: gMsub = ι∗gM . For any
F ∈ C∞(M), we denote the restriction of F on Msub as Fsub. Then the gradient gradMsub

Fsub(x) ∈ TxMsub
is the orthogonal projection of gradMF(x) ∈ TxM onto subspace TxMsub with respect to the metric gM for
any x ∈Msub.

Proof. For any x ∈Msub, consider any curve {γτ} on M sub passing through x at τ = 0. We have

d

dτ
F sub(γτ )

∣∣∣
τ=0

= gMsub(gradMsub
F sub(x), γ̇0) = gM (ι∗gradMsub

F sub(x), ι∗γ̇0) = gM (gradMsub
F sub(x), γ̇0).

The last equality is because ι∗ restricted on TMsub is identity. On the other hand, F sub(γτ ) = F(γτ ) for all
τ . We also have:

d

dτ
F sub(γτ )

∣∣∣
τ=0

= gM (gradMF(x)γ̇0).

Combining them we know

gM (gradMsub
F sub(x)− gradMF(x), v) ∀ v ∈ TxMsub ⇒ gradMsub

F sub(x)− gradMF(x) ⊥gM TxMsub,

which proves this result.
1Here (and for later) dot symbol θ̇ stands for time derivative dθt

dt
.
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Proof. (Theorem 8) To prove the first part of Theorem 8, we apply Theorem 9 with (N, gN ) = (Θ, G),
M = PΘ with its metric inherited from (P, gW ) and ϕ = T#. To prove the second part, we apply Theorem
10 with (M, gM ) = (P, gW ), Msub = PΘ.

The following theorem is closely related to Theorem 8 and is useful for future discussion:

Theorem 11 (Wasserstein gradient as solution to a least squares problem). We still use the notations
introduced in section 3. For a fixed θ ∈ Θ, recall Ψ ⊂ Rm as defined in Theorem 5, we have:

G(θ)−1∇θH(θ) = arg min
η∈TθΘ∼=Rm

{∫
|(∇Ψ(Tθ(x)))T η −∇ (V + β log ρθ) ◦ Tθ(x)|2dp(x)

}
. (28)

Proof. Direct computation shows minimizing the function in (28) is equivalent to minimizing:

ηT
(∫
∇Ψ(Tθ(x))∇Ψ(Tθ(x))T dp(x)

)
η − 2 ηT

(∫
∇Ψ(y)∇(V (y) + β log ρ(y))ρθ(y) dy

)
,

for each entry of the second term, we have:∫
∇ψk(y) · ∇(V (y) + β log ρθ(y))ρθ(y) dy =

∫
−∇ · (ρθ(y)∇ψk(y)) · (V (y) + β log ρθ(y)) dy

=

∫
−∇ · (ρθ(y)∂θkTθ(T

−1
θ (y))) · (V (y) + β log ρθ(y)) dy

= ∂θk

(∫
(V (Tθ(x)) + β log ρθ(Tθ(x))) dp(x)

)
= ∂θkH(θ).

Recall the definition (14) of G(θ), the target function to be minimized is ηTG(θ)η − 2ηT∇θH(θ). And the
minimizer is clearly G(θ)−1∇θH(θ).

Despite this direct proof, Theorem 11 also naturally follows from Theorem 8: denote ξ = G(θ)−1∇θH(θ),
consider {θt} starting at θ0 = θ and solves (27). Now by Theorem 8, d

dtρθt

∣∣∣
t=0

= (T#|θ)∗ξ ∈ TρθPΘ is the

orthogonal projection of gradWH(ρθ) onto TρθPΘ w.r.t. metric gW . This is equivalent to that η solves the
following least square problem:

min
η
gW (gradWH(ρθ)− (T#|θ)∗η, gradWH(ρθ)− (T#|θ)∗η). (29)

Recall the definition of gW in section 2.2.1 and by (10), gradWH(ρθ) = −∇ · (ρθ∇(V + β log ρθ)); by (18),
(T#|θ)∗η = −∇ · (ρθ∂θTθ(T−1

θ (·))η), solving −∇ · (ρθ∇ϕ) = gradWH(ρθ)− (T#|θ)∗η gives

ϕ = (V + β log ρθ)−ΨT η,

and thus least squares problem (29) can be written as

min
η

{∫
|∇Ψ(x)T η −∇(V (x) + β log ρθ(x))|2ρθ(x) dx

}
,

which is exactly (28).

3.3 A particle point of view of the parametric Fokker Planck Equation
The motion of parameter θt solving (27) will naturally induce a stochastic dynamics on Rd whose density
evolution is exactly {ρθt}. To see this, notice that {θt} directly leads to a time dependent map {Tθt}. Now
we have a random variable Z ∼ p, i.e. Z is distributed according to the reference distribution p. Then
set Y 0 = Tθ0(Z) ∼ ρθ0 . Now at any time t, the map Tθt will send Y 0 to Y t = Tθt(T

−1
θ0

(Y 0)) ∼ ρθt .
Thus, we constructed a sequence of random variables {Y t} whose density evolution is exactly {ρθt}. We
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can characterize the dynamical system satisfied by {Y t} by taking time derivative: Ẏ t = ∂θTθt(Z)θ̇t =
∂θTθt(T

−1
θt

(Y t))θ̇t. It is actually more insightful to consider the following dynamic:

Ẋt = ∇Ψt(Xt)
T θ̇t, X0 = Tθ0(Z) ∼ ρθ0 . (30)

Here Ψt is obtained from (15) with parameter θt. Based on (15), it is not hard to show that for any time t,
Xt and Y t has the same distribution. Thus Xt ∼ ρθt for all t ≥ 0. Now recall θ̇t = −G(θt)

−1∇θH(θt), we
are able to rewrite (30) as:

Ẋt = ∇Ψt(Xt)
T

(∫
∇Ψt(x)∇Ψt(x)T ρθt(x) dx

)
︸ ︷︷ ︸

G(θt)

−1(∫
∇Ψt(η)(−∇V (η)− β∇ log ρθt(η)) ρθt(η) dη

)
︸ ︷︷ ︸

−∇θH(θt)

.

(31)
If we define the kernel function Kθ : Rd × Rd → Rd×d as

Kθ(x, η) = ∇ΨT (x)

(∫
∇Ψ(x)∇Ψ(x)T ρθ(x) dx

)−1

∇Ψ(η).

This Kθ will induce a linear operator Kθ : L2(Rd;Rd, ρθ)→ L2(Rd;Rd, ρθ) by:

Kθ[~v] = (Kθ ∗ ~v)(·) =

∫
Kθ(·, η) ~v(η) ρθ(η) dη.

It can be verified that Kθ is an orthogonal projection defined on the Hilbert space L2(Rd;Rd, ρθ). The
range of such projection is the subspace span {∇ψ1, ...,∇ψm} ⊂ L2(Rd;Rd, ρθ). Here ψ1, ..., ψm are the m
components of Ψ solved from (15). Now (31) can also be written as:

Ẋt = −Kθt [∇V + β∇ log ρθt ](Xt), where ρθt is the probability density of Xt X0 ∼ ρθ0 . (32)

We can compare (32) with the following dynamic without projection:

˙̃Xt = −(∇V + β∇ log ρt)(X̃t), where ρt is the probability density of X̃t X0 ∼ ρ0. (33)

Recall section 2.1, (33) is the Vlasov-type SDE that involves the density of random particle, if we assume
(33) admits a regular solution, then ρ(x, t) = ρt(x) solves the original Fokker Planck equation (5). Now it is
clear that the approximate solution ρθt of (5) is actually originated from the projection of vector field that
drives the SDE (33).

The expectation of `2 discrepancy between ∇V + β∇ log ρ and its Kθ projection is:

EX∼ρθ |Kθ[∇V +β∇ log ρθ](X)− (∇V +β∇ log ρθ)(X)|2 =

∫
|∇Ψ(x)T ξ− (−∇V −β∇ log ρθ)(x)|2ρθ(x) dx.

(34)
here ξ = −G(θ)−1∇θH(θ). This is an essential error term appeared in later error analysis part.

Remark 2. Figure 1 illustrates the relation between (5), (27), (33) and (32). It worth mentioning that the
probability manifold point of view discussed in Theorem 8 will be useful for numerical analysis of continuous
scheme (27), while particle point of view helps us on establishing numerical analysis for discrete scheme (i.e.
forward-Euler) of (27).

3.4 An example of parametric Fokker-Planck equation with quadratic potential
The solution of Fokker-Planck equation on statistical manifold (27) can serve as an approximation to the
solution of the original equation (5). However, in some special cases, ρθt exactly solves (5). In this section,
we demonstrate such examples.

Let us consider Fokker-Planck equations with quadratic potentials whose initial conditions are Gaussian:

V (x) =
1

2
(x− µ)TΣ−1(x− µ) and ρ0 ∼ N (µ0,Σ0). (35)
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Ẋt = −Kθt
(
∇ δH(ρθt )

δρθt

)
(Xt) on Rd Ẋt = −∇ δH(ρθt )

δρθt
(Xt) on Rd

θ̇ = −G(θ)−1∇θH(θ) on Θ ∂tρ = −gradWH(ρ) on P(Rd)

Projection of
vector field

How dynamics
on Θ triggers

dynamics on Rd

Density evolution
of Xt solves Fokker
Planck equationProjection from

(P, gW ) onto (Θ, G)

[Particle point of view]
Connecting Θ dynamic and density evolution;

Numerical analysis for discrete scheme.

[Probability manifold point of view]
Derivation of parametric Fokker Planck equation

Numerical analysis for continuous scheme

Figure 1: Illustrative diagram

Here N (µ,Σ) denotes Gaussian distribution with mean µ and covariance Σ. We consider parameter space
Θ = (Γ, b) ⊂ Rm (m = d(d+ 1)), where Γ is a d× d invertible matrix with det(Γ) > 0 and b ∈ Rd. We define
the parametric map as Tθ(x) = Γx+ b. We choose the reference measure p = N (0, I). Here is the lemma we
have to use:

Lemma 12. Let H be the relative entropy defined in (11) and H defined in (26). For θ ∈ Θ, If the vector
function ∇

(
δH
δρ

)
◦ Tθ can be written as the linear combination of {∂Tθ∂θ1

, ..., ∂Tθ∂θm
}, i.e. there exists ζ ∈ Rm,

such that ∇
(
δH
δρ

)
◦ Tθ(x) = ∂θTθ(x)ζ. Then:

1) ζ = G(θ)−1∇θH(θ), which is the Wasserstein gradient of F at θ.
2) Recall that the Wasserstein gradient of H is gradWH(ρθ) and we denote the gradient of H on the sub-
manifold PΘ as gradWH(ρθ)|PΘ , then gradWH(ρθ)|PΘ = gradWH(ρθ).

Proof. Suppose ζ ∈ Rm satisfies ∇
(
δH
δρ

)
◦ Tθ(x) = ∂θTθ(x)ζ, then we have∫

|∂θTθ(x)ζ −∇(
δH
δρ

) ◦ Tθ(x)|2 dp(x) = 0.

We need to apply Lemma 15 mentioned in 4.2.2 here. Use the notation in (15) and notice that

(∇Ψ)T ζ −∇
(
δH
δρ

)
= Projρθ [∂θTθ ◦ T

−1
θ ζ −∇

(
δH
δρ

)
],

we know: ∫
|(∇Ψ(Tθ(x)))T ζ −∇

(
δH
δρ

)
◦ Tθ(x)|2 dp(x) ≤ 0.

As a result,

inf
η

∫
|(∇Ψ(Tθ(x)))T η −∇

(
δH
δρ

)
◦ Tθ(x)|2 dp(x) =

∫
|(∇Ψ(Tθ(x)))T ζ −∇

(
δH
δρ

)
◦ Tθ(x)|2 dp(x) = 0.

Now by Theorem 11, we get ζ = G(θ)−1∇θH(θ) and: ‖(T#|θ)∗ζ − gradWH(ρθ)‖gW (ρθ) = 0. According to
Theorem 8, gradWH(ρθ)|PΘ = (T#|θ)∗ζ. Thus we have gradWH(ρθ)|PΘ = gradWH(ρθ).

Return to our example, we can compute

ρθ(x) = Tθ#p(x) =
f(T−1

θ (x))

|det(Γ)|
=
f(Γ−1(x− b))
|det(Γ)|

, f(x) =
exp(− 1

2 |x|
2)

(2π)
d
2

.
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Then we have:

∇
(
δH(ρθ)

δρ

)
◦ Tθ(x) = ∇(V + β log ρθ) ◦ Tθ(x) = Σ−1(Γx+ b− µ)− βΓ−Tx

is affine w.r.t. x.
Notice that ∂ΓijTθ(x) = (. . . , 0, . . . , xj

i−th

, . . . , 0, . . . )T and ∂biTθ = (. . . , 0, . . . , 1
i−th

, . . . , 0, . . . )T . We can

verify that ζ = (Σ−1Γ − βΓ−T ,Σ−1(b − µ)) solves ∇
(
δF(ρθ)
δρ

)
◦ Tθ(x) = ∂θTθ(x)ζ. By 1) of Lemma 12,

ζ = G(θ)−1∇θF (θ). Thus ODE (27) for our example is:

Γ̇ = −Σ−1Γ + βΓ−T Γ0 =
√

Σ0, (36)

ḃ = Σ−1(µ− b) b0 = µ0. (37)

By 2) of Lemma 12, we know gradWH(ρθ)|PΘ
= gradWH(ρθ) for all θ ∈ Θ. This indicates that there is no

local error for our scheme, one can verify that the solution to the parametric Fokker-Planck equation also
solves the original equation.

In addition to the previous results, we have the following corollary:

Corollary 12.1. The solution of Fokker-Planck equation (5) with condition(35) is Gaussian distribution for
all t > 0.

Proof. If we denote {Γt, bt} as the solutions to (36),(37), set θt = (Γt, bt), then ρt = Tθt#p solves the Fokker
Planck Equation (5) with conditions (35). Since the pushforward of Gaussian distribution p by an affine
transform Tθ is still a Gaussian, we conclude that for any t > 0, the solution ρt = Tθt#p is always Gaussian
distribution.

Remark 3. This is already a well known property for Ornstein–Uhlenbeck process [11]. We give an alter-
native proof using our framework.

4 Numerical methods
In this section, we introduce the sampling efficient numerical method for computing the proposed parametric
Fokker-Planck equations.

When dimension d = 1, according to Corollary 5.1, G(θ) has explicit solution. Thus, push-forward
approximation of 1D Fokker-Planck equation can be directly computed by solving the ODE system (27)
with forward-Euler scheme [25]. In this section, we will mainly focus on numerical methods for (27) with
dimension d ≥ 2.
When dimension d ≥ 2, we are unable to compute (27) via a forward-Euler scheme directly. There are
mainly two reasons:

• When d ≥ 2, as shown in (14), G(θ) doesn’t have an explicit formula, directly compute it could be
very expensive;

• When dimension d gets higher, to ensure our efficient, we choose to implement it using deep neural
networks. However, G(θ) is generally a dense matrix. multiplying its inverse to ∇θH(θ) cannot be
computed efficiently using deep neural networks.

Although there are some efficient approximation methods for Fisher natural gradient [31], whether there
are efficient ways to compute Wasserstein natural gradeint G(θ)−1∇θH(θ) remains an open problem. As a
result, in order to solve (27), we need to seek for alternative schemes other than forward-Euler. It is worth
mentioning that the JKO scheme [17] for numerically computing Wasserstein gradient flows [9]:

∂tρt = −gradWF(ρt) ⇐⇒ ρk+1 = argmin
ρ∈P

{
W 2

2 (ρ, ρk)

2h
+ F(ρ)

}
. (38)

Here h is the time step size, F could be a suitable functional defined on P.
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Some related work has already been done in [24]. Based on (38), the authors mainly invented two schemes,
one can be treated as a scheme for solving: θ̇ = −Ĝ−1(θ)∇θF (θ) with a simplified Wasserstein metric tensor

Ĝ(θ) =
∫
M

∂Tθ(x)
∂θ

T ∂Tθ(x)
∂θ dp(x); Another scheme approximates the Wasserstein distance W 2

2 (ρθ, ρθ′) by
solving a variational problem restricted to a finite dimensional vector space with chosen basis functions.
Both schemes are not computing for the exact Wasserstein gradient flow since they either simplify the metric
tensor G(θ) or restrict the computation on low dimensional space in order to acquire a tractable algorithm.
In our research, we try to directly tackle with the computation of the exact Wasserstein gradient flow. We
will design schemes with accuracy guarantee and develope algorithm that is able to run efficiently under
deep learnign framework.

In 4.1, we introduce a typical parametrized pushforward map called Normalizing Flow, which has been
proved to be an efficient tool for distribution approximation. We will use it as our computational tool in this
project; In 4.2, we exhibit the derivation of our numerical scheme and provide local error analysis between
our scheme and the semi-implicit scheme for the parametric Fokker-Planck equation; complete algorithm
and details of implementation are also provided.

4.1 Normalizing Flow as push forward maps
To this end, we choose Tθ as the so-called normalizing flow [42]. Here is a brief sketch of Tθ’s structure: Tθ
is written as the composition of K invertible nonlinear transforms:

Tθ = fK ◦ fK−1 ◦ ... ◦ f2 ◦ f1.

Where each fk (1 ≤ k ≤ K) takes the form

fk(x) = x+ h(wTk x+ bk)uk.

where wk, uk ∈ M , bk ∈ R. And h is a nonlinear function, one can choose it as tanh, for example. In
[42], it has been shown that fk is invertible iff wTk uk ≥ −1. The following shows several examples of how
a normalizing flow Tθ with length equal to 10 pushes forward standard Gaussian distribution to a certain
distribution:

Among these series of images, the first row displays (from left to right) the probability density of distri-
butions f1#p, (f2 ◦ f1)#p, ..., (f10 ◦ f9 ◦ ... ◦ f1)#p, the last image displays our target distribution; the second
row exhibits the push-forward effect of each single-layer transformation fk (1 ≤ k ≤ 10). i.e. the images
(from left to right) display the density of distributions f1#m, f2#m, ..., f10#m, here m represents the uniform
distribution defined on the square.

Using normalizing flow, the parameters are: θ = (w1, u1, b1, ..., wK , uK , bK). The determinant of the
Jacobi matrix of Tθ can be explicitly computed as:

det
(
∂Tθ(x)

∂x

)
=

K∏
k=1

(1 + h′(wTk xk + bk)wTk uk).

Here xk = fk ◦ fk−1 ◦ ... ◦ f1(x). Thus the logarithm of the density ρθ of Tθ#p can be written as

log ρθ(x) = log p ◦ t−1
θ (x) +

K∑
k=1

log(1 +h′(wTk x̃k)wTk uk) Here x̃k = fk ◦ ... ◦ f1(T−1
θ (x)) = f−1

k+1 ◦ ... ◦ f
−1
K (x).

(39)
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Thus we can explicitly write the relative entropy functional H(θ) defined in (26) as:

H(θ) = EX∼p[V (Tθ(X)) + Lθ(X)]. (40)

Here Lθ is defined as:

Lθ(·) = log p(·) +

K∑
k=1

log(1 + h′(wTk Fk(·))wTk uk) Fk(·) = fk ◦ fk−1 ◦ ... ◦ f1(·).

Once H(θ) can be explicitly computed, the gradient ∇θH(θ) can also be explicitly computed. Here we
summarize the main advantages of normalizing flows:

• As shown in [42], normalizing flow has sufficient expression power to approximate complicated distri-
butions on Rd.

• Due to the special structure of normalizing flow, relative entropy H(θ) will have a very concise form
(40). Then the gradient of H(θ) can be conveniently computed.

Remark 4. We should emphasize here that the normalizing flow is not the only choice for Tθ, any other
choices satisfying the two advantages mentioned above may serve as a candidate for Tθ. Our proposed
Algorithm 1 works generally for other class of Tθ as well.

4.2 Numerical scheme
4.2.1 Derivation

We consider the semi-implicit scheme of (27):

θk+1 − θk
h

= −G−1(θk)∇θH(θk+1).

There is a natural proximal-type algorithm that computes for θk+1:

θk+1 = argmin
θ
{〈θ − θk, G(θk)(θ − θk)〉+ 2hH(θ)} . (41)

The main difficulty of (41) is the computation of the first term. To derive an efficient method to compute
〈θ − θk, G(θk)(θ − θk)〉, let us recall the definition (14) of G(θk), if we set ψ(x) = (θ − θk)TΨ(x), then∫
|∇ψ(x)|2ρθk(x) dx = 〈θ − θk, G(θk)(θ − θk)〉. We know ψ satisfies

−∇ · (ρθk(x)∇ψ(x)) = −∇ · (ρθk(x)∂θTθk(T−1
θk

(x))(θ − θk)). (42)

We replace ∂θTθk(T−1
θk

(x))(θ − θk) by finite difference approximation (Tθ − Tθk) ◦ T−1
θk

(x) and denote ψ̂ as
the solution of (42) after this replacement. Furthermore, let

E(φ) =

∫
(2∇φ(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))− |∇φ(x)|2)ρθk(x) dx. (43)

Then we can verify that ψ̂ solves the variational problem: ψ̂ = argmax
φ

E(φ) with maximum value

max
φ
E(φ) =

∫
|∇ψ̂(x)|2ρθk(x) dx. (44)

If ψ̂ is a valid approximation of ψ, then maxφ E(φ) will be an approximation of 〈θ − θk, G(θk)(θ − θk)〉.
Now replace 〈θ − θk, G(θk)(θ − θk)〉 in (41) by maxφ E(φ) we derived our numerical scheme for solving

(27):

θk+1 = argmin
θ

max
φ

{∫
2∇φ(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))ρθk(x) dx−

∫
|∇φ(x)|2ρθk(x) dx+ 2hH(θ)

}
. (45)
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Remark 5. Our proposed scheme can actually be treated as an approximation to the JKO scheme (38)

θk+1 = arg min
θ

{
W 2

2 (ρθ, ρθk)

2h
+H(θ)

}
= arg min

θ

{
W 2

2 (ρθ, ρθk) + 2hH(θ)
}

(46)

To see why let us denote ~vh(x) =
Tθ◦T−1

θk
(x)−x

h , under mild conditions, one can verify that

W 2
2 (ρθ, ρθk) = W 2

2 ((Id + h~vh)#ρθk , ρθk) =

∫
|∇ψ̂|2ρθk dx+ o(h2) = max

φ
E(φ) + o(h2). (47)

If we replace W 2
2 (ρθ, ρθk) in (46) by its approximation maxφ E(φ), we will obtain our proposed (38).

Remark 6. It is worth mentioning that the variational problem maxφ E(φ) is equivalent to:

min
φ

{∫
M

|∇φ(x)− ((Tθ − Tθk) ◦ T−1
θk

(x))|2ρθk(x) dx

}
. (48)

Then the gradient field ∇ψ̂ from the optimal ψ̂ can be treated as the L2(ρθk) orthogonal projection of the
vector field (Tθ − Tθk) ◦ T−1

θk
(·) onto the subspace of gradient fields.

4.2.2 Local error of the proposed scheme

We are now in a position to analyze the local error of scheme (45) compared with the semi-implicit scheme
(41), or equivalently:

θk+1 solves θk+1 = θk − hG−1(θk)∇θH(θk+1).

Let us denote maxφ E(φ) as Ŵ 2
2 (θ, θk) (Here Ŵ2 is treated as an approximation of 2-Wasserstein distance

(remark 5)). It is straightforward to verify Ŵ2(θ, θ′) ≥ 0 and Ŵ2(θ, θ) = 0. Consider the following assump-
tion:

Ŵ 2
2 (θ, θ′) ≥ l(|θ − θ′|) for any θ, θ′ ∈ Θ. (49)

Here l : R≥0 → R≥0 satisfies l(0) = 0. l(r) is continuous, strictly increasing when r ≤ r0 and is bounded
below by λ0 > 0 when r > r0. Notice that this assumption generally guarantees positive definiteness of Ŵ2.
Clearly, (49) only depends on the structure of Tθ, we should expect that (49) holds for most kinds of neural
networks used as pushforward maps.

We have the following result:

Theorem 13. Suppose assumption (49) holds true for the class of push-frward maps {Tθ}. Then the local
error of scheme (45) is of order h2, i.e., assume that θk+1 is the optimal solution to (45), then

|θk+1 − θk + hG(θk)−1∇θH(θk+1)| ∼ O(h2). (50)

or equivalently: lim suph→0+
|θk+1−θk+hG(θk)−1∇θH(θk+1)|

h2 < +∞.

To prove this theorem, we need the following lemmas:

Lemma 14. [Danskin’s Theorem [6]] Suppose F : Rm × B → R, here B is a Banach space. Suppose
for any ξ ∈ B, F (·, ξ) is smooth; also assume that for any x ∈ Rm, there is unique ξx ∈ B such that
F (x, ξx) = supξ∈B F (x, ξ). Now denote: Γ(x) = supξ∈B F (x, ξ). Then Γ is differentialbe on Rm and its
derivative can be computed as:

∇Γ(x) = ∂xF (x, ξx).

We now introduce a shorthand notation: for ~v ∈ L2(Rd;Rd, ρ), Projρ[~v] = ∇ψ as L2(ρ)-orthogonal pro-
jection of ~v onto the subspace of gradient fields, i.e. ψ = argmin

ψ

{∫
|~v(x)−∇ψ(x)|2ρ(x) dx

}
, or equivalently,

ψ solves −∇ · (ρ(x)∇ψ(x)) = −∇ · (ρ(x)~v(x)).
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Lemma 15. Suppose ~u,~v are two vector fields on M = Rd, denote Projρ[~u] = ∇ϕ and Projρ[~v] = ∇ψ.
Then: ∫

~u(x) · ∇ψ(x)ρ(x) dx =

∫
∇ϕ(x) · ∇ψ(x)ρ(x) dx; (51)∫

|∇ψ(x)|2ρ(x) dx ≤
∫
|~v(x)|2ρ(x) dx. (52)

Proof. For (51):∫
~u(x)·∇ψ(x)ρ(x) dx =

∫
−∇·(ρ(x)~u(x))ψ(x) dx =

∫
−∇·(ρ(x)∇ϕ(x))ψ(x) dx =

∫
∇ϕ(x)·∇ψ(x)ρ(x) dx.

For (52): ∫
|~v(x)|2ρ(x) dx =

∫
(|∇ψ(x)|2 + 2(~v(x)−∇ψ(x)) · ∇ψ(x) + |~v(x)−∇ψ(x)|2)ρ(x) dx

=

∫
|∇ψ(x)|2 + |~v(x)−∇ψ(x)|2)ρ(x) dx ≥

∫
|∇ψ(x)|2ρ(x) dx.

The second equality is due to (51).

The following lemma gives a prior estimation of |θk+1 − θk|:

Lemma 16. Under assumption(49), recall θk+1 is the optimal solution of (45), which depends on time step
size h then

|θk+1 − θk| ∼ o(1) i.e. lim
h→0+

|θk+1 − θk| = 0. (53)

Proof. Denote the function to be minimized in (45) as J(θ) = Ŵ (θ, θk) + 2hH(θ). First, we choose θ = θk
in (45), then J(θk) = 2hH(θk). Thus J(θk+1) ≤ J(θk) = 2hH(θk). Since H(θk) ≥ 0, this leads to
Ŵ 2

2 (θk+1, θk) ≤ 2hH(θk). When h is small enough, |θk+1 − θk| ≤ k(2hH(θk)), here k is the inverse function
of l defined on [0, l(r0)]. We know k(0) = 0 and k is also continuous and increasing function. This leads to
limh→0+ |θk+1 − θk| ≤ limh→0+ k(2hH(θk)) = 0.

Before proving Theorem 13, we introduce some additonal notations: we define ε ball in parameter space as
Bε(θk) = {θ | |θ − θk| ≤ ε}; Let T (i)

θ be the i-th component (1 ≤ i ≤ d) of map Tθ. We denote:

L(θk, ε) =

d∑
i=1

Ex∼p sup
θ∈Bε(θk)

{
|∂θT (i)

θ (x)|2
}
, H(θk, ε) =

d∑
i=1

Ex∼p sup
θ∈Bε(θk)

{
‖∂2
θθT

(i)
θ (x)‖22

}
. (54)

Proof of Theorem 13. We denote

F (θ, φ) =

∫
(2∇φ(x) · (Tθ − Tθk) ◦ T−1

θk
(x)− |∇φ(x)|2) ρθk(x) dx+ 2hH(θ).

As discussed before, ψ̂θ = argmax
φ

{F (θ, φ)} solves

−∇ · (ρθk(x)∇ψ̂θ(x)) = −∇ · (ρθk(x)(Tθ − Tθk) ◦ T−1
θk

(x)).

We write
∇ψ̂θ = Projρθk [(Tθ − Tθk) ◦ T−1

θk
].

Now denote Γ(θ) = supφ F (θ, φ), apply Lemma 14, we can compute:

∇θΓ(θ) = 2

(∫
∂θTθ(T

−1
θk

(x)) ∇ψ̂θ(x) ρθk(x) dx+ h ∇θH(θ)

)
.
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Due to the differentiability of Γ(θ), at the optimizer θk+1, the gradient must vanish, i.e.∫
∂θTθk+1

(T−1
θk

(x)) ∇ψ̂θk+1
(x) ρθk(x) dx+ h∇θH(θk+1) = 0. (55)

We can Taylor expand at θk+1: Tθk+1
−Tθk = ∂θTθk(θk+1−θk)+R(θk+1, θk), hereR(θ, θ′)(·) ∈ L2(Rd;Rm, ρθk),

the i-th entry of R(θ, θ′) is Ri(θ, θ′)(x) = 1
2 (θ − θ′)T∂2

θθT
(i)

θ̃i(x)
(x)(θ − θ′), 1 ≤ i ≤ m, where each θ̃i(x) =

λi(x)θ + (1− λi(x))θ′ for some λi(x) ∈ [0, 1]. Then we can write:

∇ψ̂θk+1
= Projρθk [(Tθk+1

−Tθk) ◦T−1
θk

] = Projρθk [∂θTθk ◦T
−1
θk

(θk+1− θk)] +Projρθk [R(θk+1, θk) ◦T−1
θk

]. (56)

On the other hand,
∂θTθk+1

= ∂θTθk + r(θk+1, θk). (57)

Here r(θ, θ′) ∈ L2(Rd;L(Rm;Rd), ρθk), the i-j entry of r(θ, θ′)(x) is (θk+1 − θk)T∂θ(∂θjT
(i)

θ̃ij(x)
(x)), 1 ≤ i ≤

d, 1 ≤ j ≤ m, where each θ̃ij(x) = µij(x)θk+1 + (1 − µij(x))θk, for some µij(x) ∈ (0, 1). Now apply (57),
(56) to (55), we obtain∫

∂θTθk(T−1
θk

(x))Projρθk [∂θTθk ◦ T
−1
θk

(x)(θk+1 − θk)] ρθk(x) dx

+

∫
∂θTθk(T−1

θk
(x))Projρθk [R(θk+1, θk) ◦ T−1

θk
](x) ρθk(x) dx

+

∫
r(θk+1, θk)(T−1

θk
(x))Projρθk [(Tθk+1

− Tθk) ◦ T−1
θk

](x) ρθk(x) dx = −h∇θH(θk+1). (58)

Recall definition of Ψ in Theorem 5, use (51) of lemma 15, we know the first term on left hand side of (58)
equals ∫

∇Ψ(x)∇Ψ(x)T (θk+1 − θk) ρθk(x) dx = G(θk)(θk+1 − θk).

Apply Cauchy inequality and (52) in lemma 15, every i-th entry of the second term of (58) can be bounded
by: (∫

|∂θT (i)
θk

(x)|2 dp(x) ·
∫ d∑

i=1

|(θk+1 − θk)∂2
θθT

(i)

θ̃i(x)
(x)(θk+1 − θk)|2 dp(x)

) 1
2

≤

(
Ep|∂θT (i)

θk
(x)|2 · Ep

[
d∑
i=1

‖∂2
θθT

(i)

θ̃i(x)
(x)‖2

]) 1
2

|θk+1 − θk|2
denote as

= A(i)|θk+1 − θk|2.

To bound the third term in (58), we first consider Tθk+1
(x)− Tθk(x), the i-th entry can be written as

T
(i)
θk+1

(x)− T (i)
θk

(x) = (θk+1 − θk)T∂θTθ̄i(x)(x),

here θ̄i(x) = ζi(x)θk+1 + (1 − ζi(x))θk for some ζi(x) ∈ (0, 1). Now the i-th entry of the third term of (58)
can be bounded by:(∫ d∑

i=1

|(θk+1 − θk)T∂θθT
(i)

θ̃ij(x)
(x)|2 dp(x) ·

∫
|T (i)
θk+1

(x)− T (i)
θk

(x)|2 dp(x)

) 1
2

≤

(
Ep

[
d∑
i=1

‖∂2
θθTθ̃ij(x)(x)‖22

]
· Ep|∂θT (i)

θ̄i(x)
(x)|2

) 1
2

|θk+1 − θk|2
denote as

= B(i)|θk+1 − θk|2.

We set A ∈ Rm with entries A(i), 1 ≤ i ≤ m and similarly B ∈ Rm with entries B(i), 1 ≤ i ≤ m. (58) now
leads to the following inequality,

|θk+1 − θk + hG(θk)−1∇θH(θk+1)| ≤ ‖G(θk)−1‖2(|A|+ |B|) |θk+1 − θk|2.
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As we have shown in Lemma 16 that |θk+1 − θk| ∼ o(1), for any ε > 0, when step size h is small enough,
we always have θk+1 ∈ Bε(θk). Recall the notations in (54), we have |A|, |B| ≤

√
L(θk, ε)H(θk, ε). Thus we

have
|θk+1 − θk + hG(θk)−1∇θH(θk+1)| ≤ 2

√
L(θk, ε)H(θk, ε)‖G(θk)−1‖2|θk+1 − θk|2.

Denote θk+1 − θk = η, G(θk)−1∇θH(θk+1) = ξ and C = 2
√
L(θk, ε)H(θk, ε)‖G(θk)−1‖2, the previous

inequality is
|η − h ξ| ≤ C|η|2. (59)

Since |η − hξ| ≥ |η| − h|ξ|, we have
C|η|2 ≥ |η| − h|ξ|. (60)

Solving (60) gives

|η| ≤ 2|ξ|h
1 +

√
1− 4C|ξ|h

or |η| >
1 +

√
1− 4Ch|ξ|
2C

.

The second inequality leads to |θk+1 − θk| > 1
2C for any h > 0, which avoids |θk+1 − θk| ∼ o(1). Thus, when

h is sufficiently small, we have

|η| ≤ 2|ξ|h
1 +

√
1− 4C|ξ|h

. (61)

Combining (61) and (59), we have:

|θk+1 − θk + hG(θk)−1∇θH(θk+1)| ≤ C|ξ|2

(1 +
√

1− 4C|ξ|h)
h2 ≤ C|ξ|2h2. (62)

This proves the result.

Remark 7. One should be aware of the relation between the positive definite condition (49) and the positive
definiteness of the metric tensor G(θk): Positive definite G(θ) guarantees the inequality: Ŵ 2

2 (θ, θ′) ≥ C|θ −
θ′|2 for θ′ ∈ Br0(θ) (r0 depends on θ is small enough). But we are not able to bound Ŵ 2

2 (θ, θ′) from below
when |θ − θ′| > r0. On the other hand, (49) is a locally weaker condition than positive definiteness of G(θ).
Thus, positive definiteness of G(θ) and assumption (49) are related but not equivalent.

4.2.3 Details of implementation

From the previous sections, we know that one can solve ODE (27) at every time step tk by solving the saddle
point problem (45). We now provide some detailed discussion on how we deal with (27):

• As in Remark 6, we may solve (48) instead of maxφ E(φ) in every inner loop of the saddle point problem
(45). Although they are mathematically equivalent, (48) has a more concise form. And according to
our experience, using (48) makes our code run more efficiently than directly solving maxφ E(φ). Thus
we can formulate the following scheme that is equivalent to (45):

θk+1 =argmin
θ

{∫
2∇ψ̂(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))ρθk(x) dx−

∫
|∇ψ̂(x)|2ρθk(x) dx+ 2hH(θ)

}
(63)

denote as
= argmin

θ
J(θ),

where ψ̂ solves min
φ

{∫
|∇φ(x)− ((Tθ − Tθk) ◦ T−1

θk
(x))|2ρθk(x) dx

}
.

• In numerical computation, we are not able to optimize over the entire function space of ψ. Instead, we
treat ψλ : M → R as a ReLU neural network parametrized by λ [12] . We know that in this case, ψλ
is a piece-wise affine function and its gradient ∇ψλ(·) forms a piece-wise constant vector field. Check
Figure 2, 3 for an example.

• The entire procedure of solving (63) can be formulated as nested loops:
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Figure 2: gradient field of ψ(x) = sin(|x|) Figure 3: approximation by the gradient of
a ReLU function ψλ

– (inner loop) Every inner loop aims at solving (48) on ReLU functions ψλ, i.e. solving:

min
λ

{
EX∼p|∇ψλ(Tθk(X))− (Tθ(X)− Tθk(X))|2

}
. (64)

One can use Stochastic Gradient Descent (SGD) methods like RMSProp [46] or Adam [20] with
learning rate αin to deal with this inner loop optimization. In our implementation, we will stop
after Min iterations. Let us denote the optimal λ in each inner loop as λ̂;

– (outer loop) We apply similar SGD method to J(θ): using Lemma 14, we are able to compute
∇θJ(θ) as:

∇θJ(θ) = ∂θ

(∫
2∇ψ̂(x) · (Tθ ◦ T−1

θk
(x))ρθk(x) dx+ 2hH(θ)

)
.

If we treat optimal ψ̂ as ψλ̂, what we need to do in each outer loop is to consider:

J̃(θ) = EX∼p 2[∇ψλ̂(Tθk(X)) · Tθ(X)] + 2h[V (Tθ(X)) + Lθ(X)] (65)

and update θ for one step by our chosen SGD method with learning rate αout applied to optimize
J̃(θ). In our actual computation, we will stop the outer loop after Mout iterations.

• We now present the entire algorithm for computing (27) based on the scheme (45). This algorithm
contains the following parameters: T,N ;Mout,Kout, αout;Min,Kin, αin. Recall we set reference distri-
bution p as standard Gaussian on M = Rd.

Remark 8. In our implementation, Tθ(X) − Tθk(X) is usually of order O(αout), which is very small
quantity. We can rescale it so that we solve each inner loop problem in a more stable way with larger stepsize
(learning rate). That is to say, we choose some small ε ∼ O(αout) and consider

min
λ

{
EX∼p

∣∣∣∣∇ψλ(Tθk(X))−
(
Tθ(X)− Tθk(X)

ε

)∣∣∣∣2
}
, (66)

instead of (64) in each inner loop and set:

J̃(θ) = EX∼p 2[∇ψλ̂(Tθk(X)) · Tθ(X)] +
2h

ε
[V (Tθ(X)) + Lθ(X)] (67)

in each outer loop. In actual experiments, we usually set ε = αout.

Remark 9. It worth mentioning that the sample size Kin,Kout in each SGD step (especially Kin) should be
chosen reasonably large so that the inner optimization problem can be solved with enough accuracy. In our
practice, we usually choose Kin = Kout = max{1000, 300d}. Here d is the dimension of sample space. This
is very different from the small batch technique applied to training neural network in deep learning researches
[32].
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Algorithm 1 Computing (27) by scheme (45) on the time interval [0, T ]

1: Initialize θ
2: for i = 1, ...N do
3: Save current parameter value to θ0: θ0 = θ
4: for j = 1, ...Mouter do
5: for p = 1, ...,Min do
6: Sample {X1, ...,XKin} from p
7: Apply one SGD (RMSProp, Adam etc.) step with learning rate αin to loss function (of variable

λ)
1

Kin

(
Kin∑
k=1

|∇ψλ(Tθ0(Xk))− (Tθ(Xk)− Tθ0(Yk))|2
)

8: end for
9: Sample {X1, ...,XKout} from p

10: Apply one SGD (RMSProp, Adam etc.) step with learning rate αout to loss function

1

Kout

Kout∑
k=1

2[∇ψλ(Tθ0(Xk)) · Tθ(Xk)] + 2h[V (Tθ(Xk)) + Lθ(Xk)]

11: end for
12: Set θi = θ
13: end for
14: The sequence of probability distributions {Tθ0#p, Tθ1#p, ..., TθN#p} will be the numerical solution of
{ρt0 , ρt1 , ..., ρtN }, where ti = i TN (i = 0, 1, ..., N − 1, N). Here ρt solves original Fokker-Planck equation
(5).

5 Numerical analysis
In this section, we establish numerical analysis for parametric Fokker-Planck equation (27). In 5.1, we
introduce an important quantity δ0, which will play an essential role in our numerical analysis; In 5.2, we
establish the asymptotic convergence analysis for equation (27); In 5.3, we work out the error analysis for
both continuous version and discrete version (forward-Euler) of equation (27).

5.1 An important quantity
Before our analysis, we first introduce an important quantity that will play an essential role in our numerical
analysis. Let us recall the optimal value of the least square problem (28) in Theorem 11 of section 3.2, or
equivalently (29) of section 3.2, (34) of section 3.3. If we denote the upper bound of all possible values to
be δ0, i.e.

δ0 = sup
θ∈Θ

min
ξ∈TθΘ

{∫
|(∇Ψ(Tθ(x))T ξ −∇ (V + β log ρθ) ◦ Tθ(x)|2 dp(x)

}
, (68)

this quantity provides crucial error bound between our parametric equation and original equation in the
forthcoming analysis. Ideally, we hope δ0 to be sufficiently small. And this can be guaranteed if the neural
network we select has universal approximation power. A closer examination may relax such a requirement.
In fact, we only need require the neural network to be able to approximate a family of vector fields, more
specifically, we want ∂θTθ to be able to approximate {∇(V + β log ρθ)}θ∈Θ. In our numerical experiments,
we found that using normalizing flow as Tθ works fine in various test examples. We believe that such an
approximation property is shared by a large number of commonly used deep neural networks. This assertion
can be further illustrated from another perspective. Let us consider Tθ with linear structure: i.e., set
Tθ(x) =

∑m
i=1 θi

~Φi(x), here {~Φi}mi=1 are basis functions like gradient of radial basis functions(RBF). Then
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by (52) of Lemma 15, it is not hard to show:

δ0 ≤ sup
θ∈Θ

min
ξ∈Rm

{∫
|
m∑
k=1

ξk~Φi(x)−∇(V + β log ρθ) ◦ Tθ(x)|2 dp(x)

}
.

This inequality indicates that δ0 is no worse than the approximation error of using linear combination of
classical RBF functions [8], which can be viewed as a one-layer network with large width. It is widely
believed that nonlinear deep neural networks have better flexibility and approximation power than linear
approximations, which may explain why normalizing flow can achieve accurate computations (small δ0) in
high dimensional space in our examples.

It also worth mentioning that δ0 is used for a priori estimate in this section, because we don’t know the
exact trajectory of {θt} when solving ODE (27), and we take supremum over Θ to obtain δ0. Once solved
for {θt}, denote C as set covering its trajectory, i.e.

C = {θ | ∃ t ≥ 0, s.t. θ = θt} (69)

We define another quantity δ1:

δ1 = sup
θ∈C

min
ξ∈TθΘ

{∫
|(∇Ψ(Tθ(x))T ξ −∇ (V + β log ρθ) ◦ Tθ(x)|2 dp(x)

}
. (70)

Clearly, we have δ1 ≤ δ0. We can obtain corresponding posterior estimates for the asymptotic convergence
and error analysis by replacing δ0 with δ1.

5.2 Asymptotic Convergence Analysis
In this section, we consider the solution {θt}t≥0 of our parametric Fokker-Planck equation (27). We define:

V =

{
V

∣∣∣∣∣V ∈ C2(Rd), V can be decomposed as: V = U + φ, with U, φ ∈ C2(Rd);
∇2U � KI2 with K > 0 and φ ∈ L∞(Rd)

}
As we know, for Fokker-Planck equation (5), when the potential V ∈ V, {ρt} will converge to the Gibbs
distribution ρ∗ = 1

Zβ
e−V (x)/β as t→∞ under the measure of KL divergence [15]. For (27), we wish to study

its asymptotic convergence property. We come up with the following apriori result:

Theorem 17 (a priori estimation on asymptotic convergence). Consider Fokker-Planck equation (5) with
the potential V ∈ V. Suppose {θt} solves the parametric Fokker-Planck equation (27), denote δ0 as in (68).
Let ρ∗(x) = 1

Zβ
e−V (x)/β be the Gibbs distribution of original equation (5). Then we have the inequality:

DKL(ρθt‖ρ∗) ≤
δ0

λ̃ββ2
(1− e−βλ̃βt) +DKL(ρθ0‖ρ∗)e−βλ̃βt. (71)

Here λ̃β > 0 is the constant asscoiated to the Logarithm-Sobolev inequality discussed in Lemma 18 with
potential function 1

βV .

To prove Theorem 17, we need the following two lemmas:

Lemma 18. [Holley-Stroock Perturbation] Suppose the potential V ∈ V is decomposed as V = U + φ where
∇2U � KI and φ ∈ L∞. Let λ̃ = Ke−osc(φ), here osc(φ) = supφ − inf φ. Then the following logarithm-
Sobolev inequality holds for any probability density ρ:

DKL(ρ‖ρ∗) ≤
1

λ̃
I(ρ|ρ∗). (72)

Here ρ∗ = 1
Z e
−V and I(ρ|ρ∗) is the Fisher information functional defined as:

I(ρ|ρ∗) =

∫ ∣∣∣∇ log

(
ρ(x)

ρ∗(x)

)∣∣∣2ρ(x) dx.

Lemma 18 is first proved in [15].
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Lemma 19. Recall δ0 defined in (68), for any θ ∈ Θ, we have:

β2 I(ρθ|ρ∗) ≤ δ0 +∇θH(θ) ·G(θ)−1∇θH(θ). (73)

Proof of Lemma 19. Suppose {θt} solves (27) with θ0 = θ. We denote ξ = G(θ)−1∇θH(θ) for shorthand.
By Theorem 8, d

dtρθt

∣∣∣
t=0

= −(T#|θ)∗ξ is orthogonal projection of −gradWH(ρθ) onto TρθP w.r.t metric gW .
Thus the orthogonal relation gives:

gW (−gradWH(ρθ),−gradWH(ρθ)) = gW (gradWH(ρθ)− (T#|θ)∗ξ, gradWH(ρθ)− (T#|θ)∗ξ)
+ gW ((T#|θ)∗ξ, (T#|θ)∗ξ). (74)

One can verify that left hand side of (74) is:

gW (−gradWH(ρθ),−gradWH(ρθ)) =

∫
|∇(V (x) + β log ρθ(x))|2ρ(x) dx = β2 I(ρθ|ρ∗). (75)

Recall the equivalence between (28) and (29) and the definition (68) of δ0, we know the first term on the
right hand side of (74) is upper bounded by:

gW (gradWH(ρθ)− (T#|θ)∗ξ, gradWH(ρθ)− (T#|θ)∗ξ) ≤ δ0. (76)

The second term on the right hand side of (74) is:

gW ((T#|θ)∗ξ, (T#|θ)∗ξ) = (T#|θ)∗gW (ξ, ξ) = G(θ)(G(θ)−1∇θH(θ), G(θ)−1∇θH(θ))

= ∇θH(θ) ·G(θ)−1∇θH(θ) (77)

Combining (74), (75),(76) and (77) yield to (73).

Proof of Theorem 17. First, we recall the relationship between KL divergence and relative entropy:

DKL(ρ‖ρ∗) =
1

β
H(ρ) + log(Zβ).

We are actually treating KL(ρθ‖ρ∗) as the Lyapunov function for our ODE (27): take time derivative of
KL(ρθt‖ρ∗) :

d

dt
DKL(ρθt‖ρ∗) =

1

β

d

dt
H(ρθt) =

1

β
θ̇t · ∇H(θt) = − 1

β
∇H(θt) ·G−1(θt)∇H(θt).

Use the inequality in Lemma 19, we are able to show:
d

dt
DKL(ρθt‖ρ∗) ≤

δ0
β
− β I(ρθt |ρ∗).

Now by Lemma 18, we have:
d

dt
DKL(ρθt‖ρ∗) ≤

δ0
β
− β λ̃β DKL(ρθt‖ρ∗).

Then by Grownwall’s inequality, we are able to show:

DKL(ρθt‖ρ∗) ≤
δ0

λ̃ββ2
(1− e−βλ̃βt) +DKL(ρθ0‖ρ∗)e−βλ̃βt.

Remark 10. Follow the previous proof, we can show the similar convergence estimation for the solution
{ρt}t≥0 of (5). Recall ρ∗(x) = 1

Zβ
e−

1
β V (x), we have the inequality:

DKL(ρt‖ρ∗) ≤ DKL(ρ0‖ρ∗) e−βλ̃βt ∀ t > 0. (78)

It is natural to establish the posterior version of our asymptotic convergence analysis Theorem 17:

Theorem 20 (Posterior estimation on asymptotic convergence). We keep all the notations in Theorem 17,
recall δ1 defined in (70) then:

DKL(ρθt‖ρ∗) ≤
δ1

λ̃ββ2
(1− e−βλ̃βt) +DKL(ρθ0‖ρ∗)e−βλ̃βt.
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5.3 Error Analysis
In this section we establish our error analysis for both continuous and discrete version of parametric Fokker-
Planck equation (27) as an approximation of original equation (5).

5.3.1 Error analysis for continuous version

Suppose we exactly solved for {θt}t≥0 from (27). The following theorem provides an upper bound for the
approximation error:

Theorem 21. Assume that {θt}t≥0 solves (27); and {ρt}t≥0 solves (5). Assume that the Hessian of the
potential function V in (5) is bounded below by a constant λ, i.e. ∇2V � λ I. Then we have:

W2(ρθt , ρt) ≤
√
δ0
λ

(1− e−λt) + e−λtW2(ρθ0 , ρ0). (79)

To prove this inequality, we need the following lemmas:

Lemma 22 (Constant speed of geodesic). Recall the geodesic equation [51],[30] connecting ρ0, ρ1 ∈ P(M)
is described by the following equation system:{

∂ρt
∂t +∇ · (ρ∇ψt) = 0
∂ψt
∂t + 1

2 |∇ψt|
2 = 0

ρt|t=0 = ρ0, ρt|t=1 = ρ1. (80)

Denote ρ̇t = ∂tρt = −∇ · (ρt∇ψt) ∈ TρtP(M). Then gW (ρ̇t, ρ̇t) is constant for 0 ≤ t ≤ 1 and gW (ρ̇t, ρ̇t) =
W 2

2 (ρ0, ρ1) for 0 ≤ t ≤ 1.

Proof. Recall definition (8) of Wasserstein metric gW : gW (ρ̇t, ρ̇t) =
∫
|∇ψt|2ρt dx. Since {ρt} is the geodesic

on (P(M), gW ), the speed gW (σt, σt) should remain constant. To directly verify this, we compute the time
derivative:

d

dt
gW (ρ̇t, ρ̇t) =

d

dt

(∫
|∇ψt|2ρt dx

)
=

∫
∂

∂t
|∇ψt|2ρt dx+

∫
|∇ψt|2∂tρt dx,

use the first equation in (80),∫
|∇ψt|2∂tρt dx =

∫
|∇ψt|2 · (−∇ · (ρt∇ψt)) dx =

∫
∇(|∇ψt|2) · ∇ψtρt dx,

take space gradient of the second equation in (80)

∂t(∇ψt) = −∇(
1

2
|∇ψt|2).

Then ∫
∂

∂t
|∇ψt|2ρt dx =

∫
2∂t(∇ψt) · ∇ψtρt dx =

∫
−∇(|∇ψt|2) · ∇ψtρt dx.

Adding them together, we have verified d
dtg

W (ρ̇t, ρ̇t) = 0, since
∫ 1

0
gW (ρ̇t, ρ̇t) dt = W 2

2 (ρ0, ρ1), we know
gW (ρ̇t, ρ̇t) = W 2

2 (ρ0, ρ1) for any 0 ≤ t ≤ 1.

Lemma 23 (Displacement convexity of relative entropy). Suppose {ρt} solves (80). Recall H as the relative
entropy functional with potential V (11). Suppose ∇2V � λI, then:

d

dt
gW (gradWH(ρt), ρ̇t) ≥ λW 2

2 (ρ0, ρ1).

Or equivalently, we have: d2

dt2H(ρt) ≥ λW 2
2 (ρ0, ρ1).
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Proof. We first write:

gW (gradWH(ρt), ρ̇t) =

∫
∇(V + β log ρt) · ∇ψt ρt dx.

Then:

d

dt
gW (gradWH(ρt), ρ̇t) =

d

dt

(∫
∇(V + β log ρt) · ∇ψt ρt dx

)
=

∫
(∇ψTt ∇2V∇ψt + Tr(∇2ψt∇2ψt)) ρt dx.

The second equality can be carried out by direct calculations. Due to its length, we omit the details here.
One can check [50] or [51] for complete derivation. Making use of ∇2V � λI, we get:

d

dt
gW (gradWH(ρt), ρ̇t) ≥

∫
λ|∇ψt|2ρt dx = λ gW (ρ̇t, ρ̇t) = λW 2

2 (ρ0, ρ1).

The last equality is due to Lemma 22. By definition of Wasserstein gradient (10), d
dtH(ρt) = gW (gradWH(ρt), ρ̇t),

thus we also proved d2

dt2H(ρt) ≥ λW 2
2 (ρ0, ρ1).

P

ρ0

ρt ( or ρ̄1)

ρθ0
ρθt (or ρ̄0)

−gradWH(ρθt)

ρ̇t = −gradWH(ρt)

ρ̇θt = −gradWH(ρθt)|P(Θ)

σb

σa

PΘ

{ρs}s≥0

{ρθs}s≥0

{ρ̄τ}0≤τ≤1

TρθtPΘ

Proof of Theorem 21. For a given time t, we construct a geodesic {ρ̄τ}0≤τ≤1 on Wasserstein manifold P(M)
that starts at ρθt and ends at ρt. Such geodesic solves:{

∂ρ̄τ
∂τ +∇ · (ρ̄τ∇ψτ ) = 0,
∂ψτ
∂τ + 1

2 |∇ψτ |
2 = 0.

with boundary conditions:ρ̄0 = ρθt , ρ̄1 = ρt.

We differentiate W 2
2 (ρθt , ρt) with respect to time t, according to Theorem 23.9 of [51], we are able to deduce

that:
d

dt
W 2

2 (ρθt , ρt) = 2gW (ρ̇θt ,− ˙̄ρ0) + 2gW (ρ̇t, ˙̄ρ1), (81)

here ˙̄ρ0 = ∂τ ρ̄τ |τ=0 = −∇ · (ρ̄0∇ψ0), ˙̄ρ1 = ∂τ ρ̄τ |τ=1 = −∇ · (ρ̄1∇ψ1). Notice that

ρ̇θt = (T#|θt)∗θ̇t ρ̇t = −gradWH(ρt) = ∇ · (ρt∇(V + β log ρt)).

Use the definition (8) of Wasserstein metric, we can compute (recall that ρθt = ρ̄0, ρt = ρ̄1):

gW (ρ̇θt , ˙̄ρ0) =

∫
∇(V + β log ρ̄0) · ψ0 ρ̄0 dx gW (ρ̇t, ˙̄ρ1) =

∫
∇(V + β log ρ̄1) · ψ1 ρ̄1 dx.
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We can now write (81) as:

1

2

d

dt
W 2

2 (ρθt , ρt) =gW ((T#|θt)∗θ̇t − (−gradWH(ρθt)),− ˙̄ρ0) + gW (−gradWH(ρθt),− ˙̄ρ0) + gW (−gradWH(ρt), ˙̄ρ1)

set: ξ=−θ̇t
= gW (gradWH(ρθt)− (T#|θt)∗ξ,− ˙̄ρ0)− (gW (gradWH(ρ̄1), ˙̄ρ1)− gW (gradWH(ρ̄0), ˙̄ρ0)).

(82)

For the first term in (82), we use Cauchy inequality. By Lemma 22, we know g(σa, σa) = W 2
2 (ρθt , ρt). Now

under (68), we will have:

gW (gradWH(ρθt)− (T#|θt)∗ξ,− ˙̄ρ0) ≤
√
gW (gradWH(ρθt)− (T#|θt)∗ξ, gradWH(ρθt)− (T#|θt)∗ξ)

√
gW ( ˙̄ρ0, ˙̄ρ0)

≤
√
δ0W (ρθt , ρt). (83)

For the second term in (82) , we write it as:

gW (gradWH(ρ̄1), ˙̄ρ1)− gW (gradWH(ρ̄0), ˙̄ρ0) =

∫ 1

0

d

dτ
gW (gradWH(ρ̄τ ), ˙̄ρτ ) dτ. (84)

By Lemma 23, we have:

gW (gradWH(ρ̄1), ˙̄ρ1)− gW (gradWH(ρ̄0), ˙̄ρ0) ≥ λ W 2
2 (ρθt , ρt). (85)

Combining inequalities (83), (85) and (82):

1

2

d

dt
W 2

2 (ρθt , ρt) ≤ −λW 2
2 (ρθt , ρt) +

√
δ0 W2(ρθt , ρt).

This is:
d

dt
W2(ρθt , ρt) ≤ −λW2(ρθt , ρt) +

√
δ0.

Then Grownwall’s inequality gives

W2(ρθt , ρt) ≤
√
δ0
λ

(1− e−λt) + e−λtW2(ρθ0 , ρ0).

When potential V is strictly convex, i.e. λ > 0. (79) in Theorem 21 provides a nice estimation: the error
term W2(ρθt , ρt) at any time t is always upper bounded by max{

√
δ0
λ ,W2(ρθ0 , ρ0)}.

But in many cases, potential V may not be strictly convex, i.e. λ could be negative. In such cases, the
right hand side in (79) may increase to infinity when time t → ∞. However, (71) and (78) reveals that
both ρθt and ρt will finally stay in a small neighbourhood of the Gibbs ρ∗ when t is large. Taking this into
account, the error term W2(ρθt , ρt) will never go crazy. We thus hope that the error can be controlled by a
uniformly bounded value depending on t. This is summarized in the following theorem:

Theorem 24. Suppose {ρt}t≥0 solves (5) and {ρθt}t≥0 solves (27). We assume the potential V ∈ V and its
Hessian can be bounded from below by λ, i.e. ∇2V � λI. Keep all the notations in Theorem 17 and Theorem
21. Then we may improve the error estimation in Theorem 21 :

W2(ρθt , ρt) ≤ min

{√
δ0
λ

+

(
E0 −

√
δ0
λ

)
e−λt,

√
2δ0

λ̃2
ββ

2
+

(√
2K1 −

2δ0

λ̃2
ββ

2
+

√
2K2

λ̃β

)
e−

λ̃β
2 βt

}
. (86)

Here we denote E0 = W2(ρθ0 , ρ0), K1 = DKL(ρθ0‖ρ∗), K2 = DKL(ρ0‖ρ∗).

Lemma 25 (Talagrand inequality [51],[35]). Suppose ρ∗ = 1
Z e
−V . If ρ∗ satisfies log-Sobolev inequality (72)

with constant λ̃ > 0. Then ρ∗ also satisfies Talagrand inequality:√
2
DKL(ρ‖ρ∗)

λ̃
≥W2(ρ, ρ∗). for any ρ ∈ P. (87)

28



Proof of Theorem 24. The first term is already provided in Theorem 21, the second term is just a quick
result of Theorem 17 and Talagrand inequality: for t fixed, (71) together with Talagrand inequality (87)
gives:

W2(ρθt , ρ∗) ≤

√
2
DKL(ρθt‖ρ∗)

λ̃β
≤
√

2δ0

λ̃2
ββ

2
(1− e−λ̃ββt) + 2K1e−λ̃ββt ≤

√
2δ0

λ̃2
ββ

2
+

√
2K1 −

2δ0

λ̃2
ββ

2
e−

λ̃β
2 βt.

Similarly, (78) and (87) gives

W2(ρt, ρ∗) ≤

√
2
DKL(ρt‖ρ∗)

λ̃β
≤
√

2K2

λ̃β
e−

λ̃β
2 βt.

Apply triangle inequality of Wasserstein distance W2(ρθt , ρt) ≤W2(ρθt , ρ∗)+W2(ρt, ρ∗) we will get (86).

We can take a further analysis on the upper bound of Theorem 24 to provide the following apriori uniform
error bound:

Theorem 26 (Main Theorem on apriori error analysis of parametric Fokker-Planck equation). We follow
previous notations and assumptions. The approximation error W2(ρθt , ρt) at any time t > 0 can be uniformly
bounded by constant number depending on E0 = W2(ρθ0 , ρ0) and δ0 defined in (68). To be more precise,

1. When λ ≥ 0, the error W2(ρθt , ρt) can be at least uniformly bounded by O(E0 +
√
δ0) term;

2. When λ < 0, the error W2(ρθt , ρt) can be at least uniformly bounded by O((E0 +
√
δ0)

λ̃ββ

2|λ|+λ̃ββ ) term.

Proof of Theorem 26 . Let us denote the right hand side of (86) as:

E(t) = min

{
− 1

|λ|
√
δ0 + ε0 e

|λ|t, A
√
δ0 +Be−µβt

}
. (88)

for shorthand, where

ε0 = E0 +

√
δ0
|λ|

, A =

√
2

λ̃ββ
, B =

√
2K1 −

2δ0

λ̃2
ββ

2
+

√
2K2

λ̃β
, µβ =

λ̃ββ

2
.

are all positive numbers.
(A) When λ > 0, E(t) ≤ − 1

|λ|
√
δ0 + ε0 e

|λ|t . O(ε) = O(E0 +
√
δ0);

(B) The first term in (88) is increasing as a function of time t while the second term is decreasing. Let us
denote t0 = argmaxt≥0E(t), then t0 should solve:

− 1

|λ|
√
δ0 + ε0 e

|λ|t0 = A
√
δ0 +Be−µβt0 . (89)

t

E(t)

− 1
|λ|
√
δ0 + ε0e

|λ|t

A
√
δ0 +Be−µβt

t0

Since A > 0, (89) leads to ε0e|λ|t0 > Be−µβt0 , thus

t0 >
log
(
B
ε0

)
|λ|+ µβ

. (90)
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Using (90), we are able to show:

max
t≥0

E(t) = E(t0) = A
√
δ0 +B e−µβt0 < A

√
δ0 +B

|λ|
|λ|+µβ ε

µβ
|λ|+µβ
0 . (91)

As a result, W2(ρθt , ρt) can be uniformly bounded by the right hand side of (91). Since A,B are O(1)

coefficients and ε0 >
√
δ0, this uniform bound is dominated by O(ε

µβ
|λ|+µβ
0 ) = O((E0 +

√
δ0)

λ̃ββ

2|λ|+λ̃ββ ).

Remark 11. We can make further discussions on the error order α =
λ̃ββ

2|λ|+λ̃ββ
when V ∈ V is not convex.

Suppose V is decomposed as V = U + φ. with ∇2U � KI (K > 0) and ∇2φ � KφI. We also assume
∇2V � λI with λ < 0. Then it is not hard to verify that Kφ < 0 and |Kφ| −K ≥ |λ|. On the other hand,
one can compute λ̃β = K

β e
− osc(φ)

β . Combining these together, we can provide a lower bound γ(β, U, φ) for
order α:

α ≥ γ(β, U, φ) =
1

1 + 2
(
|Kφ|
K − 1

)
e

osc(φ)
β

One can verify that increasing the diffusion coefficient β or convexity K, or decreasing the oscillation osc(φ)
and convexity Kφ will both improve the lower bound γ(β, U, φ) for order α.

At the end of this section, we remark that it is natural to establish the corresponding posterior estimation
on error term W2(ρθt , ρt):

Theorem 27 (Posterior error analysis of parametric Fokker-Planck equation). We follow previous notations
and assumptions. ThenW2(ρθt , ρt) at any time t > 0 can be uniformly bounded by constant number depending
on E0 = W2(ρθ0 , ρ0) and δ1 defined in (70):

1. When λ ≥ 0, W2(ρθt , ρt) can be at least uniformly bounded by O(E0 +
√
δ1);

2. When λ < 0, W2(ρθt , ρt) can be at least uniformly bounded by O((E0 +
√
δ1)

λ̃ββ

2|λ|+λ̃ββ ).

5.3.2 Error analysis for discrete version

To solve (27) numerically, we need to apply discrete scheme. In this section, we will mainly focus on the
forward Euler scheme: Suppose we apply forward-Euler scheme to solve (27) and compute for θk at each
time node. We denote ρθk = Tθk#p, our main purpose is to estimate the W2-error between our numerical
solution ρθk and the real solution ρtk . Our main conclusion is exhibited in the following theorem:

Theorem 28 (Apriori error analysis of forward-Euler scheme). Suppose the potential function V ∈ C2(Rd)
and its Hessian can be bounded from above and below, i.e. λI � ∇2V � ΛI. Suppose we apply forward-Euler
scheme to solve (27) on the time interval [0, T ] with time stepsize h = T

N . Denote the corresponding solution
at every time node tk = kh as θk (k = 0, 1, ..., N). Assume {ρt}t≥0 solves the Fokker-Planck Equation (5).
Then we have:

W2(ρθk , ρtk) ≤ (
√
δ0h+ CNh

2)
1− e−λtk
1− e−λh

+ e−λtkW2(ρθ0 , ρ0) for any tk = kh, 0 ≤ k ≤ N. (92)

The explicit definition of the constant CN is in (107).

In order to estimate W2(ρθk , ρtk), we use the triangle inequality of W2 distance [51] to separate it into
three parts:

W2(ρθk , ρtk) ≤W2(ρθk , ρ̃
?
tk

) +W2(ρ̃?tk , ρ̃tk) +W2(ρ̃tk , ρtk). (93)

Here {ρ̃t}tk−1≤t≤tk satisfies:

∂ρ̃t
∂t

= ∇ · (ρ̃t∇V ) + β∆ρ̃t , ρ̃tk−1
= ρθk−1

. (94)
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P(Rd)

ρ0

ρθ0

ρθk

ρtk

ρθk−1

ρtk−1

ρ̃?tk

ρ̃tk

Figure 4: Trajectory of {ρθk}k=0,...,N is our numerical solution; trajectory of {ρt}t≥0 is the real solution of
Fokker-Planck Equation; {ρ̃t}t≥tk−1

solves (94); {ρ̃?t }t≥tk−1
solves (95).

original position of a particle x

Ttk−1→tk(x)
where our para-
metric Fokker
Planck equation
sends x to

T̃tk−1→tk(x)

G̃tk−1→tk(x)

Gtk−1→tk(x)

where the actual
Vlasov dynamic
send x to

Expectation of this
distance w.r.t. ρθk−1

gives upper bound of
W2(ρθk , ρ̃

?
tk

)

Figure 5: Illustration of proof strategy

Thus {ρ̃t}tk−1≤t≤tk solves the real Fokker-Planck equation with initial condition ρθk−1
.

And we assume {ρ̃?t }t≥tk−1
satisfies:

∂ρ̃?t
∂t

= ∇ · (ρ̃?t∇(V + β log ρθk−1
)) , ρ̃?tk−1

= ρθk−1
. (95)

Suppose we fix the vector field −∇V − β∇ log ρθk−1
at time tk−1 and let the particles obeying distribution

ρθk−1
flow along this fixed vector field, the distribution of these particles at time t will be ρ̃?t .

Figure 4 shows the relations of different items used in our proof.
Now we provide estimations for the three terms appeared in (93). We separate our results into three lemmas.

Lemma 29. The first term W2(ρθk , ρ̃
?
tk

) in (93) can be upper bounded by
√
δ0h+O(h2).

An explicit formula for the coefficient of h2 is included in the following proof.

Proof. We will establish the desired estimation by introducing several different pushforward maps and then
applying triangle inequality.
(1) We know ρθk−1

= Tθk−1#
p and ρθk = Tθk#p, let us we denote Ttk−1→tk = Tθk ◦ T

−1
θk−1

. Then ρθk =

31



Ttk−1→tk#
ρθk−1

.
(2) We let ξk−1 = θ̇k−1 = −G(θk−1)−1∇θH(θk−1) and by convention, we denote Ψ as solution of (15). We
consider the map T̃tk−1→tk(·) = Id + h∇Ψ(·)T ξk−1.
(3) We denote ζk−1(·) = V (·) + β log ρθk−1

(·). The particle version (recall (6)) of (95) is:

żt = −∇ζk−1(zt) 0 ≤ t ≤ h with initial condition z0 = x. (96)

we denote the solution map of (96) by Gtk−1→tk(x) = ztk . Then ρ̃?tk = Gtk−1→tk#
ρθk−1

.
(4) The map Gtk−1→tk is obtained by solving an ODE, in order to compare the difference with Ttk−1→tk , we
consider the ODE with fixed initial vector field:

˙̃zt = −∇ζk−1(x) 0 ≤ t ≤ h z̃0 = x. (97)

This ODE will induce the solution map G̃tk−1→tk(·) = Id− h∇ζk−1(·) .
With the maps defined in (1),(2),(3),(4), use the triangle inequality of W2 distance, we can estimate:

W2(ρθk , ρ̃
?
tk

) = W2(Ttk−1→tk#ρθk−1
, Gtk−1→tk#ρθk−1

)

≤W2(Ttk−1→tk#ρθk−1
, T̃tk−1→tk#ρθk−1

)︸ ︷︷ ︸
(A)

+W2(T̃tk−1→tk#ρθk−1
, G̃tk−1→tk#ρθk−1

)︸ ︷︷ ︸
(B)

+W2(G̃tk−1→tk#ρθk−1
, Gtk−1→tk#ρθk−1

)︸ ︷︷ ︸
(C)

.

We now give upper bounds for distances (A),(B) and (C):

(A) Set θ(τ) = θk−1 + τ
h (θk − θk−1) = θk−1 + τξk−1. For any x, consider xτ = Tθ(τ)(T

−1
θk−1

(x)) with
0 ≤ τ ≤ h. such {xτ}0≤τ≤h satisfies

ẋτ = ∂θTθ(τ)(T
−1
θ(τ)(xτ ))ξk−1 0 ≤ τ ≤ h. (98)

If we assume x0 ∼ ρθk−1
in (98), it is clear that xh ∼ Ttk−1→tk#

ρθk−1
. Furthermore, we denote the

distribution of xτ as ρτ . Now assume that {ψτ} solves

−∇ · (ρτ (x)∂θTθ(τ)(T
−1
θ(τ)(x))) = −∇ · (ρτ (x)∇ψτ (x)) 0 ≤ τ ≤ h, (99)

and consider
ẏτ = ∇ψτ (yτ ) 0 ≤ τ ≤ h with y0 ∼ ρθk−1

.

Denote %τ as the distribution of yτ , by continuity equation and (99), one knows ρτ = %τ for 0 ≤ τ ≤ h,
thus yh ∼ Ttk−1→tk#

ρθk−1
. On the other hand, when τ = 0, (99) shows ∇ψ0(x) = ∇Ψ(x)T ξk−1.

Combine these together, we can estimate term (A) as:

W 2
2 (Ttk−1→tk#ρθk−1

, T̃tk−1→tk#ρθk−1
) ≤ Ey0∼ρθk−1

|yh − (y0 + h∇ψ0(y0))|2

≤ Ey0∼ρθk−1

∣∣∣∫ h

0

∇ψτ (yτ )−∇ψ0(y0) dτ
∣∣∣2

If we define the constant (only depends on θk−1 and h):

M(θk−1, h) =

(
E

y0∼ρθk−1

[
sup

0≤τ≤h

∣∣∣∣∇ψτ (yτ )−∇ψ0(y0)

τ

∣∣∣∣2
])1/2

(100)

Then we are able to show:

W2(Ttk−1→tk#ρθk−1
, Gtk−1→tk#ρθk−1

) ≤ 1

2
M(θk−1, h)h2.
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(B) We have

W 2
2 (T̃tk−1→tk#ρθk−1

, G̃tk−1→tk#ρθk−1
) ≤

∫
|T̃tk−1→tk(x)− G̃tk−1→tk(x)|2ρθk−1

(x) dx

= h2

(∫
|∇Ψ(x)T ξk−1 − (−∇ζk−1(x))|2ρθk−1

(x) dx

)
= h2

(∫
|∇Ψ(Tθk−1

(x))T ξk−1 − (−∇(V + β log ρθk−1
) ◦ Tθk−1

(x))|2 dp(x)

)
≤ δ0 h2.

The last inequality is due to Theorem 11 and definition (68).

(C) Recall {zt}, {z̃t} solve (96) and (97) with initial condition z0 = z̃0 = x, then we can estimate term (C)
as:

W 2
2 (G̃tk−1→tk#ρθk−1

, Gtk−1→tk#ρθk−1
) ≤ Ex∼ρθk−1

|zh−z̃h|2 = Ex∼ρθk−1

∣∣∣∣∣
∫ h

0

∇ζk−1(x)−∇ζk−1(zτ ) dτ

∣∣∣∣∣
If we denote the constant (only depends θk−1 and h)

N(θk−1, h) =

(
E

x∼ρθk−1

[
sup

0≤τ≤h

∣∣∣∣∇ζk−1(x)−∇ζk−1(zτ )

τ

∣∣∣∣2
])1/2

(101)

Similar to (A), we have:

W2(G̃tk−1→tk#ρθk−1
, Gtk−1→tk#ρθk−1

) ≤ 1

2
N(θk−1, h)h2

Now, combining previous estimates of term (A),(B) and (C), we obtain:

W2(ρθk , ρ̃
?
tk

) ≤
√
δ0 h+

M(θk−1, h) +N(θk−1, h)

2
h2.

Lemma 30. The second term in (93) can be upper bounded by O(h2).

An explicit formula for the coefficient of h2 is included in the following proof.

Proof. Recall ρ̃t is defined by (94) and ρ̃∗t is defined by (95). We can rewrite (95) as:

∂ρ̃?t
∂t

= ∇ · (ρ̃?t (∇V + β∇ log ρθk−1
−∇ log ρ̃?t )) + β∆ρ̃?t tk−1 ≤ t ≤ tk

Now we fix Brownian Motion {Bτ}0≤τ≤h, we consider the following Stochastic Differential Equations (SDEs)
sharing the same {Bτ} and initial condition:

dxτ = −∇V (xτ )dτ +
√

2β dBτ (102)

dx?τ = −∇V (x?τ )dτ + (β∇ log ρ̃?tk−1+τ (x?τ )− β∇ log ρθk−1
(x?τ ))dτ +

√
2β dBτ (103)

with initial condition: x0 = x?0 ∼ ρθk−1
and 0 ≤ τ ≤ h.

We denote ~r(x, τ) = β∇ log ρ̃?tk−1+τ (x)− β∇ log ρθk−1
(x). Then subtracting (102) from (103) will lead to:

x?τ − xτ =

∫ τ

0

∇V (xs)−∇V (x?s) + ~r(x?s, s) ds
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Then we have:

E|x?τ − xτ |2 = E
∣∣∣∣∫ τ

0

∇V (xs)−∇V (x?s) + ~r(x?s, s) ds

∣∣∣∣2 ≤ 2 E
∣∣∣∣∫ τ

0

∇V (xs)−∇V (x?s) ds

∣∣∣∣2 + 2 E
∣∣∣∣∫ τ

0

~r(x?s, s) ds

∣∣∣∣2
≤ 2 E

[
τ

∫ τ

0

|∇V (xs)−∇V (x?s)|2 ds
]

+ 2 E
[
τ

∫ τ

0

|~r(x?s, s)|2 ds
]

= 2τ

(∫ τ

0

E|∇V (xs)−∇V (x?s)|2 + E|~r(x?s, s)|2 ds
)

Since Hessian of V is bounded above by Λ, |∇V (x) − ∇V (y)| ≤ Λ|x − y| for any x, y ∈ Rd. Thus we have
the inequality:

E|x?τ − xτ |2 ≤ 2τΛ2

∫ τ

0

E|x?s − xs|2 ds+ 2τ

∫ τ

0

E|~r(x?s, s)|2 ds (104)

We denote Uτ =
∫ τ

0
E|x?s − xs|2 ds and Rτ =

∫ τ
0
E|~r(x?s, s)|2 ds, then (104) becomes:

U ′τ ≤ 2Λ2τUτ + 2τRτ

By integrating this inequality, Uτ ≤
∫ τ

0
2eΛ(τ2−s2)sRs ds so U ′τ ≤ 4Λ2τ

∫ τ
0
eΛ(τ2−s2)sRsds+ 2τRτ , thus:

W2(ρ̃?tk , ρ̃tk) ≤
√

E|x∗h − xh|2 = U ′h ≤

√
4Λ2h

∫ h

0

eΛ(h2−s2)sRs ds+ 2hRh

Let us define the constant

Lk−1(θk−1, h) = sup
0≤τ≤h

{
E
∣∣∣∣∇ log ρtk−1+τ (x?τ )−∇ log ρtk−1

(x?τ )

τ

∣∣∣∣}
Then for any 0 ≤ τ ≤ h, we can estimate: Rτ ≤

∫ h
0
|βLk−1(θk−1, h)s|2 ds ≤ 1

3β
2Lk−1(θk−1, h)2h3. Thus

(5.3.2) leads to:

W2(ρ̃?tk , ρ̃tk) ≤

√
4Λ2h

∫ h

0

eΛ(h2−s2)sRs ds+ 2hRh ≤
√

4

3
Λ2eΛh2β2L2h6 +

2

3
β2L2h4 (105)

Here we denote L as Lk−1(θk−1, h) for shorthand. When h is small, the h4 term in (105) is dominating the
upper bound term. Thus we may assert that when h is small enough,

W2(ρ̃?tk , ρ̃tk) ≤ βLk−1(θk−1, h)h2

Remark 12. Analyzing the discrepancy of stochastic particles under different movements will provide a
natural upper bound for W2 distance. Both Lemma 29 and Lemma 30 are derived by making use of the
particle version of their corresponding density evolutions. Such proving strategy was motivated from section
3.3.

Lemma 31. For third term in (93), we have:

W2(ρtk , ρ̃tk) ≤ e−λhW2(ρtk−1
, ρθk−1

)

This lemma is a direct corollary of the following theorem:

Theorem 32. Suppose the potential V ∈ C2(Rd) and its convexity is bounded below: ∇2V � λI (i.e. the
matrix ∇2V (x)− λI is semi-positive definite for any x ∈ Rd; here λ is a finite real number and need not to
be positive). Consider ρ1, ρ2 ∈ P and two Fokker-Planck equations with different initial distributions:

∂ρ
(1)
t

∂t
= ∇ · (ρ(1)

t ∇V ) + β∆ρ
(1)
t ρ

(1)
0 = ρ1;

∂ρ
(2)
t

∂t
= ∇ · (ρ(2)

t ∇V ) + β∆ρ
(2)
t ρ

(2)
0 = ρ2.

Then we have:
W2(ρ

(1)
t , ρ

(2)
t ) ≤ e−λtW2(ρ1, ρ2) (106)
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This is a known stability result on Wasserstein gradient flows. One can find its proof in [3] or [51].
Once we have proven Lemma 29,30,31, we are able to prove theorem 28:

Proof. (Proof of Theorem 28) Let’s denote:

Errk = W2(ρθk , ρtk) k = 0, 1, ..., N.

Combining Lemma 29, Lemma 30 and Lemma 31, the triangle inequality (93) becomes:

Errk ≤
√
δ0 h+

(
M(θk−1, h) +N(θk−1, h)

2
+ βLk−1(θk−1, h)

)
h2 + e−λh Errk−1.

Let us denote:
CN = max

0≤k≤N−1

{
M(θk−1, h) +N(θk−1, h)

2
+ βLk−1(θk−1, h)

}
. (107)

Then we have:
Errk ≤

√
δ0h+ CNh

2 + e−λhErrk−1 (108)

Multiply eλkh to both sides of (108), we get:

eλkhErrk ≤ (
√
δ0 h+ CN h2)eλkh + eλ(k−1)hErrk−1. (109)

For any n, 1 ≤ n ≤ N , summing (109) from 1 to n:

eλnhErrn ≤ (
√
δ0h+ CNh

2)

(
n∑
k=1

eλkh

)
+ Err0 = (

√
δ0h+ CNh

2)
eλ(n+1)h − eλh

eλh − 1
+ Err0.

Recall each tn = nh for 1 ≤ n ≤ N , it leads to:

Errn ≤ (
√
δ0h+ CNh

2)
1− e−λtn
1− e−λh

+ e−λtnErr0 n = 1, ..., N.

Theorem 28 indicates that the errorW2(ρθk , ρtk) is upper bounded by O(
√
δ0)+O(CNh)+O(W2(ρθ0 , ρ0)).

Here O(
√
δ0) is the essential error term that originates from the approximation mechanism of our parametric

Fokker-Planck equation; the O(CNh) error term is induced by the finite difference scheme; the O(W2(ρθ0 , ρ0))
term is the initial error.

It worth mentioning that the error bound for forward-Euler scheme in (92) matches the error bound for
the continuous scheme (79) as we remove the effects introduced by finite difference. To be more precise,
under the assumption limh→0 CNh = 0, we have:

lim
h→0

(
√
δ0h+ CNh

2)
1− e−λt

1− e−λh
+ e−λtW2(ρθ0 , ρ0)

= lim
h→0

(
√
δ0 + CNh)(1− e−λt) h

1− e−λh
+ e−λtW2(ρθ0 , ρ0) =

√
δ0
λ

(1− e−λt) + e−λtW2(ρθ0 , ρ0)

this indicates that error bounds (92) and (79) are compatible as h→ 0.
Similar to the discussion in previous sections, we can naturally extend Theorem 28 to posterior version:

Theorem 33 (Posterior error analysis of forward-Euler scheme). Suppose we keep all the notations in
Theorem 28. Recall δ1 defined in (70). Then we have:

W2(ρθk , ρtk) ≤ (
√
δ1h+ CNh

2)
1− e−λtk
1− e−λh

+ e−λtkW2(ρθ0 , ρ0) for any tk = kh, 0 ≤ k ≤ N.

The explicit definition of the constant CN is in (107).

35



It worth mentioning that in section 5.3.2, we mainly analyze the error term for the forward-Euler (explicit)
scheme. However, in our actual implementation, we use the scheme (45), which can be treated as the
semi-implicit scheme (with O(h2) local error). The following theorem compares the difference between the
numerical solution of forward-Euler scheme and semi-implicit scheme.

Theorem 34 (Relation between forward-Euler scheme and semi-implicit scheme). Recall the parametric
Fokker-Planck equation (27) as an ODE: θ̇ = G(θ)−1∇θH(θ). We consider two numerical schemes:

θn+1 = θn − hG(θn)−1∇θH(θn) θ0 = θ, n = 1, 2, ..., N Forward-Euler scheme; (110)

θ̂n+1 = θ̂n − hG(θ̂n)−1∇θH(θ̂n+1) θ̂0 = θ, n = 1, 2, ..., N Semi-Implicit-Euler scheme (111)

We denote F (θ′) = G(θ′)−1∇θF (θ′′), we set:

L1 = max
1≤n≤N

{
‖F (θn)− F (θ̂n)‖/‖θn − θ̂n‖

}
L2 = max

1≤k≤N−1
{‖∇θH(θ̂n)−∇θH(θ̂n+1)‖/‖θ̂n − θ̂n+1‖}

M1 = max
1≤n≤N

{‖G(θ̂n)−1‖}, M2 = max
1≤n≤N

{‖∇θH(θ̂n)‖}

Here ‖‖ is a certain vector norm (or its corresponding matrix norm). Then we have:

‖θn − θ̂n‖ ≤ ((1 + L1h)n − 1)
M2

1M2L2

L1
h n = 1, 2, ..., N

If we assume that we are solving the ODE on [0, T ] with time stepsize h, i.e. Nh = T , all the differences
‖θn − θ̂n‖ can be upper bounded by (eL1T − 1)

M2
1M2L2

L1
h.

When the upper bounds L1, L2,M1,M2 ∼ O(1) as h→ 0 (or equivalently N →∞), then the differences
between the semi-implicit scheme and forward-Euler scheme can be bounded by O(h). Hence, we are still
able to establish O(h) error bound for our proposed scheme (45).

proof of Theorem 34. We subtract (111) from (110):

(θn+1 − θ̂n+1) = (θn − θ̂n)− h(G(θn)−1∇θH(θn)−G(θ̂n)−1∇θH(θ̂n+1))

denote en = θn − θ̂n, we may rewrite this equation as:

en+1 = en − h(F (θn)− F (θ̂n) +G(θ̂n)−1(∇θH(θ̂n)−∇θH(θ̂n+1)))

Recall the definitions of L1, L2,M1, we have

‖en+1‖ ≤ ‖en‖+ hL1‖en‖+ hM1L2‖θ̂n+1 − θ̂n‖

By semi-simplicit scheme, we have

θ̂n+1 − θ̂n = −hG(θ̂n)−1∇θH(θ̂n+1)

Then |θ̂n+1 − θ̂n‖ ≤ hM1M2. Now we have recurrent inequality:

‖en+1‖ ≤ ‖en‖+ hL1‖en‖+M2
1M2L2h

2

This inequality gives(
‖en+1‖+

M2
1M2L2

L1
h

)
≤ (1 + hL1)

(
‖en‖+

M2
1M2L2

L1
h

)
n = 0, 1, ..., N − 1

This will lead to:

‖en‖ ≤ ((1 + hL1)n − 1)
M2

1M2L2

L1
h

When we are solving the ODE on [0, T ] with h = T/N , we have (1 + hL1)n ≤ (1 + hL1)N =
(
1 + L1T

N

)N ≤
eL1T . This means all terms {‖en‖}1≤n≤N can be upper bounded by (eL1T − 1)

M2
1M2L2

L1
h.
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We end this section with the following two remarks:

Remark 13. In order to make our argument clear and concise, we omitted the errors introduced by the
approximation of ReLU function ψλ. Careful analysis on how well ∇ψλ can approximate general gradient
fields may serve as one of our future research directions.

Remark 14. The convergence property of the Stochastic Gradient Descent methods (mainly Adam method
[20] ) used in our Algorithm 1 are not discussed in details. One can check the detailed convergence analysis
in the paper [20].

6 Numerical examples
In this section, we consider solving Fokker-Planck equation (5)

∂ρ

∂t
= ∇ · (ρ∇V ) + β∆ρ.

on Rd with β = 1 and initial condition ρ0(x) = N (0, Id)
3 by using Algorithm 1. We demonstrate several

numerical examples that solves (5) with different potential functions V .
In the following experiments, we choose the length of normalizing flow Tθ as 60. And we set ψλ : Rd → R
as ReLU network with length 6 and hidden dimension 20. We use Adam (Adaptive Moment Estimation)
Stochastic Gradient Descent method [20] with default β1 = 0.9, β2 = 0.999; ε = 10−8.
For the parameters of Algorithm 1, we choose αout = 0.005, αin = 0.0005. We follow Remark 9 to choose
Kin,Kout = max{1000, 300d}. Based on our experience, we set Mout = O( h

αout
); the suitable value of Min

can be chosen after several quick tests of different choices of Min–We need to make sure that every inner
optimization problem (64) can be solved thoroughly.

6.1 Quadratic Potential
We first apply our method to Fokker-Planck equation (5) with quadratic potential V . We can compute for
the explicit solution of (5) when V is quadratic, so these examples can serve as verifications of our proposed
method.

6.1.1 2D cases

Suppose d = 2. We set V (x) = 1
2 (x−µ)TΣ−1(x−µ), we let µ =

[
3
3

]
and Σ =

[
1
4

1
4

]
. We can explicitly

solve (5) in this case:

ρt = N (µt,Σt) µt = (1− e−4t)µ, Σt =

(
1

4
+

3

4
e−8t

)
Σ t ≥ 0.

In our algorithm, we consider solving the equation on [0, 0.7] with time stepsize 0.005. We set Mout = 20
and Min = 100. Here are the results. At a given time tk, we draw 6000 samples from reference distribution
p and pushforward them by using the map Tθk , here θk is the value of θ at k-th time step solved from ODE
(27) by using our proposed algorithm. We demonstrate the the pushforwarded points below (from t = 0.05
to t = 0.70):
One can check that the distribution of our numerical computed samples is gradually converging to the Gibbs
distribution N (µ,Σ).

3We can set initial value θ0 so that Tθ0 = Id and thus ρ0 = Tθ0#
p is standard Gaussian distribution.
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t=0.05 t=0.15 t=0.25 t=0.35

t=0.45 t=0.55 t=0.65 t=0.70

At each time node tk, we sample {X1, ...,XM} ∼ Tθk#p and use µ̂k = 1
M

∑M
j=1Xj , Σ̂k = 1

M−1

∑M
j=1(Xj−

µ̂k)(Xj − µ̂k)T to compute for the empirical mean and covariance of ρ̂k at tk. We then can plot the curve
{µ̂(k)}, {(Σ̂(k)

11 , Σ̂
(k)
22 )}, {(µ̂(k)

1 , Σ̂
(k)
11 )} and then compare them with the explicit solution {µt}, {(Σt11,Σt22)},

{(µt1,Σt11)}. Recall that µt1 = µt2 = 3(1− e−4t), Σt11 = Σt22 = 1
4 (1− 3e−8t).

Figure 6: {µ̂(k)} Figure 7: {(Σ̂(k)
11 , Σ̂

(k)
22 )} Figure 8: {(µ̂(k), Σ̂

(k)
11 )}

We can directly evaluate the error between µ̂(k) and µtk ; Σ̂(k) and Σtk . We plot the error curve of
‖µ̂(k) − µtk‖2 (Figure 9) and ‖Σ̂(k) −Σtk‖F (Figure 10). Here ‖ · ‖F is the Frobenius norm of the a matrix.

Figure 11 captures the exponential decay ofH along its Wasserstein gradient flow, this verifies the entropy
dissipation property of Fokker-Planck equation with convex potential function V .
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Figure 9: Plot of mean value error (in l2 norm) Figure 10: Plot of covariance error (in Frobenius
norm)

Figure 11: Plot of {H(θ)}

We can also take a closer look at the inner loops loss (Figure 12). The following figures are the first 10
(out of 20) loss plots when applying SGD method to solve (66) when k = 30 (t = 30 · h = 0.15).

1st inner iteration 2nd inner iteration 3rd inner iteration 4th inner iteration 5th inner iteration

The remaining loss plots from the 11th outer iteration to 20th iteration are similar to the second row
plots. The situations are similar for other time step k. We can thus tell that Min = 100 works well in this
problem, the SGD method we used can thoroughly solve the variational problem (66) for each outer loop.
Whether Mout is suitable for our algorithm remains a hard problem since the function J̃(θ) we used in
computation is not the functional J(θ) that we really minimizes. In our computations, we set Mout = 2 h

αout
based on our experiences. Our choice of Mout provide valid results to most of the numerical experiments
done by us.

39



6th inner iteration 7th inner iteration 8th inner iteration 9th inner iteration 10th inner iteration

Figure 12: Plots of inner loop losses

At last, let us verify the graph of ψλ̂ trained at the end of each outer iteration. Generally speaking, the
gradient field ∇ψλ̂ reflects the movements of the particles under the Vlasov-typed dynamic (6) at every time
step. Here are the graph of ψλ̂ at k = 10, k = 140 (Figure 13, Figure 14).

Figure 13: Graph of ψλ̂ after Mout = 20 outer itera-
tions at k = 10th time step

Figure 14: Graph of ψλ̂ after Mout = 20 outer itera-
tions at k = 140th time step

As we can see from these two graphs of ψλ̂, the gradient field is in the same direction, but judging from
the variation of two ψλ̂s, when k = 10, |∇ψλ̂| is much greater than itself when k = 140. This is because
when t = 140, the distribution is already close to the Gibbs distribution, the particles no longer need to
move for a long distance to reach their final destination.

We apply our algorithm to the Fokker-Planck equation with non-isotropic potential:

V (x) =
1

2
(x− µ)TΣ−1(x− µ) µ =

[
3
3

]
and Σ =

[
1

1
4

]
.

One can verify that the solution to (5) with such V is

ρt = N (µt,Σt) µt =

[
3(1− e−t)
3(1− e−4t)

]
, Σt =

[
1

1
4 (1 + 3e−8t)

]
.

We use the same parameters for our algorithm as before. We solve (5) on [0, 1.4] with time step size 0.005.
Here are the sample results at different time steps.
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t=0.05 t=0.10 t=0.15 t=0.20 t=0.25

t=0.40 t=0.55 t=0.70 t=0.85 t=1.00

Similarly, we can also plot the empirical mean trajectory, one can compare it with the true solution
(3(1 − e−t), 3(1 − e−4t)). Both the curvature and the exponential convergence to µ are captured by our
numerical result. Here we can also compare Figure 15 with Figure 16, which is the mean trajectory obtained
by computing the flat gradient flow θ̇ = −∇θH(θ). This reveals very different behavior of the flat gradient
(∇θ) flow and Wasserstein gradient (G(θ)−1∇θ) flow.

Figure 15: mean trajectory of {ρθt} w.r.t. θ̇ =
−G(θ)−1∇θH(θ)

Figure 16: mean trajectory of {ρθt} w.r.t. θ̇ =
−∇θH(θ)

We plot the error curve of ‖µ̂(k) − µtk‖2 (Figure 17) and ‖Σ̂(k) − Σtk‖F (Figure 18):
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Figure 17: Plot of mean value error (in l2 norm) Figure 18: Plot of covariance error (in Frobenius
norm)

The exponential decay of {H(θk)} is very similar to the isotropic case. {H(θk)} also shows exponential
decay. And Mout = 20,Min = 100 also works well in this problem.
It is also interesting to compare the graph of trained ψλ̂ at different time steps k = 10, 140 (Figure 19,
20) with that of the previous example: The directions of ∇ψλ̂ at k = 10 and k = 140 is different from
the previous example. This is caused by the non-isotropic quadratic (Gaussian) potential V used in this
problem.

Figure 19: Graph of ψλ̂ after Mout = 20 outer itera-
tions at k = 10th time step

Figure 20: Graph of ψλ̂ after Mout = 20 outer itera-
tions at k = 140th time step

6.1.2 Higher dimension

We can implement our algorithm in higher dimensional space, we try d = 10: consider the quadratic potential

V (x) =
1

2
(x− µ)TΣ−1(x− µ) Σ = diag(ΣA, I2,ΣB , I2,ΣC) µ = (1, 1, 0, 0, 1, 2, 0, 0, 2, 3)T .

Here we set the diagonal blocks as:

ΣA =

[
5
8 − 3

8
− 3

8
5
8

]
ΣB =

[
1

1
4

]
ΣC =

[
1
4

1
4

]
.

42



We solve (5) on [0, 2] with time step size h = 0.005. We set Kin = Kout = 3000 and choose Mout = 30,
Min = 100.
Here are the samples at the last time step k = 400, we exhibit the projection of the samples on 0− 1, 4− 5
and 8− 9 plane in Figure 21.

projection of samples on 0-1 plane projection of samples on 4-5 plane projection of samples on 8-9 plane

Figure 21: Plot of samples on different planes

6.2 Experiments with more general potentials
In this section, we exhibit two examples with more general potentials in higher dimensional space.

6.2.1 Styblinski-Tang potential

In this example, we set dimension d = 30. We consider the Styblinski–Tang function [49]:

V (x) =
3

50

(
d∑
i=1

x4
i − 16x2

i + 5xi

)
.

Here are the plot and heat map of V when dimension d = 2:

Figure 22: Styblinski–Tang function
Figure 23: Heat map

We solve (5) with potential V on [0, 3] with time step size h = 0.005; we set Kin = Kout = 9000 and
Min = 100, Mout = 30.
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To exhibit sample results, due to the symmetricity of the potential function, we just project the sample
points in R30 to some random plane. Here we project the samples to 5 − 15 plane. The sample plots and
their estimated densities are presented in Figure 24.

t=0.30 t=0.60 t=0.90 t=1.20 t=1.50 t=1.80

t=0.30 t=0.60 t=0.90 t=1.20 t=1.50 t=1.80

Figure 24: Plot of samples and estimated densities on 5− 15 plane

We also exhibit the graphs of ψλ on 5− 15 plane trained at different time steps in Figure 25.

Graph of ψλ at time step k = 30 Graph of ψλ at time step k = 60 Graph of ψλ at time step k = 150

Graph of ψλ at time step k = 240 Graph of ψλ at time step k = 300 Graph of ψλ at time step k = 360

Figure 25: Graph of ψλ on 5− 15 plane trained at different time steps
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6.2.2 Rosenbrock potential

In the previous example, V (x) is the direct sum of same functions and can be treated as a potential without
interactions. Now we consider more general function V involving interaction among its coordinates. In this
example, we set dimension d = 10. We consider the Rosenbrock typed function [45]:

V (x) =
3

50

(
d−1∑
i=1

10(xk+1 − x2
k)2 + (xk − 1)2

)
.

We solve the corresponding (5) on [0, 1] with step size h = 0.005. We set Kin = Kout = 3000 and Min = 100,
Mout = 60.
Here are the sample results, we exhibit the projection of sample points on the 1− 2, 7− 8 and 9− 10 plane
in Figure 26. The rightmost figures are plots of estimated densities at t = 1.0.

t=0.05 t=0.20 t=0.35 t=0.50 t=1.00 density t = 1.0

t=0.05 t=0.20 t=0.35 t=0.50 t=1.00 density t = 1.0

t=0.05 t=0.20 t=0.35 t=0.50 t=1.00 density t = 1.0

Figure 26: Plot of samples and estimated densities on different planes

We exhibit the graphs of ψλ on 0− 1 plane trained at different time steps in Figure 27:

7 Discussion
In this paper, we design and analyze an algorithm for computing high dimensional Fokker-Planck equations.
Our approach is based on transport information geometry with probability models arisen in deep learning
generative models. We first introduce a set of ODE to approximate the Fokker-Planck equation. This ODE
can be viewed as the "spatial discretization" of the PDE from the neural networks. We next propose a
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Graph of ψλ̂ (k = 10) Graph of ψλ̂ (k = 20) Graph of ψλ̂ (k = 30) Graph of ψλ̂ (k = 40)

Graph of ψλ̂ (k = 80) Graph of ψλ̂ (k = 120) Graph of ψλ̂ (k = 160) Graph of ψλ̂ (k = 200)

Figure 27: Graph of ψλ on 0− 1 plane trained at different time steps

variational version of the semi-implicit Euler scheme to design a discrete-time update of the proposed ODE.
This method has a sampling efficient approach and can be viewed as the JKO scheme in neural networks.
We last prove the asymptotic convergence and error analysis results for our proposed schemes.

Our study opens a door for systemically applying the deep neural networks and machine learning approach
to compute physical partial differential equations. It is worth mentioning that KL divergence and Wasserstein
metric can be naturally formulated in machine learning models. In computational schemes, following the
proposed dynamical systems, it will provide a more systemic way of designing sampling efficient algorithms.
The other benefit is that our approach does not require any knowledge of the ”data” from the partial
differential equation. It is the same as the classical numerical schemes, in which we generate the “data
solution" to compute the numerical solution. More importantly, our computation can keep the physical
law, such as relative entropy dissipation, in neural network parameters. In numerical analysis, transport
information geometry provides a mathematical framework for studying the convergence of algorithms. Here,
the asymptotic convergence and error analysis proof of our scheme follows how do the KL divergence and the
Wasserstein metric measures the discrepancy between the gradient flow in deep learning generative models
and the one in full probability space. We notice that the Wasserstein metric provides a suitable metric
structure to analyze the convergence behavior in generative models.

In the future, we shall study the computation of gradient flows raised in transport information geometry.
Examples include Poros media equation and aggregation equations etc. Besides, we shall extend the current
study to compute Hamiltonian flows in transport information geometry. There are several examples, such
as Schrödinger equation, Schrödinger bridge system, and compressible Euler equation, etc.
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