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Abstract— In this paper, we consider the optimal transport
problem for general nonlinear control systems that are of
control-affine form. When the system is driftless, this corre-
sponds to the sub-Riemannian optimal transport problem. We
consider the Benamou-Brenier formulation of this problem.
We first establish a controllability result that controllability
of the underlying control system implies controllability of the
continuity equation using Borel measurable feedback controls
from a given initial measure to a terminal measure. Then we
consider the problem of numerically computing the feedback
control laws that generate optimal transport. We propose
fast algorithms to calculate the sub-Riemannian Wasserstein-p
distance (Wp), p = 1, 2 on the discretized domain with the rate
of convergence independent of grid size, which is important
for large scale problems. For sub-Riemannian W1 cost, we
formalize the optimization problem to be independent of time-
variable which reduces the dimensionality of the problem
significantly. We validate our numerical approach on a 2-
dimensional system and a 3-dimensional system, the Grushin
plane system, and the unicycle model, respectively.

I. INTRODUCTION

The optimal transport problem [25] of transporting one
probability distribution to another using transport maps, in
some optimal manner, has found a large number of applica-
tions in a wide range of fields such as the theory of nonlinear
PDEs [3], machine learning [23] and image processing [24].
One promising direction of investigation is the application of
the Benamou-Brenier fluid dynamical formulation [5] of op-
timal transport, which frames the optimal transport problem
as an optimal control problem for a continuity equation, to
multi-agent control problems [12]. The several applications
of optimal transport have also lead to many works on
developing fast algorithms to compute optimal transport costs
and their extensions. The constrained optimization problem
arising from an optimal transport problem can be turned into
an unconstrained saddle point problem that can be solved
with the first-order primal-dual method of Chambolle and
Pock [10] or the alternating direction method of multipliers
(ADMM) [6]. Various types of optimal transport costs and
its generalizations have been solved using these approaches
[22], [20].

There has been an increasing interest in considering op-
timal transport problems associated with costs arising from
optimal control problems. There has been some recent effort
to extend the existing theory to costs arising from optimal
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control of general linear systems with some success, e.g.,
[19], [11]. However, a large number of models, such as those
arising in robotics [21], are nonlinear. This motivates our
investigation of optimal transport problems associated with
optimal control of nonlinear systems.

There has been some work on the Monge formulation
[25] of the optimal transport problem for costs arising from
optimal control of nonlinear control-affine systems in the
setting of sub-Riemannian optimal transport [1], [17]. For
driftless control-affine systems when the corresponding sub-
Riemannian distance is semi-concave [17], it has been shown
that the results are very close to the Riemannian case [18]. In
[13], the authors considered the fluid-dynamical formulation
of optimal transport formulation of the optimal transport
problem by discretizing the space and hence, reducing the
sub-Riemannian optimal transport problem to an optimal
transport problem on a graph [13]. More recently, in [9]
the authors considered the Benamou-Brenier formulation
of optimal for feedback-linearizable systems. In addition,
the geometry calculations for sub-Riemannian structure in
density space have been considered in [16].

Contributions: In this paper, we make theoretical and
numerical contributions towards optimal transport of control-
affine systems. First, we consider the issue of controlla-
bility of the resulting continuity equation arising from the
Benamou-Brenier formulation of the optimal transport prob-
lem for control-affine systems. The second main contribution
is on developing efficient numerical methods for the optimal
transport control affine systems. We first formally derive the
optimality conditions for the case of L2 cost and demonstrate
that the Benamou-Brenier version of the problem has a
very similar structure as in the linear case, and can be
similarly posed as a convex optimization problem using
a suitable change of variables. The optimality conditions
can be framed as a convex-concave problem involving the
continuity equation and a Hamilton-Jacobi-Bellman (HJB)
equation. Then we consider the case of homogeneous of
degree one cost, in which case the optimal transport problem
can be transformed into a static, time-independent version of
the problem . We also apply the primal-dual hybrid gradient
(PDHG) method to implement these formulations and obtain
a very fast method whose rate of convergence is independent
of grid size.

We organize this paper as follows. In section II, we
formulate the variational problem for optimal transport of
nonlinear control-affine systems. We discuss the controllabil-
ity problems in section III. In section IV, we design primal-
dual hybrid algorithms to solve the proposed variational
formulations. Numerical examples, including the Grushin



plane and the unicycle model, are presented.

II. PROBLEM FORMULATION

Suppose gi : Rd → Rd are smooth vector fields for i =
1, ...,m. Consider the following finite-dimensional control
system on Rd,

ẋ(t) = g0(x(t)) +

n∑
i=1

vi(t)gi(x(t)) (II.1)

where x(t) represents the state and vi(t) are the control
inputs of the system. Control systems of this type are said
to be in control-affine form and are well-studied in control
theory literature [2]. Such systems commonly arise in models
in robotics [21].

Let T > 0. Given x0, xT ∈ Rd, a standard instance of
the optimal control problem for this system is to solve the
following optimization problem,

inf
vi,x

∫ T

0

1

p

n∑
i=1

|vi(t)|pdt (II.2)

subject to (II.1) and the constraints

x(0) = x0 x(T ) = xT (II.3)

The optimal transport problem that we are interested in is
a variation of the above problem where the initial and final
condition of the state x(t) are represented by probability
densities ρ0 : Rd → R and ρT : Rd → R. These densities,
for example, could either represent the uncertainty in the
initial and final condition of the control system (II.1), or they
could also represent a density of agents such as animals,
crowds, robots. etc, each of which can be modeled using
(II.1).

Suppose that the controls vi(t) are given in feedback
form, using functions ui(x, t), as vi(t) = ui(x(t), t). The
probability density ρ(t, x) of the variable x(t) is then given
by the following system of equations,{
∂tρ+∇ · (g0ρ) +

∑n
i=1∇ · (uigiρ) = 0, in Rd × [0, T ]

ρ(0, ·) = ρ0, ρ(T, ·) = ρT in Rd.
(II.4)

Subject to these constraints, the optimal transport problem
that we wish is to solve is the following optimization
problem,

inf
ui,ρ

∫ T

0

∫
Rd

1

p

n∑
i=1

ρ(t, x)|ui(t, x)|pdxdt (II.5)

From a probabilistic point of view, the cost functional in
(II.5) can be interpreted as the expectation (with respect to
density ρ(t, x)) of the control cost considered in the original
optimal control problem (II.2).

Remark II.1. When g0 ≡ 0, m = d and gi are coordinate
vector fields for each i = 1, ...,m, and p=2, this problem is
the Benamou-Brenier fluid dynamical formulation of optimal

transport [5] for the squared-Euclidean distance. In this case,
the continuity equation simplifies to,

∂tρ+∇ · (uρ) = 0, in Rd × [0, T ] (II.6)

and the optimization problem can be alternatively expressed
as,

inf
ui,ρ

∫ T

0

∫
Rd

1

p
ρ(t, x)‖u(t, x)‖ppdxdt (II.7)

where ‖u‖p denotes is the usual p-norm. For the case of
p = 2, and when the underlying control system is linear, i.e.,
there exists a time-varying matrix A(t) ∈ Rd×d and vectors
bi(t) ∈ Rd are such that g0(t, x) = A(t)x and gi(x) =
bi(t), this problem has been addressed in [11]. For n = d
and span

{
gi(x); i ∈ {1, ..., n}

}
= Rd, this problem can be

shown to coincide with the Riemannian optimal transport
problem.

Remark II.2. It is worth mentioning that in the classical
Riemannian setting, the optimal transport problem (II.5) also
exhibits a mapping and linear programming based formula-
tions, known as Monge problem and Kantorovich problem
[25], respectively. One can also consider these formulations
for the transport problem corresponding to costs arising from
optimal control of control-affine systems. See [19], [1], [17]
for these formulations of the optimal transport problem for
such costs.

In this paper, we are particularly interested in the case
when it is possible that n < d. In this case, span

{
gi(x); i ∈

{1, ..., n}
}
6= Rd, and hence it might be possible that

the constraints (II.4) are not feasible. The feasibility of
constraints (II.4), and hence the finiteness of the cost (II.5),
is closely related to properties of the control system (II.1).
For linear systems, it has been shown than the Kalman
rank condition for controllability of (II.1) implies well-
posedness of the optimal transport problem [11]. Our goal
will be to consider theoretical and numerical aspects of this
optimization problem for the general class of vector fields
{gi}.

III. CONTROLLABILITY

In this section, we will consider the issue of feasibility of
the constraints (II.4). Particularly, before attempting to solve
the optimization problem, we are interested in establishing if,
given probability densities ρ0 and ρT , there exist feedback
control laws u(t, x) = [u1(t, x)...um(t, x)]T such that the
solution of the continuity equation in (II.4) satisfies the
initial and terminal constraints. In the linear case, this for the
continuity equation follows from existing results on optimal
transport using a suitable coordinate transformation [11].
Since such a technique does not seem feasible in the general
nonlinear case, we will address this issue of feasibility by a
different approach using results from [7].

To address this controllability problem, instead of densities
ρ(t, x), we will work with measures that are not necessarily
absolutely continuous with respect to the Lebesgue measure.
Moreover, to avoid issues regarding compactness, we will



frame the problem on a compact smooth manifold M without
a boundary. Let TM = ∪x∈MTxM be the tangent bundle,
where TxM is the tangent space of M at x. Accordingly,
the vector-fields gi : M → TM will be smooth vector fields
defined on M , such that gi(x) ∈ TxM for each x ∈ M .
Moreover, we will also assume that the control set U is a
compact subset of Rd. For notational convenience we also
define the control-dependent vector-field f : M×U → TM ,
given by,

f(x,v) = g0(x) +

n∑
i=1

vigi(x) (III.1)

for each (x,v) := (x, [v1...vn]T ) ∈M × U .
We will need an appropriate notion of the solution of

the continuity equation (II.4). Towards this end, given a
topological space X , we will denote by P(X) the set of
Borel probability measures on X . The solutions of the PDE
will be considered in the following sense. Let T > 0. We
will say that a narrowly (or weakly) continuous [8] curve
µ : [0, T ]→ P(M) solves the PDE

∂tµ+∇ · (f(·,u))µ) = 0, in M × [0, T ] (III.2)

in a weak sense, with initial and terminal conditions, µ0 ∈
P(M) and µT ∈ P(M) respectively, if the following holds,∫

I

∫
M

[∂tg + ∂xg · f(·,u(t, ·))]dµt(x)dt

=

∫
M

g(T, x)dµT (x)−
∫
M

g(0, x)dµ0(x) (III.3)

for all smooth functions g ∈ C∞([0, T ] ×M), where, ∂xg
denotes the differential of g.

In order to address the controllability problem, we will first
consider a relaxed version of the problem, where instead of
looking for control laws that assign to each (t, x) a fixed
control in U , we search instead for Young measure that
assigns to each t ∈ [0, T ] a Borel probability measure on
M × U . Towards this end, let X be a topological space.
We denote by Y(I;X) the set of measurable maps I :=
[0, T ] 3 t 7→ Kt(·) ∈ P(X). By measurable, we mean that
the function t 7→ Kt(A) is measurable for each Borel set
A ⊆ X . We will first establish that, for given µ0 ∈ P(X)
and µT ∈ P(X), there exists a K ∈ Y(I;M ×U) such that∫

I

∫
M×U

[∂tg + ∂xg · f(·,v)]dKt(x,v)

=

∫
M

g(T, x)dµT (x)−
∫
M

g(0, x)dµ0(x) (III.4)

for all smooth functions g ∈ C∞([0, T ]×M).

Definition III.1. We will say that a point x0 ∈ M is
reachable from xT ∈ M within time T ∈ (0,∞) if there
exists a measurable function, or control, v : [0, T ] → U
such that solution of the following equation

ẋ(t) = f(x(t),v(t)) (III.5)

satisfies x(0) = x0 and x(T ) = xT .

Given a measurable control v : [0, T ]→ U , and trajectory
x : [0, T ]→M that is a solution of the differential equation
(III.5), δx(t) satisfies equation (III.3) for u(t, ·) = v(t), with
µ0 = δx(0) and µT = δx(T ). Similarly, Kt = δx(t),v(t)

satisfies equation (III.4). From this observation, the following
result follows.

Theorem III.2. Suppose that xT ∈ M is reachable from
x0 ∈M . Suppose µ0 = δx0 and µT = δxT , for some points
x0, xT ∈ M such that xT is reachable from x0 within time
T > 0. Then there exists a Young measure K ∈ Y(I;M×U)
such that (III.4) is satisfied.

The above result, that relates the reachability properties
of the system (III.5) to the reachability properties of the
continuity equation (III.2) for the special case of Dirac
measures will be fundamental to the controllability result
established in this section. The idea behind the proof is
quite straightforward and is the following. To generalize the
controllability result in Theorem III.2 to the controllability
of the continuity equation for general initial and target
measures, we approximate the measures using sums of Dirac
measures and then take the limit. A similar approach was
used in [14] to establish controllability for nonlinear discrete-
time systems using stochastic or measure-valued feedback
laws. In contrast, for the continuous-time control-affine case
considered in this paper, using results from [7], we will be
able to prove a more computationally practical result that
there exists a deterministic, albeit possibly very irregular,
feedback control law u(t, x) and a narrowly continuous
curve µt such that (III.4) holds.

Theorem III.3. For each i ∈ {1, .., N} and each j ∈
{1, .., L}, let xi0, x

j
T ∈M be such that and xjT is reachable

from xi0 ∈ M within time T > 0. Then there exists a
K ∈ Y(I;M × U) such that (III.4) is satisfied with µ0 =
1
N

∑N
i=1 δxi0 and µT = 1

L

∑L
j=1 δxjT

.

Proof. The proof follows from a superposition principle. We
know from Theorem III.2 that, For each i ∈ {1, .., N} and
each j ∈ {1, .., L}, there exists Ki

j ∈ Y(I;M×U) such that
the equation (III.4) holds for µ0 = δxi0 and µT = δxjT

. Then

setting K = 1
L

∑L
j=1

1
N

∑N
i=1K

i
j , we have our result.

In the following theorem and henceforth, let supp µ denote
the support of a measure µ. The statement of the theorem is
a natural generalization of the previous Theorem to general
initial and target measures.

Proposition III.4. Let µ0, µT ∈ P(M) be such that each
point in supp µT is reachable by each point in supp µ0.
Then there exists K ∈ Y(I;M × U) such that (III.4) is
satisfied.

Proof. There exist sequences of measures of the form
µ0N = 1

N

∑N
i=1 δxi0 , µTN = 1

N

∑N
i=1 δxiT such that

limN→∞ µ0N = µ0 and limN→∞ µTN = µT in the narrow
topology [8]. From Proposition III.4, there exists a sequence



KN such that (III.4) is satisfied with initial and terminal
conditions, µ0N and µTN , respectively, for each N ∈ Z+.
Since M × U is compact, we can extract a sub-sequence,
again denoted by KN , that narrowly converges to an element
K ∈ Y(I;M × U) [15][Theorem 12.5.9]. The function
h : [0, T ]×M ×U → R, defined by h(t, x, u) = ∂xg(t, x) ·
f(x, u), is continuous, for each g ∈ C∞([0, T ] × M).
This implies that (III.4) holds with K, initial and terminal
conditions, µ0 and µT , respectively.

In the next result, we establish that we can use the last
proposition on controllability for the relaxed problem using
Young measures to conclude that the solution can, in fact,
be realized using a vector-field that takes values in the set
of admissible velocities.

Theorem III.5. Let µ0, µT ∈ P(M) be such that each
point in supp µT is reachable by each point in supp µ0.
Suppose, additionally that f(x, U) := {f(x, r); r ∈ U} is
convex for each x ∈ M . Then there exists a Borel vector-
field V : [0, T ]×M → TM such that (III.4) is satisfied and
V (t, x) ∈ f(x, U) for µt almost every x ∈M .∫

I

∫
M

[∂tg + ∂xg(t, x) · V (t, x)]dµt(x)dt

=

∫
M

g(T, x)dµT (x)−
∫
M

g(0, x)dµ0(x) (III.6)

Proof. Given µ0, µT ∈ P(M), let K ∈ Y(I;M × U) be
such that (III.4) holds. Let η ∈ Y(I;TM) be the Young
measure obtained by pushing forward the Young measure K
using the vector-field f . That is, for almost every t ∈ [0, T ],
ηt(A) = Kt(f

−1(A)) for each Borel measurable set A ⊆
TM . Since K satisfies the equation (III.4), we can infer that
η satisfies ∫

I

∫
TM

[∂tg + ∂xg · v]dηt(v)dt

=

∫
M

g1(x)dµT (x)−
∫
M

g(0, x)dµ0(x) (III.7)

for all smooth functions g ∈ C∞([0, T ]×M). Let π : TM →
M be the projection defined by π(v) = x for each v ∈ TM
whenever v ∈ TxM . From [7][Lemma 4.5], there exists a
Borel vector-field V : I×M → TM such that the following
holds, ∫

I

∫
M

∂tg + ∂xg(t, x) · V (t, x)dµt(x)dt

=

∫
M

g(T, x)dµT (x)−
∫
M

g(0, x)dµ0(x) (III.8)

where µt(A) = ηt(π
−1(A)) for each Borel measurable set

A ⊆ M , and V (t, x) =
∫
TxM

vdηt,x(v) is the barycenter
of ηt,x, a measurable family of of probability measures on
TxM , obtained by disintegration of η such that ηt(A) =∫
A
ηt,x(A)dµt(x). Moreover, for each t ∈ [0, T ], we have

that supp ηt,x ⊆ supp ηt∩TxM for µt almost every x ∈M .
This implies for each t ∈ [0, T ], we have that supp ηt,x ⊆
f(M × U) ∩ TxM for µt almost every x ∈ M , since ηt

is the measure pushforward of Kt under the action of the
map f . From this it follows that for each t ∈ [0, T ], we have
that supp ηt,x ⊆ f(x, U). for µt almost every x ∈ M . By
assumption U is compact and f(x, U) is convex for every
x ∈ M . This implies that, for each t ∈ [0, T ], V (t, x) =∫
TxM

vdηt,x(v) ∈ f(x, U) for µt almost every x ∈M .

From the above result we can conclude that, in fact, there
exist measurable controls that transport the system from a
given measure to a terminal measure, provided that points in
the support of the terminal measure and reachable by points
in the support of the target measure. This is summarized in
the next theorem.

Theorem III.6. Let µ0, µT ∈ P(M) be such that each
point in supp µT is reachable by each point in supp µ0.
Let U be convex and compact. Then there exists a Borel
measurable control u : [0, T ] × M → U such that µ :
[0, T ]→ P(M) satisfies (III.3).

Proof. From Theorem III.5 there exists a Borel measurable
vector-field V : [0, T ] → TM and µ : [0, T ] → P(M) such
that ∫

I

∫
M

[∂tg + ∂xg(t, x) · V (t, x)]dµt(x)dt

=

∫
M

g1(x)dµT (x)−
∫
M

g0(x)dµ0(x) (III.9)

and V (t, x) ∈ f(x, U), for µt almost every x ∈ M ,
since convexity of U implies convexity of f(x, U). Then, it
follows from [4][Theorem 8.2.10], that there exists a Borel
measurable (feedback) control u : [0, T ]×M → U such that
f(x,u(t, x)) = V (t, x) for each t ∈ [0, T ] and each x ∈M .
This concludes the proof.

IV. PRIMAL DUAL FORMULATIONS AND NUMERICAL
ALGORITHMS

In this section, we study the primal dual formulation
of problem (II.5) and provide fast numerical algorithms to
calculate the control ui(t, x) and its sub-Riemannian optimal
transport cost Wp (ρ0, ρT ) for p = 1, 2, where

Wp(ρ0, ρT )p = inf
u,ρ

{∫ T
0

∫
Ω

1
p

n∑
i=1

ρ(t, x)|ui(t, x)|pdxdt

s.t. (II.4) holds.
}

Henceforth, for computational purposes, we will consider the
optimization problem over control laws u that are uncon-
strained and can take values in Rd.

A. Sub-Riemannian Wasserstein-2 Distance (W2)

For p = 2, we introduce Lagrange multiplier φ(t, x)
to handle the transport equation constraint and define a
Hamiltonian as

H(x, p) = sup
v
f(x, v) · p− L(v)



Since L(v) = 1
2‖v‖

2, we can explicitly compute H as
follows:

H(x, p) =
1

2
p ·
(
g0(t, x) +G(x)TG(x)p

)
(IV.1)

where G(x) := [g1(x), g2(x), ..., gn(x)]T is the vector
formation of gi(x). Using Lagrange multipliers, and via
integration by parts, we get the following:

W2 (ρ0, ρT )
2

= inf
ρ

sup
φ

{∫ T
0

∫
Rd −ρ (φt +H (x,∇φ)) dxdt

+
∫

Ω
ρ0(x)φ(0, x)− ρT (x)φ(T, x)dx

}
.

Hence, solving the original problem (II.5) is equivalent as
solving the following dual problem:

W2 (ρ0, ρT )
2

= sup
φ

{∫
Rd
ρT (x)φ(T, x)− ρ0(x)φ(0, x)dx

s.t. φt(t, x) +H(x,∇φ(t, x)) ≤ 0
}
.

(IV.2)
To turn the previous problem into a convex-concave opti-

mization problem, we introduce

mi(t, x) = ρ(t, x)ui(t, x) i = 1, ..., n,

m = [m1, ...,mn]T .

Furthermore, we denote by

L(m, ρ, φ) =

∫
Rd
ρT (x)φ(T, x)− ρ0(x)φ(0, x)dx

+

∫ T

0

∫
Rd
−ρ (φt +∇φ · g0(t, x))

−∇φ ·

(
n∑
i=1

mi(t, x)gi(x)

)
+

n∑
i=1

|mi(t, x)|2

2ρ
dxdt.

Thus, the unconstrained min-max problem can be written
as

inf
m,ρ

sup
φ
L(m, ρ, φ). (IV.3)

From the KKT conditions, the minimizer satisfies
∂tρ+∇ · (g0ρ) +

∑n
i=1∇ · (migi) = 0,

m(t, x)

ρ(t, x)
= G(x)T∇φ(t, x)

φt(t, x) +H(x,∇φ(t, x)) ≤ 0

Note that when ρ(t, x) > 0, the last inequality becomes
equality, which is a HJB equation of φ.

B. G-prox PDHG for sub-Riemannian W2

We apply G-prox[20] version of Primal-Dual Hybrid Gra-
dient Algorithm (PDHG) to solve the saddle point problem
(IV.3). Specifically, when we solve for proximal step of the
dual variable, we use ‖ · ‖2

H1
t,x

instead of ‖ · ‖2L2 , where

‖w(t, x)‖2H1
t,x

= ‖∂tw(t, x)‖2L2 + ‖∂xw(t, x)‖2L2

This is the crucial step that makes the convergence rate of
our numerical algorithm to be independent of grid size. If
L2
t,x-type of proximal step is implemented, the convergence

rate scales linearly with the number of grid points, which
will slow down the convergence as refining the mesh gird.
In fact, H1

t,x type of proximal step gives an insight of the
regularity of primal variables [20].

With τφ, τρ, τm are our choice of stepsizes, at the k-th
iteration, the PDHG update reads as follows

(ρk+1,mk+1) = argminρ,mL(φ̄k, ρ,m) + 1
2τρ
‖ρ− ρk‖2

L2
t,x

+ 1
2τm
‖m−mk‖2

L2
t,x

φk+1 = argmaxφL(φ, ρk+1,mk+1)− 1
2τφ
‖φ− φk‖2

H1
x,t

φ̄k+1 = 2φk+1 − φk.

Step 1. Equation for ρ:

φ̄kt +∇φ̄k · g0(t, x) +
‖m‖2

2ρ2
− ρ− ρk

τρ
= 0.

Equation for m:

−G(x)∇φ̄k +
m

ρ
+
m−mk

τm
= 0.

Step 2. Equation for φ:

ρk+1
t + div(ρk+1g0(t, x) +G(x)Tmk+1)

+
φtt−φktt
τφ

+ ∆x(φ−φk)
τφ

= 0,

ρk+1(0, x)− ρ0(x) +
φt(0,x)−φkt (0,x)

τφ
= 0,

ρk+1(T, x)− ρT (x) +
φt(T,x)−φkt (T,x)

τφ
= 0,

Note here, the updates for φ(x) corresponds to solving a
Poisson equation with Neumann boundary (in time), which
has infinite many solutions that are different by a constant.
To get a unique solution, we impose another boundary
condition: ∫

Rd
φ(T, x) dx = 0.

We will implement this algorithm in numerical examples
presented in section V.

C. sub-Riemannian Wasserstein-1 Distance (W1)

When p = 1, we are solving for sub-Riemannian optimal
transport cost for the so-called Manhattan distance metric.

W1 (ρ0, ρT ) = inf
u,ρ

{∫ T

0

∫
Rd

n∑
i=1

ρ(t, x)‖u(t, x)‖1 dxdt

s.t. (II.4) holds

}
(IV.4)

where ‖u‖1 =
∑
i |ui|. We introduce flux m

m(x) =

∫ T

0

ρ(t, x)u(t, x) dt.

According to Jensen’s inequality,∫ T

0

∫
Rd
ρ(t, x)‖u(t, x)‖1 dxdt ≥

∫
Rd
‖m(x)‖1 dx



By Integrating with respect t on [0, T ] for (II.4), we have
the following:

ρT (x)− ρ0(x) +∇ ·
(
G(x)Tm(x)

)
= 0, for all x ∈ Rd.

(IV.5)
It is easy to verify that solving (IV.4) is equivalent to

solving the following

inf
m

{∫
Rd
‖m(x)‖1 dx s.t. (IV.5) holds

}
(IV.6)

via adapting the proof in [22]. However, (IV.6) can have
multiple minimizers as the objective function is not strictly
convex. To remedy this issue, we add quadratic regularization
with a small ε.

inf
m

{∫
Rd
‖m(x)‖1 + ε‖m(x)‖22dx s.t. (IV.5) holds

}
(IV.7)

Now as our objective function is strictly convex, we introduce
Lagrangian multiplier φ(x) and define L(m,φ) as follows:

L(m,φ) =

∫
Rd
‖m(x)‖1 + ε‖m(x)‖22dx

+

∫
Rd
φ(x)

(
ρT (x)− ρ0(x) +∇ ·

(
G(x)Tm(x)

))
dx,

Hence, we can solve (IV.4) by solving the min-max problem

inf
m

sup
φ
L(m,φ). (IV.8)

D. G-prox PDHG for sub-Riemannian W1

To solve (IV.8), we adapted both G-prox version of PDHG
and shrink operator techniques from [22], [20], with τφ, τm
are our choice of stepsizes. At the k-th iteration,


mk+1 = argminm L(φ̄k,m) + 1

2τm
‖m−mk‖2L2

x

φk+1 = argmaxφ L(φ,mk+1)− 1
2τφ
‖φ− φk‖2H1

x

φ̄k+1 = 2φk+1 − φk,

where ‖w(t, x)‖2H1
x

= ‖∂xw(x)‖2L2 . The detail of updates
are as follows:
Step 1. Equation for m:

mi(x)k+1 = shrink1

(
mi(x)k + τm (G(x)∇φ(x))i , τm

)
.

The shrink operator shrink1 is defined as

shrink1(v, µ) =

{(
1− µ

|v|

)
v for |v| ≥ µ

0 for |v| < µ.

Step 2. Equation for φ:

ρ1(x)− ρ0(x) + div(G(x)Tmk+1) +
∆x(φ− φk)

τφ
= 0.

Similar to the sub-Riemannian W2 case, to get a unique
solution, we impose another condition:∫

Rd
φ(x) dx = 0.

E. Reconstruct control u from m for W1

Given an m(x) feasible for (IV.6), denote

ρ(t, x) =
t

T
ρ1(x) +

T − t
T

ρ0(x)

u(t, x) =
m(x)

ρ(t, x)

Then u(t, x) is feasible for (IV.4) and has the same objective
value as m(x) does for (IV.6).

In the case that ρ(t, x) vanishes while m(x) 6= 0 at some
x ∈ Rd, for instance, the support of ρ0, ρT do not overlap,
we modify the initial-terminal density with

ρ̂0 = ρ0 + δρunif(x),

ρ̂T = ρT + δρunif(x)

where ρunif is the uniform distribution in Ω with some small
δ > 0. To recover the control, we calculate the following:

û(t, x) =
m(x)

t
T ρ̂T (x) + T−t

T ρ̂0(x)
=

m(x)
t
T ρT (x) + T−t

T ρ0(x) + δ
.

Note that if (ρ0, ρT ,m) solves (IV.5), (ρ̂0, ρ̂T ,m) also sat-
isfies (IV.5).

V. NUMERICAL EXAMPLES

In this section, we demonstrate two sub-Riemannian opti-
mal transport examples solved using finite difference method
for p = 1, 2 on a bounded domain Ω ⊂ Rd.

A. Discretization and Optimization Parameters

To illustrate the sub-Riemannian W2 model on graph, we
first consider the discretization in one spatial dimension [0, 1]
with uniform spatial mesh size ∆x and temporal mesh size
∆t. For xj = j∆x, tl = l∆t, define

ρlj = ρ(tl, xj) 1 ≤ j ≤Mx, 1 ≤ l ≤ Nt
ml
j+ 1

2

= m(tl, xj+ 1
2
) 1 ≤ j ≤Mx, 1 ≤ l ≤ Nt

φlj = φ(tl, xj) 1 ≤ j ≤Mx, 1 ≤ l ≤ Nt
gli,j = gi(xj) 1 ≤ j ≤Mx, 1 ≤ i ≤ d

For simplicity, we consider the case that g0 = 0 and
d = 1. The Fokker-Planck equation discretized with forward
difference in time as follows:
1

∆t

(
ρl+1
j − ρlj

)
+

1

∆x

(
g1,j+ 1

2
ml
j+ 1

2
− g1,j− 1

2
ml
j− 1

2

)
= 0,

The coupling HJB equation is discretized with backward
difference in time as follows:

1

∆t

(
φlj − φl−1

j

)
+H

(
xj ,

φlj+1 − φlj
∆x

)
= 0,

The extension to multi-spatial dimension is straight forward.
As for W1, we choose ε = 10−3. We have the discretized
variables ρ0,j , ρT,j ,mj defined on spatial domain:

(ρ0,j − ρT,j) +
1

∆x

(
g1,j+ 1

2
mj+ 1

2
− g1,j− 1

2
mj− 1

2

)
= 0.



As for the choice of optimization step sizes, in order to
guarantee the convergence, we usually have to refine the
optimization stepsize as we refine the mesh grid on the graph.
This leads to deceleration of the convergence. Thanks to [20],
we only need τmτφ < λmax (G(x)) , τρτφ < λmax (G(x)) to
guarantee convergence of PDHG. λmax(·) denotes the largest
eigenvalues of the operator in the discrete setting.

In the following numerical experiments, we have
λmax (G(x)) ≤ 1. Thus, we set τm = τρ = τφ = 0.99.
As for stopping criteria, we track the residuals for the HJB
equation and the Fokker-Planck equation:

RHJB = ‖ (φt +H(x,∇φ))+ ‖L2([0,T ]×Ω)

RFP = ‖∂tρ+∇ · (g0ρ) +
n∑
i=1

∇ · (migi) ‖L2([0,T ]×Ω)

We run the algorithm for total number of iterations nitr = 104

or stop when RHJB, RFP < 10−3

B. Grushin Plane Model

Grushin plane is a 2-D driftless system with control vector
fields g0 = [0, 0]T , g1(x1, x2) = [1, 0]

T , g2(x1, x2) =
[0, sin(2πx1)]T on [0, T ] × Ω = [0, 1] × [0, 1]2, with non-
flux boundary condition:{

ẋ1 = u1,

ẋ2 = u2x1.

We have d = n = 2, specifically, the dimension of control
is the same as the dimension of system, except there exists
a ‘singularity’ at x1 = 0.5 along x2-direction.
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Fig. 1. Initial (green) and terminal (yellow) measure of the optimal
transport on Grushin plane for case 1 (left) and case 2 (right)

We solve the discretized system with mesh grid 642 × 64
in space-time for two sets of initial and terminal densities
shown in Figure1:
• For case 1, ρ0 is uniformly supported in the disk d0 =
{(x1, x2)|(x1− 0.75)2 + (x2− 0.75)2 ≤ 0.12, while ρ1

is uniformly supported in the disk d1 = {(x1, x2)|(x1−
0.25)2 + (x2 − 0.25)2 ≤ 0.12.

• For case 2, ρ0 ρ1 are uniformly supported in a disk with
radius r = 0.1, centered at (0.5, 0.75) and (0.5, 0.25)
respectively.

For sub-Riemannian W2, see Figure 2, 3 for change of ρ
with respect to time.

For sub-Riemannian W1, we plot
(
GTm

)
(x) as red

arrows in Figure 4. The densities travels along different
trajectories as to avoid the ‘singularity’ at x1 = 0.5 along
x2-direction.
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Fig. 2. Grushin plane W2 case 1
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Fig. 3. Grushin plane W2 case 2
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Fig. 4. Grushin plane W1 case 1 (left) and case 2 (right)



C. Unicycle Model

We consider the sub-Riemannian optimal transport in
a three-dimensional unicycle model, which is the classic
dubins car that describes vehicle kinematics. The states
are cartesian coordinates (x1, x2) ∈ [0, 1]2, and orientation
θ ∈ S1. The system equations on Ω = S1× [0, 1]2 are given
by 

θ̇ = u1,

ẋ1 = u2 cos θ,

ẋ2 = u2 sin θ,

where the change of x1, x2 depends on the translation speed
u2 and angular of the car θ, while the angle θ depends on
the steering speed u1. The above system is a driftless system
with control vector fields

g1(θ, x1, x2) = [1, 0, 0]T

g2(θ, x1, x2) = [0, cos θ, sin θ]T .

We discretize the domain with mesh grid 323 × 32 in
space-time and compute optimal transport solutions for two
scenarios for [0, T ] = [0, 1] as shown in Figure 5:
• In the first case, ρ0 is supported in a ball centering at

(θ, x1, x2) = (0, 0.1, 0.5) with radius r = 0.1, and ρ1 is
uniformly supported in balls centering at (θ, x1, x2) =
(0, 0.9, 0.1) and (θ, x1, x2) = (0, 0.9, 0.9) with radius
r = 0.1.

• In the second case, ρ0 is supported in a ball centering at
(θ, x1, x2) = (0, 0.1, 0.5) with radius r = 0.1, and ρ1 is
uniformly supported in balls centering at (θ, x1, x2) =
( 3π

2 , 0.9, 0.1) and (θ, x1, x2) = (π2 , 0.9, 0.9) with radius
r = 0.1.

Fig. 5. The initial and terminal distributions of unicycle model for two
scenarios: case 1(left) and case 2 (right). The red arrows indicate the first
coordinate θ

Different final density orientations lead to two qualitatively
different controls. For case 1 in W2 solution shown in 6,
the densities steer and then split to their final positions. The
optimal transport solution for the second case in W2 is shown
in Fig.7. They reach x1-direction position first, and then split
to move horizontally towards final positions.

We see that in W1, the flux (red arrows) recovered by(
GTm

)
(x) in Figure 8 follows similar trajectories as the

W2 type.

VI. CONCLUSION

In this paper, we studied the fluid dynamic formulation
for optimal transport of nonlinear control-affine systems.
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Fig. 6. Unicycle model W2 case 1
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We establish controllability of the continuity equation for
control-affine systems. We also implemented fast algorithms
for computing the control laws for the corresponding optimal
transport problems, with convergence rate independent of
grid size.

There are many natural directions in future work. One
possible direction is to formulate mean-field game problems
for control-affine systems. Another possibility is to use this
formulation to study degenerate partial differential equations
as gradient flows on metric spaces corresponding to control
affine systems. We expect that it would be useful in under-
standing the convergence property of gradient flows studied
in [16].
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