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Abstract. We introduce a novel framework to model and solve mean-field game systems
with nonlocal interactions extending the results in [42]. Our approach relies on kernel-

based representations of mean-field interactions and feature-space expansions in the spirit

of kernel methods in machine learning. We demonstrate the flexibility of our approach
by modeling various interaction scenarios between agents. Additionally, our method

yields a computationally efficient saddle-point reformulation of the original problem that

is amenable to state-of-the-art convex optimization methods such as the primal-dual
hybrid gradient method (PDHG). We also discuss potential applications of our methods

to multi-agent trajectory planning problems.

1. Introduction

In this paper, we study computational and modeling aspects of nonlocal mean-field game
systems. Specifically, we are interested in the system

(1.1)


−φt +H(x,∇φ) = f

(
x,
∫

Ω
K(x, y)ρ(y, t)dy

)
ρt −∇ · (ρ∇pH(x,∇φ)) = 0

ρ(x, 0) = ρ0(x), φ(x, 1) = g
(
x,
∫

Ω
S(x, y)ρ(y, 1)dy

)
Above, Ω ⊂ Rd is a domain with smooth boundary, H : Ω × Rd → R is the Hamiltonian,
K,S : Ω× Ω→ R are interaction kernels, and f, g : Ω× R→ R are interaction functions.

System (1.1) describes Nash equilibria in an infinite-dimensional differential game where
a continuum of agents interact through their distribution in the state-space. These games
are called mean-field games (MFG) and were introduced by Huang, Malhamé, and Caines
[30, 29], and Lasry and Lions [36, 37, 38]. Currently, MFG is a thriving research direction
with applications in economics [28, 2, 25, 6], finance [34, 17, 18, 24], crowd motion [35, 14,
8, 7], industrial engineering [33, 22, 27], data science [23], material dynamics [43], and more.
For a detailed introduction and review of MFG theory we refer to [38, 28, 16, 26].

In (1.1), ρ(·, t) represents the population density at time t, and ρ0 is an initial distribution.
Furthermore, (x, t) 7→ φ(x, t) is a value function that measures the optimal value of an agent
at position x and time t. Functions f, g and kernels K,S model the interaction between a
single agent and the population.

Throughout the paper, we assume that f, g,K, S are C2 functions, and a pair (φ, ρ) is a
weak solution of (1.1) if φ is a viscosity and ρ is a distribution solution for HJB and continuity
equations, respectively. The PDE theory of (1.1) is well understood in this setting, and we
refer to [38, 16] for a detailed exposition of the subject.

Our goal is to develop computational and modeling methods for (1.1). There are several
general purpose numerical methods for MFG that apply to (1.1). In [5, 3, 1, 4], the authors
develop and analyze finite-difference methods for (1.1) and related models. Their approach
is based on a solution of the discrete problem applying Newton’s method.

For so-called potential MFG systems, there are several primal-dual convex optimization
methods such as alternating direction method of multipliers (ADMM) [9, 10] and primal-dual
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hybrid gradient (PDHG) [13, 12]. These methods are extensions of the celebrated Brenier-
Benamou method for computation of optimal transport maps [11] to the MFG setting.

In this paper, our goal is to develop computational and modeling methods specifically for
nonlocal MFG systems. The term nonlocal refers to expressions

f

(
x,

∫
Ω

K(x, y)ρ(y, t)dy

)
, g

(
x,

∫
Ω

S(x, y)ρ(y, 1)dy

)
.

Indeed, the calculation of these terms at x requires the knowledge of ρ(y, t) at all y. For
general MFG systems, these terms are replaced by f(x, ρ), g(x, ρ) where one allows local

interactions as well; that is, f(x, ρ) = f̃(x, ρ(x, t)), and g(x, ρ) = g̃(x, ρ(x, 1)) where, f̃ , g̃ :
Ω × R+ → R are some functions, and ρ(x, t) is the density of ρ. Note that for local
interactions, the calculation of f, g terms at x requires information only at x.

The majority of numerical methods above apply to general models, including nonlocal
interactions. However, they suit best the local ones, where a discretization of ρ on a grid
yields a straightforward discretization for interactions. For the nonlocal case though, the
calculation of interaction terms requires matrix multiplication on a full grid to evaluate the
expressions

∫
Ω
K(x, y)ρ(y, t)dy,

∫
Ω
S(x, y)ρ(y, 1)dy. Our approach solves this problem by

encoding the interactions in a small number of expansion coefficients.
Furthermore, a critical feature of primal-dual methods mentioned above is that one of

the proximal steps results in a decoupled system of one-dimensional convex optimization
problems at the grid-points. Therefore, this step is parallelizable and yields a linear com-
putational cost in the number of grid-points. However, direct applications of these methods
to nonlocal problems yield fully coupled systems that are not parallelizable and yield a
superlinear computational cost. Our method solves this problem as well. The expansion co-
efficients, that encode the interactions, decouple the aforementioned systems. Furthermore,
we update these coefficients by an explicit proximal step that yields a linear computational
cost.

Our method is also well-suited for the Lagrangian framework. Indeed, in [42], where
this approach was introduced, the authors solved (1.1) in Lagrangian coordinates. Thus,
this approach paves a way to efficient computational methods for high-dimensional MFG
problems.

Another appealing feature of our method is the flexibility of modeling interactions. We
expand K,S in a basis that can be interpreted as features from kernel methods in ML [41,
Chapter 6]. This allows us to design various interactions by only manipulating the basis.
In particular, we can easily model heterogeneous regimes where agents interact only within
specific subdomains and other interesting scenarios. Additionally, we can handle nonlocal
interactions that are given by differential operators [5, Tests 5, 6].

Finally, we would like to point out potential applications of our methods to multi-agent
trajectory-planning. In general, even single-agent trajectory-panning problems are highly
complex. With the number of agents increasing in a system, problems quickly become
computationally overwhelming.

A critical difficulty comes from modeling and computing the interactions. MFG theory
provides a flexible framework to solve this problem. Theoretically, MFG solutions are opti-
mal only when the number of agents is infinite. Nevertheless, one can generate sub-optimal
trajectories that have appealing properties such as no-collision. Since our method provides
a way of encoding mean-field interactions in a few coefficients independent of the number of
agents, it is potentially applicable to large multi-agent trajectory planning problems.

The paper has the following organization. In Section 2, we provide a detailed description
of our method. In Section 3, we devise a PDHG algorithm to solve (1.1) based on our method
and discuss the computational efficiency of our approach. In Section 4, we show how to model
and approximate interactions using kernel methods from ML. Next, in Section 5, we discuss
potential applications of our methods to multi-agent trajectory planning problems. Finally,
in Section 6 we provide several numerical experiments.
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2. The method of coefficients

For the sake of simplicity, we assume that f(x, ζ) = ζ, and g(x, ζ) = g(x); that is, we
consider the system

(2.1)


−φt +H(x,∇φ) =

∫
Ω
K(x, y)ρ(y, t)dy

ρt −∇ · (ρ∇pH(x,∇φ)) = 0

ρ(x, 0) = ρ0(x), φ(x, 1) = g(x)

The essence of the method is in an expansion of K(x, y) in a family of functions. More
precisely, assume that {fi}ri=1 ⊂ C2(Ω) is an arbitrary family of functions. Furthermore,
suppose that

(2.2) K(x, y) =

r∑
i,j=1

kijfi(x)fj(y)

Remark 2.1. In general, K may not have the form (2.2). In such cases, we approximate
K with kernels of such form.

We denote by K = (kij) ∈ Mr×r(R), and, without loss of generality, we assume that K
is invertible. A straightforward calculation yields that∫

Ω

K(x, y)ρ(y, t)dt =

r∑
i=1

ai(t)fi(x),

where

ai(t) =

r∑
j=1

kij

∫
Ω

fj(y)ρ(y, t)dy.

This means that no matter what ρ is, the expression
∫

Ω
K(x, y)ρ(y, t)dy is a combination of

{fi}ri=1 with some unknown coefficients a1, a2, · · · , ar. These coefficients encode all neces-
sary information about the interactions. Thus, (ai) will be our new unknowns. Note that
once we find (ai) we can solve (2.1) by solving decoupled HJB and continuity equations.

It turns out that (ai) are zeroes of a specific operator that is monotone if ρ 7→
∫

Ω
K(x, y)ρ(y)dy

is monotone, and a gradient when K is symmetric. To state the results precisely, denote by
φa the viscosity solution of the HJB

(2.3)

{
−φt +H(x,∇φ) =

∑r
i=1 ai(t)fi(x)

φ(x, 1) = g(x)

Furthermore, denote by ρa the distributional solution of the continuity equation

(2.4)

{
ρt −∇ · (ρ∇pH(x,∇φa)) = 0

ρ(x, 0) = ρ0(x)

The following two theorems are the basis of our approach.

Theorem 2.2. [42, Theorem 2.3] The functional a 7→
∫

Ω
φa(x, 0)ρ0(x)dx is concave and

everywhere Fréchet differentiable. Moreover,

(2.5)
δ

δai

∫
Ω

φa(x, 0)ρ0(x)dx =

∫
Ω

fi(x)ρa(x, ·)dx, 1 ≤ i ≤ r.

Theorem 2.3. [42, Theorem 3.1]

i. A pair (φ, ρ) is a solution of (2.1) if and only if (φ, ρ) = (φa, ρa) for some a ∈
C ([0, 1];Rr) such that

(2.6) a = K
δ

δa

∫
Ω

φa(x, 0)ρ0(x)dx

ii. If K is monotone, then (2.6) is equivalent to finding a zero of a monotone operator
a 7→ K−1a− δ

δa

∫
Ω
φa(x, 0)ρ0(x)dx, a ∈ C ([0, 1];Rr).
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iii. Additionally, if K is symmetric, (2.6) is equivalent to the convex optimization problem

inf
a∈C([0,1];Rr)

〈K−1a, a〉
2

−
∫

Ω

φa(x, 0)ρ0(x)dx,(2.7)

where 〈a, b〉 =
∑r
i=1

∫ 1

0
ai(t)bi(t)dt for a, b ∈ C ([0, 1];Rr).

Remark 2.4. Several remarks are in order.

1. Theorem 2.3 asserts that instead of finding (φ, ρ) in (2.1) we just need to find the
right coefficients (ai) and then solve the decoupled equations (2.3), (2.4).

2. Here, we do not concentrate on technical aspects of Theorems 2.2, 2.3 that are
available for a periodic case, Ω = Td, in [42]. For the non-periodic case, (2.1)
and (2.3) must be complemented with the no-flux Neumann boundary condition
∇pH(x,∇φ) · ν = 0 on ∂Ω.

3. K is monotone if and only if ρ 7→
∫

Ω
K(x, y)ρ(y)dy is monotone; that is,

∫
Ω2 K(x, y)(ρ2(x)−

ρ1(x))(ρ2(y) − ρ1(y))dxdy ≥ 0 for all ρ1, ρ2 ∈ P(Ω). This condition is essential for
the uniqueness of solutions of (2.1) [38].

4. K is symmetric if and only if K is symmetric; that is, K(x, y) = K(y, x) for all
x, y ∈ Ω.

5. For monotone interactions, (ai) are solutions of a monotone variational inequality or a
convex optimization problem. Therefore, one can apply powerful convex optimization
techniques to find (ai).

6. Equation (2.5) is critical for update rules of (ai). Indeed, it gives the ascent direction∫
Ω
φa(x, 0)ρ0(x)dx with respect to (ai). Moreover, this direction depends on ρa,

which is available once φa is (approximately) computed at current (ai). As we shall
see below, this property yields extremely simple update rules for (ai).

7. These previous points are also very appealing for potential applications of the methods
here to multi-agent trajectory planning problems.

8. Optimization problem (2.7) is equivalent to the infinite-dimensional optimal control
problem (58)-(59) in [38].

9. There is nothing special about the choice f(x, ζ) = ζ, g(x, ζ) = g(x) except simplicity.
Analogous results can be proven for general f, g as well. This topic is a subject of
our future research.

10. Precisely the same theorems are valid for stochastic systems as well. Again, we will
address this topic in our future work.

3. A primal-dual hybrid gradient algorithm

Here, we formulate (2.7) as a convex-concave saddle point problem and devise a primal-
dual hybrid gradient (PDHG) algorithm of Chambolle and Pock [19, 20] to solve it. Intro-
ducing a Lagrange multiplier for the HJB equation in (2.3) we obtain

inf
a∈C([0,1];Rr)

〈K−1a, a〉
2

−
∫

Ω

φa(x, 0)ρ0(x)dx

= inf
φ,a

{
〈K−1a, a〉

2
−
∫

Ω

φ(x, 0)ρ0(x)dx s.t. (2.3) holds

}
= inf
φ(x,1)=g

a

sup
ρ

{
〈K−1a, a〉

2
−
∫

Ω

φ(x, 0)ρ0(x)dx

+

∫
Ω

∫ 1

0

ρ

(
−φt +H(x,∇φ)−

r∑
i=1

ai(t)fi(x)

)
dtdx

}

= inf
φ(x,1)=g

a

sup
ρ,v

{
〈K−1a, a〉

2
−
∫

Ω

φ(x, 0)ρ0(x)dx−
∫

Ω

∫ 1

0

(ρφt + ρv · ∇φ) dtdx

−
∫

Ω

∫ 1

0

ρ

(
L(x, v) +

r∑
i=1

ai(t)fi(x)

)
dtdx

}
,

(3.1)
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where we used the convex duality

H(x,∇φ) = sup
v
−v · ∇φ− L(x, v).

The saddle point problem in (3.1) is convex in (φ, a) and almost concave in (ρ, v). Non-
concavity comes from the terms ρv ·φ and ρL(x, v). Following [11], we remedy this problem
by replacing v with a flux variable m = ρv. Thus, we obtain an equivalent saddle point
problem

inf
φ(x,1)=g

a

sup
ρ,m

{
〈K−1a, a〉

2
−
∫

Ω

φ(x, 0)ρ0(x)dx−
∫

Ω

∫ 1

0

(ρφt +m · ∇φ) dxdt

−
∫

Ω

∫ 1

0

ρ

(
L

(
x,
m

ρ

)
+

r∑
i=1

ai(t)fi(x)

)
dxdt

}
= inf
φ(x,1)=g

a

sup
ρ,m
L(φ, a, ρ,m)

(3.2)

Note that (φ, a) 7→ L(φ, a, ρ,m) is convex, (ρ,m) 7→ L(φ, a, ρ,m) is concave, and the coupling
between (φ, a) and (ρ,m) is bilinear. Thus, we can apply PDHG [19, 20] to solve (3.2). Also,
note that the first-order optimality conditions for φ are

ρt +∇ ·m = 0 in Ω× (0, 1)

m(x, t) · ν = 0 in ∂Ω× (0, 1)

ρ(x, 0) = ρ0(x) in Ω

Therefore, the no-flux boundary condition for m and the initial condition for ρ are incorpo-
rated in (3.2), and no extra considerations are necessary.

Furthermore, we must add a constraint ρ ≥ 0 to account for ρ being a probability dis-
tribution. This adjustment is coherent with the derivation (3.1) because the viscosity-
solution constraint (2.3) should be replaced by pointwise constraints −∂t + H(x,∇φ) ≤∑r
i=1 ai(t)fi(x), φ(x, 1) ≤ g(x). We refer to [10] for details.
As illustrated in [32, 31], the choices of spaces for variables are crucial when applying

PDHG. Correct choices render algorithms with grid-size-independent convergence rates. For
a, ρ,m we choose L2 spaces, whereas for φ we choose H1. The motivation for this choice
comes from convergence analysis of PDHG. Indeed, upper bounds on the step-sizes depend
on the inverse of the norm of the bilinear coupling∣∣∣∣∫

Ω

∫ 1

0

(ρφt +m · ∇φ) dxdt

∣∣∣∣ ≤ ‖(ρ,m)‖L2 · ‖φ‖H1

This norm is finite if we choose L2 norm for (ρ,m) and H1 norm for φ. If we chose L2 norm
for φ, the bilinear coupling would have infinite norm. Therefore the corresponding norm
of the finite-dimensional coupling on a grid would depend on the grid-size and converge to
infinity as grid gets finer. Consequently, the step-sizes that guarantee the convergence of
the algorithm would shrink to 0 and yield an impractically slow algorithm. The H1 norm,
on the other hand, yields convergence guarantees and rates that are grid-independent.

For step-sizes τ∇φ, τφt , τφ(0), τρ, τm, and current iterates (ak, φk, ρk,mk, āk, φ̄k) the update
rules for PDHG are

(3.3)



(ρk+1,mk+1) = argmax
ρ,m

L(φ̄k, āk, ρ,m)− 1
2τρ
‖ρ− ρk‖2

L2
x,t
− 1

2τm
‖m−mk‖2

L2
x,t

(ak+1, φk+1) = argmin
a,φ

L(φ, a, ρk+1,mk+1) + 1
2τφ(0)

‖φ(·, 0)− φk(·, 0)‖2L2
x

+ 1
2τ∇φ
‖∇φ−∇φk‖2

L2
x,t

+ 1
2τφt
‖φt − φkt ‖2L2

x,t
+ 1

2τa
‖a− ak‖2

L2
t

(āk+1, φ̄k+1) = 2(ak+1, φk+1)− (ak, φk)

The critical observation is that the variational problems above are well-posed and easy
to solve. In what follows we discuss in details each of the updates.
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The updates for (ρ,m). We have that

δL
δρ

=− φt − L
(
x,
m

ρ

)
+∇vL

(
x,
m

ρ

)
· m
ρ
−

r∑
i=1

ai(t)fi(x)

δL
δm

=−∇φ−∇vL
(
x,
m

ρ

)
Therefore, for updating (ρ,m) we must solve the following system

(3.4)

∇vL
(
x, mρ

)
· mρ − L

(
x, mρ

)
− ρ−ρk

τρ
= φ̄kt +

∑r
i=1 ā

k
i (t)fi(x)

∇vL
(
x, mρ

)
+ m−mk

τm
= ∇φ̄k

Remark 3.1. System (3.4) yields decoupled one-dimensional convex optimization prob-
lems at the grid-points. Therefore the proximal update for (ρ,m) can de performed efficiently
in parallel. This feature is one of the most appealing properties of ADMM [11, 9, 10] and
PDHG [13, 12, 32, 39] algorithms for MFG systems and related problems for local cou-
plings. However, direct extensions of aforementioned methods to nonlocal MFG systems do
not preserve this property. One of the critical features of our approach is that we preserve
this property. We refer to Section 3.1 for details.

For some Lagrangians, (3.4) simplifies greatly. For instance, for L(x, v) = |v|2
2 + Q(x, t)

we have that ∇vL(x, v) = v, and (3.4) becomes{
|m|2
2ρ2 −

ρ−ρk
τρ

= Q(x, t) + φ̄kt +
∑r
i=1 ā

k
i (t)fi(x)

m
ρ + m−mk

τm
= ∇φ̄k

Furthermore, eliminating m from the second equation, we obtain

(3.5)

{
|mk+τm∇φ̄k|2

2(τm+ρ)2 − ρ−ρk
τρ

= Q(x, t) + φ̄kt +
∑r
i=1 ā

k
i (t)fi(x)

m = ρm
k+τm∇φ̄k
τm+ρ

Therefore, we just need to solve a cubic equation for ρ and update m by an explicit formula.

Remark 3.2. As mentioned before, we must add a constraint ρ ≥ 0 in (3.2). Therefore,
equations above must be complemented by the condition ρ ≥ 0. Furthermore, the expression

L
(
x, mρ

)
must be understood in the following sense

L

(
x,
m

ρ

)
=


L
(
x, mρ

)
, when ρ > 0

0, when m = 0, ρ = 0

+∞, when m 6= 0, ρ = 0

The function γ(ρ) = |mk+τm∇φ̄k|2
2(τm+ρ)2 − ρ−ρk

τρ
, ρ ≥ 0 is strictly decreasing. Therefore, either

γ(0) ≥ Q(x, t)+φ̄kt +
∑r
i=1 ā

k
i (t)fi(x) or γ(0) < Q(x, t)+φ̄kt +

∑r
i=1 ā

k
i (t)fi(x). In the former

case, there exists a unique ρk+1(x, t) ≥ 0 such that γ(ρk+1(x, t)) = Q(x, t) + φ̄kt (x, t) +∑r
i=1 ā

k
i (t)fi(x). In the latter case, we set ρk+1(x, t) = 0. In both cases, we update m

accordingly.

The updates for (a, φ). We have that

∂L
∂a

=K−1a−
(∫

Ω

fi(x)ρ(x, t)dx

)r
i=1

∂L
∂φ

=ρt +∇ ·m+ (ρ− ρ0(x)) (dx
¬
Ω)× δt=0 −m · ν d∂Ωx× dt

where ν is the outward normal of Ω, and d∂Ω is the surface measure of ∂Ω. Note that we
only consider variations that preserve the boundary condition φ(x, 1) = g(x). Therefore, to
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update (a, φ) we must solve the system

(3.6)



K−1a−
(∫

Ω
fi(x)ρk+1(x, t)dx

)r
i=1

+ a−ak
τa

= 0

ρk+1
t +∇ ·mk+1 − φtt−φktt

τφt
− ∆φ−∆φk

τ∇φ
= 0

ρk+1(x, 0)− ρ0(x)− φt(x,0)−φkt (x,0)
τφt

+ φ(x,0)−φk(x,0)
τφ(0)

= 0

φ(x, 1) = g(x)(
−mk+1 + ∇φ−∇φk

τ∇φ

)
· ν = 0

Note that the equations for a and φ are decoupled. Furthermore, we obtain explicit updates
for a:

(3.7) ak+1 = (τaK
−1 + I)−1

(
ak + τa

(∫
Ω

fi(x)ρk+1(x, t)dx

)r
i=1

)
Finally, to update φ we must solve the space-time elliptic equation

(3.8)



φtt
τφt

+ ∆φ
τ∇φ

= ρk+1
t +∇ ·mk+1 +

φktt
τφt

+ ∆φk

τ∇φ
in Ω× (0, 1)

φt(x,0)
τφt

− φ(x,0)
τφ(0)

= ρk+1(x, 0)− ρ0(x) +
φkt (x,0)
τφt

− φk(x,0)
τφ(0)

in Ω

φ(x, 1) = g(x) in Ω
∂φ(x,t)
∂ν = ∂φk(x,t)

∂ν + τ∇φm
k+1 · ν in ∂Ω× (0, 1)

This step can be efficiently performed by the Fast Fourier Transform (FFT).

3.1. Dimension reduction. Here, we illustrate the dimension reduction and computa-
tional efficiency obtained with our method. Assume that Ω is bounded, and Kr, Sr are
approximations of K,S in the C2 norm. Then we have that∥∥∥∥∫

Ω

K(·, y)ρ(y)dy −
∫

Ω

Kr(·, y)ρ(y)dy

∥∥∥∥
C2

≤ ‖K −Kr‖C2 ,∥∥∥∥∫
Ω

S(·, y)ρ(y)dy −
∫

Ω

Sr(·, y)ρ(y)dy

∥∥∥∥
C2

≤ ‖S − Sr‖C2 ,

for all ρ ∈ P(Ω). Therefore, if we approximate f, g by fr, gr in the C2 norm, we obtain C2

approximations of the terms

f

(
x,

∫
Ω

K(x, y)ρ(y, t)dy

)
, g

(
x,

∫
Ω

S(x, y)ρ(y, 1)dy

)
that are uniform in ρ. Therefore, fr, gr,Kr, Sr produce an approximation of (1.1) that is
independent of the grid-size or the number of agents.

Furthermore, from the stability theory of (1.1) [38, 16], we have that solutions of (1.1)
corresponding to fr, gr,Kr, Sr are precompact in C(Ω × [0, 1]) × C ([0, 1],P(Ω)), and all
accumulation points are solutions corresponding to f, g,K, S. Additionally, if the operators

ρ 7→ f

(
x,

∫
Ω

K(x, y)ρ(y)dy

)
, ρ 7→ g

(
x,

∫
Ω

S(x, y)ρ(y)dy

)
are monotone, (1.1) admits a unique solution, (φ, ρ), and

lim
r→∞

‖φr − φ‖L∞ = 0, lim
r→∞

sup
t∈[0,1]

W1(ρr(·, t), ρ(·, t)) = 0,

if lim
r→∞

‖ξ−ξr‖C2 = 0, ξ ∈ {f, g,K, S}, where W1 is the 1-Wasserstein or Monge-Kantorovich

distance in P(Ω).
Thus, once we produce approximations of f, g,K, S, we obtain an approximation of (1.1)

that works equally fine across all discretizations. Therefore, once we fix r, we can solve the
r-problem as accurately as we wish without extra cost for fine meshes. Additionally, as we
show below, for fixed r, the computational cost is on par with those of existing algorithms
for local couplings. Of course, the smaller r the better, and the size of r depends on how
well {fi} approximate f, g,K, S.

We now compare the computational complexity of our method versus direct applications
of primal-dual optimization algorithms to solve (1.1). The starting point for these methods
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is to write (2.1) as a convex optimization problem introduced in [38]. More precisely, when
K is symmetric, one has that (2.1) is equivalent to

inf
φ(x,1)≤g

sup
ρ≥0,m

{
−
∫

Ω

φ(x, 0)ρ0(x)dx−
∫

Ω

∫ 1

0

(ρφt +m · ∇φ) dxdt

−
∫ 1

0

{∫
Ω

ρL

(
x,
m

ρ

)
dx+ F(ρ(·, t))

}
dt

}
= inf
φ(x,1)≤g

α

sup
ρ≥0,m

L1(φ, ρ,m)

(3.9)

where

(3.10) F(ρ) =
1

2

∫
Ω2

K(x, y)ρ(x)ρ(y)dxdy, ρ ∈ P(Ω).

One can also work with the convex dual F∗ of F by introducing a dual variable α:

inf
φ(x,1)≤g

α

sup
ρ≥0,m

{∫ 1

0

F∗(α(·, t))dt−
∫

Ω

φ(x, 0)ρ0(x)dx−
∫

Ω

∫ 1

0

(ρφt +m · ∇φ) dxdt

−
∫

Ω

∫ 1

0

ρ

(
L

(
x,
m

ρ

)
+ α

)
dxdt

}
= inf
φ(x,1)≤g

α

sup
ρ≥0,m

L2(φ, α, ρ,m),

(3.11)

where F∗(α) = supρ
∫

Ω
α(x)ρ(x)dx − F(ρ). Therefore, there are two options for solving

(2.1): (i) work directly with F and solve (3.9) or its variants [13, 12], (ii) work with the
dual F∗ and solve (3.11) or its variants [9, 10]. We illustrate that direct applications of both
approaches to nonlocal problems lead to computationally expensive updates.

For concreteness, we estimate the computational complexity of the PDHG algorithm
proposed here, with and without applying the coefficients method. The analysis of other
primal-dual algorithms is analogous. First, we discuss the option of working directly with
F and solving (3.9). In this case, the proximal update for (ρ,m) would be

sup
ρ≥0,m

{
−
∫

Ω

φ̄k(x, 0)ρ0(x)dx−
∫

Ω

∫ 1

0

(
ρφ̄kt +m · ∇φ̄k

)
dxdt

−
∫ 1

0

{∫
Ω

ρL

(
x,
m

ρ

)
dx+ F(ρ(·, t))

}
dt

}

− 1

2τρ
‖ρ− ρk‖2L2

x,t
− 1

2τm
‖m−mk‖2L2

x,t

Therefore, we must solve the following system

(3.12)

L
(
x, mρ

)
−∇vL

(
x, mρ

)
· mρ + ρ−ρk

τρ
+ δρF(ρ) = 0

∇vL
(
x, mρ

)
+ m−mk

τm
= ∇φ̄k

For local interactions, one has that F(ρ) =
∫

Ω
F (ρ(x))dx for some F , and (3.12) becomesL

(
x, mρ

)
−∇vL

(
x, mρ

)
· mρ + ρ−ρk

τρ
+ F ′(ρ) = 0

∇vL
(
x, mρ

)
+ m−mk

τm
= ∇φ̄k,

which is a decoupled system of one-dimensional equations that can be solved efficiently
at each node. Therefore, the computational complexity of solving this system for local
problems is linear in the number of grid-points. However, for nonlocal interactions such as
in (3.10) we have that δρF =

∫
Ω
K(x, y)ρ(y)dy, and so (3.12) is now a fully coupled (in

space) system of nonlinear equations. Additionally, the complexity of the systems grows
with the mesh-size. One could approximate the term by δρF(ρ) by δρF(ρk) and decouple
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the system. Nevertheless, this would require a matrix multiplication that yields a superlinear
computational cost. Moreover, the proximal step could not be parallelized.

With our method, on the other hand, we obtain fully parallel proximal updates for (ρ,m)
(3.4) at the expense of solving an r × r system of equations to update the coefficients (ai).
To assemble the system for (ai), we need to evaluate terms

∫
Ω
fi(x)ρk+1(x, t)dx that yields

a linear cost in the number of grid-points. Therefore, once r is fixed, we obtain an overall
linear cost for updating (ρ,m) and (ai) which is the case for local interactions.

Next, we discuss the option of working with F∗ and solving (3.11). In this case, the
proximal update for α would be

inf
α

∫ 1

0

F∗(α(·, t))dt−
∫

Ω

∫ 1

0

ρk+1αdxdt+
1

2τα
‖α− αk‖2L2

x,t

Therefore, we must solve the following system

(3.13) δαF∗(α)(x, t)− ρk+1(x, t) +
α(x, t)− αk(x, t)

τα
= 0

For local interactions, F(ρ) =
∫

Ω
F (ρ(x))dx, we can calculate F∗(α) on the continuum level

by an explicit formula

F∗(α) =

∫
Ω

F ∗(α(x))dx,

where F ∗ is the convex dual of F . Therefore, δαF(α)(x) = (F ∗)′(α(x)), and (3.13) becomes

(F ∗)′(α(x, t))− ρk+1(x, t) +
α(x, t)− αk(x, t)

τα
= 0

As before, we obtain one-dimensional decoupled equations that can be solved in parallel at
grid-points.

In the nonlocal case though, the first issue is that we cannot calculate F∗ analytically
on the continuum level unless K is special. However, one can calculate F∗ on the discrete

level. Assume that {xi}Ni=1 is some space-discretization. Then we have that

F(ρ) =
1

2

∑
i,j

K(xi, xj)ρiρj , F∗(α) =
1

2

∑
i,j

Qijαiαj , δαF∗(α)i =
∑
j

Qijαj

where ρi = ρ(xi), αi = α(xi), and Q = (Qij) = (K(xi, xj))
−1. Therefore, (3.13) becomes

an N ×N system of linear equations

(3.14)
∑
j

Qijαj(t)− ρk+1
i (t) +

αi(t)− αki (t)

τα
= 0, i ∈ {1, 2, · · · , N}.

As before, we obtain a coupled system in the nonlocal case. The solution of this system
yields a polynomial computational complexity unless (K(xi, xj)) is special. For instance, if
(K(xi, xj)) is diagonalizable in a Fourier basis the computational cost is of order N logN
via FFT.

In our method, on the other hand, we replace dual variables (αi(t))
N
i=1 by coefficients

(ai(t))
r
i=1, and (3.14) is replaced by an r× r system (3.7). Therefore, we have to store much

less variables and, as mentioned before, obtain a linear computational cost. Additionally,
we can calculate the r× r matrix (τaK

−1 + I)−1 prior to optimization and use it afterward.
Moreover, since the size of this matrix is independent of the mesh-size, we do not have to
deal with conditioning issues for every mesh-size separately: we can do it once and for all
before optimization.

Finally, as we will see in Section 4, a smart choice of basis functions {fi} yields K = I.
Therefore, the updates for (ai(t))

r
i=1 are trivial and there is no need to solve linear systems

at all!

4. Modeling interactions with kernels

Here, we discuss modeling aspects of nonlocal MFG systems. In particular, we show how
to build kernels to enforce suitable behavior of agents. For that, we draw inspiration from
kernel methods in machine learning [41, Chapter 6].
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As mentioned before, (2.1) is well posed when ρ 7→
∫

Ω
K(x, y)ρ(y)dy is monotone. This

condition means that agents repel one another and try to minimize the cost

φ(x, t) = inf
u

∫ 1

t

{
L(z(s), u(s)) +

∫
Ω

K(z(s), y)ρ(y, t)dy

}
ds+ g(z(T ))

s.t. ż(s) = c(z(s), u(s)), z(t) = x

Therefore, K(x, y) is a similarity measure between positions x and y that agents try to
minimize. Kernel methods in ML study exactly this type of K for data separation. Different
choices of K lead to different separations.

The simplest example of K is the inner product, K(x, y) = x · y, which is amenable to
rigorous mathematical analysis. Natural extensions of the inner product are positive definite
symmetric (PDS) kernels.

Definition 4.1. K : (x, y) 7→ K(x, y) is a PDS kernel if (K(xi, xj))mi,j=1 is symmetric

positive semidefinite matrix for all {xi}mi=1 ⊂ Rd.

AssumeK is a continuous PDS. Thus, its symmetric, and for arbitrary ρk = 1
N

∑
i w

i
kδxi , k =

1, 2 we have that ∫
Ω2

K(x, y)(ρ2(x)− ρ1(x))(ρ2(y)− ρ1(y))dxdy

=
∑
i,j

K(xi, xj)(wi2 − wi1)(wj2 − w
j
1) ≥ 0,

and hence ρ 7→
∫

Ω
K(x, y)ρ(y)dy is monotone.

The discussion above shows that PDS kernels suit MFG models extremely well. Thus,
we will build various MFG models by choosing suitable PDS kernels. In this context, as we
shall see below, the basis {fi} corresponds to feature vectors.

The remarkable fact about PDS kernels is that all of them are inner products. More
precisely, K is PDS iff there exists a Hilbert space H and a mapping x 7→ f(x) ∈ H such
that

(4.1) K(x, y) = 〈f(x), f(y)〉H, ∀x, y

In other words, one can associate points {x} in the input space with vectors {f(x)} in
a Hilbert space so that K(x, y) is precisely the inner product of f(x) and f(y) in H [41,
Theorem 6.8]. The vector f(x) is called the feature vector of x. IfH is separable we can write
f(x) = (f1(x), f2(x), · · · , fn(x), · · · ) in some basis of H and f1(x), f2(x), · · · , fn(x), · · · will
be the features of x. H is called a reproducing kernel Hilbert space (RKHS). For K(x, y) =
x · y =

∑
xiyi the features are simply the coordinates.

The RKHS theory blends very well with our coefficients method by providing the basis
we need in the form of feature vectors. Indeed, assume that K is a PDS kernel and H is its
RKHS with a basis {ei}. Then, we obtain that

K(x, y) =〈f(x), f(y)〉H = 〈
∑
i

fi(x)ei,
∑
i

fi(y)ei〉H

=
∑
i,j

〈ei, ej〉Hfi(x)fj(y) =
∑
i,j

kijfi(x)fj(y),

which is the representation we need. In this case, K = (〈ei, ej〉H) is the Gram matrix
associated to the basis {ei} in H. Below, we present several common choices for K and
provide the basis {fi} and the matrix K.

4.1. Maximal spread. Assume that we want to enforce a maximal spread of the population
by penalizing individual agents for being close to the average position of the population. This
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means that an individual agent faces an optimal control problem

inf
ż=c(z,u)

∫ 1

0

`(z(s), u(s))−
d∑
i=1

λi

∣∣∣∣zi(s)− ∫
Ω

yiρ(y, s)dy

∣∣∣∣2 ds+ g(z(1))

= inf
ż=c(z,u)

∫ 1

0

[
`(z(s), u(s))−

d∑
i=1

λi|zi(s)|2 + 2

d∑
i=1

λi

{∫
Ω

zi(s) · yiρ(y, s)dy

}

−
d∑
i=1

λi

∣∣∣∣∫
Ω

yiρ(y, s)dy

∣∣∣∣2
]
ds+ g(z(1))

Above, λ1, λ2, · · · , λd ≥ 0 signify how much we enforce spreading in each coordinate direc-
tion. Additionally, `(x, u) is some intrinsic running cost.

Since the term −
∑d
i=1 λi

∣∣∫
Rd yiρ(y, s)dy

∣∣2 does not depend on the trajectory z, the
problem above is equivalent to

inf
ż=c(z,u)

∫ 1

0

`(z(s), u(s))−
d∑
i=1

λi|zi(s)|2 +

∫
Ω

{
2

d∑
i=1

λizi(s) · yi

}
ρ(y, s)dydt

+ g(z(1))

Therefore, we obtain an MFG system (2.1) where

L(x, u) =`(x, u)−
d∑
i=1

λi|xi|2

K(x, y) =2

d∑
i=1

λixiyi

H(x, p) = sup
u
{−p · c(x, u)− L(x, u)}

The key point is that Rd is an RHKS for K, and

K(x, y) =

d∑
i=1

fi(x)fi(y)

where fi(x) =
√

2λixi, 1 ≤ i ≤ d. Thus, we use these {fi} as the basis in our method. An
excellent feature of this choice is that we obtain K = K−1 = I which yields a trivial update
rule (3.7) for a that reads

ak+1
i (t) =

τa
∫

Ω
fi(x)ρk+1(x, t)dx+ aki (t)

τa + 1

4.2. Gaussian repulsion. Another common choice for PDS kernels are Gaussians

K(x, y) = µ

d∏
i=1

exp

(
−|xi − yi|

2

2σ2
i

)
,

for some µ, σ1, σ2, · · · , σd > 0. The parameter σi signifies how repulsive are the agents in
i-th coordinate direction.

As before, we will try to find a suitable expansion of K. Using the power series expansion
of ex one can show that

K(x, y) =
∑

α1,α2,··· ,αd≥0

{
√
µe
−

∑d
i=1

|xi|
2

2σ2
i

d∏
i=1

xαii
σαii αi!

}
·

{
√
µe
−

∑d
i=1

|yi|
2

2σ2
i

d∏
i=1

yαii
σαii αi!

}
=

∑
α1,α2,··· ,αd≥0

fα1,α2,··· ,αd(x)fα1,α2,··· ,αd(y),

where

fα1,α2,··· ,αd(x) =
√
µe
−

∑d
i=1

|xi|
2

2σ2
i

d∏
i=1

xαii
σαii αi!

, α1, α2, · · · , αd ≥ 0.
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Hence, we choose {fα1,α2,··· ,αd} as the basis for our coefficients method and choose n to

approximate K with functions of order
∑d
i=1 αi ≤ n. As before, an excellent feature of this

basis is that K = K−1 = I.

Interactions in sub-regions. Methods described above also provide flexible framework
to model interactions within sub-regions. Assume that Ω1,Ω2 are complementary in Ω.
Furthermore, assume that agents in Ωi interact only with those in Ωi for i = 1, 2. There is
a straightforward way of extending the framework above to this setting.

Suppose that kernels modeling the interaction in Ω1,Ω2 are K1,K2, respectively. Addi-
tionally, assume that the basis for K1 is {f1

i }, and the one for K2 is {f2
i } that can be of a

different size. Thus, we want to construct K such that

K(x, y) =

{
Ki(x, y), (x, y) ∈ Ωi × Ωi

0, otherwise

Furthermore, we want to construct a basis for K out of {f1
i } and {f2

i }. These can be done
as follows:

K(x, y) =K1(x, y) · χΩ1
(x)χΩ1

(y) +K2(x, y) · χΩ2
(x)χΩ2

(y) =

=
∑
ij

k1
ijf

1
i (x)f1

j (y)χΩ1(x)χΩ1(y) +
∑
ij

k2
ijf

2
i (x)f1

j (y)χΩ2(x)χΩ2(y)

=
∑
ij

k1
ijf

1
i (x)χΩ1

(x)f1
j (y)χΩ1

(y) +
∑
ij

k2
ijf

2
i (x)χΩ2

(x)f2
j (y)χΩ2

(y),

where χA is the characteristic function of A. Therefore, the basis for K can be obtained
from the ones of K1,K2 by simply restricting them into subdomains and combining:{

f1
i (x)χΩ1(x), f2

i (x)χΩ2(x)
}

Furthermore, we have that

K =

(
K1 0
0 K2

)
, K−1 =

(
K−1

1 0
0 K−1

2

)
,

where Ki = (kiij), i = 1, 2. Therefore, low complexity matrices for K1,K2 yield a low
complexity matrix for K.

In case we have multiple regions Ω1,Ω2, · · · ,ΩN with kernels K1,K2, · · · ,KN and bases
{f1
i }, {f2

i }, · · · {fNi } we obtain a basis{
f1
i (x)χΩ1(x), f2

i (x)χΩ2(x), · · · , fNi (x)χΩN (x)
}
,

and

K =


K1 0 · · · 0
0 K2 · · · 0
...

...
...

...
0 · · · KN−1 0
0 · · · 0 KN

 , K−1 =


K−1

1 0 · · · 0
0 K−1

2 · · · 0
...

...
...

...
0 · · · K−1

N−1 0

0 · · · 0 K−1
N

 ,

where Ki is the matrix corresponding to Ki.

4.3. Interactions given by differential operators. Finally, we demonstrate how our
methods work for interactions given by differential operators. In a seminal paper on numer-
ical methods for MFG [5], the authors consider an interaction term

(4.2) V [ρ] = µ(I −∆)−2ρ,

where µ > 0, ∆ is the Laplacian operator, and the problem is set on a flat torus Td. We
have that

V [ρ] =

∫
Td

Γ(x− y)ρ(y)dy,

where Γ is the fundamental solution; that is,

(4.3) (I −∆)2Γ = µδ0.
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Thus, we have that K(x, y) = Γ(x− y). As pointed out in [42], for convolutions on a torus,
the appropriate basis is the trigonometric one. Thus, we need to expand Γ into Fourier
series with respect to functions {cos(2πα · x), sin(2πα · x)} where α = (α1, α2, · · · , αd).
Furthermore, by the symmetry we have that Γ(x) = Γ(−x). Therefore, the expansion of Γ
contains only even functions; that is,

Γ(x) =
∑
α≥0

γα cos(2πα · x)

Next, solving (4.3) in a Fourier space yields

γ0 = µ, γα =
2µ

1 + 8π2|α|2 + 16π4|α|4
, α > 0,

where |α|2 =
∑d
i=1 α

2
i . Furthermore, we have that

K(x, y) =Γ(x− y) =
∑
α≥0

γα cos(2πα · (x− y))

=
∑
α≥0

(
γα cos(2πα · x) cos(2πα · y) + γα sin(2πα · x) sin(2πα · y)

)
=
∑
α≥0

f cos
α (x)f cos

α (y) +
∑
α>0

f sin
α (x)f sin

α (y),

where

f cos
α (x) =

√
γα cos(2πα · x), f sin

α (x) =
√
γα sin(2πα · x), α ≥ 0.

Therefore, we choose {f cos
α , f sin

α } as the basis for our coefficients method and choose n to

approximate K with functions of order
∑d
i=1 αi ≤ n. Again, this choice renders K = K−1 =

I.

5. Potential applications to multi-agent trajectory planning problems

Here, we discuss potential applications of our methods to multi-agent trajectory planning
problems. We start by a brief derivation of (1.1) and (2.1). Assume that we have a swarm
of agents where agent i ∈ {1, 2, · · · , N} aims at minimizing a cost

inf
ui

∫ 1

t

L(zi(s), ui(s), s) + fi(zi(s), z−i(s))ds+ gi(zi(1), z−i(1))

s.t. żi(s) = c(zi(s), ui(s)), zi(t) = xi

(5.1)

Above, z−i = (zj)j 6=i, and f, g model interactions between the agents. This problem leads
to a system of N coupled HJBs that is extremely challenging to solve, especially in high-
dimensions and for many agents.

The MFG framework provides a solution to this problem by assuming symmetric inter-
actions and considering the continuum limit N =∞. More precisely, if we suppose that

fi(zi, z−i) = f

zi, 1

N − 1

∑
j 6=i

δzj

 , gi(zi, z−i) = g

zi, 1

N − 1

∑
j 6=i

δzj

 ,

and formally pass to the limit when N →∞ we obtain a system where a generic agent solves
an optimal control problem

φ(x, t) = inf
u

∫ 1

t

L(z(s), u(s), s) + f(z(s), ρ(·, s))ds+ g(z(1), ρ(·, 1))

s.t. ż(s) = c(z(s), u(s)), z(t) = x,

(5.2)

where ρ(·, s) is the distribution of population at time s. We have that φ solves the HJB
equation {

−φt + supu {−∇φ(x, t) · c(x, u)− L(x, u, t)} = f(x, ρ(x, t))

φ(x, 1) = g(x, ρ(x, 1)),
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and the optimal control, u∗, is given by the Pontryagin Maximum Principle:

u∗(x, t) ∈ argmaxu {−∇φ(x, t) · c(x, u)− L(x, u, t)}

Furthermore, ρ satisfies the continuity equation{
ρt(x, t) +∇ · (ρ(x, t)c(x, u∗(x, t))) = 0

ρ(x, 0) = ρ0(x),

where ρ0 is the initial distribution of the agents. Collecting all equations together we obtain
the MFG system

(5.3)


−φt + supu {−∇φ · c(x, u)− L(x, u, t)} = f(x, ρ(x, t))

ρt(x, t) +∇ · (ρ(x, t)c(x, u∗(x, t))) = 0

u∗(x, t) ∈ argmaxu {−∇φ(x, t) · c(x, u)− L(x, u)}
ρ(x, 0) = ρ0(x), φ(x, 1) = g(x, ρ(x, 1))

Remark 5.1. Equations (1.1), (2.1) correspond to the case c(x, u) = u, and u 7→ L(x, u)
convex, for which we have a rigorous mathematical analysis [38].

The appealing feature of MFG systems is that instead of solving a highly coupled system
of N HJBs in d × N dimensions we have to solve a single HJB coupled with a continuity
equation in d dimensions. More importantly, the MFG optimal control, u∗, yields near
optimal controls for the N agent problem (5.1).

Of course, the performance of the MFG control in (5.1) depends on N and gets better as
N grows. Nevertheless, it still makes sense to apply MFG controls because they are faster to
generate and provide appealing properties such as no-collision trajectories. For instance, if

c(x, u) = u, and L(x, u) = |u2|
2 +Q(x, t) for some smooth Q, one can show that trajectories

corresponding to u∗(x, t) do not intersect [16, Lemma 4.13].
In the context above, our method may provide a flexible way of augmenting existing

solution methods for single-agent trajectory planning problems to generate MFG optimal
controls for multi-agent problems.

Indeed, Theorem 2.3 asserts that, under the settings of this paper, (5.3) is equivalent to
the optimization problem

inf
a∈C([0,1];Rr)

〈K−1a, a〉
2

−
∫

Ω

φa(x, 0)ρ0(x)dx(5.4)

where φa solves the HJB

(5.5)

{
−φt + supu {−∇φ(x, t) · c(x, u)− L(x, u, t)} =

∑r
i=1 ai(t)fi(x)

φ(x, 1) = g(x),

In Section 3, we showed how to apply a PDHG algorithm to solve (5.4). Here, we argue that
virtually any HJB solver (single-agent trajectory-planner) can be augmented to solve (5.4).

We propose solving (5.4) by some type of gradient descent on a = (ai). For that, we fix
an iterate acurrent and run any single-agent trajectory planning algorithm to solve (5.5) for
a = acurrent and generate an optimal control ucurrent. Then we solve the forward continuity
equation {

ρt(x, t) +∇ · (ρ(x, t)c(x, ucurrent(x, t))) = 0

ρ(x, 0) = ρ0(x),

and generate ρcurrent. Finally, we update a = (ai) by a gradient descent step using (2.5):

anewi (t) = acurrenti (t)− h
r∑
j=1

kija
current
j (t) + h

∫
Ω

fi(x)ρcurrent(x, t)dx,

where h > 0 is the descent step-sizes.

Remark 5.2. Several remarks are in order.
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1. Explicit gradient descent steps and exact solutions ucurrent can be replaced by implicit
(proximal) steps and approximate solutions as in the PDHG here and [42].

2. The approach above works for both Eulerian and Lagrangian solvers. For latter, the
terms

∫
Ω
fi(x)ρcurrent(x, t) are simply averages of fi-s on the trajectories of particles

[42].
3. The number of coefficients, r, does not depend on the number of agents, and we

always need to (approximately) solve one decoupled HJB at each iteration.

Finally, we observe that the methods discussed here also work the other way around; that
is, optimal control solvers can be easily adapted to solve MFG problems.

6. Numerical experiments

Here, we present several numerical experiments in a two-dimensional case for kernels and
bases discussed in Section 4. We take Ω × [0, T ] = [0, 1]2 × [0, 1] and choose a uniform
space-grid with Nx = 64 points per dimension and a uniform time-grid with Nt = 32 points
in all our examples.

Given Nx1, Nx2, Nt, we have ∆x1 = 1
Nx1

, ∆x2 = 1
Nx2

, ∆t = 1
Nt

. For x1 = i∆x1, x2 =
j∆x2, tl = l∆t, define

ρli,j = ρ(xi, xj , tl) 1 ≤ i ≤ Nx1, 1 ≤ j ≤ Nx2, 1 ≤ l ≤ Nt
ml

1,i+ 1
2 ,j+

1
2

= mx1(xi+ 1
2
, xj+ 1

2
, tl) 1 ≤ i ≤ Nx1, 1 ≤ j ≤ Nx2, 1 ≤ l ≤ Nt

ml
2,i+ 1

2 ,j+
1
2

= mx2(xi+ 1
2
, xj+ 1

2
, tl) 1 ≤ i ≤ Nx1, 1 ≤ j ≤ Nx2, 1 ≤ l ≤ Nt

φli,j = φ(xi, xj , tl) 1 ≤ i ≤ Nx1, 1 ≤ j ≤ Nx2, 1 ≤ l ≤ Nt
ak,l = ai(tl) 1 ≤ l ≤ Nt, 1 ≤ k ≤ r
fk,i,j = fk(xi, xj) 1 ≤ i ≤ Nx1, 1 ≤ j ≤ Nx2, 1 ≤ k ≤ r
ρ0
i,j = ρ0(xi, xj) 1 ≤ i ≤ Nx1, 1 ≤ j ≤ Nx2

gi,j = g(xi, xj) 1 ≤ i ≤ Nx1, 1 ≤ j ≤ Nx2

To satisfy the Neumann boundary condition, we have

ml
1,i+ 1

2 ,j+
1
2

= 0 i = 1, Nx1, 1 ≤ j ≤ Nx2, 1 ≤ l ≤ Nt

ml
2,i+ 1

2 ,j+
1
2

= 0 1 ≤ i ≤ Nx1, j = 1, Nx2, 1 ≤ l ≤ Nt

The Fokker-Planck equation discretized with forward difference in time as follows:

1

∆t

(
ρl+1
i,j − ρ

l
i,j

)
+

1

∆x1

(
ml
i+ 1

2 ,j
−ml

i− 1
2 ,j

)
+

1

∆x2

(
ml
i,j+ 1

2
−ml

i,j− 1
2

)
= 0,

The HJB equation is discretized with backward difference in time as follows:

− 1

∆t

(
φlj − φl−1

j

)
+H

(
xj ,∇xφli,j

)
=

r∑
k=1

ak,lfk,i,j ,

with ∇xφli,j =

[
φli+1,j − φli,j

∆x1
,
φli,j+1 − φli,j

∆x2

]T
.
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With above finite difference scheme, we are ready to define the objective function of our
min-max problem L(φ, a, ρ,m) in discrete form:

L(φ, a, ρ,m) =
∆t

2

∑
l

r∑
k1,k2=1

ak1,lak2,lrk1k2 −∆x1∆x2

∑
i,j

φi,j,1ρ
0
i,j

−∆x1∆x2∆t
∑
i,j

∑
l

((
ρli,j

(
φlj − φ

l−1
j

)
∆t

+ml
i+ 1

2 ,j+
1
2
· ∇xφli,j

)

+ ρli,j

(
L(x,

ml
i+ 1

2 ,j+
1
2

ρli,j
) +

r∑
k=1

ak,lfk,i,j

))
,

with ml
i,j =

[
ml

1,i+ 1
2 ,j+

1
2
,ml

2,i+ 1
2 ,j+

1
2

]T
,

where (rk1k2) = K−1.

6.1. Maximal spread. We consider a maximal spread model on from Section 4.1 in the
domain Ω × [0, T ] = [0, 1]2 × [0, 1]. We denote by ρG(c1, c2, σG) the density of a homoge-
neous normal distribution centered at (c1, c2) with variance σ2

G. We set the initial-terminal
conditions for our MFG system to be

ρ0(x1, x2) = ρG(0.5, 0.9, 0.2)

g(x1, x2) = 2 exp
(
−10 (x1 − 0.5)

2 − (x2 − 0.1)
2
)(

(x2 − 0.1)
2 − 1

)
.

Furthermore, we set

L(x, v) =
1

2
‖v‖2 + 103 (max (|x1 − 0.5|, |x2 − 0.5|))8

We have computed the MFG solutions for four choices of parameters

(λ1, λ2) ∈ {(0.1, 0.1), (0.1, 4), (4, 0.1), (4, 4)}

The results are shown in Figure 1. We can see that, in accordance to theory, larger λi
prompt larger spread in xi directions. Additionally, we see the flexibility of our method for
modeling interactions that are heterogeneous in different directions.

6.2. Gaussian repulsion with static obstacles. We consider a MFG model with Gauss-
ian repulsion from Section 4.2 on the domain Ω × [0, T ] = [−1, 1]2 × [0, 1]. We set the
initial-terminal conditions for our MFG system to be

ρ0(x1, x2) = ρG(0,−0.9, 0.2)

g(x1, x2) = 2 exp
(
−5x2

1 − 0.25 (x2 − 0.9)
2
)(

(x2 − 0.9)
2 − 1

)
+ x2

1

We fix this g for all examples with Gaussian repulsion. Furthermore, we set

L(x, v) =
1

2
‖v‖2 + 103 (max (|x1 − 0.5|, |x2 − 0.5|))8

+Q(x),

where Q(x) takes on extremely high values on the four rectangular regions in Figure 2 and
0 elsewhere. Thus, Q models four static rectangular obstacles. Finally, we choose n = 3 to
approximate the kernel.

We have computed the MFG solutions for four choices of parameters

(σ1, σ2, µ) ∈ {(0.8, 0.8, 0.1), (0.2, 0.2, 5), (0.5, 0.2, 5), (0.2, 0.5, 5)}

The results are shown in Figure 2. As we can see, agents travel through the channels created
by Q(x) to avoid high cost. Recall that small σi yields strong repulsion in xi direction, which
results in different behavior by agents. For instance, in Figure 2 (C) we impose a strong
repulsion in x2 direction and see horizontally elongated density evolution.
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Fig. 1. Maximal spread. MFG solution ρ(x, t) at t = 0.1, 0.5, 0.9 with
different choice of λi
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(b) σ1 = 0.2, σ2 = 0.2, µ = 5
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(c) σ1 = 0.5, σ2 = 0.2, µ = 5
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Fig. 2. Gaussian repulsion with static obstacles. MFG solution
ρ(x, t) at t = 0.1, 0.5, 0.9 with different Gaussian parameters (σ1, σ2, µ),
where bright yellow rectangles represents static obstacles.
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6.3. Gaussian repulsion with dynamic obstacles. Next we consider a MFG model with
Gaussian repulsion on Ω× [0, T ] = [−1, 1]2 × [0, 1] with dynamic obstacles. We set

ρ0(x) =
1

5

5∑
j=1

ρG(cj ,−0.9, σG), σG = 0.2, cj = −1.2 + 0.4j, 1 ≤ j ≤ 5

To model dynamic obstacles, we set

L(x, v) =
1

2
‖v‖2 + 103 (max (|x1 − 0.5|, |x2 − 0.5|))8

+Q(x, t)

where Q now represents time-dependent rectangular obstacles that move vertically. The rest
of the parameters are the same as in the previous section. The results are shown in Figure
3. Again, values of σ1, σ2 control how spread is the solution in x1, x2 directions.

We also note that the computational cost for the static and dynamic models is the same.

6.4. Interactions in sub-regions. Next, we consider a MFG model with a Gaussian re-
pulsion on Ω × [0, T ] = [−1, 1]2 × [0, 1] where agents interact only within domains Ω1 =
{(x1, x2) : x1 ≤ 0} and Ω2 = {(x1, x2) : x1 > 0}. This means that agents in Ωi interact only
with those in Ωi. We set

g(x1, x2) = −4 exp
(
−5
(
x1 − 0.0)2 − 2.5(x2 − 0.5)2

))
ρ0(x) =

1

2
ρG(0.2,−0.9, σG) +

1

2
ρG(−0.2,−0.9, σG)

The rest of the parameters are the same as for previous examples with Gaussian repulsion.
We apply the basis modification explained in Section 4.2 to compute the solution. The
results are shown in Figure 4 where we have also included the solution with same data but
full interaction. In both cases, densities spread before concentrating at the desired location.
However, in the sub-region interaction case, Figure 4 (A), there is a concentration of agents
along the common boundary of Ω1,Ω2. The reason is that agents on different sides of this
boundary do not interact with each other, so they do not mind congestion.

6.5. Differential-operator interactions. Throughout this section, we set V = µ(I −
∆)−2, µ > 0 and Ω = Td. In [5], the authors solve a stationary MFG system

(6.1)


H(x,∇φ) = V [ρ] + λ

−∇ · (ρ∇pH(x,∇φ)) = 0∫
ρ = 1, ρ ≥ 0, λ ∈ R

by approximating it with its second-order version

(6.2)


−σ∆φ+H(x,∇φ) = V [ρ] + λ

−σ∆ρ−∇ · (ρ∇pH(x,∇φ)) = 0∫
ρ = 1, ρ ≥ 0, λ ∈ R

for small σ > 0. Here, we recover the results in [5] using our method. Since we consider first-
order time-dependent systems instead of second-order stationary ones, we apply a different
approximation procedure for (6.1).

To approximate (6.1) we use the long-time convergence, or the turnpike property, of MFG
systems discussed in [15]. More precisely, we approximate (6.1) by

(6.3)


−ψt +H(x,∇ψ) = V [ν]

νt −∇ · (ν∇pH(x,∇ψ)) = 0

ν(x, 0) = ρ0(x), ψ(x, T ) = g(x)

where ρ0 ∈ L∞(Td), g ∈ C2(Td) and T > 0 is large. To formulate the convergence results,
we need to scale the time variable in (6.3) and obtain a problem on a time-interval [0, 1].
For that, we write ψ(x, t) = φ(x, tT ), ν(x, t) = ρ(x, tT ), and (6.3) becomes

(6.4)


−φt + T ·H(x,∇φ) = TV [ρ]

ρt −∇ ·
(
ρ∇p(T ·H(x,∇φ))

)
= 0

ρ(x, 0) = ρ0(x), φ(x, 1) = g(x)
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(b) σ1 = 0.2, σ2 = 0.2, µ = 5

-1 0 1

x
2

-1

0

1

x
1

-1 0 1

x
2

-1

0

1

x
1

0

5

10

15

20

25

0 0.5 1

x
2

0

0.5

1

x
1

(c) σ1 = 0.5, σ2 = 0.2, µ = 5
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(d) σ1 = 0.2, σ2 = 0.5, µ = 5

Fig. 3. Gaussian repulsion with dynamic obstacles. MFG solution
ρ(x, t) at t = 0.1, 0.5, 0.9 with different Gaussian parameters σ1, σ2, µ, where
bright yellow rectangles represent obstacles moving along x1 direction.
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Fig. 4. Sub-region interactions. MFG solution
ρ(x, 0.1), ρ(x, 0.5), ρ(x, 0.9) for sub-region and global interactions with
parameters σ1 = σ2 = 0.2, µ = 5

Furthermore, a triple (φ̄, ρ̄, λ̄) is solution of (6.1) if φ̄ is a Lipschitz viscosity solution of the
HJB in (6.1), ∇φ̄ exists ρ̄ a.e., and the continuity equation in (6.1) is satisfied in the sense
of distributions. We summarize the results from [15] in the following theorem. We omit
assumptions and technicalities and refer to the original paper for details.

Theorem 6.1 ([15]). Under suitable assumptions,

1. system (6.1) has at least one solution. Moreover, if (φ̄1, ρ̄1, λ̄1) and (φ̄2, ρ̄2, λ̄2) are
solutions, then λ̄1 = λ̄2, and V [ρ̄1] = V [ρ̄2].

2. for a solution (φ̄, ρ̄, λ̄) of (6.1) one has that

sup
t∈[0,1]

∥∥∥∥φT (·, t)
T

− λ̄(1− t)
∥∥∥∥
L∞(Td)

≤ C

T
1
2

,

and ∫ 1

0

‖V [ρT (·, t)]− V [ρ̄]‖L∞(Td)dt ≤
C

T
1
2

,

where (φT , ρT ) is the solution of (6.4).

Therefore, to approximate solutions of (6.1) we need to solve (6.4). We take H(x, p) =
|p|2
2 − Q(x) where Q is a smooth periodic function. In this case, one can easily verify that

assumptions in [15] are fulfilled.
As mentioned in the theorem above, a solution φ̄ in (6.1) is not necessarily unique even

up to constants, whereas λ̄ and V [ρ̄] are. However, for V = µ(I − ∆)−2 the uniqueness
of V [ρ̄] implies that of ρ̄. Furthermore, lim

T→∞
‖V [ρT (·, t)]− V [ρ̂]‖L∞(Td) = 0 implies a weak

convergence ρT (·, t) ⇀ ρ̄. Hence Theorem 6.1 guarantees that for a large set of times t ∈ [0, 1]
the solution ρT (·, t) of (6.4) converges weakly to a well defined limit ρ̄.
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As in [5] we take d = 2, µ = 200, and

Q(x1, x2) = − sin(2πx2)− sin(2πx1)− cos(4πx1)

We approximate V as in Section 4.3 using trigonometric polynomials up to order n = 2.
Additionally, we set T = 10, ρ0(x) = 1, g(x) = 0 . The results are shown in Figure 5 where
we plot ρT (x, t). We also plot φT (x, t) −

∫
Td φT (y, t)dy to test whether it approximates a

solution φ̄ of (6.1). Latter holds for second-order problems but not the first-order ones.
As we can see, we obtain accurate reconstructions of Tests 5, 6 in [5]. Our solutions are

slightly less diffused because we consider first-order equations as opposed to second-order

ones in [5]. Additionally, we use H(x, p) = |p|2
2 − Q(x) whereas the examples in [5] are

computed for H(x, p) = |p| 32 − Q(x). Nevertheless, we believe that qualitative properties
and shapes of the solutions do not alter much due to this difference.

Fig. 5. The contours and graphs of φT (x, t) −
∫
Td φT (y, t)dy and ρT (x, t)

for T = 10 and t = 0.4.
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