
OT-Flow: Fast and Accurate Continuous Normalizing
Flows via Optimal Transport

Derek Onken∗ Samy Wu Fung† Xingjian Li‡ Lars Ruthotto∗‡

Abstract

A normalizing flow is an invertible mapping between an arbitrary probability
distribution and a standard normal distribution; it can be used for density estimation
and statistical inference. Computing the flow follows the change of variables
formula and thus requires invertibility of the mapping and an efficient way to
compute the determinant of its Jacobian. To satisfy these requirements, normalizing
flows typically consist of carefully chosen components. Continuous normalizing
flows (CNFs) are mappings obtained by solving a neural ordinary differential
equation (ODE). The neural ODE’s dynamics can be chosen almost arbitrarily
while ensuring invertibility. Moreover, the log-determinant of the flow’s Jacobian
can be obtained by integrating the trace of the dynamics’ Jacobian along the flow.
Our proposed OT-Flow approach tackles two critical computational challenges that
limit a more widespread use of CNFs. First, OT-Flow leverages optimal transport
(OT) theory to regularize the CNF and enforce straight trajectories that are easier to
integrate. Second, OT-Flow features exact trace computation with time complexity
equal to trace estimators used in existing CNFs. On five high-dimensional density
estimation and generative modeling tasks, OT-Flow performs competitively to
a state-of-the-art CNF while on average requiring one-fourth of the number of
weights with 17x speedup in training time and 28x speedup in inference.

1 Introduction

A normalizing flow [44] is an invertible mapping f : Rd → Rd between an arbitrary probability
distribution and a standard normal distribution whose densities we denote by ρ0 and ρ1, respectively.
By the change of variables formula, the flow must approximately satisfy [42, 44]

log ρ0(x) = log ρ1(f(x)) + log |det∇f(x) | for all x ∈ Rd. (1)

Given ρ0, a normalizing flow is constructed by concatenating invertible layers to form a neural
network and training their weights. Since computing the log-determinant in general requires O(d3)
floating point operations (FLOPS), effective normalizing flows consist of layers whose Jacobians
have exploitable structure (e.g., diagonal, triangular, low-rank).

Alternatively, in continuous normalizing flows (CNFs), f is obtained by solving the neural ordinary
differential equation (ODE) [11, 23]

∂t

[
z(x, t)
`(x, t)

]
=

[
v
(
z(x, t), t;θ

)
tr
(
∇v(z(x, t), t;θ)

)] , [
z(x, 0)
`(x, 0)

]
=

[
x
0

]
, (2)

for artificial time t ∈ [0, T] and x ∈ Rd. The first component maps a point x to f(x) = z(x, T) by
following the trajectory z : Rd × [0, T]→ Rd (Fig. 1). This mapping is invertible and orientation-
preserving under mild assumptions on the dynamics v : Rd × [0, T] → Rd. The final state of the
∗Department of Computer Science, Emory University, donken@emory.edu
†Department of Mathematics, University of California, Los Angeles, swufung@math.ucla.edu
‡Department of Mathematics, Emory University, {xingjian.li, lruthotto}@emory.edu

Preprint. Under review.

ar
X

iv
:2

00
6.

00
10

4v
1

 [
cs

.L
G

]
 2

9
M

ay
 2

02
0

second component satisfies `(x, T) = log det∇f(x), which can be derived from the instantaneous
change of variables formula as in Chen et al. [11]. Replacing the log determinant with a trace reduces
the FLOPS to O(d2) for exact computation or O(d) for an unbiased estimate [19, 23, 57, 58].

To train the dynamics, CNFs minimize the expected negative log-likelihood given by the right-hand-
side in (1) [23, 41, 42, 44, 55] via

min
θ

Eρ0(x)

{
C(x, T) :=

1

2
‖z(x, T)‖2 − `(x, T) +

d

2
log(2π)

}
, (3)

where for a given θ, the trajectory z satisfies the neural ODE (2). We note that the optimization
problem (3) is equivalent to minimizing the Kullback-Leibler (KL) divergence between ρ1 and the
transformation of ρ0 given by f (derivation in App. A or [42]).

Figure 1: Two flows with approximately equal
loss C. OT-Flow enforces straight trajectories.
A generic CNF can have more complicated
trajectories.

CNFs are promising but come at considerably high
costs. They perform well in density estimation [10,
23, 42] and inference [28, 42], especially in physics
and computational chemistry [9, 39]. CNFs are com-
putationally expensive for two predominant reasons.
First, even using state-of-the-art ODE solvers, the
computation of (2) can require a substantial number
of evaluations of v; this occurs, e.g., when the neural
network parameters lead to a stiff ODE or dynamics
that change quickly in time [3]. Second, computing
the trace term in (2) without building the Jacobian ma-
trix is challenging. Using automatic differentiation
(AD) to build the Jacobian requires separate vector-
Jacobian products for all d standard basis vectors,
which amounts to O(d2) FLOPS. Trace estimates,
used in many CNFs [19, 23, 57, 58], reduce these
costs but introduce additional error (Fig. 2). Our
approach, OT-Flow, addresses these two challenges.

Modeling Contribution Since many flows exactly
match two densities while achieving equal loss C
(Fig. 1), we can choose a flow that reduces the num-
ber of time steps required to solve (2). To this end, we
phrase the CNF as an optimal transport (OT) problem
by adding transport costs to (3). From this reformula-
tion, we exploit the existence of a potential function
whose derivative defines the dynamics v. This po-
tential satisfies the Hamilton-Jacobi-Bellman (HJB) equation, which arises from the optimality
conditions of the OT problem. By including an additional cost, which penalizes deviations from the
HJB equation, we further reduce the number of necessary time steps to solve (2) (Sec. 2). Ultimately,
encoding the underlying regularity of OT into the network absolves it from learning unwanted
dynamics, substantially reducing the number of parameters required to train the CNF.

Numerical Contribution To train the flow with reduced time steps, we opt for the discretize-
then-optimize approach and use AD for the backpropagation (Sec. 3). Moreover, we analytically
derive formulas to efficiently compute the exact trace of the Jacobian in (2). We compute the exact
Jacobian trace with O(d) FLOPS, matching the time complexity of estimating the trace with one
Hutchinson vector as used in state-of-the-art CNFs [23]. We demonstrate the competitive runtimes
of the trace computation on several high-dimensional examples (Fig. 2). Ultimately, our PyTorch
implementation1 of OT-Flow produces results of similar quality to a state-of-the-art CNF at 17x
training and 28x inference speedups on average (Sec. 5).

1Open-source code will be available at https://github.com/EmoryMLIP/pyMFGnet .

2

Table 1: A comparison of flow formulations.

Model Neural ODEs (2) Potential Φ L2 cost HJB regularizer

FFJORD [23] 3 7 7 7

RNODE [19] 3 7 3 7

Monge-Ampère Flows [58] 3 3 7 7

Potential Flow Generators [57] 3 3 7 3

OT-Flow 3 3 3 3

2 Mathematical Formulation of OT-Flow

Motivated by the similarities between training CNFs and solving OT problems [8, 43], we regularize
the minimization problem (3) to encourage straight trajectories (Fig. 1).

Transport Costs We add transport costs L(x, T) to the objective in (3), which results in the
regularized problem

min
Φ

Eρ0(x)

{
C(x, T) + L(x, T)

}
s.t. (2). (4)

The L2 transport costs are given by

L(x, T) =

∫ T

0

1

2
‖v(z(x, t), t)‖2 dt, (5)

which penalize the squared arc-length of the trajectories. In practice, this integral can be computed
in the ODE solver, similar to the trace accumulation in (2). The OT problem (4) has mathematical
properties that we exploit to reduce computational costs [16, 19, 37, 54]. In particular, its solution is
unique, and the trajectories matching the two densities ρ0 and ρ1 are straight and non-intersecting [20],
which reduce the number of time steps to solve (2). The OT formulation also guarantees a solution
flow that is smooth, invertible, and orientation preserving [2].

Potential Model Applying the Pontryagin maximum principle [17, 18] to (4) reveals additional
structure that guides our modeling. In particular, there exists a potential function Φ: Rd× [0, T]→ R
such that

v(x, t;θ) = −∇Φ(x, t;θ). (6)
Analogous to classical physics, samples move in a manner to minimize their potential.

The optimality conditions of (4) imply that the potential satisfies the HJB equation [16] (App. B),
whose violation along the trajectories we penalize by

R(x, T) =

∫ T

0

∣∣∣∣∂tΦ(z(x, t), t)− 1

2
‖∇Φ(z(x, t), t)‖2

∣∣∣∣ dt. (7)

To include this additional regularizer, we parameterize Φ with a neural network instead of v. This
HJB regularizer R(x, T) favors plausible Φ without affecting the solution of the optimization
problem (4). With implementation similar to L(x, T), the HJB regularizer requires little computation,
but drastically simplifies the cost of solving (2) in practice (see examples in App. B and [36, 45, 57]).

OT-Flow Problem In summary, the regularized problem solved in OT-Flow is

min
Φ

Eρ0(x)

{
C(x, T) + L(x, T) +R(x, T)

}
, subject to (2). (8)

Our formulation combines aspects from Grathwohl et al. [23], Zhang et al. [58], Yang and Karniadakis
[57], and Finlay et al. [19] (Tab. 1). The computational costs of the regularizers are inexpensive since
we accumulate them along the trajectories using the already computed∇Φ (App. C).

3 Implementation of OT-Flow

We define our neural network model, derive analytic formulas for fast and exact trace computations,
and describe our efficient ODE solver.

3

1 10 20 30 43
10 3

10 2

10 1

100

Ru
nt

im
e

(s
)

(a) MINIBOONE, d=43

1 10 20 30 40 50 63
Number of Hutchinson Vectors

(b) BSDS300, d=63

1 200 400 600 784

(c) MNIST, d=784

0 250 500 750
Number of Hutchinson Vectors

10 2

10 1

Re
la

tiv
e

Er
ro

r

(d) Accuracy of Estimators
Hutchinson d=43
Hutchinson d=63
Hutchinson d=784
Exact

Figure 2: Performance comparison of trace computation using exact approach presented in Sec. 3
and Hutchinson’s trace estimator using automatic differentiation. (a-c): runtimes (in seconds) over
dimensions 43, 63, and 784, corresponding to the dimensions of MINIBOONE, BSDS300, and MNIST
data sets, respectively. (d): relative errors vs. number of Hutchinson vectors for different dimensions.

Network Parameterization We parameterize the potential as

Φ(s;θ) = w>N(s;θN) +
1

2
s>(A>A)s+ b>s+ c, where θ = (w,θN ,A, b, c). (9)

Here, s = (x, t) ∈ Rd+1 are the input features corresponding to space-time, N(s;θN) : Rd+1 →
Rm is a neural network chosen to be a residual neural network (ResNet) [25] in our experiments, and
θ consists of all the trainable weights: w ∈ Rm, θN ∈ Rp, A ∈ Rr×(d+1), b ∈ Rd+1, c ∈ R. We
set a rank r = min(10, d) to limit the number of parameters of the symmetric matrixA>A. Here,
A, b, and c model quadratic potentials, i.e., linear dynamics; N models the nonlinear dynamics.

ResNet Our experiments use a simple two-layer ResNet. When tuning the number of layers as a
hyperparameter, we found that wide networks promoted expressibility but deep networks offered no
noticeable improvement. For simplicity, we present the two-layer derivation (for the derivation of a
ResNet of any depth, see App. D or [45]). The two-layer ResNet uses an opening layer to convert the
Rd+1 inputs to the Rm space, then one layer operating on the features in hidden space Rm

u0 = σ(K0s+ b0)

N(s;θN) = u1 = u0 + hσ(K1u0 + b1).
(10)

We use step-size h=1, dense matricesK0 ∈ Rm×(d+1) andK1 ∈ Rm×m, and biases b0, b1 ∈ Rm.
We select the element-wise activation function σ(x) = log(exp(x) + exp(−x)), which is the
antiderivative of the hyperbolic tangent, i.e., σ′(x) = tanh(x). Therefore, hyperbolic tangent is the
activation function of the flow∇Φ.

Gradient Computation The gradient of the potential is

∇sΦ(s;θ) = ∇sN(s;θN)w + (A>A)s+ b, (11)
where we simply take the first d components of ∇sΦ to obtain the space derivative ∇Φ. The first
term is computed using chain rule (backpropagation)

z1 = w + hK>1 diag(σ′(K1u0 + b1))w,

∇sN(s;θN)w = z0 = K>0 diag(σ′(K0s+ b0))z1.
(12)

Here, diag(q) ∈ Rm×m denotes a diagonal matrix with diagonal elements given by q ∈ Rm.
Multiplication by diagonal matrix is implemented as an element-wise product.

Trace Computation We compute the trace of the Hessian of the potential model. We first note that

tr
(
∇2Φ(s;θ)

)
= tr

(
E>∇2

s(N(s;θN)w)E
)

+ tr
(
E>(A>A)E

)
, (13)

where the columns of E ∈ R(d+1)×d are given by the first d standard basis vectors in Rd+1. All
matrix multiplications with E can be coded as constant-time indexing operations. The trace of the
A>A term is trivial. We solve the ResNet term via

tr
(
E>∇2

s(N(s;θN)w)E
)

= t0 + h t1, where

t0 =
(
σ′′(K0s+ b0)� z1

)>(
(K0E)� (K0E)

)
1,

t1 =
(
σ′′(K1u0 + b1)�w

)>(
(K1∇su>0)� (K1∇su>0)

)
1,

(14)

4

where � is the element-wise product of equally sized vectors or matrices, 1 ∈ Rd is a vector of all
ones, and∇su>0 = K>0 σ

′(K0 s+b0). For deeper ResNets, the Jacobian term∇su>i−1 ∈ Rm×(d+1)

can be updated and over-written at a computational cost of O(m2 · d) FLOPS (App. D).

The trace computation of the first layer uses O(m · d) FLOPS, and each additional layer uses
O(m2 · d) FLOPS (App. D). Thus, our exact trace computation has O(d) time complexity. In
clocktime, the analytic exact trace computation is competitive with the Hutchinson’s estimator using
AD, while introducing no estimation error (Fig. 2). Our efficiency in trace computation (14) stems
from exploiting the identity structure of matrix E and not building the full Hessian.

ODE Solver For the forward propagation, we use Runge-Kutta 4 with equidistant time steps to
solve (2) as well as the time integrals (5) and (7). The number of time steps is a hyperparameter
(App. C). For the backpropagation, we use AD. This technique corresponds to the discretize-then-
optimize (DTO) approach, an effective method for ODE-constrained optimization problems [1, 6,
12, 33]. In particular, DTO is efficient for solving neural ODEs [22, 34, 40]. Our implementation
exploits the benefits of our proposed exact trace computation combined with the efficiency of DTO.

4 Related Works

Finite Flows Normalizing flows [31, 42, 44, 50] use a concatenation of discrete transformations,
where specific architectures are chosen to allow for efficient inverse and Jacobian determinant
computations. NICE [13], RealNVP [14], IAF [30], and MAF [41] use either autoregressive or
coupling flows where the Jacobian is triangular, so the Jacobian determinant can be tractably com-
puted. GLOW [29] expands upon RealNVP by introducing an additional invertible convolution
step. These flows are based on either coupling layers or autoregressive transformations, whose
tractable invertibility allows for density evaluation and generative sampling. Neural Spline Flows [15]
use splines instead of the coupling layers used in GLOW and RealNVP. Using monotonic neural
networks, NAF [26] require positivity of the weights. UMNN [55] circumvent this requirement by
parameterizing the Jacobian and then integrating numerically.

Infinitesimal Flows Modeling flows with differential equations is a natural and common con-
cept [38, 46, 49, 56]. In particular, CNFs [10, 11, 23] model their flow via the neural ODE in (2).

FFJORD [23], our baseline, is a state-of-the-art CNF. To alleviate the expensive training costs of
CNFs, FFJORD sacrifices the exact but slow trace computation in (2) for a Hutchinson’s trace
estimator with complexity O(d) [27]. This estimator helps FFJORD achieve training tractability
by reducing the trace cost from O(d2) to O(d) per time step. However, during inference, FFJORD
has O(d2) trace computation cost since CNF inference requires the exact trace (Sec. 1). FFJORD
also uses the optimize-then-discretize (OTD) method and an adjoint-based backpropagation where
the intermediate gradients are recomputed. In contrast, our exact trace computation is competitive
with FFJORD’s trace approach during training and faster during inference (Fig. 2). OT-Flow uses
DTO with AD for the backpropagation. This combination has been shown to converge quicker when
training neural ODEs due to accurate gradient computation, storing intermediate gradients, and fewer
time steps [22, 34, 40] (Sec 3).

Flows Influenced by Optimal Transport To encourage straight trajectories, RNODE [19] regu-
larizes FFJORD with transport costs L(x, T) and the Frobenius norm of the Jacobian; they report
a 2.8x speedup. Other approaches similarly draw from OT theory but parameterize a potential
function [57, 58]. Most similar to us, Potential Flow Generators [57] motivate their model from
OT and use the HJB regularizer (7). OT-Flow’s modeling combines ideas from these regularized
formulations [19, 57, 58] (Tab. 1); OT-Flow’s numerics differ substantially (Sec. 3). OT has also been
used in other generative models [4, 32, 37, 47, 48, 51].

5 Numerical Experiments

We perform density estimation on seven two-dimensional toy problems and five high-dimensional
problems from real data sets. We also demonstrate OT-Flow’s generative abilities on MNIST.

5

D
at

a
x

E
st

im
at

e
ρ
0

G
en

er
at

io
n

f
−
1
(y

)

Figure 3: Density estimation on two-dimensional toy problems. Top: samples from the unknown
distribution. Middle: density estimate for unknown ρ0 computed by inverse flowing from ρ1 via (2).
Bottom: samples generated by inverse flow where y ∼ ρ1(y).

Metrics In density estimation, the goal is to approximate ρ0 using observed samplesX = {xi}Ni=1,
where xi are drawn from the distribution ρ0. In real applications, we lack a ground-truth ρ0, rendering
proper evaluation of the density itself untenable. However, we can follow evaluation techniques
applied to generative models. Drawing random points {yi}Mi=1 from ρ1, we invert the flow to
generate synthetic samplesQ = {qi}Mi=1, where qi = f−1(yi). We compare the known samples to
the generated samples via maximum mean discrepancy (MMD) [24, 35, 43, 52]

MMD(X,Q) =
1

N2

N∑
i=1

N∑
j=1

k(xi,xj) +
1

M2

M∑
i=1

M∑
j=1

k(qi, qj)−
2

NM

N∑
i=1

M∑
j=1

k(xi, qj), (15)

for Gaussian kernel k(xi, qj) = exp(− 1
2‖xi − qj‖

2). MMD tests the difference between two
distributions (ρ0 and our estimate of ρ0) on the basis of samples drawn from each (X and Q). A
low MMD value means that the two sets of samples are likely to have been drawn from the same
distribution [24]. Since MMD is not used in the training, it provides an external, impartial metric to
evaluate our model on the hold-out test set (Tab. 2).

Many normalizing flows use C for evaluation. The loss C is used to train the forward flow to match
ρ1. Testing loss, i.e., C evaluated on the testing set, should provide the same quantification on a
hold-out set. However, in some cases, the testing loss can be low although the distribution of the
flowed samples f(x) differs substantially from ρ1 (Fig. A2 and Fig. A3 in Appendix). Furthermore,
because the model’s inverse contains error, accurately mapping to ρ1 with the forward flow does not
necessarily mean the inverse flow accurately maps to ρ0.

Testing loss varies drastically with the integration computation [40, 52, 55]. It depends on `, which is
computed along the characteristics via time integration of the trace (App. E). Too few discretization
points leads to an inaccurate integration computation and greater inverse error. Thus, a low inverse
error implies an accurate integration computation because the flow closely models the ODE. An
adaptive ODE solver alleviates this concern when provided a sufficiently small tolerance [23].
Similarly, we check that the flow models the continuous solution of the ODE by computing the
inverse error

Eρ0(x)‖f−1 (f(x))− x‖ (16)

on the testing set using a finer time discretization than used during training. We evaluate the
expectation values in (8) and (16) using the discrete samples X , which we assume are randomly
drawn from and representative of the initial distribution ρ0.

Toy Problems We train OT-Flow on several two-dimensional toy distributions that serve as standard
benchmarks [23, 55, 57]. Given random samples, we train OT-Flow and use the trained model to
estimate the density ρ0 and generate samples (Fig. 3). We also perform a thorough comparison with a
state-of-the-art CNF on the toy Gaussian mixture problem (Fig. A2) .

6

Table 2: Density estimation on real data sets. We trained all models on the same machine (a single
NVIDIA TITAN X GPU with 12GB RAM).

Data Set d Model # Param Training Testing Inverse MMDTime (hr) Time (s) Error

POWER 6 OT-Flow 17K 2.7 8.6 6.93e-8 4.29e-5
FFJORD 43K 75.6 59.5 1.98e-7 4.37e-5

GAS 8 OT-Flow 69K 3.5 20.6 1.88e-7 5.76e-4
FFJORD 279K 57.1 171.2 2.71e-7 1.43e-4

HEPMASS 21 OT-Flow 72K 3.6 47.9 2.83e-7 2.01e-5
FFJORD 547K 51.7 635.6 7.66e-7 2.00e-5

MINIBOONE 43 OT-Flow 78K 0.9 0.9 2.06e-7 2.84e-4
FFJORD 821K 10.0 27.9 3.59e-7 2.84e-4

BSDS300 63 OT-Flow 297K 8.8 433.3 9.06e-7 9.84e-4
FFJORD 6.7M 213.2† 34958.8 2.07e-7 1.28e-3

† Training manually terminated before convergence.

Samples OT-Flow FFJORD
x ∼ ρ0(x) f(x) f(x)

y ∼ ρ1(y) f−1(y) f−1(y)

(a) MINIBOONE dimension 16 vs 17

Samples OT-Flow FFJORD
x ∼ ρ0(x) f(x) f(x)

y ∼ ρ1(y) f−1(y) f−1(y)

(b) MINIBOONE dimension 28 vs 29

Figure 4: MINIBOONE density estimation. Two-dimensional slices using the 3,648 43-dimensional
testing samples x ∼ ρ0(x) and 105 samples y from distribution ρ1 (more visuals in Fig. A7).

Density Estimation on Real Data Sets We compare our model’s performance on real data sets
(POWER, GAS, HEPMASS, MINIBOONE) from the University of California Irvine (UCI) machine
learning data repository and the BSDS300 data set containing natural image patches. The UCI
data sets describe observations from Fermilab neutrino experiments, household power consumption,
chemical sensors of ethylene and carbon monoxide gas mixtures, and particle collisions in high
energy physics. Prepared by Papamakarios et al. [41], the data sets are commonly used in normalizing
flows [14, 23, 26, 29, 55]. The data sets vary in dimensionality (Tab. 2).

For each data set, we compare OT-Flow against the state-of-the-art FFJORD [23] in speed and
performance. We compare speed both in training the models and when running the model on the
testing set. To compare performance, we compute the MMD between the data set and M = 105

generated samples f−1(y) for each model; for a fair comparison, we use the same y for FFJORD
and OT-Flow (Tab. 2). We show visuals of the samples x ∼ ρ0(x), y ∼ ρ1(y), f(x), and f−1(y)
generated by OT-Flow and FFJORD (Fig. 4, App. F).

The results demonstrate the computational efficiency of OT-Flow relative to FFJORD (Tab. 2). With
the exception of the GAS data set, OT-Flow achieves comparable MMD to that of FFJORD with
drastically reduced training time. OT-Flow learns a slightly smoothed representation of the GAS data
set (Fig. A5). Although we use the exact trace, we introduce little to no extra runtime than computing
the Hutchinson’s trace estimation with one vector-Jacobian product (Fig. 2). On the testing set, our

7

first 3 rows originals. last 3 rows are conditional generations.

(a) Originals

first 3 rows originals. last 3 rows are conditional generations.

(b) Generatations

Figure 5: MNIST generation conditioned by class. The en-
coder and decoder are trained beforehand and are responsible
for the slight thickness of the generations.

red boxed values are original; others are interpolated in rho_1 space

Figure 6: MNIST interpolation in
the latent space. Original images are
boxed in red.

O(d) exact trace leads to faster testing time than FFJORD’s O(d2) approach using AD to compute
the exact trace. For example, on the BSDS300 data set, OT-Flow has a testing time of 7 minutes
compared to FFJORD’s testing time of 9 hours. To evaluate the testing data, we use more time steps
than for training, effectively re-discretizing the ODE at different points. The inverse error is near
machine precision when adding more time steps, showing that OT-Flow is numerically invertible and
suggesting that it approximates the true solution of the ODE. Ultimately, OT-Flow’s combination
of OT-influenced regularization, reduced parameterization, DTO approach, and efficient exact trace
computation results in fast and accurate training and testing.

MNIST We demonstrate the generation quality of OT-Flow using an encoder-decoder structure.

Consider encoder B : R784 → Rd and decoder D : Rd → R784 such that D(B(x)) ≈ x. We
train d-dimensional flows that map distribution ρ0(B(x)) to ρ1. The encoder and decoder are each
comprised of a single dense layer and activation function (ReLU for B and sigmoid for D). We train
the encoder-decoder separate from and prior to training the flows. The trained encoder-decoder, due
to its simplicity, renders digits D(B(x)) that are a couple pixels thicker than the supplied digit x.

We generate new images via two methods. First, using d=64 and a flow conditioned on class, we
sample a point y ∼ ρ1(y) and map it back to the pixel space to create image D(f−1(y)) (Fig. 5b).
Second, using d=128 and an unconditioned flow, we interpolate between the latent representations
f(B(x1)), f(B(x2)) of two original images x1,x2. For interpolated latent vector y ∈ Rd, we invert
the flow and decode back to the pixel space to create image D(f−1(y)) (Fig. 6).

6 Discussion

We present OT-Flow, a fast and accurate approach for training and performing inference with CNFs.
Our approach tackles two critical computational challenges in CNFs.

First, solving the neural ODEs in CNFs can require many time steps resulting in high computational
cost. Leveraging OT theory to regularize the CNF, OT-Flow encourages straight trajectories, leading
to ODEs that are easier to solve. In particular, we include transport costs and add an HJB regularizer
by exploiting the existence of a potential function. These additions help carry properties from
the continuous problem to the discrete problem and allow OT-Flow to use few time steps without
sacrificing performance. Second, computing the trace term in (2) is computationally expensive.
OT-Flow features exact trace computation at time complexity equal to trace estimators used in
existing state-of-the-art CNFs. Our analytic gradient and trace approach is not limited to the ResNet
architectures, but expanding to other architectures requires further derivation.

8

Acknowledgments and Disclosure of Funding

DO and LR are supported by the National Science Foundation award CAREER DMS 1751636,
Binational Science Foundation Grant 2018209, and NVIDIA Corporation. SWF is supported by
AFOSR MURI FA9550-18-1-0502, AFOSR Grant No. FA9550-18-1-0167, and ONR Grant No.
N00014-18-1-2527. Important parts of this research were performed while LR was visiting the
Institute for Pure and Applied Mathematics (IPAM), which is supported by the NSF Grant No.
DMS-1440415.

References
[1] Feby Abraham, Marek Behr, and Matthias Heinkenschloss. The effect of stabilization in finite

element methods for the optimal boundary control of the Oseen equations. Finite Elements in
Analysis and Design, 41(3):229–251, 2004.

[2] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in
the space of probability measures. Springer Science & Business Media, 2008.

[3] Uri M Ascher. Numerical methods for evolutionary differential equations, volume 5. SIAM,
2008.

[4] G. Avraham, Y. Zuo, and T. Drummond. Parallel optimal transport GAN. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 4406–4415, 2019.

[5] Haim Avron and Sivan Toledo. Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix. Journal of the ACM (JACM), 58(2):1–34, 2011.

[6] Roland Becker and Boris Vexler. Optimal control of the convection-diffusion equation using
stabilized finite element methods. Numerische Mathematik, 106(3):349–367, 2007.

[7] J.-D. Benamou, G. Carlier, and F. Santambrogio. Variational mean field games. In Active
particles. Vol. 1. Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol.,
pages 141–171. Birkhäuser/Springer, Cham, 2017.

[8] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the
Monge-Kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393, 2000.

[9] Johann Brehmer, Felix Kling, Irina Espejo, and Kyle Cranmer. Madminer: Machine learning-
based inference for particle physics. Computing and Software for Big Science, 4(1):1–25,
2020.

[10] Changyou Chen, Chunyuan Li, Liqun Chen, Wenlin Wang, Yunchen Pu, and Lawrence Carin
Duke. Continuous-time flows for efficient inference and density estimation. In International
Conference on Machine Learning (ICML), volume 80, pages 824–833, 2018.

[11] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems (NeurIPS), pages
6571–6583, 2018.

[12] S Scott Collis and Matthias Heinkenschloss. Analysis of the streamline upwind/Petrov Galerkin
method applied to the solution of optimal control problems. CAAM TR02-01, 108, 2002.

[13] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear independent components
estimation. In Yoshua Bengio and Yann LeCun, editors, International Conference on Learning
Representations (ICLR), 2015.

[14] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
International Conference on Learning Representations (ICLR), 2017.

[15] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In
Advances in Neural Information Processing Systems (NeurIPS), pages 7509–7520, 2019.

[16] Lawrence C Evans. Partial differential equations and Monge-Kantorovich mass transfer. Current
developments in mathematics, 1997(1):65–126, 1997.

9

[17] Lawrence C Evans. Partial Differential Equations, volume 19. American Mathematical Soc.,
2010.

[18] Lawrence C Evans. An introduction to mathematical optimal control theory version 0.2, 2013.

[19] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How to train
your neural ODE. arXiv:2002.02798, 2020.

[20] Wilfrid Gangbo and Robert J McCann. The geometry of optimal transportation. Acta Mathe-
matica, 177(2):113–161, 1996.

[21] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked autoen-
coder for distribution estimation. In International Conference on Machine Learning (ICML),
pages 881–889, 2015.

[22] Amir Gholaminejad, Kurt Keutzer, and George Biros. ANODE: Unconditionally accurate
memory-efficient gradients for neural ODEs. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 730–736, 2019.

[23] Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Duvenaud.
FFJORD: Free-form continuous dynamics for scalable reversible generative models. Interna-
tional Conference on Learning Representations (ICLR), 2019.

[24] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. Journal of Machine Learning Research (JMLR), 13(25):
723–773, 2012.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[26] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autore-
gressive flows. In International Conference on Machine Learning (ICML), pages 2078–2087,
2018.

[27] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 19(2):433–450,
1990.

[28] John Ingraham, Adam Riesselman, Chris Sander, and Debora Marks. Learning protein structure
with a differentiable simulator. In International Conference on Learning Representations
(ICLR), 2019.

[29] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems (NeurIPS), pages 10215–10224, 2018.

[30] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pages 4743–4751, 2016.

[31] I. Kobyzev, S. Prince, and M. Brubaker. Normalizing flows: An introduction and review of
current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[32] Na Lei, Kehua Su, Li Cui, Shing-Tung Yau, and Xianfeng David Gu. A geometric view of
optimal transportation and generative model. Computer Aided Geometric Design, 68:1–21,
2019.

[33] Günter Leugering, Peter Benner, Sebastian Engell, Andreas Griewank, Helmut Harbrecht,
Michael Hinze, Rolf Rannacher, and Stefan Ulbrich. Trends in PDE constrained optimization,
volume 165. Springer, 2014.

[34] Qianxiao Li, Long Chen, Cheng Tai, and E Weinan. Maximum principle based algorithms for
deep learning. The Journal of Machine Learning Research (JMLR), 18(1):5998–6026, 2017.

10

[35] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In Interna-
tional Conference on Machine Learning (ICML), pages 1718–1727, 2015.

[36] Alex Tong Lin, Samy Wu Fung, Wuchen Li, Levon Nurbekyan, and Stanley J Osher. APAC-Net:
Alternating the population and agent control via two neural networks to solve high-dimensional
stochastic mean field games. arXiv:2002.10113, 2020.

[37] Jingrong Lin, Keegan Lensink, and Eldad Haber. Fluid flow mass transport for generative
networks. arXiv:1910.01694, 2019.

[38] Radford M Neal. MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte
Carlo, 2(11):2, 2011.

[39] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science, 365, 2019.

[40] Derek Onken and Lars Ruthotto. Discretize-optimize vs. optimize-discretize for time-series
regression and continuous normalizing flows. arXiv:2005.13420, 2020.

[41] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems (NeurIPS), pages 2338–2347,
2017.

[42] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference.
arXiv:1912.02762, 2019.

[43] Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends in
Machine Learning, 11(5-6):355–607, 2019.

[44] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In International Conference on Machine Learning (ICML), pages 1530–1538, 2015.

[45] Lars Ruthotto, Stanley J. Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu Fung. A machine
learning framework for solving high-dimensional mean field game and mean field control
problems. Proceedings of the National Academy of Sciences (PNAS), 117(17):9183–9193,
2020.

[46] Tim Salimans, Diederik Kingma, and Max Welling. Markov chain Monte Carlo and variational
inference: Bridging the gap. In International Conference on Machine Learning (ICML), pages
1218–1226, 2015.

[47] Tim Salimans, Han Zhang, Alec Radford, and Dimitris N. Metaxas. Improving GANs using
optimal transport. In International Conference on Learning Representations (ICLR), 2018.

[48] Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, and Jason D Lee. On the convergence
and robustness of training gans with regularized optimal transport. In Advances in Neural
Information Processing Systems (NeurIPS), pages 7091–7101, 2018.

[49] Johan Suykens, Herman Verrelst, and Joos Vandewalle. On-line learning Fokker-Planck machine.
Neural Processing Letters, 7:81–89, 04 1998.

[50] Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation algo-
rithms. Communications on Pure and Applied Mathematics, 66(2):145–164, 2013.

[51] Akinori Tanaka. Discriminator optimal transport. In Advances in Neural Information Processing
Systems (NeurIPS), pages 6816–6826, 2019.

[52] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. In International Conference on Learning Representations (ICLR), 2016.

[53] Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(a)) via stochastic Lanczos
quadrature. SIAM Journal on Matrix Analysis and Applications, 38(4):1075–1099, 2017.

11

[54] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business
Media, 2008.

[55] Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural networks. In Advances
in Neural Information Processing Systems (NeurIPS), pages 1543–1553, 2019.

[56] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
International Conference on Machine Learning (ICML), pages 681–688, 2011.

[57] Liu Yang and George Em Karniadakis. Potential flow generator with L2 optimal transport
regularity for generative models. arXiv:1908.11462, 2019.

[58] Linfeng Zhang, Weinan E, and Lei Wang. Monge-Ampère flow for generative modeling.
arXiv:1809.10188, 2018.

A Derivation of Loss C

Let ρ0 be the initial density of samples, and z be the trajectories that map samples from ρ0 to ρ1. The
change in density as we flow a sample x ∼ ρ0 at time t is given by the change of variables formula

ρ0(x) = ρ
(
z(x, t)

)
det
(
∇z(x, t)

)
, (17)

where z(x, 0) = x. In normalizing flows, the discrepancy between the flowed distribution at final
time T , denoted ρ(x, T), and the normal distribution can be measured using the Kullback-Leibler
(KL) divergence

DKL

[
ρ(x, T) || ρ1(x)

]
=

∫
Rd

log

(
ρ(x, T)

ρ1(x)

)
ρ(x, T) dx. (18)

Changing variables, and using (17), we can rewrite (18) as

DKL

[
ρ(z(x, T)) || ρ1(z(x, T))

]
=

∫
Rd

log

(
ρ(z(x, T))

ρ1(z(x, T))

)
ρ(z(x, T)) det

(
∇z(x, T)

)
dx,

=

∫
Rd

log

(
ρ0(x)

ρ1

(
z(x, T)

)
det
(
∇z(x, T)

)) ρ0(x) dx,

=

∫
Rd

[
log
(
ρ0(x)

)
− log

(
ρ1(z(x, T))

)
− log det

(
∇z(x, T)

)]
ρ0(x) dx.

(19)

For normalizing flows, we assume ρ1 is the standard normal

ρ1(x) =
1√

(2π)d
exp

(
−‖x‖2

2

)
, (20)

which will reduce the term

log
(
ρ1(z(x, T))

)
= −1

2
‖z(x, T)‖2 − d

2
log(2π). (21)

Substituting (21) into (19), we obtain

DKL =

∫
Rd

[
log
(
ρ0(x)

)
− log det

(
∇z(x, T)

)
+

1

2
‖z(x, T)‖2 +

d

2
log(2π)

]
ρ0(x) dx

=

∫
Rd

[
log
(
ρ0(x)

)
+ C(x, T)

]
ρ0(x) dx

= Eρ0(x)

{
log
(
ρ0(x)

)
+ C(x, T)

}
,

(22)

where C(x, T) is defined in (3). Density ρ0(x) is unknown in normalizing flows. Thus, the term
log(ρ0(x)) is dropped, and normalizing flows minimize C alone. Subtracting this constant does not
affect the minimizer.

12

x ∼ ρ0(x) f(x) = z(x, T) f−1(y) , y ∼ ρ1(y)

N
o

H
JB

2
Ti

m
e

St
ep

s
N

o
H

JB
8

Ti
m

e
St

ep
s

W
ith

H
JB

2
Ti

m
e

St
ep

s

Figure A1: Effect of adding an HJB regularizer during training. The first row presents a flow trained
using two RK4 time steps without an HJB regularizer. The second row presents a flow trained using
eight RK4 time steps without an HJB regularizer. The third row presents a flow trained using two
RK4 time steps with an HJB regularizer. For each flow, we show initial, forward mapping, and
generation. The HJB regularizer allows for training a flow with one-fourth the number of time steps,
leading to a drastic reduction in computational and memory costs. White trajectories display the
forward flow f for several random samples; red trajectories display the inverse flow f−1.

B The HJB Regularizer

Theory The optimality conditions of (4) imply that the potential Φ satisfies the Hamilton-Jacobi-
Bellman (HJB) [16] equation

−∂tΦ(x, t) +
1

2
‖∇Φ(z(x, t), t)‖2 = 0, Φ(x, T) = G(x). (23)

where −∂t indicates that we solve the equation backwards in time and G is the terminal condition
of the partial differential equation (PDE). Consider the KL divergence in (19) after the change of
variables is performed. OT theory [7, 54] states that the HJB terminal condition is given by

G(z(x, T)) :=
δ

δρ0
DKL

[
ρ(z(x, T)) || ρ1(z(x, T))

]
=

δ

δρ0

∫
Rd

[
log
(
ρ0(x)

)
− log

(
ρ1(z(x, T))

)
− log det

(
∇z(x, T)

)]
ρ0(x) dx

= 1 + log
(
ρ0(x)

)
− log

(
ρ1(z(x, T))

)
− log det

(
∇z(x, T)

)
,

(24)

where δ
δρ0

is the variational derivative with respect to ρ0.

While solving (23) in high-dimensional spaces is notoriously difficult, penalizing its violations along
the trajectories is inexpensive. Therefore, we include the value R(x, T) in the objective function,

13

which we accumulate during the ODE solve (Sec. 2). The density ρ0, which is required to evaluate
G, is unknown in our problems. Similar to Yang and Karniadakis [57], we do not enforce the HJB
terminal condition but do enforce the HJB equation for t ∈ (0, T) via regularizer R.

Effect of Added Regularizer In Fig. A1, we show the effect of training the toy Gaussian mixture
problem with and without the HJB regularizer R. For this demonstration, we train the model using
two Runge-Kutta 4 (RK4) steps. As a result, the L2 cost is penalized at too few time steps. Therefore,
without an HJB regularizer, the model achieves poor performance and unstraight characteristics
(Fig. A1). This issue can be remedied by adding more RK4 time steps or the HJB regularizer. The
additional RK4 time steps would add significant memory and computational overhead. The HJB
regularizer, however, adds little memory and computation. We thus can train the model with two RK4
time steps and an HJB regularizer with efficient computational cost and good performance.

For the demonstration (Fig. A1), we compare three models: two RK4 time steps with no HJB
regularizer, eight RK4 time steps with no HJB regularizer, and two RK4 time steps with the HJB
regularizer. For several starting points, we plot the forward flow trajectories f in white and the inverse
flow f−1 trajectories in red. The last two models have straight trajectories, which the first model
lacks. All three models are invertible since their forward and inverse trajectories align.

C Implementation Details

We incorporate the accumulation of the regularizers in the ODE. The full optimization problem is

min
θ

Eρ0(x)

{
α1C(x, T) + L(x, T) + α2R(x, T)

}
(25)

subject to

∂t


z(x, t)

`(x, t)

L(x, t)

R(x, t)

 =


−∇Φ(z(x, t), t;θ)

− tr(∇2Φ(z(x, t), t;θ))
1
2‖∇Φ(z(x, t), t;θ)‖2∣∣∂tΦ(z(x, t), t;θ)− 1

2‖∇Φ(z(x, t), t;θ)‖2
∣∣
 ,


z(x, 0)

`(x, 0)

L(x, 0)

R(x, 0)

 =


x

0

0

0

 ,

where we optimize the weights θ, defined in (9), that parameterize Φ. We include two hyperparameters
α1, α2 to assist the optimization. Specially selected hyperparameters can improve the convergence
and performance of the model. Other hyperparameters include the hidden space size m, the number
of time steps used by the Runge-Kutta 4 solver nt, the number of ResNet layers for which we use 2
for all experiments, and various settings for the ADAM optimizer.

For validation and testing, we use more time steps than for training, which allows for higher precision
and a check that our discrete OT-Flow still approximates the continuous object. A large number of
training time steps results in good generalizability and lower inverse error; too few time steps results
in high inverse error but low computational cost. We tune the number of training time steps so that we
maintain good generalizability (validation and training loss are similar) with low computational cost.

D Exact Trace computation

We expand on the trace computation formulae presented in Sec. 3 for a ResNet with M + 1 layers.

Gradient Computation To compute the gradient, first note that for an (M + 1)-layer residual
network and given inputs s = (x, t), we obtain N(s;θN) = uM by forward propagation

u0 = σ(K0s+ b0)

u1 = u0 + hσ(K1u0 + b1)

...
...

uM = uM−1 + hσ(KMuM−1 + bM),

(26)

where h > 0 is a fixed step size, and the network’s weights areK0 ∈ Rm×(d+1),K1, . . . ,KM ∈
Rm×m, and b0, . . . , bM ∈ Rm.

14

The gradient of the neural network is computed using backpropagation as follows

zM+1 = w

zM = zM+1 + hK>M diag
(
σ′(KMuM−1 + bM)

)
zM+1,

...
...

z1 = z2 + hK>1 diag
(
σ′(K1u0 + b1)

)
z2,

z0 = K>0 diag
(
σ′(K0s+ b0)

)
z1,

(27)

which gives ∇sN(s;θN)w = z0.

Exact Trace Computation Using (13) and the same E, we compute the trace in one forward pass
through the layers. The trace of the first ResNet layer is

t0 = tr
(
E>∇s

(
K>0 diag(σ′′(K0s+ b0))z1

)
E
)

= tr
(
E>K>0 diag

(
σ′′(K0s+ b0)� z1

)
K0E

)
=
(
σ′′(K0s+ b0)� z1

)>(
(K0E)� (K0E)

)
1,

(28)

using the same notation as (14). For the last step, we used the diagonality of the middle matrix.
Computing t0 requires O(m · d) FLOPS when first squaring the elements in the first d columns of
K0, then summing those columns, and finally one inner product.

To compute the trace of the entire ResNet, we continue with the remaining rows in (27) in reverse
order to obtain

tr
(
E>∇2

s(N(s;θN)w)E
)

= t0 + h

M∑
i=1

ti, (29)

where ti is computed as

ti = tr
(
J>i−1∇s

(
K>i diag(σ′′(Kiui−1(s) + bi))zi+1

)
Ji−1

)
= tr

(
J>i−1K

>
i diag

(
σ′′(Kiui−1 + bi)� zi+1

)
KiJi−1

)
=
(
σ′′(Kiui−1 + bi)� zi+1

)>(
(KiJi−1)� (KiJi−1)

)
1.

Here, Ji−1 = ∇su>i−1 ∈ Rm×d is a Jacobian matrix, which can be updated and over-written in the
forward pass at a computational cost of O(m2 · d) FLOPS. The J update follows:

∇su>i = ∇sui−1 + hσ′(Kiui−1 + bi)K
>
i ∇sui−1

J ← J + hσ′(Kiui−1 + bi)K
>
i J

(30)

Since we parameterize the potential Φ instead of the v, the Jacobian of the dynamics ∇v is given
by the Hessian of Φ in (2). We note that Hessians are symmetric matrices. We use the exact trace;
however, if we wanted to use a trace estimate, a plethora of estimators perform better in accuracy and
speed on symmetric matrices than on nonsymmetric matrices [5, 27, 53].

E Loss Metric

The testing loss metric C depends on the ` computation in (2), which is the integration of the trace
along the computed trajectory z. Different integration schemes have various error when integrating
the trace [40, 55]. Too coarse of a time discretization can result in a low C value while sacrificing
invertibility. Furthermore, a low C value does not imply good quality generation [52].

As a result, testing loss is unreliable for comparative evaluation of models’ performances, so we use
MMD.

Visualizations present the best evaluation of a flow’s performance. We motivate this with a thorough
comparison of OT-Flow against FFJORD (Fig. A2). Even though the testing losses are similar, the

15

Data Set Model # Param Training Testing Inverse MMDTime (s) Loss Error

Gaussian Mixture OT-Flow 637 189 2.88 1.28e-8 6.38e-4
FFJORD 9225 7882 2.85 7.22e-8 6.54e-4

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

0

250

500

750

1000

1250

0

200

400

600

800

8gaussians , loss 146.15 , G 2.85 , invErr 1.394e-09

Figure A2: CNF performance heatmaps for the toy Gaussian mixture problem. (top row) 105 samples
x from the pretended unknown ρ0, the forward propagations of our flow f(x) and the FFJORD flow.
(bottom row) 105 samples y drawn from the known ρ1, our model’s generation f−1(y) using the
inverse flow on normal samples and FFJORD’s inverse flow on the same normal samples y.

Discrete normalizing flow trained on POWER

d Testing Loss Inv Error MMD

6 −0.64 2.34e-3 1.94e-2

x 0(x) f(x)

y 1(y) f 1(y)
0

2000

4000

6000

8000

0

500

1000

1500

2000

0

200

400

600

800

0

1000

2000

3000

4000

power dims: 0 vs 1
x 0(x) f(x)

y 1(y) f 1(y)
0

25000

50000

75000

100000

0

500

1000

1500

2000

0

200

400

600

800

0

20000

40000

power dims: 2 vs 3
x 0(x) f(x)

y 1(y) f 1(y)
0

2500

5000

7500

10000

0

1000

2000

3000

0

200

400

600

800

0

5000

10000

power dims: 4 vs 5

Figure A3: POWER density estimation for some discrete normalizing flow. By the testing loss metric,
this model is considered very competitive. However, the model itself performs poorly, as clear in the
visualization of the last two dimensions. The MMD shows that the generation is poor. The inverse
error shows that the testing loss uses an integration scheme that is too coarse, as addressed in [40, 55].

FFJORD flow pushes too many points to the origin and does not map well to a Gaussian. We can see
this flaw when using 105 samples.

In high-dimensions, visualizations become difficult, which is why reliance on a loss function is
appealing. We visualize two-dimensional slices of these high-dimensional point clouds using binned
heatmaps (App. F). We then get a sense for which dimensions are or are not mapping to ρ1. For
instance, we present an arbitrary finite normalizing flow trained on the POWER data set in which
the testing loss looks competitive, but other metrics and the visualization demonstrate the model’s
flaws (Fig. A3). The last two dimensions show that the forward flow f(x) noticeably differs from
ρ1 in these two dimensions. The associated MMD is poor for this model on the POWER data
set (comparable MMDs in Tab. 2), and the high inverse error suggests that the integration is not
trustworthy. However, the model achieves a testing loss of −0.64 which outperforms numerous
state-of-the-art models (Tab. A1). Motivated by these demonstrations, we do not use the testing loss
metric to evaluate flows.

16

Table A1: Testing Loss C comparison with other models.

POWER GAS HEPMASS MINIBOONE BSDS300

OT-Flow (Ours) -0.31 -8.50* 17.46 10.52 -153.98
FFJORD trained by us -0.42 -10.53 16.57 10.64 -142.91†

MADE [21] 3.08 -3.56 20.98 15.59 -148.85
RealNVP [14] -0.17 -8.33 18.71 13.55 -153.28
Glow [29] -0.17 -8.15 18.92 11.35 -155.07
MAF [41] -0.24 -10.08 17.70 11.75 -155.69
NAF [26] -0.62 -11.96 15.09 8.86 -157.73
UMNN [55] -0.63 -10.89 13.99 9.67 -157.98
*This value is from a model trained using double precision and is different from the model
reported in Tab. 2.
†Training manually terminated before convergence.

Table A2: Number of parameters comparison with discrete normalizing flows. FFJORD already
reduced the parameterization of flows. We further reduce parameterization of CNFs, which includes
a drastic reduction across all normalizing flows.

POWER GAS HEPMASS MINIBOONE BSDS300

OT-Flow (Ours) 17K 69K 72K 78K 297K
FFJORD [23] 43K 279K 547K 821K 6.7M

NAF [26] 414K 402K 9.27M 7.49M 36.8M
UMNN [55] 509K 815K 3.62M 3.46M 15.6M

Papamakarios et al. [41] cleaned and normalized the GAS data set used by other normalizing flow
models (Tab. A1). However, after that preprocessing, some input values x still contain large values.
Some models handle the large values by using normalization layers. While we can easily add
normalization layers into OT-Flow, for simplicity, we further preprocess GAS. In particular, we scale
all inputs by dividing by 5 before passing to the model. Alternatively, if we want to compare testing
loss C with other methods, we can use double precision instead of scaling the inputs (Tab. A1). MMD
and inverse error are similar for these two approaches.

F Visualizations of High-Dimensional Data Sets

17

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

2000

4000

6000

8000

0

500

1000

1500

2000

0

200

400

600

800

0

1000

2000

3000

4000

0

500

1000

1500

0

1000

2000

3000

4000

power dims: 0 vs 1

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

20000

40000

60000

80000

100000

0

500

1000

1500

2000

0

200

400

600

800

0

10000

20000

30000

40000

50000

0

500

1000

1500

0

10000

20000

30000

40000

50000

power dims: 2 vs 3

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

2500

5000

7500

10000

0

500

1000

1500

2000

0

200

400

600

800

0

2000

4000

6000

0

500

1000

1500

0

2000

4000

6000

power dims: 4 vs 5

Figure A4: Model performance on POWER test data.

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

2000

4000

6000

0

200

400

600

800

1000

0

200

400

600

800

0

1000

2000

3000

4000

5000

0

200

400

600

800

0

2000

4000

6000

gas dims: 0 vs 1

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

200

400

600

800

1000

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

1000

0

200

400

600

800

1000

0

200

400

600

800

1000

gas dims: 2 vs 3

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

500

1000

1500

2000

0

200

400

600

800

0

200

400

600

800

0

500

1000

1500

0

200

400

600

800

1000

0

500

1000

1500

gas dims: 4 vs 5

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

500

1000

1500

2000

2500

0

200

400

600

800

0

200

400

600

800

0

500

1000

1500

2000

0

200

400

600

800

0

500

1000

1500

2000

2500

gas dims: 6 vs 7

Figure A5: Model performance on GAS test data.

18

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

250

500

750

1000

1250

0

500

1000

1500

0

200

400

600

800

0

200

400

600

800

0

500

1000

1500

0

200

400

600

800

hepmass dims: 0 vs 1

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

250

500

750

1000

1250

0

500

1000

1500

0

200

400

600

800

0

200

400

600

800

0

500

1000

1500

0

200

400

600

hepmass dims: 2 vs 3

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

250

500

750

1000

1250

0

500

1000

1500

0

200

400

600

800

0

200

400

600

800

0

500

1000

1500

0

200

400

600

800

hepmass dims: 4 vs 5

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

200

400

600

800

1000

0

500

1000

1500

0

200

400

600

800

0

200

400

600

0

500

1000

1500

0

200

400

600

hepmass dims: 6 vs 7

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

500

1000

1500

0

500

1000

1500

0

200

400

600

800

0

200

400

600

800

0

500

1000

1500

0

200

400

600

800

hepmass dims: 8 vs 9

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

250

500

750

1000

0

500

1000

1500

0

200

400

600

800

0

200

400

600

0

500

1000

1500

0

200

400

600

hepmass dims: 10 vs 11

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

250

500

750

1000

0

500

1000

1500

0

200

400

600

800

0

200

400

600

0

500

1000

1500

0

200

400

600

hepmass dims: 12 vs 13

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

250

500

750

1000

1250

0

500

1000

1500

0

200

400

600

800

0

200

400

600

800

0

500

1000

1500

0

200

400

600

800

hepmass dims: 14 vs 15

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

500

1000

1500

0

500

1000

1500

0

200

400

600

800

0

200

400

600

800

1000

0

500

1000

1500

0

200

400

600

800

hepmass dims: 16 vs 17

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

5000

10000

15000

20000

0

500

1000

1500

0

200

400

600

800

0

2000

4000

6000

8000

10000

0

500

1000

1500

0

2000

4000

6000

8000

10000

hepmass dims: 18 vs 19

Figure A6: Model performance on the HEPMASS test data.

19

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

20

40

60

0

10

20

30

0

200

400

600

800

0

500

1000

1500

2000

0

10

20

30

0

500

1000

1500

2000

miniboone dims: 0 vs 1

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

50

100

150

200

0

10

20

30

40

0

200

400

600

800

0

1000

2000

3000

4000

5000

0

10

20

30

40

0

1000

2000

3000

4000

5000

miniboone dims: 2 vs 3

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

20

40

60

0

10

20

30

0

200

400

600

800

0

500

1000

1500

0

10

20

30

0

250

500

750

1000

1250

miniboone dims: 4 vs 5

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

10

20

30

40

0

10

20

30

0

200

400

600

800

0

200

400

600

800

1000

0

10

20

30

0

200

400

600

800

1000

miniboone dims: 6 vs 7

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

10

20

30

40

0

10

20

30

40

0

200

400

600

800

0

200

400

600

800

1000

0

10

20

30

0

200

400

600

800

1000

miniboone dims: 8 vs 9

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

50

100

150

0

10

20

30

0

200

400

600

800

0

1000

2000

3000

4000

0

10

20

30

40

0

1000

2000

3000

4000

miniboone dims: 10 vs 11

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

25

50

75

100

125

0

10

20

30

40

0

200

400

600

800

0

1000

2000

3000

0

10

20

30

0

1000

2000

3000

miniboone dims: 12 vs 13

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

100

200

300

0

10

20

30

40

0

200

400

600

800

0

2000

4000

6000

8000

0

10

20

30

0

2000

4000

6000

8000

miniboone dims: 14 vs 15

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

20

40

60

0

10

20

30

0

200

400

600

800

0

500

1000

1500

0

10

20

30

40

0

500

1000

1500

miniboone dims: 18 vs 19

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

20

40

60

80

100

0

10

20

30

40

0

200

400

600

800

0

500

1000

1500

2000

2500

0

10

20

30

0

500

1000

1500

2000

2500

miniboone dims: 20 vs 21

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

20

40

60

80

100

0

10

20

30

40

0

200

400

600

800

0

500

1000

1500

2000

2500

0

10

20

30

0

500

1000

1500

2000

2500

miniboone dims: 22 vs 23

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

20

40

60

80

100

0

10

20

30

40

0

200

400

600

800

0

500

1000

1500

2000

2500

0

10

20

30

40

0

500

1000

1500

2000

2500

miniboone dims: 24 vs 25

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

20

40

60

0

10

20

30

40

0

200

400

600

800

0

250

500

750

1000

1250

0

10

20

30

0

250

500

750

1000

1250

miniboone dims: 26 vs 27

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

10

20

30

40

50

60

0

10

20

30

0

200

400

600

800

0

250

500

750

1000

1250

0

10

20

30

40

0

250

500

750

1000

1250

miniboone dims: 28 vs 29

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

10

20

30

40

50

0

10

20

30

40

0

200

400

600

800

0

250

500

750

1000

1250

0

10

20

30

0

250

500

750

1000

miniboone dims: 30 vs 31

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

10

20

30

40

0

10

20

30

0

200

400

600

800

0

200

400

600

800

1000

0

10

20

30

0

200

400

600

800

1000

miniboone dims: 32 vs 33

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

10

20

30

40

50

0

10

20

30

40

0

200

400

600

800

0

250

500

750

1000

1250

0

10

20

30

40

0

250

500

750

1000

1250

miniboone dims: 34 vs 35

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

20

40

60

80

0

10

20

30

40

0

200

400

600

800

0

500

1000

1500

2000

0

10

20

30

0

500

1000

1500

2000

miniboone dims: 36 vs 37

x 0(x) f(x) FFJORD f(x)

y 1(y) f 1(y) FFJORD f 1(y)
0

100

200

300

0

10

20

30

40

0

200

400

600

800

0

2000

4000

6000

0

10

20

30

40

0

2000

4000

6000

miniboone dims: 40 vs 41

Figure A7: Other two-dimensional slices of the MINIBOONE density estimation to supplement Fig. 4.

20

	1 Introduction
	2 Mathematical Formulation of OT-Flow
	3 Implementation of OT-Flow
	4 Related Works
	5 Numerical Experiments
	6 Discussion
	A Derivation of Loss C
	B The HJB Regularizer
	C Implementation Details
	D Exact Trace computation
	E Loss Metric
	F Visualizations of High-Dimensional Data Sets

