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Abstract. Mean-field games arise in various fields including economics, engineering and
machine learning. They study strategic decision making in large populations where the in-
dividuals interact via certain mean-field quantities. The ground metrics and running costs
of the games are of essential importance but are often unknown or only partially known. In
this paper, we propose mean-field game inverse-problem models to reconstruct the ground
metrics and interaction kernels in the running costs. The observations are the macro mo-
tions, to be specific, the density distribution and velocity field of the agents. They can be
corrupted by noise to some extent. Our models are PDE constrained optimization prob-
lems, which are solvable by first-order primal-dual methods. Besides, we apply Bregman
iterations to find the optimal model parameters. We numerically demonstrate that our
model is both efficient and robust to noise.

1. Introduction

Mean-field games (MFGs) study strategic decision making in large populations where the
individuals interact via certain mean-field quantities [27, 26, 6, 28]. In an MFG, the decision
of each player depends on their state and interactions with, not just individual, but all other
players. MFGs are used to study the strategies of players at a macro level. In recent years,
MFGs have gained enormous popularity, starting to play vital roles in many research fields
including economics [2, 22, 4, 18], finance [17, 7, 8, 29, 23], engineering [13, 25, 19] and
machine learning [14, 38].

One of the typical MFG formulations is the following transport-related optimization
problem [6, 28]:

minimize
density,velocity

(kinectic energy) + (regularization) + (final-time cost)

subject to (transport equation)

(initial density),

or written in math notation,

minimize
ρ,v

∫ T

0

[∫
Td

1

2
ρvTGMvdx+ F(ρ(·, t))

]
dt+ G(ρ(·, T ))

subject to ρt +∇ · (ρv) = 0

ρ(·, 0) = ρ0,

(1.1)
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where the problem is spatially defined in the d-dimensional torus Td := Rd/Zd, ρ : Td ×
[0, T ] → R is the density distribution with its initial state set to ρ0, v ∈ Rd is the velocity
field, GM (x) is a d × d symmetric positive definite matrix (called the ground metric) that
determines the kinetic energy consumed in different directions, F : P(Td)→ R is a convex
functional that regularizes ρ, and finally G : P(Td) → R is a convex functional of the
terminal density distribution.

The objective in (1.1) is the sum of kinetic energy and potential regularization. In
practice, F(·) can be quadratic function or the convolution function as in maximum mean
discrepancy (MMD) [1], and G(·) can be indicator function in typical optimal transport
problem, or the distance between ρT and its projection onto some convex set in [12]. The
continuity equation depicts that, the change of density mass equals to the flow-in mass minus
the flow-out mass. In other words, the density of players can be viewed as compressible
fluid.

In general, the MFG problem (1.1) has no closed-form solution. Existence and uniqueness
of a solution (ρ,v) have been studied under suitable conditions in [6, 28, 3]. There has been
great progress in numerically solving the problem on a grid [3, 5, 10, 11, 12] or in a neural
network [34].

We call (1.1) the forward problem and name the problem of recovering the ground metric
GM and the cost functionals F from the observations of ρ and v the inverse problem. The
ground metric GM can depict the geometric structure of the sample space and decides the
kinetic energy. The cost functional F , when taking a convolution form with a kernel K,
can depict the total interaction energy among the players. When GM and F are unknown
or partially known, learning them from the observable data becomes an important inverse
problem.

In this paper, we recreate ground metric GM and convolution kernel K from either clean
or noisy observations of density distribution ρ and velocity field v. We study this problem
since ρ can be observed directly or indirectly over time, and v can also be measured directly
from the game players. There are two scenarios in which we consider observation noise:

• Players do not completely play to their optimal strategy, which can be different from
the Nash equilibrium (NE).
• We apply an MFG (with infinite players) to approximate decision-making by a finite

but large number players, causing a difference between the model and reality.

We take three steps to derive an inverse model in this paper. First, we deduce the
KKT condition, which is an MFG PDE system whose solution equals to the minimizer
of the optimization problem (1.1) under suitable conditions. Next, we add appropriate
regularization (quadratic regularization on ρ,v, and Hp norm on the reconstruction target)
in the objective function. Combining above steps, we derive the following inverse-problem
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model:

min
θ,ρ,v

α

2
‖ρ− ρ̂‖2 +

β

2
‖v − v̂‖2 +

α0

2

(
‖ρ0 − ρ̂0‖2 + ‖ρT − ρ̂T ‖2

)
+
γ

p
‖∇θ‖pp

s.t. ρt +∇ · (ρv) = 0

(GMv)t +∇
(

1

2
vTGMv − δ

δρ
F(ρ)

)
= 0

∂(GMv)i
∂xj

=
∂(GMv)j
∂xi

, i 6= j∫
si(x̂i,·)

(GMv)idSx = 0, x̂i ∈ Td−1, i = 1, 2, . . . , d,

(1.2)

where (GMv)i and (GMv)j denote the ith and jth component of vectorGMv, respectively. In
this model, θ is the parameter, which is either the ground metric kernel g0 determining GM ,
or the convolution kernel linear in F determining the running cost. In objective function,
ρ̂, v̂ are observations, possibly noisy, and the L2 distance is applied for regularization. Then
we regularize θ with Hp norm, where p = 1, 2, . . . can be selected according to the property
of θ. Here the first equation is the continuity equation, and the second one corresponds to
a reformulation of Hamilton-Jacobi equation (HJE). We notice that the inverse model is
non-convex due to the bi-linear constraints though the objective functional is convex.

We numerically solve the inverse problem by discretizing (1.1) on a grid. The discrete
inverse model is solved by a primal-dual method on its Lagrangian. In each iteration, we
perform gradient descent to the primal variable and then update the dual variable with
gradient ascent. The algorithm converges to a saddle point of the Lagrangian, which is a
stationary point of the inverse model.

Related work: There are various approaches that successfully compute MFG (forward)
problems with applications. Based on augmented Lagrangian, [5] solves the MFG via a
primal-dual approach. [33] presents a parallel PDHG algorithm to compute the earth mover’s
distance, which is a special MFG type problem. [10, 11, 12] introduce fast algorithms for
the HJEs arising from optimal transport and MFG. [35, 15] propose fast algorithms for
Wasserstein-p distances. For applications, [16] applies optimal transport to seismic imaging,
to be specific, selects the Wasserstein metric as a misfit function for full-waveform inversion.
In addition, [24] presents an inverse problem learning the traffic dynamics model via an MFG
approach.

Recently, inverse problems for optimal transport have been studied. For example, [30]
proposes a unified data-driven framework to learn the adaptive, nonlinear interaction cost
functions in the matching process from data corrupted by noise and then make predictions
to new matchings. [37] proposes a framework to learn the unknown ground costs from
noisy observations during optimal transport. In particular, [30, 37] focus on the linear
programming formulation of inverse optimal transport problems. Compared to existing
works, we focus on PDE formulations of MFGs. Here the MFG system describes the
dynamics of agents, where we have observations about the motion and strategy adopted
by the agents during the game. Our observation is time dependent, which is different from
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the static joint distribution in [30, 37]. In addition, for MFG with interaction energy, MFG
dynamics can not be formulated as a minimizer of linear programming.

Here we summarize our contributions for MFG inverse problems as follows:

(i) We propose an inverse model for MFG. From the observation of feasible physical
quantities, we recreate both ground metric and the interaction kernel function.

(ii) We give a discrete format of the inverse problem on the grid.
(iii) We provide a computational method for solving inverse MFG problems in an efficient

fashion. Our approach is quite robust to noise in the observations.
(iv) We apply Bregman iteration methods for the proposed constrained optimization.

Organization: The rest of the paper is organized as follows. In Section 2, we briefly
review some MFG theoretic basics and present two MFG models. In Section 3, we deduce
PDE systems equivalent to the MFG models and present the proposed inverse models, one
for the ground metric GM , and the other for the convolution kernel K. In Section 4, we
discretize the MFG optimization problem (1.1) on a grid and do the same to their inverse
models. Then, we apply primal-dual algorithms to solve the inverse models. A Bregman
approach to improve the algorithm performance is also proposed. In Section 5, we present
our computational results for the inverse models in both 1 and 2 dimensions. The presented
results correspond to observations that are corrupted by noise at different levels.

2. Review of mean-field games

In this section, we review the theoretical basics of MFG and give two special examples:
regularized optimal transport and MMD interaction.

The standard potential MFG is already given in (1.1), where it has unknowns ρ,v. The
objective function is the sum of kinetic and potential energies, with an additional terminal
cost. The constraint is a continuity equation, depicting the macro motion of infinitely many
players that are approximated by compressible fluid dynamics. For simplicity, in this paper,
we assume the density distribution ρ to be strictly positive,

ρ ∈ P+(Td × [0, T ]) =
{
ρ(x, t) ∈ C1(Td × [0, T ]) | ρ(x, t) > 0,

∫ T

0

∫
Td

ρ(x, t)dxdt < +∞
}
,

also assume the terminal cost G in (1.1) is the indicator function of {ρT }, and the final-time
state is given by ρT .

Next, we introduce the KKT condition of (1.1). Let m = ρv, the product of density
distribution and the velocity, denote the flux. Substitute v with m/ρ in (1.1); then, the
optimization problem is transferred to a convex problem. Take ϕ as the Lagrangian multi-
plier for the continuity equation. The Lagrangian of (1.1) is the sum of objective function
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and multiplied constraint violation:

min
m,ρ

max
ϕ

∫ T

0

∫
Td

1

2

mTGMm

ρ
+ ϕ(∇ ·m + ρt)dxdt+

∫ T

0
F(ρ(·, t))dt

= min
m,ρ

max
ϕ

∫ T

0

∫
Td

1

2

mTGMm

ρ
−∇ϕTm− ϕtρdxdt+

∫ T

0
F(ρ(·, t))dt+

∫
Td

ϕρdx

∣∣∣∣t=T
t=0

.

The optimization solution corresponds to a saddle point of the Lagrangian in density
space. Since the optimization problem is convex, ρ ∈ P+(Td) is strictly positive, the saddle
point is exactly the point where the variation w.r.t. primal/dual variables vanishes. Take
the L2 variation to the Lagrangian w.r.t. m, ρ, ϕ over Td× (0, T ). Then the KKT condition
of (1.1) can be written as:

GMm

ρ
−∇ϕ = 0 (2.1a)

−mTGMm

2ρ2
+

δ

δρ
F(ρ)− ϕt = 0 (2.1b)

∇ ·m + ρt = 0, (2.1c)

where δ in (2.1b) is the L2 variation. From (2.1a), we solve m with ρ, ϕ,GM as:

m = ρG−1
M ∇ϕ.

Substituting m’s representation of ρ, ϕ,GM into (2.1b)(2.1c), we obtain the MFG system:

ρt +∇ · (ρG−1
M ∇ϕ) = 0 (2.2a)

1

2
∇ϕTG−1

M ∇ϕ+ ϕt −
δ

δρ
F(ρ) = 0, (2.2b)

where (2.2a) is the continuity equation, and (2.2b) is the HJE . It describes the evolution
of the velocity field.

Remark 1. Equation (2.2) represents the mean field limit of finite players’ interaction
system [6, 28]. Let X ∼ ρ denote a flow map, and P (t, x) = ∇ϕ(t, x). Then the mean field
game dynamics represents

dX

dt
= GM (X)−1P

dP

dt
= ∇X

(
− 1

2
(P,GM (X)−1P ) +

δ

δρ(X)
F(ρ)

)
Here F(ρ) refers to the mean field limit of the interaction energy among players.

Remark 2. Typical finite player games may involve noisy individual motions. Suppose that
the players are affected by i.i.d. Brownian motion

√
2βdBt, where β > 0 is a given diffusion

constant. In this circumstance, the continuity equation constraint in 1.1 is substituted by
Fokker–Planck equation:

ρt +∇ · (ρv) = β4ρ.
The Laplacian depicts the viscosity among particles during transport.



6 DING, LI, OSHER, YIN

Next, let us review two MFG examples. One is regularized optimal transport, and the
other is the MFG with interaction energy. Our inverse-problem models are designed for the
target parameters in each of them.

Example 1 (Optimal transport with regularization). For some F convex, consider the
running cost F(ρ(·, t)) as

F(ρ(·, t)) =

∫
Td

F (ρ(x, t))dx,

where m is the flux. Reformulate (1.1) as:

minimize
m,ρ

∫ T

0

∫
Td

1

2

mTGMm

ρ
+ F (ρ)dxdt

subject to ρt +∇ ·m = 0

ρ(·, 0) = ρ0 ρ(·, T ) = ρT .

(2.3)

When F = 0 and GM = I, (2.3) is exactly the classical optimal transport problem. It
transfers one pile of mass to another with the least kinetic energy. The two piles have the
same total mass but different density distributions. The minimum kinetic energy of the
transport is called the Wasserstein L2 distance between ρ0, ρT . In [33], F (ρ) = ερ2/2 serves
as a regularization, giving rise to strong convexity for optimal transport. With non-zero F ,
we call (2.3) regularized optimal transport.

Remark 3. In optimal transport problem (2.3), sometimes, there exists a non-trivial ground
metric function GM . Here GM is a metric function on the sample space, which depicts a
distance function between two sufficiently adjacent points on the manifold surface. It is a
metric function on the sample space, depicting the geometric contour of the surface. So
GM is an important parameter in MFG, and we will learn this ground metric function from
observed population agents’ (particles’) motions.

Example 2 (MFG with interaction energy). Take F(·) as a convolution functional, also
named interaction energy:

F(ρ(·, t)) =

∫
Td

1

2
ρ(x, t)(K ∗ ρ)(x, t)dx, (2.4)

where K ∗ ρ is the convolution of K with ρ defined as:

(K ∗ ρ)(x, t) =

∫
Td

K(x, y)ρ(y, t)dy.

Then (1.1) can be written as:

minimize
m,ρ

∫ T

0

∫
Td

1

2

mTGMm

ρ
+

1

2
ρ(x, t)(K ∗ ρ)(x, t)dxdt

s.t. ρt +∇ ·m = 0

ρ(·, 0) = ρ0, ρ(·, T ) = ρT .

(2.5)

The interaction energy F(ρ) in (2.5) is related to the MMD, which is a widely used diver-
gence (objective) functional in machine learning problems. In practice, ρ0 is source data,
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ρT indicates target data. K is a convolution kernel. It induces symmetry as:

K(x, y) = K(y, x) = K̃(|y − x|Td), x, y ∈ Td, (2.6)

for some K̃ : [0, 1/2]d → R. We define |yi − xi|T as the distance between xi and yi on
the 1-dimensional torus T, |y − x|Td = (|y1 − x1|T, |y2 − x2|T, . . . , |yn − xn|T)T . In physical
interpretation, F(ρ(·, t)) is the total potential energy attained by the particles in density
distribution ρ.

In practice, K̃ is often taken as:

K̃(x) = exp

(
−xTAx

ε

)
, x ∈

[
0,

1

2

]d
, (2.7)

where A � 0 is called the adaptation matrix and ε > 0 is a scaling parameter.

The convolution kernel K(·, ·) depicts the pairwise impact between the particles, which
relies on nothing but the relative distance of any two players. Once the kernel is fully
studied, we are able to tell the interactions between the players while scheduling routine,
thus predicting the dynamics of players under different time boundary conditions. In Section
3, we propose inverse models for the above examples.

3. Mean-field game inverse model

In this section, an equivalent MFG PDE system is proposed. Based on the PDEs, we
develop two inverse-problem models to recreate the important parameters in MFGs.

3.1. Mean-field game system. Consider the potential MFG problem (1.1) on the d-
dimensional torus Td and time interval [0, T ]. We derive an equivalent system of MFG by
Theorem 4. Before displaying it, we introduce the following integral path for simplification of
statement. Let x̂i denote x with the ith element erased, x̂i = (x1, . . . , xi−1, x̂i, xi+1, . . . , xd) ∈
Td−1. Path si(x̂

i, ·) is defined as:

si(x̂
i, s) = (x1, x2, . . . , xi−1, s, xi+1, . . . , xn), s ∈ [0, 1].

Theorem 4. Suppose G in (1.1) is an indicator function of {ρT }. Assume (1.1) has a
positive solution ρ ∈ P+(Td × [0, T ]), and the dual variable ϕ has continuous second-order
mixed derivative in Td × [0, T ]:

ϕxi,xj , ϕxi,t ∈ C(Td × [0, T ]), i 6= j.

Then, (ρ,v) is the minimizer of (1.1) if and only if it is the solution of PDEs

ρt +∇ · (ρv) = 0 (3.1a)

(GMv)t +∇
(

1

2
vTGMv − δ

δρ
F(ρ)

)
= 0 (3.1b)

∂(GMv)i
∂xj

=
∂(GMv)j
∂xi

, i 6= j (3.1c)
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si(x̂i,·)

(GMv)idSx = 0, x̂i ∈ Td−1, i = 1, 2, . . . , d, (3.1d)

where boundaries ρ(·, 0), ρ(·, T ) are set to ρ0 and ρT .

Remark 5. Theorem 4 claims the equivalence between (1.1) and (3.1). The deduction
allows the MFG optimal solution to be represented by PDE constraints only with density
distribution and velocity field ρ,v. Based on this formulation, we develop an inverse problem
to recreate the parameters, such as ground metrics or kernels, with feasible observations.

Now let us give the explicit form of δF(ρ)/δρ in specific cases. In Example 1,

δF(ρ)

δρ
= F ′(ρ).

In Example 2, the L2 variation to the MMD regularization can be written as:

δF(ρ)

δρ
= K ∗ ρ,

which is the convolution of K and ρ. The rigorous proof of Theorem 4 is given in Subsection
3.5.

3.2. Inverse model for ground metric. We first look into the inverse model for Example
1. In this case, we are aiming at recreating ground metric GM (x), which only depends on
the spatial location. For GM , we further assume there exists a metric kernel g0 : Td → R
such that:

GM = (gij)d×d = (fij(g0))d×d, (3.2)

with mappings fij : R → R, fij = fji given. Note that fij are functions not explicitly
depending on location x. The selection of fij is flexible. They can be linear or non-linear
functions. We have introduced g0 to replace GM , and this has reduced the dimension of
the unknowns. Now our inverse problem model is to learn the metric kernel g0.

Model 1 (Inverse Model for Ground Metric). In (2.3), let F : P(Td)→ R be known, and the
ground GM can be represented by metric kernel g0 as in (3.2). Then using the observations
ρ̂, v̂ of density distribution, velocity field, and the boundary observations ρ̂0, ρ̂T from mean
field games, we can define the following optimization problem:

min
g0,ρ,v

α

2
‖ρ− ρ̂‖2 +

β

2
‖v − v̂‖2 +

α0

2

(
‖ρ0 − ρ̂0‖2 + ‖ρT − ρ̂T ‖2

)
+
γ

p
‖∇g0‖pp

s.t.



ρt +∇ · (ρv) = 0

(GMv)t +∇
(

1

2
vTGMv − F ′(ρ)

)
= 0

∂(GMv)i
∂xj

=
∂(GMv)j
∂xi

, i 6= j∫
si(x̂i,·)

(GMv)idSx = 0, x̂i ∈ Td−1, i = 1, 2, . . . , d

(3.3)
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where ‖ · ‖2 is the squared L2 norm in the corresponding space (ρ,v in Td × [0, T ], while
ρ0, ρT in Td). ‖∇g0‖pp is the Hp norm of the metric kernel g0 over Td, p ≥ 1. Parameters
α, α0, β, γ are scaling indices.

Remark 6. In the model, the value of p can be selected according to the property of g0.
If g0 is smooth, we let p = 2. When g0 is sparse, we usually choose p = 1, giving rise to the
total variation (TV) regularization.

Remark 7 (Mean field observation). In practice, there are also many alternative options for
the objective function to regularize the distance between (ρ,v) and (ρ̂, v̂). For example, one
can replace the L2 norm of vector fields ‖v− v̂‖2 by

∫ ∫
ρ̂(t, x)‖v(t, x)− v̂(t, x)‖2/2 dxdt. In

this formulation, one only needs to fit the vector fields based on the current observation of
density. Then, we replace the L2 norm of density distribution ‖ρ− ρ̂‖2 by Kullback-Leibler
(KL) divergence, and the objective function becomes:

α

∫ T

0

∫
Td

ρ log
ρ

ρ̂
dxdt+

∫ T

0

∫
Td

ρ̂

2
‖v − v̂‖2 dxdt+ α0

(∫
Td

ρ0 log
ρ0
ρ̂0
dx+

∫
Td

ρT log
ρT
ρ̂T

dx

)
+
γ

p
‖∇g0‖pp.

(3.4)

In this scheme,
∫
Td ρ(x, t)dx = 1, where ρ is a probability measure.

Remark 8. It is also worth mentioning that there are other important regularizations in
practice, for example, the Lp–Wasserstein metrics.

3.3. Inverse model for convolution kernel. In this section, we introduce another inverse
model for Example 2, which is to learn the kernel in interaction energy.

Model 2 (Inverse Model for Convolution Kernel). In (2.5), suppose the ground metric GM
is known. The convolution kernel is symmetric as in (2.6). The observations are density
distribution ρ̂, velocity field v̂, and boundary observation ρ̂0, ρ̂T from the numerical result
of a single forward MFG problem. We design the inverse optimization model to learn the
kernel K̃ over [0, 1/2]d:

min
K̃,ρ,v

α

2
‖ρ− ρ̂‖2 +

β

2
‖v − v̂‖2 +

α0

2

(
‖ρ0 − ρ̂0‖2 + ‖ρT − ρ̂T ‖2

)
+
γ

p
‖∇K̃‖pp

s.t.



ρt +∇ · (ρv) = 0

(GMv)t +∇
(
−K ∗ ρ+

1

2
vTGMv

)
= 0

∂(GMv)i
∂xj

=
∂(GMv)j
∂xi

, i 6= j∫
si(x̂i,·)

(GMv)idSx = 0, x̂i ∈ Td−1, i = 1, 2, . . . , d

(3.5)

where ‖ · ‖2 shares the same definition as in (3.3), and ‖∇K̃‖pp is the Hp regularization on

the kernel K̃ over [0, 1/2]d, p ≥ 1, p ∈ Z.

Remark 9. We note that, due to the symmetry of K on the torus, we simply study K̃ over
[0, 1/2]d. Similar to Model 1, p can be selected as different positive integers based on the
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property of K. Since K̃ is often taken in the exponential quadratic format (2.7) in MFG

interaction, we always assume K̃ is smooth as a priori and p = 2 is a common choice for
the regularization on the kernel.

3.4. KKT condition for inverse model. In this subsection, we show the KKT condition
of the optimization problem (3.3) in Model 1.

We consider the optimization problem (3.3) in 1-dimensional space, i.e. d = 1. Taking
GM = g0, p = 2, we have the theorem below.

Theorem 10. Consider the optimization problem:

minimize
GM ,ρ,v

J (ρ, v, ρ0, ρT ; ρ̂, v̂, ρ̂0, ρ̂T ) +
γ

2
‖(GM )x‖22 (3.6a)

s.t.



ρt + (ρv)x = 0

(GMv)t +

(
1

2
GMv

2 − F ′(ρ)

)
x

= 0∫
T
GMv dx = 0

(3.6b)

J is the regularization on ρ, v, as in objective function of (3.3), or the regularization in (3.4).
Suppose δ

δρJ ,
δ
δvJ exist, assume ρ ∈ P+ in the model. Denote the Lagrangian multiplier as

(Φ, ψ). Then the minimizer (ρ∗, v∗, G∗M ) of (3.3) with certain multiplier (Φ∗, ψ∗) solves the
following PDEs, 

δ
δρJ − Φt − Φxv + ψxF

′′(ρ) = 0
δ
δvJ − ψtGM − Φxρ− ψxGMv = 0

−γ(GM )xx −
∫ T

0 ψtv dt−
∫ T

0
1
2ψxv

2 dt+ ψv|Tt=0 = 0

(3.7a)

{
δ
δρ0
J − Φ(x, 0) = 0

δ
δρT
J + Φ(x, T ) = 0

(3.7b)

ψ(x, 0) = ψ(x, T ) = 0 (3.7c)

constraints in (3.6b). (3.7d)

Proof. The Lagrangian of (3.6) can be written as:

min
ρ,v,GM

max
Φ,ψ
J (ρ, v, ρ0, ρT ; ρ̂, v̂, ρ̂0, ρ̂T ) +

γ

2
‖(GM )x‖22 +

∫ T

0

∫
T

Φ ((ρv)x + ρt)

+ ψ

(
(GMv)t +

(
1

2
GMv

2 − F ′(ρ)

)
x

)
dxdt

= min
ρ,v,GM

max
Φ,ψ
J (ρ, v, ρ0, ρT ; ρ̂, v̂, ρ̂0, ρ̂T ) +

γ

2
‖(GM )x‖22 +

∫ T

0

∫
T
−Φxρv − Φtρ− ψtGMv

− ψx
(

1

2
GMv

2 − F ′(ρ)

)
dxdt+

∫
Td

Φρ+ ψGMv dx

∣∣∣∣T
t=0

.
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By computing L2 first variation to ρ, v over T × (0, T ), GM over T, we have (3.7a). By
computing derivative of ρ0, ρT over T× {0},T× {T}, (3.7b) can be deduced. (3.7c) comes
from the derivative to v(x, 0), v(x, T ) over T. (3.7d) is the original constraints. �

3.5. Proof of Theorem 4.

Proof of Theorem 4. Once the solution to (1.1) is strictly positive, we have the KKT condi-
tion of (1.1) as (2.2). Due to the convexity of (1.1) by taking m = ρv and the assumption
that ρ being positive, minimizer of the optimization problem equals to the solution of PDE
system (2.2). Thus our goal reduces to prove that (2.2) and (3.1) share identical solutions
under the continuous assumption of ϕ.

Note w = ∇ϕ. The HJE (2.2b) can be written as:

δ

δρ
F(ρ)− 1

2
wTG−1

M w = ϕt.

Let

ξ :=
1

2
wTG−1

M w − δ

δρ
F(ρ).

Since ϕ has a second-order mixed derivative in Td × [0, T ], we can substitute HJE with

wt +∇ξ = 0,
∂wi
∂xj

=
∂wj
∂xi

, i 6= j,

where wi, wj are the ith and jth component of w. The MFG system is transformed into:

ρt +∇ · (ρG−1
M w) = 0

wt +∇
(

1

2
wTG−1

M w − δ

δρ
F(ρ)

)
= 0

∂wi
∂xj

=
∂wj
∂xi

, i 6= j

(3.8)

Due to non-simple connection of the domain Td, for compatibility, the integral of wi on
path si(x̂

i, ·) equals to 0:∫
si(x̂i,·)

widSx = 0, x̂i ∈ Td−1, i = 1, 2, . . . , d.

Since

v =
m

ρ
= G−1

M ∇ϕ = G−1
M w,

substituting w with GMv, (3.8) can be reformulated into (3.1). Thus (ρ,v) is a solution to
(2.2) if and only if it solves (3.1). The theorem holds. �

Remark 11. We notice that if G is an indicator function, the forward problem forms the
classical dynamical optimal transport problem, and our inverse model forms the inverse
dynamical optimal transport. When G is a general functional, then our forward problem
forms the classical mean field game problem, and our proposed model is the inverse mean
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field game problem. We also emphasize that above models share the same PDE system,
expect for different boundary conditions on both initial and terminal time.

4. Discretization and rigorous treatment

In this section, we derive the discrete format of the inverse problem in adaptation to
the discrete forward problem. Furthermore, the primal-dual algorithm to solve the discrete
inverse problem is provided.

4.1. Discretization. In computation, we have to deal with the MFG problem in the dis-
crete format. In this subsection, we use a finite volume discretization to approximate the
continuous problem on the grid. Without loss of generality, all the work is done in 2 di-
mensions.

We discretize the problem on our dual variable ϕ. Consider an m×m× n discretization
on the torus T2 × [0, T ]. Here m ×m is the size for spatial discretization, while n is the
size for time discretization. We approximate the space-time domain Td × [0, T ] with points
{x1, x2, . . . , xm}×{y1, y2, . . . , ym}×{z1, z2, . . . , zn}. Take 4x,4t as the size of spatial-time
element. Define the cube as:

C(x, y, z) = {(x′, y′) ∈ T2, z′ ∈ [0, T ] | |x− x′|T ≤
4x
2
, |y − y′|T ≤

4x
2
, |z − z′| ≤ 4t

2
}.

We further define the 2-dimensional box:

C(x, y) = {(x′, y′) ∈ T2 | |x− x′|T ≤
4x
2
, |y − y′|T ≤

4x
2
}.

For simplicity, let V denote the set of subscripts for all the grid points in space, which is
modulo m in the torus topology:

V = {1, 2, . . .m} × {1, 2, . . .m}.
Here (i1, i2), (i′1, i

′
2) ∈ Z2 represent an identical point in V if i1 ≡ i′1( mod m), i2 ≡ i′2(

mod m). We define Ṽ as:

Ṽ = {0, 1, 2, . . . , bm
2
c} × {0, 1, 2, . . . , bm

2
c},

which is our discretization of [0, 1/2]2. Let ev be the unit vector in positive direction for
each axis. In 2 dimensions, there are two such vectors: e1 = (1, 0), e2 = (0, 1). Slightly
abusing the notation, we define:

C(i, j) = C(xi1 , yi2 , zj), i ∈ V, j = 1, 2, . . . , n,

C(i, j − 1

2
) = C(xi1 , yi2 , zj −

4t
2

), i ∈ V, j = 1, 2, . . . , n,

C(i, n+
1

2
) = C(xi1 , yi2 , zn +

4t
2

),

C(i+
ev
2
, j) = C((xi1 , yi2) +4xev/2, zj), i ∈ V, j = 1, 2, . . . , n,

C(i) = C(xi1 , yi2), i ∈ V,
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where i = (i1, i2) contains 2 elements.

Next we define m = (mx,my)
T , ρ,v, ϕ,GM in the discrete sense:

ϕi,j =

∫
C(i,j) ϕ(x, t)dxdt

Vol(C(i, j))
, i ∈ V, j = 1, 2, . . . n,

ρi,j− 1
2

=

∫
C(i,j− 1

2
) ρ(x, t)dxdt

Vol(C(i, j − 1
2))

, i ∈ V, j = 1, 2, . . . n+ 1,

(
mx,i+e1/2,j

my,i+e2/2,j

)
=


∫
C(i+e1/2,j)

mx(x,t)dxdt

Vol(C(i+e1/2,j))∫
C(i+e2/2,j)

my(x,t)dxdt

Vol(C(i+e2/2,j))

 , i ∈ V, j = 1, 2, . . . n,

vx,i+e1/2,j =
mx,i+e1/2,j

ρi,j− 1
2

, vy,i+e2/2,j =
my,i+e2/2,j

ρi,j− 1
2

, i ∈ V, j = 1, 2, . . . n,

GM,i =

∫
C(i)GM (x)dx

Area(C(i))
, i ∈ V, Ki,i′ =

∫
C(i)

∫
C(i′)K(x, y)dxdy

Area(C(i)) ·Area(C(i′))
, i, i′ ∈ V,

where Vol(·) is the volume of a cube, and Area(·) is the area of a box. Due to the symmetry

of convolution kernel K(·, ·) : Td × Td → R, it is safe for us to study K̃(·) : [0, 1/2]d → R
only. Let us denote the discretization of the single argument convolution kernel as:

K̃i = Kj,i+j , i ∈ Ṽ, j ∈ V. (4.1)

The selection of j is arbitrary. Furthermore, without causing confusion, we note

mi+e1/2,j := mx,i+e1/2,j , mi+e2/2,j := my,i+e2/2,j ,

vi+e1/2,j := vx,i+e1/2,j , vi+e2/2,j := vy,i+e2/2,j ,

to simplify the symbols. We take the discrete format of ρt and ∇ ·m as:

(ρt)ij =
(
ρi,j+ 1

2
− ρi,j− 1

2

)
/4t, (∇ ·m)ij =

∑
ev

(
mi+ ev

2
,j −mi− ev

2
,j

)
/4x.

Set the discretization of
∫ T

0 F(ρ(·, t))dt as
∑n

j=2F({ρ·,j− 1
2
})4t. Take G as indicator func-

tion. It can be relaxed into the constraint, in discrete format, ρi,n+ 1
2

= ρT,i, i ∈ V . Finally,

for notation simplicity, let (·)v denote a vector whose elements take over all the positive
direction ev in order. For example, suppose a variable ηi,j is defined on the d-dimensional
grid.

(ηi+ev ,j)v = (ηi+e1,j , ηi+e2,j , . . . , ηi+ed,j)
T .

Based on the discretization above, (1.1) can be written as:

min
m,ρ

∑
i∈V

n∑
j=1

1

2

(
mi+ ev

2
,j

)T
v
GM,i

(
mi+ ev

2
,j

)
v

ρi,j− 1
2

+

n∑
j=2

F({ρ·,j− 1
2
}) 1

4x2

s.t.
(
ρi,j+ 1

2
− ρi,j− 1

2

)
/4t+

∑
ev

(
mi+ ev

2
,j −mi− ev

2
,j

)
/4x = 0

ρi, 1
2

= ρ0,i, ρi,n+ 1
2

= ρT,i,

(4.2)
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where {ρ0,·}, {ρT,·} are given beforehand. We give explicit discretization of F(ρ(·, t)) for
our examples. In (2.3), F(ρ(·, t)) is the integral of F (ρ) and discretized as:

F({ρ·,j− 1
2
}) =

∑
i∈V

F (ρi,j− 1
2
)4x2, j = 2, 3, . . . , n.

In (2.5), F(·) is a convolution function of ρ, whose discrete format can be written as:

F({ρ·,j− 1
2
}) =

∑
i∈V

∑
i′∈V

1

2
K(i, i′)ρi,j− 1

2
ρi′,j− 1

2
4x4, j = 2, 3, . . . , n.

4.2. Discrete mean-field game system. With the discretization in Subsection 4.1, we
derive a discrete format of inverse problem (3.1) compatible with the discrete potential
MFG (4.2).

Theorem 12. Suppose that (4.2) has a strictly positive solution {ρi,j− 1
2
}. Then, the tu-

ple ({ρi,j− 1
2
}, {mi+ ev

2
,j}) is a minimizer of (4.2) if and only if the corresponding tuple

({ρi,j− 1
2
}, {vi+ ev

2
,j}) is the solution of following discrete MFG system:

(
ξi+ev ,j− 1

2
− ξi,j− 1

2

4x

)
v

+

(
(wi+ ev

2
,j)v − (wi+ ev

2
,j−1)v

4t

)
= 0, i ∈ V, j = 2, 3, . . . , n(

ρi,j+ 1
2
− ρi,j− 1

2

)
/4t+

∑
ev

(
mi+ ev

2
,j −mi− ev

2
,j

)
/4x = 0, i ∈ V, j = 1, 2, . . . , n

wi+ ev
2

+ew,j − wi+ ev
2
,j

4x
=
wi+ ew

2
+ev ,j − wi+ ew

2
,j

4x
, ev 6= ew, i ∈ V, j = 1, 2, . . . , n∑

i1

wi+ e1
2
,j = 0 i2 = 1, 2, . . . ,m,

∑
i2

wi+ e2
2
,j = 0 i1 = 1, 2, . . . ,m, j = 1, 2 . . . , n

(4.3)
with initial and terminal states set as:

ρi, 1
2

= ρ0,i, ρi,n+ 1
2

= ρT,i.

In (4.3),

(wi+ ev
2
,j)v = GM,i(vi+ ev

2
,j)v, i ∈ V, j = 1, 2, . . . n,

ξi,j− 1
2

=
1

2
(vi+ ev

2
,j)
T
vGM,i(vi+ ev

2
,j)v −

∂

∂ρi
F({ρ·,j− 1

2
}) 1

4x2
.

Proof of Theorem 12. We start with the discrete potential MFG (4.2), whose Lagrangian
can be formulated as:

min
m,ρ

max
ϕ

∑
i∈V

n∑
j=1

{
1

2

(mi+ ev
2
,j)
T
vGM,i(mi+ ev

2
,j)v

ρi,j− 1
2

+ ϕi,j

((
ρi,j+ 1

2
− ρi,j− 1

2

)
/4t

+
∑
ev

(
mi+ ev

2
,j −mi− ev

2
,j

)
/4x

)}
+

n∑
j=2

F({ρ·,j− 1
2
}) 1

4x2

(4.4)
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= min
m,ρ

max
ϕ

∑
i∈V

n∑
j=1

1

2

(mi+ ev
2
,j)
T
vGM,i(mi+ ev

2
,j)v

ρi,j− 1
2

+
∑
i∈V

n∑
j=2

ϕi,j−1 − ϕi,j
4t

ρi,j− 1
2

+
∑
i∈V

ϕi,n
4t

ρi,n+ 1
2

−
∑
i∈V

ϕi,1
4t

ρi, 1
2

+
∑
i∈V

n∑
j=1

(
ϕi,j − ϕi+ev ,j

4x

)T
v

(mi+ ev
2
,j)v +

n∑
j=2

F({ρ·,j− 1
2
}) 1

4x2
.

(4.5)

In (4.4) and (4.5), {ρi, 1
2
} and {ρi,n+ 1

2
} are fixed.

Taking derivative to the unknowns ρi,j− 1
2
, mi+ ev

2
,j and ϕi,j , we obtain the discrete KKT

condition:

GM,i(mi+ ev
2
,j)v

ρi,j− 1
2

+

(
ϕi,j − ϕi+ev ,j

4x

)
v

= 0, i ∈ V, j = 1, 2, . . . n

− 1

2

(mi+ ev
2
,j)
T
vGM,i(mi+ ev

2
,j)v

ρi,j− 1
2

2
+
ϕi,j−1 − ϕi,j

4t
+

∂

∂ρi,j− 1
2

F({ρ·,j− 1
2
}) 1

4x2
= 0,

i ∈ V, j = 2, 3, . . . , n(
ρi,j+ 1

2
− ρi,j− 1

2

)
/4t+

∑
ev

(
mi+ ev

2
,j −mi− ev

2
,j

)
/4x = 0, i ∈ V, j = 1, 2, . . . , n

(4.6)

whose positive solution is the minimizer of (4.2). Solving the first equation in (4.6), we are
able to get:

(mi+ ev
2
,j)v = ρi,j− 1

2
G−1
M,i

(
ϕi+ev ,j − ϕi,j

4x

)
v

, i ∈ V, j = 1, 2, . . . n.

Let

(wi+ ev
2
,j)v =

(
ϕi+ev ,j − ϕi,j

4x

)
v

= GM,i(vi+ ev
2
,j)v, i ∈ V, j = 1, 2, . . . n.

Substituting the solved (mi+ ev
2
,j)v into the second and third equation of (4.6), we have:

− 1

2
(wi+ ev

2
,j)
T
vG
−1
M,i(wi+ ev

2
,j)v +

ϕi,j−1 − ϕi,j
4t

+
∂

∂ρi
F({ρ·,j− 1

2
}) 1

4x2
= 0,

i ∈ V, j = 2, 3, . . . , n(
ρi,j+ 1

2
− ρi,j− 1

2

)
/4t+

∑
ev

(
mi+ ev

2
,j −mi− ev

2
,j

)
/4x = 0, i ∈ V, j = 1, 2, . . . , n

(mi+ ev
2
,j)v = ρi,j− 1

2
G−1
M,i(wi+ ev

2
,j)v, i ∈ V, j = 1, 2, . . . n

(4.7)

Take

ξi,j− 1
2

=
1

2
(wi+ ev

2
,j)
T
vG
−1
M,i(wi+ ev

2
,j)v −

∂

∂ρi
F({ρ·,j− 1

2
}) 1

4x2
.
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Then the equivalent equations derived from mixed second-order discrete derivative of ϕ can
be written as:


(
ξi+ev ,j− 1

2
− ξi,j− 1

2

4x

)
v

+

(
(wi+ ev

2
,j)v − (wi+ ev

2
,j−1)v

4t

)
= 0, i ∈ V, j = 2, 3, . . . , n

wi+ ev
2

+ew,j − wi+ ev
2
,j

4x
=
wi+ ew

2
+ev ,j − wi+ ew

2
,j

4x
, ev 6= ew, i ∈ V, j = 1, 2, . . . , n

(4.8)

The second equation in (4.6) can be substituted with (4.8). Besides, due to Td’s non-simply
connection, for i = (i1, i2), we add another constraint for compatibility:

∑
i1

wi+ e1
2
,j = 0, i2 = 1, 2, . . . ,m, j = 1, 2, . . . , n

∑
i2

wi+ e2
2
,j = 0, i1 = 1, 2, . . . ,m, j = 1, 2, . . . , n.

(4.9)

Combining (4.8), (4.9), and the first equation in (4.7), we get (4.3). Thus the minimizer of
(4.2) equals to the solution to (4.3). The theorem holds. �

Remark 13. In (4.3), {ξi,j− 1
2
}, {mi+ ev

2
,j}, {wi+ ev

2
,j} can be totally represented by discrete

ρ,w. Here (4.3) is a system purely consisting of discrete ρ,v and transport parameters,
GM ,K, etc. Taking (4.3) as constraints, we are able to design a discrete inverse problem to
learn target parameters with feasible observations of ρ,v.

4.3. Inverse problem in discrete format. With the discretization in Subsection 4.1
and discrete MFG system in Subsection 4.2, we are able to design a discrete format inverse
model to learn the metric kernel.

Model 3 (Discrete Inverse Model for Ground Metric). For the regularized optimization
problem (2.3), assume that the running cost functional F is known beforehand, and suppose
the observation of density distribution {ρ̂i,j− 1

2
}, i ∈ V, j = 1, 2, . . . , n+ 1 and velocity field

{(v̂i+ ev
2
,j)v}, i ∈ V, j = 1, 2, . . . , n is available. In the observation, {ρ̂·, 1

2
} and {ρ̂·,n+ 1

2
}

denote the initial/terminal discrete density distribution. Then we have an inverse model on
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the grid as follows:

min
g0,ρ,v

∑
i∈V

n+1∑
j=1

α

2

(
ρi,j− 1

2
− ρ̂i,j− 1

2

)2
+
∑
i∈V

n∑
j=1

β

2
‖(vi+ ev

2
,j)v − (v̂i+ ev

2
,j)v‖2

+
∑
i∈V

α0

24t

((
ρi, 1

2
− ρ̂i, 1

2

)2
+
(
ρi,n+ 1

2
− ρ̂i,n+ 1

2

)2
)

+
∑
i∈V

∑
ev

γ

p4t

∣∣∣∣g0,i+ev − g0,i

4x

∣∣∣∣p

s.t.



(
ξi+ev ,j− 1

2
− ξi,j− 1

2

4x

)
v

+

(
GM,i(vi+ ev

2
,j)v −GM,i(vi+ ev

2
,j−1)v

4t

)
= 0,

i ∈ V, j = 2, 3, . . . , n(
ρi,j+ 1

2
− ρi,j− 1

2

)
/4t+

∑
ev

(
mi+ ev

2
,j −mi− ev

2
,j

)
/4x = 0, i ∈ V, j = 1, 2, . . . , n

wi+ ev
2

+ew,j − wi+ ev
2
,j

4x
=
wi+ ew

2
+ev ,j − wi+ ew

2
,j

4x
, ev 6= ew, i ∈ V, j = 1, 2, . . . , n∑

i1

wi+ e1
2
,j = 0, i2 = 1, 2, . . . ,m,

∑
i2

wi+ e2
2
,j = 0, i1 = 1, 2, . . . ,m, j = 1, 2 . . . , n

(4.10)

where


ξi,j− 1

2
=

1

2
(vi+ ev

2
,j)
T
vGM,i(vi+ ev

2
,j)v − F ′(ρi,j− 1

2
), i ∈ V, j = 2, 3, . . . , n

(wi+ ev
2
,j)v = GM,i(vi+ ev

2
,j)v, i ∈ V, j = 1, 2, . . . , n

(mi+ ev
2
,j)v = ρi,j− 1

2
(vi+ ev

2
,j)v, i ∈ V, j = 1, 2, . . . , n

Note that in (4.10), discrete ξ,w,m are auxiliary variables for the simplicity of statement,
and they can be totally represented by discrete ρ,v, g0, the unknowns in the inverse op-
timization problem. The selection of p is also flexible as in continuous model (3.5). The
model is adaptive to the prior properties of g0.

Similar to Model 3, following the idea in Model 2 and applying the discrete system (4.3),
we develop a discrete inverse problem to learn the convolution kernel:

Model 4 (Discrete Inverse Model for Convolution Kernel). In the interaction energy reg-
ularized MFG (2.5), we assume the ground metric GM is known, and the observations
{ρ̂i,j− 1

2
}, i ∈ V, j = 1, 2, . . . , n + 1 for density distribution and {(v̂i+ ev

2
,j)v}, i ∈ V, j =

1, 2, . . . , n for velocity field during the game are given. Here {ρ̂·, 1
2
}, {ρ̂·,n+ 1

2
}, standing for

the initial/terminal states observation, are also known. With the information above, we
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can construct an inverse model to learn the convolution kernel K̃ as follows:

min
K̃,ρ,v

∑
i∈V

n+1∑
j=1

α

2

(
ρi,j− 1

2
− ρ̂i,j− 1

2

)2
+
∑
i∈V

n∑
j=1

β

2
‖(vi+ ev

2
,j)v − (v̂i+ ev

2
,j)v‖2

+
∑
i∈V

α0

24t

((
ρi, 1

2
− ρ̂i, 1

2

)2
+
(
ρi,n+ 1

2
− ρ̂i,n+ 1

2

)2
)

+
∑
i∈Ṽ

∑
{ev |i+ev∈Ṽ }

γ

p4t

∣∣∣∣∣K̃i+ev − K̃i

4x

∣∣∣∣∣
p

s.t.



(
ξi+ev ,j− 1

2
− ξi,j− 1

2

4x

)
v

+

(
GM,i(vi+ ev

2
,j)v −GM,i(vi+ ev

2
,j−1)v

4t

)
= 0,

i ∈ V, j = 2, 3, . . . , n(
ρi,j+ 1

2
− ρi,j− 1

2

)
/4t+

∑
ev

(
mi+ ev

2
,j −mi− ev

2
,j

)
/4x = 0, i ∈ V, j = 1, 2, . . . , n

wi+ ev
2

+ew,j − wi+ ev
2
,j

4x
=
wi+ ew

2
+ev ,j − wi+ ew

2
,j

4x
, ev 6= ew, i ∈ V, j = 1, 2, . . . , n∑

i1

wi+ e1
2
,j = 0, i2 = 1, 2, . . . ,m,

∑
i2

wi+ e2
2
,j = 0, i1 = 1, 2, . . . ,m, j = 1, 2 . . . , n

(4.11)

where
ξi,j− 1

2
=

1

2
(vi+ ev

2
,j)
T
vGM,i(vi+ ev

2
,j)v −

∑
i′∈V

K(i, i′)ρi′,j− 1
2
4x2, i ∈ V, j = 2, 3, . . . , n

(wi+ ev
2
,j)v = GM,i(vi+ ev

2
,j)v, i ∈ V, j = 1, 2, . . . , n

(mi+ ev
2
,j)v = ρi,j− 1

2
(vi+ ev

2
,j)v, i ∈ V, j = 1, 2, . . . , n

The relationship between discrete K and K̃ is shown in (4.1). Here (4.11) is a model
learning the convolution kernel in MFG with interaction energy with fully observation of
ρ,v. We target on solving unknown discrete variables ρ,v, K̃ in the optimization.

Remark 14. The four constraints of (4.10) and (4.11) are in discrete differential formats.

The first and the third constraints are bi-linear in ρ,v, GM or K̃, while the second one is
close to being bi-linear except a quadratic term in ξ. Furthermore, we notice that, once the
Lagrangian is deduced, the difference operator can be transferred to the dual variable via
integration by part.

4.4. Algorithm. In this section, we present the algorithm for solving the optimization
problems in Model 3 and Model 4.

We apply a primal-dual algorithm to solve the discrete optimization problem. To better
illustrate our algorithm, we reformulate the optimization problem as:

minimize
ρ,v,θ

f(ρ,v, θ)

s.t. ci(ρ,v, θ) = 0, i = 1, 2, . . . , r,
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where f(ρ,v, θ) is the objective function, θ is the parameter to be recreated, which is g0 in

Model 3 and K̃ in Model 4. Here ci is constraint function, and r indicates the number of
constraints. In both of the models, we have 4 constraints.

Write the Lagrangian:

L(ρ,v, θ; {ψi}ri=1) = f(ρ,v, θ) +

r∑
i=1

ci(ρ,v, θ)ψi,

where ψi stands for the dual variables or Lagrangian multipliers. In the primal step, we fix
the dual variable and update the primal one with gradient descent:

ρk+1 = ρk − τρ
δ

δρ
L(ρk,vk, θk; {ψki }ri=1)

vk+1 = vk − τv
δ

δv
L(ρk,vk, θk; {ψki }ri=1)

θk+1 = θk − τθ
δ

δθ
L(ρk,vk, θk; {ψki }ri=1)

(4.12)

The parameter τ is the descend step size. In practice, we sometimes take step length
τρ, τv, τθ as different values, thus getting a better convergence rate. Next, we update the
dual variable while fixing the newly updated primal variables:

ψk+1
i = ψki + σci(ρ

∗,v∗, θ∗), i = 1, 2, . . . , r, (4.13)

where ρ∗,v∗, θ∗ are defined as:

ρ∗ = 2ρk+1 − ρk, v∗ = 2vk+1 − vk, θ∗ = 2θk+1 − θk. (4.14)

Also σ is the step size. This follows the format in primal-dual hybrid (PDHG) algorithm [9].
The pseudo-code is shown in Algorithm 1. The detailed iteration steps for Model 3 are given
in Appendix A.

Algorithm 1 Primal-Dual Algorithm

Input: the observations ρ̂, v̂, all the scaling parameters α, α0, β, γ, the norm index p,
and other prior known parameters in the inverse model. Input the iteration parameters
τρ, τv, τθ, σ.
Initialization: Set ρ > 0, v = 0, θ > 0.
for k = 1, 2, . . . (until convergence) do

Primal step:
Update ρk+1,vk+1, θk+1 as in (4.12).
Dual step:
Update ρ∗,v∗, θ∗ in the dual iteration as in (4.14).

Update dual variables ψk+1
i as in (4.13).

end for

Remark 15. The spatial discretization and primal-dual iteration make the algorithm par-
allelizable. Both primal and dual updates reduce to parallel subproblems, which enables
high computational efficiency.
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Typically, α, β can always be taken as 1/‖ρ̂‖2, 1/‖v̂‖2. However, there is little known for
the selection of γ in (1.2). To avoid the choice of γ, we can apply Bregman iteration [36, 39].
We can start with a sub-optimal choice of γ and get a better recreation of the target pa-
rameter θ after some iterations. We consider problem (1.2). The idea of Bregman iteration
is as follows. Let

J(θ) =
γ

p
‖∇θ‖pp,

and the Bregman divergence between θ and θ̃ is defined as

Dq
J (θ, θ̃) = J(θ)− J(θ̃)− 〈q, θ − θ̃〉,

with some q ∈ ∂J(θ̃) being a subgradient for J at θ̃. Set q0 = 0. In each Bregman iteration,
we solve the following optimization problem:

min
θ,ρ,v

Dql

J (θ, θl) +
α

2
‖ρ− ρ̂‖2 +

β

2
‖v − v̂‖2 +

α0

2

(
‖ρ0 − ρ̂0‖2 + ‖ρT − ρ̂T ‖2

)
s.t. ci(ρ,v, θ) = 0. i = 1, 2, . . . , r.

(4.15)

By applying the primal-dual algorithm to (4.15) in lth step (similar to Algorithm 1), we
obtain an approximate minimizer (θl+1, ρl+1,vl+1) and the corresponding dual variable

{ψl+1
i }ri=1. Then we update ql as a subgradient of J(·) at θl+1. According to KKT condition,

0 ∈ ∂J(θl+1)− ql +

r∑
i=1

∂

∂θ
ci(ρ

l+1,vl+1, θl+1)ψl+1
i .

So we take ql+1 = ql −
∑r

i=1
δ
δθ ci(ρ

l+1,vl+1, θl+1)ψl+1
i to have ql+1 ∈ ∂θJ(θl+1). We run

several Bregman iterations until the numerical result converges.

Algorithm 2 Bregman iteration

Input: the observations ρ̂, v̂, all the scaling parameters α, α0, β, the norm index p,
and other prior known parameters in the inverse model. Input the iteration parameters
τρ, τv, τθ, σ, δ.
Initialization: Set ρ as some suitable constant > 0, v = 0, θ to be a positive constant.
Set q0 = 0.
for l=0,1,2,. . . (Until converges) do

Solve (4.15) with primal-dual algorithm, get (θl+1, ρl+1,vl+1), and the dual variable

{ψl+1
i }ri=1

Update ql+1 = ql −
∑r

i=1
∂
∂θ ci(ρ

l+1,vl+1, θl+1)ψl+1
i .

end for

5. Computational Results

We have tested both Model 1 and Model 2 with Algorithm 1. We used the numerical
result of the forward problem (4.2) as the observations in our inverse-problem tests. This
was to recreate the corresponding parameters, the metric kernel g0 and the convolution
kernel K̃ from the full observations of ρ̂, v̂.
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The scaling parameters in the model, in several tests, were taken as

α = α0 =
1

‖ρ̂‖2
, β =

1

v̂T v̂
. (5.1)

In other words, the unknown variables density measure and the velocity field in the models
were scaled to the same size according to their observations. It was hard to pre-select γ.
Thus in the test, we took γ in a wide range. The parameter p was determined according to
the properties of the ground metric and the convolution kernel. If the regularized variable
was smooth, p = 2 was used. When the target variable was sparse, p = 1 was chosen.

In the computation test, we made the assumption that some minor information about the
parameters g0, K̃ was known beforehand to reduce the uncertainty during the iterations.
The details are covered below with each example.

In our test for Model 3 to learn the metric kernel g0, we took F (ρ) = ρ2/2 in all of our

tests. In the test for Model 4, the real kernel K̃ was always taken as the standard form
K̃(x) = exp(−xTAx/ε) as in Example 2.

The observations ρ̂, v̂ were noised to different extents by i.i.d. additive noise on each
pixel. The noise subjects to a uniform distribution and relies on the norm of ρ̂, v̂:

ερ ∼ ε∗‖ρ̂‖ · U [−0.5, 0.5] i.i.d.

εv ∼ ε∗‖v̂‖ · U [−0.5, 0.5]d i.i.d.,
(5.2)

where ε∗ > 0 is the noise factor, U [−0.5, 0.5] is the uniform distribution between [−0.5, 0.5],
and U [−0.5, 0.5]d is the uniform distribution in [−0.5, 0.5]d. Our codes were written in
MATLAB.

Test 1. We tested Algorithm 1 in 2 dimensions. No noise was impacted on the observed
data. We took GM as the linear form of g0:

G(x, y) =

(
g0 + 4 g0 + 2
g0 + 2 2g0 + 1

)
.

We discretized the problem on the 50 × 50 × 30 grid. The square space was uniformly
scattered into 50×50 boxes while the time [0, T ] was scattered into 30 elements. Beforehand,
we had information about g0 in a single pile of pixels. The values of g0 at boxes {C(1, ·)} were
obtained. For the scaling parameter, we took α = 103/‖ρ̂‖2, β = 1/‖v̂‖2, α0 = 0, γ = 10−2.
Supposed that the real metric kernel was smooth, we took p = 2. The iteration step sizes
for the primal variables were τρ = τv = 10−6, τg = 10−4, and the step size for dual variables
was σ = 10−6. We let it run for 2×105 iterations and observed the variables have converged.
The result is displayed in Figure 1.

Test 2. We tested the 2-dimensional based inverse model for the convolution kernel.

In this example, we tested Algorithm 1 on 2-dimensional based Model 4. No noise was
impacted on the observations. The real kernel for the forward problem was taken as:

K(x) = exp

(
−xT

(
3 1
1 3

)
x/0.5

)
.
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Figure 1. Ground metric recreated in 2-dimensional basis under H2 regu-
larization. From left to right: g0 learned from the observations, real ḡ0, the
absolute difference between the learned g0 and the real data |g0 − ḡ0|.

We discretized the problem on the 24 × 24 × 30 grid. We had information about K̃ in
a single pile of pixels. For the scaling parameter, we took α = 100/‖ρ̂‖2, β = 1/‖v̂‖2, α0 =
0, γ = 10−3. Assumed that we knew the kernel being smooth as a priori, we took p = 2.
The iteration step sizes for the primal variables were τρ = τv = 10−5, τg = 10−3, and the
step size for dual variables was σ = 10−5. We took 1.5× 105 iterations. In observation, the
variables had converged after these iterations. The result is shown in Figure 2.
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Figure 2. Convolution kernel recreated in 2-dimensional basis under H2

regularization. To have an overview of the kernel on T2. We recreated
the K(x, 0) on [0, 1]2 with the learned K̃ on [0, 1/2]2. From left to right:
kernel K(x, 0) learned from the observations, real kernel Kreal(x, 0), the
absolute difference between the learned parameter and the real one |K(x, 0)−
Kreal(x, 0)|.

Test 3. Then we investigated the case where noise was impacted on our observation. We
tested examples in 1-dimensional basis. Here GM = g0 was taken. We discretized the
problem on a 50× 30 grid in x, t, with space uniformly spaced in each variable. The noise
ερ, εv were taken as in (5.2). Noise factor ε∗ adopted varied in {0.1, 0.4, 1}. We assume
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that we have the noised data. We show noised ρ̂, v̂ in Figure 3. Assumed that we had
information about GM at a single pixel, and the value of GM at that pixel was fixed in
the iteration. The scaling parameter α = 1/‖ρ̂‖2, β = 1/‖v̂‖2, α0 = 0, and γ varied in
{10−8, 10−7, . . . , 10−3}. The real ground metric was supposed to be smooth, thus p = 2 was
taken. The iteration step size for all primal variables was τ = 2 × 10−3, and the step size
for dual variables was σ = 10−3. We took iterations of 6 × 104 times. In observation, the
iteration had converged in such a setting. The results are shown in Figure 4.
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Figure 3. The noised ρ̂, v̂ with different noise factor. The first row is
for noised ρ̂ with ε∗ = 0.1, 0.4, 1. The second row is for noised v̂ with
ε∗ = 0.1, 0.4, 1.

Test 4. We also tested the robustness of Model 4. We tested the example in the 1-
dimensional basis where K(x) = exp(−x2/0.1). The space-time was discretized into a
50× 30 grid. The only information about K was that K(0, 0) = 1. And in the iteration, we

fixed the value of K̃(0) to be 1. The scaling parameter α = 1/‖ρ̂‖2, β = 1/‖v̂‖2, α0 = 0. γ
varied in {10−6, 10−5, 10−4, 10−3}. Due to the quadratic exponential format, the kernel was
considered smooth, thus p = 2 was taken. The iteration step size for all primal variables
was τ = 10−3, and the step size for dual variables was σ = 10−3 as well. Still, the noise
factor ε∗ varied in {0.1, 0.4, 1}. We took 3 × 106 iterations. The variables fully converged
in our observation. The computational results are compiled in Figure 5.

Test 5. In this test, we tested the efficiency of Algorithm 2. We worked on the same data as
Test 3. The observations ρ̂, v̂ were corrupted by noise at a level ε∗ = 1. We took γ = 10−2,
and the first 7 Bregman iterations are shown in Figure 6.
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Figure 4. Recreated ground metric GM when the observations were cor-
rupted with noise. In each sub-figure, the red curve is the learned ground
metric while the blue curve is the real metric. From up to down, noise factor
ε∗ = 0.1, 0.4, 1. From left to right, γ varies from 10−8 to 10−3.

Remark 16. In Test 5, by applying Bregman iteration, starting with a non-optimal γ, we
had better result for ground metric. The recreated ground metric even converged to the
one recreated with the optimal γ.

Several more numerical results are provided in Appendix B.

6. Discussion

In this paper, we introduced some inverse-problem models for MFGs, which are PDE-
constrained variational problems.

MFGs involve PDE systems, including the Fokker-Planck equations and HJE, which
arise naturally from physical systems, such as Schrödinger equations, Schrodinger bridge
problems, and optimal control problems in finance, robotics path planning and game the-
ory. These problems are mean-field descriptions of classical observations in finite agents’
dynamics. One can view our model as a mean-field generalization of classic (finite-agent)
inverse problems. It is an extension of classical observations to density space. Mean-field
limit analyses and the well-posedness of the model are challenging future directions in this
uncultivated area.

The MFG PDE system involves nonlinear Hamiltonian constraints in the sample space.
Our method is only a first trial towards its computation, based on the classical PDE method.



A MEAN FIELD GAME INVERSE PROBLEM 25

0 20 40 60
0

0.5

1

1.5

0 20 40 60
0

0.5

1

0 20 40 60
0

0.5

1

0 20 40 60
0

0.5

1

0 20 40 60
0

0.5

1

1.5

2

0 20 40 60
0

0.5

1

1.5

2

0 20 40 60
0

0.5

1

0 20 40 60
0

0.5

1

0 20 40 60
-2

0

2

4

6

0 20 40 60
0

1

2

3

0 20 40 60
0

0.5

1

0 20 40 60
0

0.5

1

Figure 5. Recreated convolution kernel K(x, 0) when the observations were
corrupted with noise. From up to down, noise factor ε∗ = 0.1, 0.4, 1. From
left to right, γ varies from 10−6 to 10−3.
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Figure 6. The recreated metric kernel from noised data in first 7 Bregman
iterations. γ = 10−2. (The last figure is for recreated ground metric from
Algorithm 1 when taking γ = 10−4 as an appropriate optimal value.)

The study of convexity properties, parallel computation, and designing fast and efficient
algorithms for the proposed models are also interesting future directions.

From the lens of information science and machine learning, our model fits the goal of
learning Hamiltonians and physics from data and observations. Here we have concretely
modeled the physics by a Hamiltonian on the underlying sample space and design the cost
functional in the density space to fit the model. To treat the density variational problem in
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our model, many information sciences and machine learning approaches can be considered
in the future. For example, we can further apply the other perspectives of density using
probability models in machine learning and transport information geometry [32, 31]. Typical
models include Gaussian families, generative models, and reinforcement learning [20, 21].
We leave detailed studies of these models for inverse problems in the near future.
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Appendix A. Details of the algorithm in Subsection 4.4

In this section, we present the iteration steps of Algorithm 1 in Subsection 4.4.

The first algorithm is for Model 3, where F is the integral of a convex function F . To
solve it, we introduce the dual variables for the constraints of (4.10): (ψi+ e1

2
,j , ψi+ e2

2
,j), i ∈

V, j = 2, 3, . . . , n, Φi,j , i ∈ V, j = 1, 2, . . . , n, χi,j , i ∈ V, j = 1, 2, . . . , n, and Θi,j =

(Θx,i2,j ,Θy,i1,j)
T , i ∈ V, j = 1, 2, . . . , n. Summing the objective function and Lagrangian

multipliers, we obtain
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By changing the order of sums, we further obtain:∑
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It is more convenient to optimize using the primal variables.

In the primal step, we apply gradient descent to the Lagrangian, L, with respect to the
primal variables, leading to
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where τρ, τv, τg are step sizes for ρ,v, g0. We note that when p = 1, the gradient of |g0|
does not exist at 0, so we take the sub-gradient. In computation, we apply a different
descent step size for each of the primal variables to overcome the multi-scaling issue, which
accelerates the iteration rate. We update the dual variables by:
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where
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The partial difference of Lagrangian with respect to ρ,v, g0 can be explicitly written as:
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We apply a similar primal-dual algorithm to Model 4. Its details are omitted.

Remark 17. The algorithm is also parallelizable. In the primal step, we can also substitute
the gradient descend with a proximal operator as in [9] for acceleration, which keeps the
algorithm parallelizable.

Appendix B. Complementary computational results

Test 6. We applied our algorithm for Model 3 with the 1-dimensional basis and without
noise to the source data. We took GM = g0 and discretized the problem on a 50× 30 grid.
We assumed to have the information about GM at a single pixel and its value was fixed
in the iteration. The scaling parameter α, α0, β were taken as in (5.1), and γ varied in
{10−8, 10−7, . . . , 10−3}. Since we considered a smooth real ground metric, we took p = 2.
The iteration step size for all the primal variables was τ = 2 × 10−3, and the step size for
the dual variables was σ = 10−3. We let our algorithm run 6× 104 iterations and observed
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convergence. Then, we tested our algorithm on two ground metrics of different shapes. The
results are depicted in Figure 7 and Figure 8.
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Figure 7. The result for GM (x) = 1 − 0.6 sin(πx)2 under the H2 norm.
From left to right, γ = 10−8, 10−7, . . . , 10−3. The red curve presents the
leaned ground metric, and the blue curve depicts the real metric.
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Figure 8. The result for GM (x) = 1 − 0.6 sin(2πx)2 under the H2 norm.
From left to right, γ = 10−8, 10−7, . . . , 10−3.

Remark 18. From the numeric results, we conclude that the optimal parameter for the
inverse model depends on the shape of the ground metric. When g0 fluctuates more, we
should choose a smaller γ for the regularization. This matches our intuition.

Test 7. We substituted the objective functions of (3.3) and (3.5) with (3.4) and tested a
similar primal-dual algorithm. In the ground metric inverse model, we took p = 2, α =
α0 = 0.01, and γ varied in {10−8, 10−7, 10−6, 10−5}. The step size for all primal variables
was τ = 2 × 10−3, and the step size for dual variables was σ = 10−3. We iterated 3 × 106

times. The result can be found in 9.

In the kernel inverse model, we took p = 2, α = α0 = 10, γ varied in {10−5, 10−4, 10−3, 10−2}.
The iteration step size for all primal variables was τ = 10−3, and the step size for dual vari-
ables was σ = 10−3 as well. We iterated 3× 106 times. The result is in Figure 10.

Test 8. In this test, we used 2-dimensional noisy examples. We designed our experiment
based on the data in Test 1, and the data was corrupted by additive noise defined in (5.2).
For each noise level, the scaling parameters were selected as in Table 1. Other settings
followed Test 1. The result is depicted in Figure 11.

Test 9. In this test, we ran Algorithm 2 and used the same data as Test 4, and the noise
level was ε∗ = 1. We set γ = 10−1, and the results of the first 11 Bregman iterations are
depicted in Figure 12.
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Figure 9. Recreated ground metric from the modified model with objective
function (3.4). From left to right, γ = {10−8, 10−7, 10−6, 10−5}.
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Figure 10. Recreated convolution kernel from the modified model with
objective function (3.4). From left to right, γ = {10−5, 10−4, 10−3, 10−2}.

Test ε∗ α α0 β γ

1 0.1 10/‖ρ̂‖2 0 1/v̂T v̂ 0.01
2 0.4 1/‖ρ̂‖2 0 1/v̂T v̂ 0.01
3 1 100/‖ρ̂‖2 0 1/v̂T v̂ 1

Table 1. The scaling parameters adopted in each noisy test

E-mail address: lisangding@ucla.edu

E-mail address: wcli@math.ucla.edu

E-mail address: sjo@math.ucla.edu

E-mail address: wotaoyin@math.ucla.edu
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Figure 11. The recreated metric kernel from noisy data. In the first row,
from right to left, the figures correspond to recreated metric kernel g0 w.r.t.
noise level ε∗ = {0.1, 0.4, 1}. The figures in the second row stand for the
absolute difference between the learned g0 and the real data |g0− ḡ0| in each
case.
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Figure 12. The recreated convolution kernels from noisy data from the
first 11 Bregman iterations. γ = 10−1. (The last figure shows the recreated
convolution kernel from Algorithm 1 with the nearly optimal γ = 10−3.)


