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Abstract— In this paper, we address the problem of maximiz-
ing the spectral gap of a divergence type diffusion operator. Our
main application of interest is characterizing the distribution
of a swarm of agents that evolve on a bounded domain in Rd

according to a Markov process. A subclass of the divergence
type operators that we introduce in this paper can describe the
distribution of the swarm across the domain. We construct an
operator that stabilizes target distributions that are bounded
and strictly positive almost everywhere on the domain. Opti-
mizing the spectral gap of the operator ensures fast convergence
to this target distribution. The optimization problem is posed
as the minimization of the second largest eigenvalue modulus
(SLEM) of the operator (the largest eigenvalue is 0). We use the
well-known Courant-Fisher min-max principle to characterize
the SLEM. We also present a numerical scheme for solving
the optimization problem, and we validate our optimization
approach for two example target distributions.

I. INTRODUCTION

Over the past two decades, there has been an increasing
amount of research on the control of multi-agent systems. For
agents whose dynamics can be described by a Markov pro-
cess, controller design can be performed on a macroscopic
abstraction of the swarm as a continuous spatio-temporal
density field that evolves according to the Kolmogorov for-
ward equation. In our previous works [3], [4], we constructed
operators that stabilize a given target distribution for such a
swarm and optimize the convergence rate of the swarm to
this distribution. Both works considered swarms of agents
whose dynamics evolve over a continuous state space in
discrete time. However, except for a special case of the state
space, the optimization problem posed in both works was
not exact, meaning that it minimized only an upper bound
on the eigenvalues of the operator rather than the eigenvalues
themselves.

As a next step, in this paper we consider swarms of agents
whose dynamics evolve over a continuous state space in
continuous time; in particular, the dynamics of each agent
can be modeled as a stochastic differential equation (SDE).
The Kolmogorov forward equation in this case is a partial
differential equation (PDE) that is commonly known as the
Fokker-Planck equation. As in our earlier work [3], [4], we
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construct a partial differential operator that stabilizes target
swarm distributions that are bounded and positive almost
everywhere on the domain. In particular, the operator that
we construct has a structure similar to the divergence form
operator, which is known to be self-adjoint. The advantage
in this case is that we can invoke the min-max principle to
characterize the modulus of the second largest eigenvalue of
the operator, which characterizes the asymptotic convergence
rate of the swarm to the target distribution. Hence, unlike
in our previous works, the optimization problem is exact.
However, not all divergence form operators are Fokker-
Planck equations; that is, they do not all give rise to SDEs.
Instead of working with a restricted class of divergence form
operators that do give rise to SDEs, we will work with
general divergence form operators, and consider the SDE
description of agent dynamics only formally. See [23] for a
discussion on divergence type operators that correspond to
diffusion semigroups.

We begin by briefly reviewing literature on the topic of
using PDE models to predict and control the distribution
of a swarm of agents. For a comprehensive survey of such
works, see [5]. In [19], the authors design agent control
parameters that stabilize the swarm to a target distribution.
Works on mean-field game theory, which has only recently
been applied to problems in swarm robotics [18], use optimal
control techniques to construct policies for strategic decision-
making in very large populations of interacting agents. In
the field of multi-robot systems, a number of works utilize
PDEs to model and control the collective behaviors of robotic
swarms. The work [21] uses a PDE model with a constant
velocity field to simulate a swarm of small robots performing
an inspection task, and the model is validated experimentally.
In [16], the authors design swarm control strategies that
mimic fluid flow behavior by constructing state-feedback
laws that are piecewise constant with respect to space. PDEs
with feedback laws that are functions of population densities
are used in [13] to model collective migration and collective
perception in swarms. The work [6] applies optimal control
of PDEs and PDE-constrained optimization to design time-
dependent robot controllers for problems of stochastic spatial
coverage and feature mapping by robotic swarms.

With regard to characterizing the spectral gap of Fokker-
Planck equations or in general, diffusion equations, the
Bakry-Emery method allows one to establish convex Sobolev
inequalities and to compute exponential decay rates toward
equilibrium for solutions of diffusion equations [2]. In [1],
the authors quantify convergence rates of Fokker-Planck
equations using convex Sobolev inequalities. In [15], the
author poses the spectral optimization problem for a Fokker-



Planck equation in R1 using the min-max principle. In
contrast to our work, the domain is restricted to R1 and the
constraint is posed in terms of minimizing the variance of
the corresponding Markov process.

II. NOTATION

We define R̄+ := [0,∞), R+ := (0,∞). We denote the
state space by Ω ⊂ Rd, an open, bounded connected set. The
boundary of Ω will be denoted by ∂Ω, which is assumed to
be Lipschitz continuous [12].

We define Lp(Ω), where p ∈ [1,∞), as the space
{f : Ω → R; f is measurable and ‖f‖p < ∞}, where
‖f‖p = (

∫
|f |pdx)1/p. We also define L∞(Ω,m) = {f :

X → R; f is measurable and ‖f‖∞ < ∞}, where
‖f‖∞ = ess supx∈Ω |f(x)|. The space L2(Ω) is a Hilbert
space equipped with the standard inner product 〈·, ·〉2 :
L2(Ω) × L2(Ω) → R given by 〈f, g〉2 =

∫
Ω
f(x)g(x)dx,

for all f, g ∈ L2(Ω). The symbol ‖ · ‖2 will be reserved
for the L2(·) norm. For a given real-valued function h ∈
L∞(Ω), (weighted) L2

h(Ω) refers to the set of all functions
f such that

∫
Ω
|f(x)|2|h(x)|dx < ∞. In this case, L2

h(Ω)
is a Hilbert space with respect to the weighted inner prod-
uct 〈·, ·〉h : L2

h(Ω) × L2
h(Ω) → R given by 〈f, g〉h =∫

Ω
f(x)g(x)h(x)dx. We let ‖ · ‖F stand for the weighted

L2
F norm.
Let fxi denote the first-order weak partial derivative of

the function f with respect to coordinate xi. We define
the Sobolev space H1(Ω) of L2(Ω) functions whose partial
derivatives, in the weak sense, are also in L2(Ω). This
is a Hilbert space with the norm: ‖f‖H1 = ‖f‖22 +(∑d

i=1 ‖fxi
‖22
)1/2

for f ∈ H1(Ω). Correspondingly, for
h ∈ L∞(Ω) we define the space H1

h(Ω) =
{
f ∈ L2

h(Ω) :
(fh)xi ∈ L2(Ω) for 1 ≤ i ≤ d

}
, equipped with the norm

‖f‖H1
a

=
(
‖f‖2a +

∑d
i=1 ‖(af)xi

‖22
)1/2

.
Let X be a Hilbert space. Let A be a closed linear operator

that is densely defined on a subset D(A) ⊂ X , the domain
of the operator. If A is a bounded operator, then ‖A‖op will
denote the operator norm induced by the norm defined on
X . The spectrum σ(A) of A is the non-void compact set
of complex numbers λ for which A − λI does not have
a continuous inverse on X . The operator A is said to be
positive, denoted by A > 0, if for x ∈ X , x ≥ 0 implies that
Ax ≥ 0.

III. PROBLEM FORMULATION

We begin by setting up the problem that we address in
this paper. Let F ∈ L∞(Ω) such that F (x) > 0 a.e. be the
target steady-state probability density function for a swarm
of robots. Then F must satisfy the condition

∫
Ω
F (x)dx = 1.

Define ΩTf
= Ω× (0, Tf ) for some fixed final time Tf . Let

p : ΩTf
→ Rn denote a probability density function. The

forward Kolmogorov equation, also called the Fokker-Planck
equation, gives the evolution of probability densities on the
state space Ω. In continuous time and continuous space, this

equation is a partial differential equation (PDE) of the form:

∂

∂t
p(x, t) =

1

2

d∑
i,j=1

∂2

∂xi∂xj
[Dij(x, t)p(x, t)]−

d∑
i=1

∂

∂xi
[ai(x, t)p(x, t)]. (1)

Here, the coefficients Dij and aij represent diffusion and
advection parameters, respectively. In this paper, however,
we will not be working with such a general formulation. For
reasons that will be made clear later, we require the partial
differential operator associated with the PDE to be self-
adjoint. This is not true for the PDE (1). We will therefore
introduce an operator, formally, which is self-adjoint.

Let aij : Ω → Rd for i, j = 1, . . . , d, with aij =
aji, be in L∞(Ω). Further, we assume that the coefficients
satisfy the uniform ellipticity condition; that is, there exists
a constant α such that for every vector ξ ∈ Rd and every
x ∈ Ω,

∑d
i,j=1 aij(x)ξiξj ≥ α|ξ|2. Consider the following

unbounded operator,

LFu =

d∑
i,j=1

∂

∂xi

(
aij(x)

∂(u/F )

∂xj

)
. (2)

We note that this operator has the advantage of being self-
adjoint. Moreover, the operator is almost in the standard
divergence form [9]; however, the inclusion of F makes it
non-standard. It is clear that the inclusion of F ensures that
LFF = 0; that is, the PDE generated by this operator has F
as an equilibrium point. Without the inclusion of F , there are
only a few special cases in which Eq. (2) can be rewritten
as Eq. (1), and vice versa.

Remark III.1. We note that the operator (2) is not defined
rigorously. This is because the L∞ condition on the coef-
ficients aij makes it impossible to define the operator on
H1(Ω) or H2(Ω) (defined similarly to H1(Ω), but comprised
of functions that are twice weakly differentiable and are
in L2); either space is not necessarily preserved under the
multiplication of an L∞ function and an H1 or H2 function.
Therefore, in order to proceed, we will instead define a weak
formulation of the operator (2) via forms.

Note that according to our notation in Section II, as per
standard definitions, H1

F and L2
F norms entail a multipli-

cation by F ; that is, ‖f‖F =
∫

Ω
|f |2|F |. However, in this

paper, the norm entails a division by F ; that is, ‖f‖F =∫
Ω
|f |2|1/F |.

We define a bilinear form BF [u, v] : H1
F (Ω)×H1

F (Ω)→
R as follows:

BF [u, v] =

∫
Ω

d∑
i,j=1

aij(x)
∂(u/F )

∂xj

∂(v/F )

∂xi
dx (3)

The space H1
F (Ω) is called the domain of BF , D(BF ).

We associate with the form B an operator L̂ : D(L̂F ) ⊂
L2
F (Ω) → L2

F (Ω), defined as L̂Fu = f if BF [u, v] =
〈f, v〉F for all v ∈ H1

F (Ω) and u ∈ D(L̂F ) = {g ∈ H1
F (Ω) :



∃h ∈ L2
F (Ω) s.t. BF [g, ϕ] = 〈h, ϕ〉 ∀ ϕ ∈ H1

F (Ω)}. The
operator L̂F so defined is a weak formulation of the operator
(2). Defining L̂F via the bilinear form BF is similar in spirit
to the formulation of weak solutions to elliptic equations.
A detailed treatment of the interplay between forms and
operators is provided in [22]. In the specific case where the
coefficients aij and the function F are uniformly Lipschitz
functions, then L̂F coincides with the operator (2), with
H2(Ω) as its domain [12].

Although considering the divergence form operator (2) or
the bilinear form (3) simplifies the analysis owing to the
fact that they can be used to construct operators, we lose the
guarantee that the generated PDE corresponds to a stochastic
differential equation. Only in the case where the coefficients
aij are uniformly Lipschitz continuous does the operator (2)
give rise to a forward equation [11]. However, one can make
sense of the stochastic differential equations that divergence
form operators give rise to in a non-classical way; see [17]
for this description.

We consider the following PDE generated by the operator
LF in (2). Note that this is only a formal statement because
of the explanation in the previous paragraphs.

∂p

∂t
= −LF p on ΩTf

(4)

d∑
i,j=1

aij
∂(p/F )

∂xj
ni = 0 on ∂Ω× (0, Tf ) (5)

p(x, 0) = p0(x) on Ω. (6)

Equation (5) represents the zero flux boundary condition,
also called the Neumann boundary condition; ni is the ith

unit normal vector to Ω, pointing outward.
We now state the problem that we solve in this paper. To

address this problem, in the next section we will prove that
0 is the unique largest eigenvalue of the operator −L̂F , with
all other eigenvalues located in the left half-plane. Therefore,
the convergence rate of the PDE (4) to its equilibrium is
characterized by the L2

F spectral gap. First, however, we will
need to prove the existence of this spectral gap for L̂F .

Problem III.2. Given F , determine whether there exist time-
independent, spatially-dependent parameters aij : Ω →
Rn, for i, j ∈ 1 . . . d, such that F is an exponentially
stable equilibrium point for the PDE (4). Toward this end,
determine whether the following optimization problem admits
a solution.

min
aij

|λ2(L̂F )|

Due to the definition of the operator L̂, we need not impose
the condition L̂FF = 0 as a constraint. In Section V, we
will characterize the eigenvalues of L̂F via the min-max
principle, which is only true for a self-adjoint operator. We
chose to work with divergence form operators in order to be
able to characterize their eigenvalues via this principle.

IV. ANALYTICAL PROPERTIES OF L̂F

We begin by proving a few properties of the operator L̂F ;
proofs for general functions F and general domains Ω are

given in [7]. Therefore, only those parts of the proofs that
are specific to our case are detailed below.

Proposition IV.1. The operator L̂F is closed, densely de-
fined, self-adjoint, and positive. Moreover, the operator L̂F

has a purely discrete spectrum.

Proof. First we prove that the bilinear form (3) is closed;
that is, the space D(BF ) = H1

F (Ω) equipped with the norm
‖u‖B = (‖u‖2F + BF [u, u])1/2 for each u ∈ D(BF ) must
be complete [22]. To see this, we note that by the uniform
ellipticity condition on the coefficients aij , we have that

BF [u, u] =

∫
Ω

[
∂(u/F )

∂x

]
A
[
∂(u/F )

∂x

]T
≥
∫

Ω

α

∣∣∣∣∂(u/F )

∂x

∣∣∣∣2 ,
where A = [aij ]. We also have that

‖A‖∞
∫

Ω

∣∣∣∣∂(u/F )

∂x

∣∣∣∣2 ≥ BF [u, u].

Therefore, the norm ‖ · ‖B is equivalent to ‖u‖H1
F

. It has
been shown in [7] that H1

F (Ω) is complete. Therefore, BF

is closed.
Next, from [7], we can show that BF is densely defined;

that is, D(BF ) must be dense in L2
F (Ω), which is true in

this case. Furthermore, BF is symmetric, that is, BF [u, v] =
BF [v, u] for each u, v ∈ D(BF ), and BF is semibounded,
that is, BF [u, u] ≥ m‖u‖2F for some m ∈ R, for each u ∈
D(BF ). The latter property is true for m = 0. By Theorem
10.7 of [22], these properties imply that L̂F is self-adjoint,
which further implies that L̂F is also closed and densely
defined.

Finally, we have that H1
F (Ω) = D(BF ) equipped with the

norm ‖·‖B is compactly embedded in L2(Ω). By Proposition
10.6 of [22], this condition is sufficient for the operator L̂F

to have a discrete spectrum.

Proposition IV.2. The spectrum of the operator L̂F satisfies
σ(L̂F ) ∈ (∞, 0]. Furthermore, 0 is a unique eigenvalue of
L̂F .

Proof. From the definition of the bilinear form, we observe
that the operator −L̂F must be negative semidefinite. Hence,
σ(−L̂F ) ∈ (∞, 0]. Consider the bilinear form (3) with
F = 1. In this case, it is clear that L̂11 = 0; that is,
1 is an eigenvector corresponding to the eigenvalue 0. To
prove the uniqueness of 0, we use the Poincaré inequality
[9]: there exists a constant C such that

∫
Ω
|u(x)− uΩ|dx ≤

C
∫

Ω
|∇u(x)|2, where uΩ = 1

m(Ω)

∫
Ω
u(x)dx, and m(Ω)

stands for the Lebesgue measure of the set Ω. Using the
uniform ellipticity condition and assuming that α ≥ C, we
have that∫

Ω

|u(x)− uΩ|dx ≤ α
∫

Ω

|∇u(x)|2 (7)

≤ αBF [u, u] = α

∫
Ω

[
∂u
∂x

]
A(x)

[
∂u
∂x

]T
.

If u is an eigenvector other than 1, then the right-hand side of
the inequality above evaluates to 0 while the left-hand side is
positive, leading to a contradiction. Therefore, the eigenvalue



0 must be unique. For general F we define the multiplication
map MF : L2(Ω)→ L2

F (Ω) that takes a function u ∈ L2
F (Ω)

to u/F ∈ L2(Ω). Note that L̂F = L̂1MF . From this
observation we can infer that 1 is an eigenvector of L̂1 for
the eigenvalue 0 if and only if F is an eigenvector of L̂F .

In the case where α ≤ C, we can replace α by C/α in
equation (7), and the analysis remains the same.

Due to the lack of smoothness of the functions aij and F ,
the PDE (4) might not have solutions that are continuously
differentiable in the classical sense, or even solutions that are
weakly twice differentiable. Using the above properties, one
can show that the PDE (4) has a mild solution [8], which
can be represented as a semigroup of linear operators. This
follows from the Lumer-Phillips theorem by noting that the
operator L̂F is self-adjoint and dissipative. See [7] for details.
Since D(L̂F ) is a subset of H1

F (Ω), it follows that if the
initial condition is in D(L̂F ), then the mild solution lies
in H1

F (Ω) for all time t ≥ 0. One can also show that the
semigroup is analytic, and hence has regularizing properties.
This implies that even if the initial condition is known to be
only in L2(Ω), the solution of the PDE (4) lies in H1

F (Ω)
for all t > 0.

V. FORMULATION OF THE OPTIMIZATION PROBLEM

Recall the conditions on F , the desired density function:
it is in L∞(Ω) and is strictly positive almost everywhere.
We have established that F is a unique eigenvector of
the operator −L̂ corresponding to the largest eigenvalue 0.
Furthermore, we have showed the existence of a spectral gap
of L̂. In this section, we solve Problem III.2.

The Courant-Fisher min-max principle provides a way to
formulate the objective function of the optimization problem
in Problem III.2. Let (T,D(T )) be a lower-semibounded,
self-adjoint operator on a Hilbert space H with a purely
discrete spectrum. Let (λn(T ))n be the increasing sequence
of eigenvalues of T , counted with multiplicities. The min-
max principle gives a variational characterization for the
eigenvalues that are below the bottom of the essential spec-
trum [22]. Let Ek be a linear subspace of H of dimension
k. Then the eigenvalues λk can be defined as:

λk(T ) = max
Ek

min
v∈D(T ),‖v‖=1,

v∈E⊥
k

〈Tv, v〉.

The inner product in this definition is called the Rayleigh
quotient.

In our case, the operator L̂F satisfies the properties listed
above, and therefore we can characterize the second largest
eigenvalue of L̂ by restricting L̂ to the subspace obtained
after removing the eigenspace F corresponding to the eigen-
value 0. The objective function is hence formulated as,

λ2(−L̂F ) =λ1(−L̂F ◦ ProjF⊥) =

min
v∈D(L̂), ‖v‖F =1∫

Ω
v=0

〈−L̂F v, v〉F . (8)

Here Proj(·) is the projection operator onto a subspace.
We note that removing the negative sign changes the min-
imization problem to a maximization problem. Further, the
outer optimization, that is, the maximization can be omitted,
since E0 ⊂ D(L) is just {0}. The integral constraint in the
equation above represents the projection onto F⊥. To see
this, let v ∈ F⊥; then 〈v, F 〉F = 0, and this is exactly the
integral

∫
Ω
v = 0.

The constraints of the optimization problem are listed
below.

aij ≤ c, for some c > 0 (9)
aij = aji (10)

d∑
i,j=1

aij(x)ξiξj ≥ α|ξ|2, ∀ξ ∈ Rd. (11)

Constraint (9) ensures that the coefficients are bounded in
the L∞ norm. Constraint (11) ensures that the coefficients
satisfy the uniform ellipticity condition. Equations (8)-(11)
formulate the optimization problem that we will solve in this
paper.

The set of decision variables is given by

A = {(aij) ∈ (L∞(Ω))d(d+1)/2 : aij ≤ c
d∑

i,j=1

aij(x)ξiξj ≥ α|ξ|2,∀ξ ∈ Rd, i, j ∈ 1 . . . n}, (12)

where d(d+1)/2 is the number of upper triangular elements
in the coefficient matrix.

In the next result we prove the continuity of eigenvalues
of the operator L̂F with respect to the coefficients following
the approach outlined in [14], where the authors consider the
special case when F = 1.

Theorem V.1. Let L̂n
F be the sequence of operators corre-

sponding to a sequence of functions anij that is bounded in
L∞(Ω) for each i and j, such that the functions converge
almost everywhere to a function aij for each i and j. Let L̂F

be the elliptic operator as defined in (2) by the functions aij .
Then each eigenvalue of L̂n

F converges to the corresponding
eigenvalue of L̂F .

Proof. From [14][Theorem 2.3.3] it is known that under the
convergence conditions on the function anij , for each fixed
f ∈ L2(Ω), (L̂n

1)−1f converges to (L̂1)−1f in norm. To
prove the result in our modified case we let MF : L2(Ω)→
L2
F (Ω) be the multiplication map that takes u ∈ L2

F Ω to
u/F ∈ L2(Ω). Since L̂n

F = L̂n
1MF , we can infer that for

each fixed f ∈ L2(Ω), (L̂n
F )−1f converges to (L̂F )−1f in

norm. From this, we can conclude that the resolvents of the
operators L̂n

F strongly converge to the resolvent of the opera-
tor L̂F [14][Theorem 2.3.2]. The operators L̂n

F and L̂F have
a compact resolvent since H1

F (Ω) is compactly embedded
in L2

F (Ω). Therefore, it follows from [14][Theorem 2.3.1]
that the eigenvalues of the operators L̂n

F converge to the
respective eigenvalues of the operator L̂F .



VI. NUMERICAL OPTIMIZATION

In this section, we numerically solve the optimization
problem. Instead of working with a discrete version of the
operator L̂F , we directly discretize the inner product in the
objective function. Discretizing this inner product, rather
than discretizing the operator L̂ and substituting it into the
objective function, significantly reduces the computational
complexity of solving the optimization problem. From the
bilinear form (3), we have that for u ∈ D(L̂F ), BF [u, u] =
〈L̂Fu, u〉F . Therefore, the objective function can be recast
as the following expression:

〈−L̂Fu, u〉F = −
∫

Ω

d∑
i,j=1

(
aij(x)

∂(u/F )

∂xj

∂(u/F )

∂xi

)
dx

(13)
We demonstrate our numerical optimization procedure for

a domain Ω ⊂ R2. In this case, the above equation can be
simplified to:

−
∫

Ω

[
∂v(x,y,t)

∂x
∂v(x,y,t)

∂y

]
A(x, y)

[
∂v(x,y,t)

∂x
∂v(x,y,t)

∂y

]
dxdy, (14)

where v = u/F and A = [aij ] is the coefficient matrix in
R2×2.

In our example, we define Ω = [0, 1]× [0, 1]. We partition
Ω into an N × N grid and define h = 1/N . Let I be
the index set {1, . . . , N}. Then Ω = ∪i,j∈IΩ̃ij , where
Ω̃ij = [xi− 1

2
, xi+ 1

2
]×[yj− 1

2
, yj+ 1

2
] for i, j ∈ I . Let wij(t) =

v(xi, yj , t) be evaluated at the midpoint of each grid cell
Ω̃ij . Let F̃ (i, j) = F (xi, yj). Note that we can remove
the negative sign in the objective function (8) and pose the
optimization problem as a maximization problem. The finite-
dimensional optimization problem that is equivalent to (8)-
(11) can be stated as:

max
w

1

N2

N−1∑
i=1

N−1∑
j=1

[
wi+1,j−wi,j

h
wi,j+1−wi,j

h

]T
A(i, j)

[
wi+1,j−wi,j

h
wi,j+1−wi,j

h

]
(15)

subject to
N∑
i,j

wijF̃ (i, j) = 0 (16)

‖wF̃‖2F = ‖w
√
F̃‖22 = 1 (17)

Equations (9)− (11)

Constraint (16) ensures that the vector u (before discretiza-
tion) is perpendicular to F . Constraint (17) ensures that the
weighted 2-norm of u is 1. The objective function (15) is
nonlinear. Further, it is difficult to prove that it is convex.
Therefore, the nonlinear optimization solver KNITRO [20]
was used to solve this problem. This solver implements both
interior-point and active-set methods for solving nonlinear
optimization problems. The problem was solved in AMPL
(A Mathematical Programming Language) [10]. We ran two
test cases, described below.

In the first case, F was defined as the uniform distribution
1. Five different grid sizes N ×N and two different values

of c, c = 10 and c = 1, were tested. The eigenvalue −λ2

was computed for each combination of grid size and c value,
and the results are tabulated in Table I. This table shows that
as the discretization becomes finer, the eigenvalue converges.
Note that for c = 1, the computed eigenvalue, which is close
to −12, yields a faster asymptotic convergence rate to the
target distribution than the second-largest eigenvalue of the
Neumann Laplacian, which is −π2 ≈ −9.87.

TABLE I
EIGENVALUE −λ2 FOR THE CASE F = 1

N ×N c = 1 c = 10
20× 20 11.9 154.604
40× 40 11.97 155.65
80× 80 11.99 155.9
100× 100 11.995 155.94

In the second case, F was defined as the non-uniform
distribution F = (sin(2πi/N))2 +(sin(2πj/N))2 +ε, where
ε was chosen to be 0.1 to ensure strict positivity of F over Ω.
In this case, we also investigate how the eigenvalue changes
in magnitude with respect to the L∞(Ω) bound c on the
parameters aij . Table II shows the eigenvalue −λ2 that was
computed for each combination of five different grid sizes
N ×N and three different values of c. We observe that the
magnitude of the eigenvalue depends on the magnitude of the
parameter c. In addition, the table shows that the convergence
rate of the eigenvalue in this case is much slower than in the
case where F was the uniform distribution. Figure 1 is a
pictorial representation of the data presented in Table II.

TABLE II
EIGENVALUE −λ2 FOR THE NON-UNIFORM F CASE

N ×N c = 1 c = 2 c = 5
20× 20 71.82 163.15 437.386
40× 40 91.74 211.5 570.883
60× 60 102.64 237.58 642.505
80× 80 108.96 252.72 684.042
100× 100 113.06 262.52 710.958
140× 140 118.03 274.44 743.7
200× 200 121.979 283.91 769.75
240× 240 123.568 287.73 780.25
300× 300 125.189 291.62 790.95

VII. CONCLUSION

In this paper, we have presented an approach to optimizing
the rate at which a PDE generated by a divergence type op-
erator converges to a desired function. The desired function
must satisfy certain properties; namely, it must be bounded in
the L∞ norm and positive almost everywhere on the domain.
Since the operator in this case is self-adjoint, the optimization
problem can be posed exactly as the maximization of the
modulus of the operator’s second largest eigenvalue. We
described a numerical procedure for solving this optimization
problem and validated it for systems on a two-dimensional
domain.

As future work, we plan to investigate the existence of an
optimal solution to this problem. Demonstrating the existence
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of this solution would entail proving that the set of decision
variables is compact in some topology and that the objective
function is continuous on this set with respect to the chosen
topology. Here, we have shown only that the eigenvalues of
the operator vary continuously with respect to the coefficients
of the operator.
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[22] Konrad Schmüdgen. Unbounded self-adjoint operators on Hilbert
space, volume 265. Springer Science & Business Media, 2012.

[23] Daniel W Stroock. Diffusion semigroups corresponding to uniformly
elliptic divergence form operators. In Séminaire de Probabilités XXII,
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