Decentralized Control of Multi-Agent Systems using Local Density Feedback

Shiba Biswal, Karthik Elamvazhuthi, and Spring Berman

Abstract—In this paper, we stabilize a discrete-time Markov process evolving on a compact subset of \mathbb{R}^d to an arbitrary target distribution that has an $L^\infty(\cdot)$ density and does not necessarily have a connected support on the state space. We address this problem by stabilizing the corresponding Kolmogorov forward equation, the mean-field model of the system, using a density-dependent transition kernel as the control parameter. Our main application of interest is controlling the distribution of a multi-agent system in which each agent evolves according to this discrete-time Markov process. To prevent agent state transitions at the equilibrium distribution, which would potentially waste energy, we show that the Markov process can be constructed in such a way that the operator that pushes forward measures is the identity at the target distribution. In order to achieve this, the transition kernel is defined as a function of the current agent distribution, resulting in a nonlinear Markov process. Moreover, we design the transition kernel to be decentralized in the sense that it depends only on the local density measured by each agent. We prove the existence of such a decentralized control law that globally stabilizes the target distribution. Further, to implement our control approach on a finite N-agent system, we smoothen the mean-field dynamics via the process of mollification. We validate our control law with numerical simulations of multi-agent systems with different population sizes. We observe that as N increases, the agent distribution in the N-agent simulations converges to the solution of the mean-field model, and the number of agent state transitions at equilibrium decreases to zero.

I. INTRODUCTION

In this paper, we address the problem of stabilizing a multi-agent system evolving on a compact, connected subset of \mathbb{R}^d to a target distribution. Such a control approach could be used for a variety of multi-agent applications that require task reallocation or spatial redistribution, such as environmental monitoring, surveillance, disaster response, and autonomous construction. We consider groups of agents that all follow the same dynamics and control policies, which are independent of the agents’ identities. We assume that each agent can obtain local measurements of the agent population but do not require inter-agent communication.

Instead of specifying the spatiotemporal evolution of each individual agent, a microscopic approach to agent control, we will design agent control laws using a fluid approximation of the multi-agent system, called the macroscopic or mean-field model [13]. This approximation is justified by modeling each agent’s dynamics as a Markov process, and then the mean-field behavior of the population is determined by the Kolmogorov forward equation corresponding to the Markov process. We will address the problem of stabilizing this mean-field model using the transition kernel as the control parameter. In contrast to commonly used graph-theoretic approaches for controlling multi-agent systems [7], [24], control approaches based on mean-field models scale well to very large numbers of agents. Moreover, a range of tools are available to analyze and control mean-field dynamical models, which have the advantage of linearity in the absence of agent interactions.

This paper builds on our work in [3], wherein we constructed a Markov process that can be stabilized to probability distributions that have continuous densities, with the additional requirement that the operator acting on densities be the identity operator at the target distribution. In this paper, we extend these results to multi-agent systems in which the agents have specified dynamics and the target distribution has an $L^\infty(\cdot)$ density. The contribution of this paper is the design of stochastic agent control laws, using a mean-field model of the agent population dynamics, that have the following three properties.

1. We design the transition kernel to stabilize the mean-field model to target measures that have $L^\infty(\cdot)$ densities, a larger class of measures than we previously considered in [3]–[5]. In [4], [5], we considered measures that have $L^\infty(\cdot)$ densities that are strictly positive a.e. (almost everywhere) on the domain. In general, discrete-time Markov chains cannot be stabilized to distributions that do not have connected supports; we showed this for continuous-time Markov chains in [15], and similar arguments can be applied to discrete-time Markov chains [1]. However, in this paper, we are able to stabilize the mean-field model to distributions that are not supported everywhere, due to the fact that, unlike in our earlier works, the control law considered here is density-dependent; the reason for this will be explained next.

2. The convergence of a Markov process to an equilibrium distribution does not necessarily imply that the agents evolving according to the process also converge to equilibrium states. In fact, agents may continue to transition between states, which can cause them to waste energy. To prevent agents from continuing to switch between states at the equilibrium distribution, we construct the Markov process such that its forward operator, which pushes forward measures, is the identity operator at the desired equilibrium. This results in a time-dependent transition kernel that is a function of the distribution and gives rise to a nonlinear Markov process.

This work was supported by the Arizona State University Global Security Initiative.

Shiba Biswal, and Spring Berman are with the School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281 USA {sbriswal, Spring.Berman}@asu.edu.

Karthik Elamvazhuthi is with the Department of Mathematics, University of California, Los Angeles, CA 90095, USA karthikevaz@math.ucla.edu.
Such stochastic processes, called density-dependent population processes, are used to model the dynamics of logistic growth, epidemics, and chemical reaction networks [17].

3. Since we establish that the transition kernel must depend on the distribution, our third goal is to construct the kernel to have a decentralized structure. A kernel with this structure corresponds to agent control policies that require each agent to estimate the population only in its local neighborhood. Toward this end, we construct a kernel for the mean-field model that is defined pointwise; that is, it is a function of the value of the distribution at the current state. We proved the existence of such feedback control laws in the case of continuous-time Markov chains evolving on finite graphs in [14], [16]. A similar problem is addressed in [23], which develops a decentralized control approach by a priori restricting the controller to have a decentralized structure. Another related work [10] designs a centralized controller and uses estimation algorithms to determine the entire agent distribution in a decentralized manner.

Our approach of analyzing the stability of a dynamical system from a measure-theoretic point of view is quite classical [22]. This approach is also used extensively in the context of mean-field games [20], optimal transport theory [25], and mean-field control [19]. In [4], we present a review of significant works that have influenced research on the stabilization of Markov processes.

II. Notation

In this section, we present notation that will be used throughout the paper. We define \(\mathbb{R}^+ := [0, \infty) \) and \(\mathbb{R}^+_+ := (0, \infty) \). Similarly, we define \(\mathbb{Z}_+ \) as the set of all non-negative integers and \(\mathbb{Z}_\alpha \) as the set of all positive integers. Given a dimension \(d \geq 1 \), the closed ball in \(\mathbb{R}^d \) of radius \(\delta \) centered at \(x \) will be denoted by \(B_\delta(x) \). For an arbitrary set \(A \), the symbol \(|A| \) will refer to the cardinality of \(A \).

We denote the state space by \((\Omega, B(\Omega)) \), a measurable space. Here, \(\Omega \subseteq \mathbb{R}^d \) is a compact set and \(B(\Omega) \) represents the Borel sigma algebra on \(\Omega \) corresponding to the standard topology on \(\mathbb{R}^d \). The set of admissible control inputs and its corresponding Borel sigma algebra will be denoted by \((U, B(U)) \). We will assume that \(U \) is compact in \(\mathbb{R}^d \). The dimension of the set \(U \) could be larger than \(d \), but we are restricting it for notational simplicity.

We denote the space of probability measures on \(\Omega \) and \(U \) by \(\mathcal{P}(\Omega) \). The Lebesgue measure on \(\mathbb{R}^d \) will be denoted by \(m \). For a measure \(\nu \) on \(\mathbb{R}^d \), \(\nu \) is said to be absolutely continuous with respect to \(m \), denoted by \(\nu \ll m \), if \(\nu(E) = 0 \) whenever \(m(E) = 0 \). In this case, there exists a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) such that \(d\nu = fdm \); this function is called the Radon-Nikodym derivative of \(\nu \) with respect to \(m \) [18].

For a measure space \((\mathcal{X}, \nu) \), we define \(L^p(\mathcal{X}, \nu) \), where \(p \in [1, \infty) \), as the space \(f : \mathcal{X} \rightarrow \mathbb{R} : f \) is measurable and \(\|f\|_p < \infty \), where \(\|f\|_p = (\int |f|^p d\nu)^{1/p} \). In addition, we define \(L^\infty(\mathcal{X}, \nu) = \{ f : \mathcal{X} \rightarrow \mathbb{R} : f \) is measurable and \(\|f\|_\infty < \infty \} \), where \(\|f\|_\infty = \sup_{x \in \mathcal{X}} |f(x)| \). Where it is understood, the measure will be dropped from the notation of \(L^p \) spaces. \(C(\mathcal{X}) \) is the space of continuous functions on \(\mathcal{X} \). For a function \(f : \mathcal{X} \rightarrow \mathbb{R} \), the support of \(f \) is the closure of the set of points in \(\mathcal{X} \) where \(f \) is nonzero. The characteristic function over a set \(A \) will be denoted as \(\chi_A(\cdot) \). The Dirac measure concentrated a point \(x \) is denoted as \(\delta_x \), where \(\delta_x(A) = 1 \) if \(x \in A \) and \(\delta_x(A) = 0 \) otherwise.

For measurable spaces \((\mathcal{X}, \mathcal{M}) \) and \((\mathcal{Y}, \mathcal{N}) \), where \(\mathcal{M} \) and \(\mathcal{N} \) are the sigma algebras of \(\mathcal{M} \) and \(\mathcal{N} \), respectively, a transition kernel or Markov kernel is a map \(T : \mathcal{X} \times \mathcal{N} \rightarrow [0, 1] \), where \(T(x, \cdot) \) is a measure on \(\mathcal{Y} \) for each fixed \(x \in \mathcal{X} \) and \(T(\cdot, E) \) is a Borel measurable function on \(\mathcal{X} \) for each fixed \(E \in \mathcal{N} \). The transition kernel \(T \) induces an operator \(T : \mathcal{P}(\mathcal{X}) \rightarrow \mathcal{P}(\mathcal{Y}) \) as follows. For each probability measure \(\nu \) on \(\mathcal{X} \),

\[
(T\nu)(E) = \int_{\mathcal{X}} T(x, E) \, d\nu(x), \quad E \in \mathcal{N}
\]

defines a probability measure on \((\mathcal{Y}, \mathcal{N}) \). We will say that \(T \) is regular if there exists a function \(h \in L^\infty(\mathcal{X} \times \mathcal{Y}, m \times m) \) such that for each \(x \in \mathcal{X} \), the measure \(T(x, \cdot) \) is absolutely continuous with respect to \(m \) and \(T(x, du) = h(x, u) \, du \). The density \(h : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \) will also be called the kernel function of the transition kernel \(T \).

We define a continuous map \(F : \Omega \times U \rightarrow \mathbb{R}^d \). We also define \(F_x \) as the map from \(U \rightarrow \mathbb{R}^d \) when \(x \in \Omega \) is held fixed, and \(F_u \) as the map from \(\Omega \rightarrow \mathbb{R}^d \) when \(u \in U \) is held fixed. We specify that \(F \) is non-singular, which means that for all \(E \in B(\Omega) \), \(m(F^{-1}_x(E)) = 0 \) and \(m(F^{-1}_u(E)) = 0 \) whenever \(m(E) = 0 \). We also assume that \(F(x, 0) = x \).

III. Problem Formulation

We now state the problem addressed in this paper. Consider a system of \(N \) agents evolving in discrete time on the set \(\Omega \subseteq \mathbb{R}^d \). We suppose that the dynamics of each agent \(k \in \{1, \ldots, N\} \) is governed by the following nonlinear discrete-time control system:

\[
\xi_{n+1}^k = F(\xi_n^k, u_n^k), \quad n = 0, 1, 2, \ldots
\]

\[
\xi_k^0 \in \Omega,
\]

where \(\xi_n^k \in \Omega \), and \((u_n^k)_{n=1}^\infty \) is a sequence in \(U \) such that \(F(\xi_n^k, u_n^k) \in \Omega \) for each \(n \in \mathbb{Z}_+ \). Let \(\xi_k^N \) be a random variable with distribution \(\mu_0 \in \mathcal{P}(\Omega) \).

The empirical distribution of the \(N \)-agent system over \(\Omega \) at time \(n \) is given by \(1/N \sum_{k=1}^N \delta_{\xi_k^N} \). Our goal is to design a feedback control law \(u_n^k \) that redistributes the agents from their initial empirical distribution \(1/N \sum_{k=1}^N \delta_{\xi_k^0} \) to a desired empirical distribution \(1/N \sum_{k=1}^N \delta_{\xi_k^N} \) that "closely approximates" a target density \(f^d \in L^7(\Omega) \) as \(n \rightarrow \infty \), where \(1/N \sum_{k=1}^N \delta_{\xi_k^N} \) is a sample of \(f^d \). Since we assume that the agents are identity-free, we will define the control law as a function of the current empirical distribution \(1/N \sum_{k=1}^N \delta_{\xi_k^N} \) rather than the individual agent states \(\xi_k^N \). However, \(1/N \sum_{k=1}^N \delta_{\xi_k^N} \) is not a state variable of the system (1). In order to treat \(1/N \sum_{k=1}^N \delta_{\xi_k^N} \) as the state, we consider the mean-field limit of this quantity as \(N \rightarrow \infty \).

Suppose that every agent \(k \in \{1, \ldots, N\} \) uses the same control law \(u_n^N = u_n \) at each time \(n \); that is, the control law is independent of the agent identity \(k \). In this case, when
$N \to \infty$, the empirical distribution $\frac{1}{N} \sum_{k=1}^{N} \delta_{\xi_{k}^{n}}$ converges to a deterministic quantity $\mu_{n} \in \mathcal{P}(\Omega)$, which evolves according to the following forward equation,

$$\mu_{n+1} = F^{\#} (\cdot, u_{n}) \mu_{n}, \quad \mu_{0} \in \mathcal{P}(\Omega), \quad (2)$$

where $F^{\#} (\cdot, u_{n}) : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ is the induced forward operator corresponding to the deterministic map $F(\cdot, u_{n})$. This operator is defined as

$$(F^{\#} (\cdot, u_{n}) \mu_{n})(E) = \mu_{n}(F^{-1} u_{n}(E)) = \int_{\Omega} \chi_{E} (F(x, u_{n})) dx$$

for each $E \in \mathcal{B}(\Omega)$. Since we are interested in the problem of stabilizing system (2) to a given target measure μ^{d} with density f^{d}, we must determine whether there exists a sequence of feedback laws u_{n} such that starting from any initial measure, the system (2) converges to μ^{d}. In general, this problem cannot be solved using deterministic feedback laws, as was shown in [12]. Therefore, we will construct a stochastic forward law using a state-to-control transition kernel $K : \Omega \times \mathcal{B}(U) \to [0, 1]$. On a continuous state space, the transition kernel plays the role of the transition probability matrix on a discrete state space. That is, given that an agent is at state $x \in \Omega$, it chooses a subset of control inputs $W \subset \mathbb{R}$ with probability $K(x, W)$. We note that deterministic control laws $v : \Omega \to U$ are a special type of stochastic control law in that $K(x, du) = \delta_{v(x)}$, that is, given the state x, the probability of choosing the control $v(x)$ is 1. The transition kernel K induces a forward Kolmogorov operator $P : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$, defined as

$$(P \mu)(E) = \int_{\Omega} \int_{U} \chi_{E} (F(x, u)) K(x, du) d\mu(x)$$

for each $E \in \mathcal{B}(\Omega)$. The mean-field model that governs the time evolution of μ_{n} can then be written as

$$\mu_{n+1} = P \mu_{n}, \quad \mu_{0} \in \mathcal{P}(\Omega). \quad (3)$$

Hence, taking the mean-field limit of the empirical distribution enables us to treat the N-agent system as a continuum, as described in the Introduction. Moreover, to achieve our goal of redistributing agents over Ω, we will construct K to be a function of the current distribution μ_{n}.

Using K, we can define a closed-loop transition kernel $Q : \Omega \times \mathcal{B}(U) \to [0, 1]$. That is, if the Markov chain $(\xi_{k})_{n}$ induces a probability measure \mathbb{P} on Ω^{∞}, then an agent k evolves on Ω according to the following conditional probability,

$$\mathbb{P} (\xi_{n+1} \in E | \xi_{n} = x) = Q(x, E), \quad (4)$$

for each $x \in \Omega$ and $E \in \mathcal{B}(\Omega)$. For $\mu \in \mathcal{P}(\Omega)$ and $E \in \mathcal{B}(\Omega)$, P can be redefined as

$$(P \mu)(E) = \int_{\Omega} Q(x, E) d\mu(x). \quad (5)$$

In this paper, instead of arbitrary measures in $\mathcal{P}(\Omega)$, we will consider those measures that have L^{1} densities (derivatives with respect to μ). By restricting P to this subset of $\mathcal{P}(\Omega)$, we can define an operator \tilde{P} on $L^{1}(\Omega)$; the exact construction will be carried out in the next section. Then (3) can be rewritten as

$$f_{n+1} = \tilde{P} f_{n}, \quad f_{0} \in L^{1}(\Omega). \quad (6)$$

We are now ready to state the problem that we address in this paper rigorously.

Problem III.1. Let \tilde{P} be the forward operator induced by the operator P defined in (5). Given a target distribution $\mu^{d} \in \mathcal{P}(\Omega)$ with density $f^{d} \in L^{1}(\Omega)$ and a non-singular continuous map $F : \Omega \times U \to \mathbb{R}$, determine whether there exists a transition kernel $Q : \Omega \times \mathcal{B}(\Omega) \to [0, 1]$ such that (a) equation (6) satisfies $\lim_{n \to \infty} \tilde{P}^{n} f_{0} = f^{d}$ for all initial measures $f_{0} \in L^{1}(\Omega)$, and (b) $\tilde{P}(f^{d}) = I$, where I is the identity operator.

The operator \tilde{P} governs the stochastic transitions of individual agents between states. Thus, the condition $\tilde{P}(f^{d}) = I$ ensures that all agents stop transitioning between states once the density f^{d} of the target equilibrium distribution is reached. This condition leads to a nonlinear operator \tilde{P} that depends on f. We will address Problem 1 in Section IV, where we show that the construction of \tilde{P} requires additional conditions on Ω and F.

Having proven the existence of such an operator \tilde{P}, in Section V we will introduce the system of N agents that evolve according to the N-agent Markov process that is an approximation of the mean-field model (3). Since P (via Q) can be constructed such that μ^{d} is an equilibrium of the system (3), we observe that in simulations of the corresponding N-agent system, presented in Section VI, the empirical distribution $\frac{1}{N} \sum_{k=1}^{N} \delta_{\xi_{k}^{n}}$ converges to an empirical distribution that approximates f^{d} as $n \to \infty$.

IV. Stability Result

In this section, an operator \tilde{P} that solves Problem 1 will be constructed. As stated in Problem 1, $f^{d} \in L^{1}(\Omega)$ is the density of the target measure. In our previous work [4], we assumed that f^{d} is supported most almost everywhere on Ω; in this paper, we relax this assumption. The cost of this generality comes at the price of working with a nonlinear operator \tilde{P}, which is also necessary to ensure that agent transitions between states stop once the equilibrium distribution is reached.

We begin by stating our assumptions. We assume that Ω is a path connected, compact subset of \mathbb{R}^{d}. Path connectedness of Ω means that any two points $x, y \in \Omega$ can be connected by a path in Ω, which is a continuous map $p : [0, 1] \to \Omega$ with $p(0) = x, p(1) = y$. We also require Ω to satisfy the cone condition (Definition 4.6, [2]), which ensures that the boundary of Ω is regular enough. A domain \mathcal{D} is said to satisfy the cone condition if there exists a finite cone \mathcal{C} such that each $x \in \Omega$ is the vertex of a finite cone \mathcal{C}_{x} that is contained in Ω and congruent to \mathcal{C}. Note that \mathcal{C}_{x} need not be obtained from \mathcal{C} by parallel translation, but simply by rigid motion. Lastly, for the system (1) to be controllable, we need the following local controllability condition.

Definition IV.1. The system (1) is said to be locally controllable if there exists $r > 0$ such that, for every $x \in \Omega$, $B_{r}(x) \cap \Omega \subseteq F(x, U)$.

From here on, we will consider r to be fixed as per this definition.
Let \(\mu \in \mathcal{P}(\Omega) \) be such that \(\mu \ll m \). Further, if \(f_\mu \) is the derivative of \(\mu \) with respect to \(m \), we assume that \(f_\mu \in L^1(\Omega) \). For an arbitrary \(f \in L^1(\Omega) \), define a function \(a_f \) on \(\Omega \) as
\[
a_f(x) = \begin{cases} \frac{f(x) - f^d(x)}{f(x)} & \text{for } m\text{-a.e. } x \text{ if } f(x) - f^d(x) > 0; \\ 0 & \text{otherwise}. \end{cases}
\]
(7)
We note that \(a_f \in L^\infty(\Omega) \) with norm 1.

Define \(k : \Omega \times U \to [0,1] \) to be a bounded function that satisfies the following properties:
\[
k(x,u) \begin{cases} > 0 & \text{for } m\text{-a.e. } x \in \Omega, u \in U \text{ st. } F(x,u) \in \Omega; \\ = 0 & \text{otherwise}; \end{cases}
\]
(8)
\[
\int_U k(x,u)du = 1 \text{ for } m\text{-a.e. } x \in \Omega.
\]
(9)
Before we proceed, we must determine whether we can construct a measurable \(k \in L^\infty(\Omega \times U, m \times m) \) that satisfies these properties. We note that due to the first condition (8), the integral in the second condition (9) is computed over the set \(U_x := F_x^{-1}(\Omega) \). This integral can therefore be expressed as \(\int_{U_x} k(x,u)\chi_{U_x}(u)du = 1 \). Since \(F_x \) is continuous, the set \(U_x \) is measurable for each \(x \). The following lemma can be used to construct such a measurable \(k \).

Lemma IV.2. For \(\forall x \in \Omega \), we have the following results:
1. There exists an \(\epsilon > 0 \) such that \(m(U_x) > \epsilon \).
2. The map \(x \mapsto m(U_x) \) is measurable.
3. The characteristic function \(\chi_{U_x}(u) \) is jointly measurable in \(x \) and \(u \).

Proof. Result (1) is proved in Proposition V.2 of [4]. The idea of the proof is as follows. First, it is shown that for some \(r > 0 \), \(m(B_r(x) \cap \Omega) > 0 \) for all \(x \in \Omega \). Second, it is shown that for every \(E \in \mathcal{B}(\Omega) \), \(m(F_x^{-1}(E)) > 0 \) whenever \(m(E) > 0 \). These properties require the domain \(\Omega \) to have a smooth enough boundary, which is ensured by the cone condition.

To prove results (1) and (3), let \(G = \{(x,u) \in \Omega \times U : F(x,u) \in \Omega\} \). \(G \) is Borel measurable because \(F \) is continuous in both variables. Since \(\chi_G \) is a Borel measurable function, the Tonelli theorem [18] implies that \((\chi_G)_x \) is Borel measurable for each \(x \in \Omega \). Since \((\chi_G)_x(u) = \chi_{U_x}(u) \), we have that \(\chi_{U_x}(u) \) is a measurable function in both variables, proving result (2). Then, by the Tonelli theorem, we have that \(x \mapsto \int_{U_x} (\chi_G)_x du \) is Borel measurable. Since \((\chi_G)_x(u) = \chi_G(x,u) \), we have that \(\int_{U_x} (\chi_G)_x du = m(F_x^{-1}(\Omega)) = m(U_x) \). That is, \(x \mapsto m(U_x) \) is Borel measurable. \(\square \)

The existence of a measurable function \(k \) then trivially follows from the fact that one can set \(k \) to be the uniform kernel, \(k(x,u) = \frac{\chi_{U_x}}{m(U_x)} \).

Next, we define a transition kernel \(K : \Omega \times \mathcal{B}(U) \to [0,1] \).

For \(W \in \mathcal{B}(U) \),
\[
K(x,W) = K(x,W \cap U_x) = K_1 + K_2, \quad \text{where} \quad (10)
\]
\[
K_1 = a_{f_\mu}(x) \int_W k(x,u)du,
\]
\[
K_2 = (1 - a_{f_\mu}(x))\delta_0(W).
\]

Recall that we have assumed that \(F(x,0) = x \). Since this kernel is a function of \(a_{f_\mu} \), it depends on the density \(f_\mu \). The kernel is defined such that the corresponding Markov chain stays at control 0 with probability 1 - \(a_{f_\mu}(x) \) and moves to a control in the set \(U_x \) with probability \(a_{f_\mu}(x) \), and when it moves, the distribution is given by the density \(k(x,u) \). The integral term \(K_1 \) is regular because its kernel function \(k(x,u) \) is in \(L^\infty(\Omega \times U) \).

Remark IV.3. We note that the local controllability assumption, Definition IV.1, implies that there exists a measurable control \(V(x) \in U \) such that \(F(x,V(x)) = x \) (see Proposition V13 in [4]). Therefore, the condition \(F(x,0) = x \) is not restrictive. However, we impose this condition here for the sake of simplicity and note that we can extend our results even when this condition is not satisfied following the steps in [4].

The proof of the next result follows from Lemma IV.2.

Lemma IV.4. The kernel \(K \) is well-defined. That is, \(K(\cdot, W) \) is a measurable function on \(\Omega \) for each fixed \(W \in \mathcal{B}(U) \) and \(K(x, \cdot) \) is a probability measure on \(U \) for each fixed \(x \in \Omega \).

Using \(K \), we define a closed-loop kernel \(Q : \Omega \times \mathcal{B}(\Omega) \to [0,1] \). For \(E \in \mathcal{B}(\Omega) \),
\[
Q(x,E) = \int_U \chi_E(F(x,u))K(x,du) = a_{f_\mu}(x) \int_U \chi_E(F(x,u))k(x,u)du + (1 - a_{f_\mu}(x)) \int_U \chi_E(F(x,u))d\delta_0 = Q_1 + Q_2,
\]
(12)
where
\[
Q_1 = a_{f_\mu}(x) \int_U \chi_E(F(x,u))k(x,u)du,
\]
\[
Q_2 = (1 - a_{f_\mu}(x))\delta_2(E).
\]

For the next result, we require \(F \) to satisfy Lusin's property [6] in both the \(x \) and \(u \) variables, which in simple terms means that \(F \) maps sets of measure zero to sets of measure zero. For \(x \in \Omega \) fixed, we say that \(F_x : (U, m) \to (\mathbb{R}^d, m) \) satisfies Lusin's property if \(m(F_x(W)) = 0 \) for every \(W \in U \) with \(m(W) = 0 \). Lusin's property for \(F_u \) has a similar definition.

Lemma IV.5. The kernel \(Q \) is well-defined; that is, \(Q(\cdot, E) \) is a measurable function on \(\Omega \) for each \(E \in \mathcal{B}(\Omega) \) and \(Q(x, \cdot) \) is a probability measure on \(\Omega \) for each \(x \in \Omega \). Further, if \(F \) satisfies Lusin's property, then \(Q_1 \) is regular.

Proof. The proof that \(Q \) is well-defined is similar to the proof that \(K \) is well-defined (Lemma IV.4). To prove that \(Q_1 \) is regular, we first require that \(Q_1(x, \cdot) \ll m \) for every \(x \). Indeed, if \(E \in \mathcal{B}(\Omega) \) is such that \(m(E) = 0 \), then due to the non-singularity of \(F \) with respect to both variables \(x \) and \(u \), we have that \((m \times m)(F^{-1}(E)) = 0 \). Therefore, for \(x \in \Omega, u \in U \), we have that \(\chi_E(F(x,u)) = \chi_{F^{-1}(E)}(x,u) = 0 \) in the integral that defines \(Q_1 \). Hence, \(Q_1(x,E) = 0 \).

The full proof that \(Q_1 \) has a kernel function \(q \in L^\infty(\Omega \times \Omega) \) is given in Proposition IV.4 of [4]. Here, we provide a brief
idea of the proof. If \(q \) exists, then for \(E \in \mathcal{B}(\Omega) \) and \(x \in \Omega \),
\[
Q_1(x,E) = \int_E q(x,y)dy = \int_U \chi_E(F(x,u))K_1(x,du)
\]
\[
= \int_U \chi_E(F(x,u))k(x,u)du \leq c\,m(E),
\]
where \(c > 0 \) is a constant that is independent of \(x \) and \(E \). The proof of Proposition IV.4 in [4] shows the existence of the uniformly bound \(c \). That is, the measure \(Q_1(x,\cdot) \) has a uniform upper bound, and hence, we must have that its kernel \(q \) is in \(L^\infty(\Omega \times \Omega) \) (Lemma IV.3 of [4]). \(\Box \)

Next, we define an operator \(P : \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega) \) in terms of \(Q \) as follows:
\[
(P\mu)(E) = \int \Omega Q(x,E)d\mu(x)
\]
\[
= \int \int_U \chi_E(F(x,u))K_1(x,du)d\mu(x)
\]
\[
= \int \int_U a_{f_n}(x)\chi_E(F(x,u))k(x,u)du\,d\mu(x) + \int E (1-a_{f_n}(x))\delta_x(d\mu(x)
\]
\[
= \int \int_U a_{f_n}(x)\chi_E(F(x,u))k(x,u)du\,d\mu(x) + \int E (1-a_{f_n}(x))d\mu(x).
\]
(14)

Using expression for \(Q \) in (12), it is straightforward to show that \(Q(x,E) \) can also be expressed as
\[
Q(x,E) = (P\delta_x)(E).
\]
(15)

Due to the properties of \(Q \) (Lemma IV.5), we immediately have the following lemma.

Lemma IV.6. Operator \(P \) preserves \(\mathcal{P}(\Omega) \), and furthermore, it preserves absolutely continuous measures.

By restricting \(P \) to those measures that are absolutely continuous w.r.t \(m \), that is, measures that have \(L^1 \) densities, we can define \(\bar{P} : L^1(\Omega) \rightarrow L^1(\Omega) \). The next few steps will be toward this effort. Lemma IV.6 implies that \(P\mu \ll m \) ; let \(\bar{P}f_n \) be the density, that is, for \(E \in \mathcal{B}(\Omega) \), \((P\mu)(E) = \int_E (\bar{P}f_n)(y) \). We note that since \(Q_1 \) is regular, there must exist a function \(q \in L^\infty(\Omega \times \Omega) \). Therefore, from (12), we have that
\[
Q_1(x,E) = \int \int E q(x,y)d\mu(x) = \int_U \chi_E(F(x,u))K_1(x,du).
\]

Using this expression, (14) can be rewritten as follows. For \(E \in \mathcal{B}(\Omega) \),
\[
(P\mu)(E) = \int \int \Omega a_{f_n}(x)q(x,y)dyf_n(x)dx + \int E (1-a_{f_n}(x))f_n(x)dx = \int E (\bar{P}f_n)(y)dy.
\]

Applying Fubini’s theorem [18] to the equation above, we obtain an expression for an operator \(\bar{P} \) defined on \(L^1(\Omega) \) as follows. For \(f \in L^1(\Omega) \),
\[
\bar{P} = \bar{P}_1 + \bar{P}_2,
\]
where
\[
(\bar{P}_1 f)(y) = \int \Omega a_f(x)q(x,y)f(x)dx,
\]
\[
(\bar{P}_2 f)(y) = (1 - a_f(y))f(y).
\]
(16)

Remark IV.7. The operator \(\bar{P} \) so defined is different from the one defined in [3]. In our earlier work [3], \(\bar{P} \) was defined on \(C(\Omega) \), and \(q \) was defined to be non-negative only over a ball of radius \(r \); that is, for \(x \in \Omega \), \(q(x,y) = 0 \) for \(y \in B_r(x) \cap \Omega \). Here, to obtain such a \(q \), we would have to redefine \(U_r \) to be \(F^{-1}(B_r(x) \cap \Omega) \). However, proving the measurability of this function is challenging given the agent dynamics defined in (1). In contrast, explicit agent dynamics were not specified in [3].

Since \(Q_1 \) was proven to be regular in Lemma IV.5, we have that \(\bar{P} \) preserves \(L^1(\Omega) \), as we state in the proposition below.

Proposition IV.8. We have the following two results.

1) \(\bar{P} : L^1(\Omega) \rightarrow L^1(\Omega) \) is well-defined. Moreover, \(\bar{P} \) preserves probability densities; in other words, it is a Markov operator [22].

2) In fact, \(\bar{P} : L^2(\Omega) \rightarrow L^2(\Omega) \) is well-defined.

The second result above is a consequence of Proposition II.4.7 of [8], detailed in Proposition IV.4 of [4]. We will require this result in Section V.

When we need to emphasize the fact that \(P \) and \(\bar{P} \) are nonlinear operators which depend on \(\mu \) and \(f \), respectively, we will write these operators as \(P(\mu) \) and \(\bar{P}(f) \). Note that for each fixed \(f \), \(\bar{P}(f) \) is a linear operator. In the following result, \(\mathbb{B}(L^2(\Omega)) \) stands for the set of bounded linear operators on \(L^2(\Omega) \).

Lemma IV.9. The map from \(L^2(\Omega) \rightarrow \mathbb{B}(L^2(\Omega)) \), defined as \(f \rightarrow \bar{P}(f) \), is uniformly bounded; that is, for every \(f \in \mathbb{B}(L^2(\Omega)) \), \(\|\bar{P}(f)\| \leq C \) for some \(C > 0 \). Moreover, this result also holds true for \(\bar{P} \) as an operator on \(L^1(\Omega) \).

Proof. This follows from the fact that \(\bar{P} \) depends on \(f \) through the \(a_f \) function, which is in \(L^\infty \) for any \(f \in L^1(\Omega) \) or \(L^2(\Omega) \). An application of Theorem 6.18 in [18] then proves the result for \(\bar{P}_1 \). The result holds true trivially for \(\bar{P}_2 \), since it is a multiplication operator. \(\Box \)

We will use this result in Section V.

Clearly, the operator \(\bar{P} \) satisfies \(\bar{P}f^d = f^d \). Further, note that \(\bar{P} \) is constructed to satisfy \(\bar{P}(f^d) = I \), in order to ensure that all agents stop transitioning between states when the target density \(f^d \) is reached.

Next, we will show that \(f^d \) is a globally asymptotically stable equilibrium of system (6).

Theorem IV.10. For the system (6), \(f^d \) is globally asymptotically stable in the \(L^1(\Omega, m) \) norm, and hence
\[
\|f_n - f^d\|_1 \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.
\]
Before presenting the proof of this theorem, we make the following observation. Consider the case when for some \(y \in \Omega, \ f_n(y) > f^d(y) \). Then, it follows that \(a_{f_n}(y) > 0 \). Expression (16) then becomes:

\[
\overline{P}f_n(y) = \int_{\Omega} a_{f_n}(x)k(x,y)f_n(x)dx + f^d(y).
\]

The first term in the equation above is non-negative. Therefore, one of the following conditions must be true:

\[
\begin{align*}
&f_{n+1}(y) \geq f_n(y) > f^d(y); \\
&f_n(y) > f_{n+1}(y) \geq f^d(y).
\end{align*}
\]

Consequently, it is not possible that \(f_{n+1}(y) < f^d(y) \) for any value of \(n \). Next, consider the case when \(y \in \Omega \) is such that \(f_n(y) \leq f^d(y) \). In this case, \(a_{f_n}(y) = 0 \). Expression (16) then reduces to:

\[
\overline{P}f_n(y) = \int_{\Omega} a_{f_n}(x)k(x,y)f_n(x)dx + f_n(y).
\]

Similar to the previous case, given that the first term in the equation above is non-negative, one of the following conditions must be true:

\[
\begin{align*}
&f_{n+1}(y) \geq f^d(y) > f_n(y); \\
&f^d(y) > f_{n+1}(y) \geq f_n(y).
\end{align*}
\]

Therefore, in this case, we observe that \(f_{n+1}(y) \) monotonically increases with \(n \).

Define the sets

\[
\begin{align*}
E^1_n &= \{ y \in \Omega : f_n(y) < f^d(y) \}, \\
E^2_n &= \{ y \in \Omega : f_n(y) = f^d(y) \}, \\
E^3_n &= \{ y \in \Omega : f_n(y) > f^d(y) \}.
\end{align*}
\]

We note that \(\Omega = E^1_n \sqcup E^2_n \sqcup E^3_n \), where \(\sqcup \) denotes a disjoint union.

We can now state the proof of Theorem IV.10, which is a slight modification of the proof of Theorem 4 in [3]. To summarize, the proof employs an argument by contradiction that if the density \(f_n \) converges to a function other than \(f^d \), then the measure \(\mu_n \) is pushed from sets where its density \(f_n \) is greater than \(f^d \) to sets where \(f_n < f^d \). This is straightforward to conclude from the definitions of the transition kernels \(K \) and \(Q \); however, to prove the convergence of \(f_n \) to \(f^d \), it is necessary to precisely quantify the measure that is pushed during each time step, which is computed in the proof.

Proof of Theorem IV.10. To prove this result, it is sufficient to show that on the set \(E^1_n, \| f_n - f^d \|_1 \to 0 \) as \(n \to \infty \). This follows from the fact that each \(f_n \) is a probability density on \(\Omega \). On \(E^1_n \), by (19), we have that \(f_{n+1} \geq f_n \) and hence \(f^d - f_n \geq f^d - f_{n+1} \). Set \(F_n = (f^d - f_n)^+ \), where for an arbitrary function \(h: \mathbb{R}^d \to \mathbb{R} \), \(h^+ \) denotes the positive part of \(h \). Then \(F_n \) is monotonically decreasing on \(\Omega \). The sequence \((F_n)n \) is bounded, and monotonically decreasing, which implies that \(F_n \) converges pointwise to a function, say \(g \).

By the monotone convergence theorem [18], we then have that \(\int_\Omega F_n \to \int_\Omega g \). If \(g = 0 \), then we have our result. If \(g \neq 0 \), then since \(f_n \) is a probability density on \(\Omega \), \(\int_\Omega F_n \to \int_\Omega g \) implies that \(\int_\Omega (f_n - f^d)^+ \neq 0 \). We will next prove by contradiction that \(g \) is in fact 0.

We suppose that \(g \neq 0 \). Let \(\int_\Omega g \geq \gamma \), where \(\gamma > 0 \). Define \(S = \{ x \in \Omega : g(x) > 0 \} \). We note that the definition of \(S \) is independent of time. Given the conditions in (17) and (19), it follows that \(E^1_n \subset E^1_{n+1} \) for all \(n \). Due to the convergence of \(F_n \) to \(g \), we must have that for all \(n, S \subset E^1_n \). Moreover, \(\lim_{n \to \infty} m(E^1_n) \to m(S) \).

Let \(S \subset E^1_n \). On \(\gamma \) is compact, \(\Omega \) can be covered by a finite number \(M \) of balls of radius \(\varepsilon \), where \(4\varepsilon < r \). That is, \(\Omega \subset \bigcup_{i=1}^{M} B_i(x_i) \) for some \(x_i \in \Omega \). We will denote \(B_i(x_i) \cap \Omega \) by \(B(x_i) \). Choose a ball \(B(x_j) \) from this cover that intersects both \(E^1_n \) and \((E^1_n)^c \).

Then,

\[
m(B(x_j)) = m(B(x_j) \cap S) + m(B(x_j) \cap (E^1_n)^c) + m(B(x_j) \cap (E^1_n)^c).
\]

Let \(m(B(x_j) \cap S) \geq \epsilon_0 \), for some \(\epsilon_0 > 0 \). If \(m(B(x_j) \cap (E^1_n)^c) = 0 \) at the current time \(n \), then we look for a large enough time \(T \in \mathbb{Z}_+ \) such that \(m(E^1_n \setminus S) \leq \epsilon_1 << \epsilon_0 \). At times \(n \geq T \), (21) shows that \(m(B(x_j) \cap (E^1_n)^c) > 0 \), ensuring the existence of at least one ball from the cover that has intersections of positive measure with both \(S \) and \((E^1_n)^c \).

Next, let \(J = \{ 1, \ldots, M \} \) and define the following sets:

\[
N_1 = \bigcup_{\substack{c \in J \\ m(B(x_c) \cap S) > 0}} B(x_c),
\]

\[
N_k = \bigcup_{\substack{c \in J \\ m(B(x_c) \cap N_{k-1}) > 0}} B(x_c) \setminus N_{k-1}, \quad k > 1.
\]

Let \(n > T \). If \(\int_{N_1 \cap (E^1_n)^c} f_n - f^d \) is not tending to 0 with increasing \(n \), then we must have that \(\int_{N_1 \cap (E^1_n)^c} f_n - f^d \geq \delta \) infinitely often (i.o), for some \(\delta > 0 \). Moreover, each time the integral exceeds \(\delta \), the measure that is pushed from \(N_1 \cap (E^1_n)^c \) to \(S \) can be quantified as

\[
\int_{N_1 \cap (E^1_n)^c} Q_1(x,S) \overline{\mu}_n(x)
\]

\[
= \int_{N_1 \cap (E^1_n)^c} \int_{S} a_{f_n}(x)q(x,y)dyf_n(x)dx
\]

\[
= \int_{N_1 \cap (E^1_n)^c} (f_n(x) - f^d(x)) \int_{S} q(x,y)dydx
\]

\[
= C_1 \int_{N_1 \cap (E^1_n)^c} f_n(x) - f^d(x)dx,
\]

where the constant \(C_1 \) in the last expression is \(\int_S q(x,y)dy \).

Therefore, the measure that gets pushed onto \(S \) from \(N_1 \cap (E^1_n)^c \) is \(C_1 \delta \) at every time \(n \) when \(\int_{N_1 \cap (E^1_n)^c} f_n - f^d \geq \delta \).

Let \(\{ t_n \} \) be a sequence in \(\mathbb{Z}_+ \) of all such times \(n \), with \(t_0 > T \). When the integral exceeds \(\delta \), we have that

\[
\int_{S} f_{n+1}(x)dx = \int_{S} f_n(x)dx + C_1 \delta.
\]

Consequently, for each \(t_n \), we have

\[
\int_{S} f_n(x)dx = \int_{S} f_n(x)dx + C_1 n \delta,
\]

We continue this process until \(\int_{S} f_n(x)dx \to 0 \) as \(n \to \infty \).
which implies that
\[\int f^d(x) - f_{t_n}(x)dx = \int f^d(x) - f_n(x)dx - C_1 n \delta. \]
As \(n \to \infty \), the integral on the right-hand side of the equation above tends to \(-\infty\), contradicting the fact that this integral is an upper bound on the integral of \(g \) over \(S \), as per (20). Thus, we must have that \(\int_{N_k \cap (E_n)^c} f_n - f^d \to 0 \) as \(n \to \infty \).

We will now use an induction argument to show that \(\int_{(E_n)^c} f_n - f^d \to 0 \). We have just shown that this was true for the neighborhood of \(S \) given by \(N_1 \cap (E_n)^c \). We assume that \(\int_{N_k \cap (E_n)^c} f_n - f^d \to 0 \) for some \(k > 1 \). We will prove that this also holds true for \(N_{k+1} \cap (E_n)^c \). Suppose that it is not true; then, \(\int_{N_{k+1} \cap (E_n)^c} f_n - f^d \geq \delta_1 \) i.o. for some \(\delta_1 > 0 \). Again, denote the sequence of times at which this happens by \(\{t_n\} \). By construction, \(N_{k+1} \) does not intersect \(S \); however, \(N_{k+1} \) may intersect \(E_n \) (possibly a subset of \(N_k \)), to which it can push measure. We now demonstrate that \(N_{k+1} \) pushes most of its measure to \(N_k \cap (E_n)^c \). We have established that for any \(n \geq T \), \(m(N_k \cap E_n \cap S) \leq m(E_n \setminus S) \leq \epsilon_1 \), which is arbitrarily small. Hence, \(m(N_k \cap E_n) \) must be arbitrarily small, and therefore \(m(N_k \cap (E_n)^c) \) must have positive measure. Consequently, we have that
\[\int_{N_{k+1} \cap (E_n)^c} Q_1(x, N_k \cap (E_n)^c)\,d\mu_n(x) \]
\[= \int_{N_{k+1} \cap (E_n)^c} (f_n(x) - f^d(x))\,d\mu_n(x) \]
\[= C_k \int_{N_{k+1} \cap (E_n)^c} (f_n(x) - f^d(x))dx, \]
where \(C_k = \int_{N_{k+1} \cap (E_n)^c} q(x, y)dy \). That is, the measure pushed from \(N_{k+1} \cap (E_n)^c \) to \(N_k \cap (E_n)^c \) is \(C_k \delta_1 \) for every \(t_n \). Using similar arguments, we can conclude that \(\int_{N_{k+1} \cap (E_n)^c} f_n - f^d \to 0 \) as \(n \to \infty \). Since \(\Omega \) is compact, this process of induction must stop at a finite \(k \). Therefore, we have that \(\int_{(E_n)^c} f_n - f^d \to 0 \), and consequently, \(g = 0 \), proving that \(f^d \) is globally attractive. Since, \(f^d - f_{t_n} \) is strictly decreasing on the set \(E_n \) and \(f_{t_n} = 1 \) for all \(n \), we can conclude that, in fact, the equilibrium distribution \(f^d \) is stable in the sense of Lyapunov. This concludes the proof. \(\square \)

V. THE \(N \)-AGENT SYSTEM

In this section, we will define the microscopic description of the system, i.e., the model of individual agents’ state transitions, and study how it relates to the macroscopic or mean-field model (3). The following mathematical definitions are adapted from [9].

Consider a population of \(N \) agents evolving on the state space \(\Omega \). Let the state of each agent \(k \) at time \(n \) be given by the random variable \(\xi_k^n \in \Omega \), \(k = \{1, \ldots, N\} \). Each agent transitions between states on \(\Omega \) according to the transition kernel \(Q \) defined in (12). The \(N \)-agent system can therefore be described as a Markov chain \(\xi_n = (\xi_1^n, \ldots, \xi_N^n) \) with state space \(\Omega^N \). To a measure \(\nu \in \mathcal{P}(\Omega) \), we associate a measure \(\nu \otimes \nu = \nu \times \ldots \times \nu \in \mathcal{P}(\Omega^N) \). The empirical measure \(m^N(x) \) associated with the point \(x = (x^1, \ldots, x^N) \in \Omega^N \), where each entry \(x^k \) is the state of agent \(k \), is given by a normalized sum of Dirac measures associated with each agent,
\[m^N(x) = \frac{1}{N} \sum_{k=1}^N \delta_{x^k}. \] (22)

The corresponding Markov process \((\xi_n)_n\) on \((\Omega^N, \mathcal{F}_n, \mathcal{P})\) is defined by
\[\mathcal{P}(\xi_0 \in dx) = \mu_0^\otimes N(dx), \]
\[\mathcal{P}(\xi_n \in dx|\xi_{n-1} = z) = (P^N(z))^{\otimes N}(dx), \] (23)
where \(dx = dx^1 \times \ldots \times dx^N \), and \(P \) is as defined in (14). At time \(n = 0 \), the \(N \)-agent system can be modeled as \(N \) independent random variables \(\xi_1^n, \ldots, \xi_N^n \) with common distribution \(\mu_0 \). At time \(n \geq 1 \), define \(\mu_n^N := m^N(\xi_n) \). Then, \(\mu_{n+1}^N \) is evaluated as
\[\mu_{n+1}^N = P m^N(\xi_n). \] (24)

Thus, from the equation above, at time \(n \) the \(N \)-agent system is modeled as \(N \) random variables \(\xi_1^n, \ldots, \xi_N^n \) that are conditional on \(\xi_{n-1} \) and distributed according to \(P m^N(\xi_{n-1}) \). The agents’ states are therefore not independent of one another; their distribution is dependent on the system configuration at time \(n-1 \). Although the evolution of each agent’s state is not Markovian, the distribution of the \(N \)-agent system evolves according to an interacting Markov chain. At time \(n = 0 \), \(\mu_0^N \to \mu_0 \) as \(N \to \infty \). At times \(n \geq 1 \), due to the aforementioned interaction between agents, the law of large numbers does not apply. Thus, another method must be used to establish the limit \(\mu_n^N \to \mu_n \), where \(\mu_n \) evolves according to (3). This limit is called the mean-field limit. The work [9] proved this limit for systems of the form (3) in which the right-hand side is continuous. In [21], this limit is referred to as the dynamic law of large numbers; it is proven for Markov processes whose evolution is governed by a partial differential equation (PDE).

Since the empirical measure \(m^N \) is a sum of Dirac measures, it is not absolutely continuous with respect to the Lebesgue measure. We will “mollify” the Dirac measures in order to be able to use results from the previous section and to apply the operators \(\hat{P} \) and \(P \) defined in (14) and (16), respectively, to absolutely continuous measures. Mathematically, this means that the measure \(m^N \) is convolved with a smooth function \(\phi : \mathbb{R}^d \to \mathbb{R} \), a mollifier, to obtain a smooth function (density). The convolution of \(m^N \) and \(\phi \) is carried out as
\[\phi \ast m^N = \int_{\Omega} \phi(x)dm^N = \frac{1}{N} \sum_{i=1}^N \phi(x - x^i). \] (25)

The result of this convolution is a sum of smooth functions, which is smooth. Loosely speaking, this convolution replaces each Dirac measure by a measure with smooth density \(\phi \). We can now apply \(\hat{P} \) and \(P \) to the right-hand side of this equation. In our simulations, we have defined \(\phi \) as the standard bump function with a compact support:
\[\phi(x) = \begin{cases} e^{-\frac{1}{1-|x|^2}}, & x \in (-1,1), \\ 0, & \text{otherwise.} \end{cases} \] (26)
Due to the introduction of the mollifier, we expect the N-agent system (24) to converge to the system above, which is different from (3). That is,
\[\mu_n^N \to \mu^h_n \text{ as } N \to \infty. \]

This limit is usually proven in the weak topology and can be established for discrete-time systems using results from [9]. Applying these results requires proving that the right-hand side of (3) is continuous in the weak topology, which is significantly challenging for our system. Thus, we will reserve this investigation for future work.

2) $h \to 0$: The second limit proves that the solution of (28) converges to the solution of (3); that is, for all $n \in \mathbb{Z}_+$,
\[\mu_n^h \to \mu_n^0 \text{ as } h \to 0. \]

We shall prove this convergence in the $L^1(\cdot)$ norm in the next subsection.

A. The limit as $h \to 0$

We prove the limit (29) for a dense subset of $L^1(\Omega)$; specifically, we consider distributions $\mu \in \mathcal{P}(\Omega)$ that have $L^2(\Omega)$ densities. Moreover, we require f^d to be bounded from below a.e. on Ω.

Let $\mu_0 < m$ with density $f_0 \in L^2(\Omega)$. In Proposition IV.8, we proved that \tilde{P} preserves $L^2(\Omega)$; that is, $f_n = P^nf_0 \in L^2(\Omega)$ for $n \in \mathbb{Z}_+$. Therefore, system (28) can be rewritten on $L^2(\Omega)$ as
\[f_{n+1} = \tilde{P}(\phi_h * f_n^h) f_0^h, \quad f_0^h \in L^2(\Omega). \]

Since $m(\Omega) < \infty$, $L^2(\Omega) \subset L^1(\Omega)$, and therefore we will consider system (6) to be a system on $L^1(\Omega)$ instead of $L^1(\Omega)$. We will show that solutions of the above system converge to those of (6) in the $L^1(\cdot)$ norm.

Theorem V.1. Suppose the initial condition f_0 be in $L^2(\Omega)$. Let f_n^h and f_n be solutions of (30) and (6), respectively. If f^d is bounded from below a.e. on Ω, then
\[\|f_n^h - f_n\|_1 \to 0 \]
for any $n \in \mathbb{Z}_+$.

To prove this result, we need the following proposition, whose proof is given in the Appendix.

Proposition V.2. Let $g \in L^2(\Omega)$. If f^d is bounded from below a.e. on Ω, then we have the following convergence results:

1) For $f \in L^2(\Omega)$,
\[\|\tilde{P}(\phi_h * f)g - \tilde{P}(f)g\|_1 \xrightarrow{h \to 0} 0 \]

2) If $f_i \xrightarrow{i \to \infty} f$ in the $L^1(\Omega)$ norm, then
\[\|\tilde{P}(f_i)g - \tilde{P}(f)g\|_1 \xrightarrow{i \to \infty} 0 \]

We can now prove Theorem V.1.
Proof of Theorem V.1. To prove this result, we will use an induction argument. For \(n = 1 \), we have that

\[
 f_1 = \tilde{P}(\phi_0 * f_0) f_0,
 f_1 = \tilde{P}(f_0) f_0.
\]

Then, by statement (1) of Proposition V.2, \(\|f_1 - f_1\|_1 = \|\tilde{P}(\phi_0 * f_0) f_0 - \tilde{P}(f_0) f_0\|_1 \to 0 \) as \(h \to 0 \). Assume that this is true for some \(n > 1 \); i.e., \(\|f_{n+1} - f_n\|_1 \to 0 \) as \(h \to 0 \). We will show that this limit holds true for \(n + 1 \) using the following computation:

\[
\|f_{n+1} - f_{n+1}\| = \|\tilde{P}(\phi_0 * f_n) f_{n+1} - \tilde{P}(f_n) f_{n+1}\|
= \|\tilde{P}(\phi_0 * f_n) f_{n+1} - \tilde{P}(f_n) f_{n+1}\| + \|\tilde{P}(f_n) f_{n+1} - \tilde{P}(f_n) f_n\|
\]

The bracket \((f_{n+1} - f_n) \) in the second term converges to 0 as \(h \to 0 \) due to our assumption. Considering the first term, we observe that:

\[
\lim_{h \to 0} \lim_{f_n \to f_n} \tilde{P}(\phi_0 * f_n) = \tilde{P}(f_n)
\]

This follows from the fact that the inner limit tends to \(\tilde{P}(f_n) \) by statement (1) of Proposition V.2, and the outer limit \(\lim_{h \to 0} f_n \) tends to \(\tilde{P}(f_n) \) by statement (2) of Proposition V.2. Therefore, the bracket \(\tilde{P}(\phi_0 * f_n) - \tilde{P}(f_n) \) in the first term tends to 0 as \(h \to 0 \), and hence we have our result. \(\square \)

VI. SIMULATIONS

In this section, we present numerical solutions of the mean-field models (3) and simulations of the corresponding \(N \)-agent system. We provide verification via these simulations that as \(N \to \infty \), the simulations of the \(N \)-agent system (stochastic simulations) approach the solution of the deterministic system (3).

In the example below, we define the agent state space \(\Omega \subset \mathbb{R}^2 \) as the unit square \([0,1] \times [0,1]\), representing a physical domain in which the agents move. The target distribution, shown in Fig. 2, is set to \(f^d = \sin^2(2\pi x_1) + \sin^2(2\pi x_2) \), where \([x_1, x_2] \in \Omega \). The initialization is set to the Dirac measure at \((0,0)\). We consider a nonlinear vector field \(F \) in system (1) that represents a unicycle model:

\[
x_{n+1}^1 = x_n^1 + u_n^1 \cos(u_n^2), \quad x_{n+1}^2 = x_n^2 + u_n^1 \sin(u_n^2).
\]

Here, \(x_n = [x_n^1, x_n^2]^T \in \Omega \) and \(u_n = [u_n^1, u_n^2]^T \in U \). The set of control inputs is defined as \(U = [0,0.1] \times [0,2\pi] \). This map \(F \) satisfies all the required conditions stated in Section IV.

To simulate the mean-field model (6), we need to discretize both \(\Omega \) and \(U \). The set \(\Omega \) is partitioned into \(n_x \in \mathbb{Z}_+ \) sets, \(\Omega = \{ \Omega_1, \ldots, \Omega_{n_x} \} \), where \(\Omega = \cup_{i=1}^{n_x} \Omega_i \), and the sets \(\Omega_i \) have intersections of zero Lebesgue measure. The set of control inputs \(U \) is approximated as a set of \(n_u \in \mathbb{Z}_+ \) discrete elements, \(U = \{v_1, \ldots, v_{n_u}\} \), where \(v_i \in U \) for each \(i \). Define index sets \(I = \{1, \ldots, n_x\} \) and \(J = \{1, \ldots, n_u\} \). Using these definitions, we construct an approximating controlled Markov chain on the finite state space \(I \). For \(i \in I \), when the state is in the set \(\Omega_i \), we will consider the state of this Markov chain to be \(i \). We use a modified version of Ulam’s method [11] to construct this approximation. In the uncontrolled setting, Ulam’s methods is a classical technique for constructing approximations of the pushforward map (Perron-Frobenius operators) induced by dynamical systems. Let \(p_{ij} \) denote the probability of the system state being in the set \(\Omega_j \) in the next time step, given that the system state is uniformly distributed over the set \(\Omega_i \), and the selected control input is \(v_l \). To obtain \(p_{ij} \) via the modified Ulam’s method, we assume that a fixed number of agents, say \(M \), are uniformly distributed over \(\Omega_i \). For each agent \(m \in \{1, \ldots, M\} \) with state \(x_m \in \Omega_i \), we compute \(F(x_m, v_l) \). Then, we define the transition probabilities of the approximating controlled Markov chain as follows:

\[
p_{ij} = \frac{\{y \in \Omega_j : x_m = F^{-1}(y), m = 1, \ldots, M\}}{\{y \in \Omega : x_m = F^{-1}(y), m = 1, \ldots, M\}},
\]

where \(F^{-1}(\cdot) = F(\cdot, v_l) \). We next define an equivalent of the state-to-control transition kernel \(K \). Let \(\tilde{k}_{il} \) be the probability of choosing the control variable \(v_l \), given that the system state \(x_m \) is in \(\Omega_i \). We set \(\tilde{k}_{il} > 0 \) if for some \(m \), \(F(x_m, v_l) \in \Omega \), while ensuring that \(\tilde{k}_{il} \) is a probability.

We now define the discretization of the mean-field model (3). Let \(\mu \in \mathcal{P}(\Omega) \) and \(j \in I \), and let \(\mu^d \) be the discretization of \(f^d \) on \(\Omega \). Let \(P \in \mathbb{R}^{n_x \times n_x} \) be the discretization of the operator \(P \) defined in (14). Then the discretization of system (3) is given by:

\[
\mu_{n+1} = P \mu_n, \quad \mu_{n+1} = \sum_{i \in I} \sum_{j \in J} \tilde{k}_{il} p_{ij} \mu(i) + (1 - a_{\mu}(j)) \mu(j),
\]

where \(a_{\mu}(i) = (\mu(i) - \mu^d(i))/\mu(i) \) if \(\mu(i) - \mu^d(i) > 0 \), and \(a_{\mu}(i) = 0 \) otherwise. Figure 3 shows snapshots of the simulation of this system at several times \(n \).

Algorithm 1 presents the pseudocode that simulates the evolution of agents over a domain \(\Omega \) with a control set \(U \), until a specified final time \(T_f \). An agent considers another agent to be its neighbor if their relative distance is less than \(h \), the parameter of the bump function \(\phi_0 \) described in the previous section. Note that the set of neighbors of agent \(k \) at any given time by \(N(k) \). At every time step, each agent computes the value of the bump function based on the relative distances of its neighbors. Note that since in Line 31 is a normalizing constant which is chosen to ensure that \(\phi \) is a probability density. Figures 4-7 show snapshots of the \(N \)-agent simulation for agent population sizes of \(N = 100, 500, \) and \(1000 \), with \(h = 0.1 \) in the first three figures and 0.05 in the last figure.

We first investigate the effect of increasing \(N \) while keeping \(h \) fixed on the time evolution of the simulated \(N \)-agent system. Figure 3 shows that as time \(n \) increases, the mean-field model indeed converges asymptotically to the target distribution in
Algorithm 1 Simulation of N agents

1: Input: $\Omega, U, k, F, N, f^d, h, T_f$
2: Initialize $n = 0, a^k = 0, x^k_n \in \Omega$ for all $k = 1, \ldots, N$
3: while $n \leq T_f$ do
4: for $k = 1 : N$ do
5: $y = x^k_n \triangleright$ Current location of agent k
6: $s = 0$
7: for all $j \in \mathcal{N}(k)$ do
8: $z = x^j_n$ \triangleright agents within distance h of k
9: $s = s + \Phi(y, z, h)$
10: end for
11: $f_n(y) = \frac{1}{|\mathcal{N}(k)|} s$
12: if $f_n(y) > f^d(y)$ then
13: $a^k = \frac{f_n(y) - f^d(y)}{f_n(y)}$
14: end if
15: if $a^k > 0$ then
16: Draw v uniformly from $(0, 1)$
17: if $v \leq a^k$ then
18: Draw $u \sim k(y, \cdot)$ from U
19: $y = F(y, u)$
20: end if
21: end if
22: $x^k_{n+1} = y$
23: end for
24: $n = n + 1$
25: end while

26: function $\Phi(y, z, h)$
27: $d = \|y - z\|_2$
28: if $\frac{d}{h} < 1$ then
29: $\Phi = \frac{1}{C} \frac{1}{\pi h^2} \exp \left(\frac{-1}{\left(1 - (d/h)^2\right)} \right)$ \triangleright Normalizing constant
30: end if
31: return Φ
32: end function

Fig. 2. Target distribution f^d
Fig. 3. Snapshots of the simulation of system (32) at several times n.

Fig. 4. Snapshots of a stochastic simulation of $N = 100$ agents, with $h = 0.1$, at several times n.

Fig. 5. Snapshots of a stochastic simulation of $N = 500$ agents, with $h = 0.1$, at several times n.

Fig. 6. Snapshots of a stochastic simulation of $N = 1000$ agents, with $h = 0.1$, at several times n.

Fig. 7. Snapshots of a stochastic simulation of $N = 1000$ agents, with $h = 0.05$, at several times n.

Density at time n
Fig. 8. Time evolution of the 2-norm of five randomly selected agents’ states in each of the N-agent simulations.

Fig. 9. Time evolution of the 2-norm of five randomly selected agents’ states in two N-agent simulations with different values of N and h (snapshots of corresponding stochastic simulations not shown).

Fig. 10. Snapshots at time $t = 2000$ of stochastic simulations of $N = 1000$ agents with different values of h.

VII. CONCLUSION

In this paper, we have used a discrete-time mean-field model describing the state dynamics of a multi-agent system to design decentralized state-feedback agent control laws that drive the agents asymptotically to a target state distribution. To implement the control laws, the agents only require knowledge of the local agent density; for example, the density of agents within their sensing range. The mean-field model considered here is the forward Kolmogorov equation of a discrete-time Markov process that can be stabilized to an arbitrary distribution that has $L^\infty(\cdot)$ derivatives. Moreover, the Markov process can be constructed such that its forward operator is the identity operator at the desired distribution. This prevents agents from switching between states once the equilibrium distribution is reached. Although stability and convergence results were proven for the mean-field model, simulations of the corresponding N-agent system demonstrate that for relatively small numbers of agents ($N \geq 500$), the agents indeed redistribute themselves to the target distribution and thereafter cease switching between states. Our use of density-dependent feedback control laws enables us to specify a more general class of target distributions than in our prior works [4], [5], in which we considered only open-loop control laws. In the future, we would like to establish the mean-field limit of the system considered in this paper, as well as extend our results to swarms of agents governed by M-step controllable dynamical models (where $M > 1$).

APPENDIX A

PROOF OF PROPOSITION V.2

Here, we prove the two convergence results stated in the proposition.

(1) Let $f \in L^2(\Omega)$. Then, $\phi_h * f \in L^2(\Omega)$. By Theorem 8.14 of [18], $\phi_h * f \rightharpoonup f$ in the L^2 norm. To prove convergence of $\widehat{P}(\phi_h * f)$ to $\widehat{P}(f)$ as operators on $L^1(\Omega)$, choose $g \in L^2(\Omega)$ (since Ω has finite measure, $g \in L^1(\Omega)$), and compute the following:

$$\|\widehat{P}(\phi_h * f)g - \widehat{P}(f)g\|_1 = \left| \int_{\Omega} \widehat{P}(\phi_h * f)g(y) - \widehat{P}(f)g(y) \, dy \right|. \quad (33)$$

Recall that according to (16), $\widehat{P} = \widehat{P}_1 + \widehat{P}_2$. We will now evaluate the integral (33) in terms of the two operators \widehat{P}_1 and \widehat{P}_2.

In (33), the component of the integrand that depends on \widehat{P}_1 is given by:

$$\widehat{P}_1(\phi_h * f)g(y) - \widehat{P}_1(f)g(y) = \int_{\Omega} A(x, y)dx,$$

where

$$A(x, y) = a_{\phi_h * f}(x)q(x, y)g(x) - a_f(x)q(x, y)g(x).$$

We now define the following sets:

$$E_1 = \{ x \in \Omega : \phi_h * f(x) > f^d(x) \},$$
$$E_2 = \{ x \in \Omega : \phi_h * f(x) \leq f^d(x) \},$$
$$E_3 = \{ x \in \Omega : f(x) > f^d(x) \},$$
$$E_4 = \{ x \in \Omega : f(x) \leq f^d(x) \}.$$

We will split the integral $\int_{\Omega} A$ over four sets constructed from these sets, namely, $S_1 = \{ E_1 \cap E_3 \}, S_2 = \{ E_2 \cap E_3 \}, S_3 = \{ E_4 \cap E_3 \}, S_4 = \{ E_4 \cap E_2 \}$. ...
The second inequality follows from Hölder’s inequality. Since we have that \(\| \phi_h \ast f - f \|_2 \to 0 \) as \(h \to 0 \), the integral of \(A \) over \(E_1 \cap E_4 \) converges to 0. Finally, the integral of \(A \) over \(S_4 \) is trivially zero:

\[
\int_{E_2 \cap E_4} A = \int_{E_2 \cap E_4} a_{\phi_h \ast f} g - a_{f} g = 0. \tag{37}
\]

Thus, we have shown that \(\int_{\Omega} A \to 0 \) as \(h \to 0 \).

Returning to the integral (33), the component of the integrand that depends on \(\tilde{P}_2 \) is given by:

\[
\tilde{P}_2(\phi_h \ast f)(g(y) - \tilde{P}_2(f)(g(y)) = (1 - a_{\phi_h \ast f}(y)) g(y) - a_{f}(y) g(y) - a_{\phi_h \ast f}(y) g(y) := B(y). \tag{38}
\]

This term is equal to the integral of each of the four integrals considered in (34)-(37). Since we showed that each of these integrands tends to 0 as \(h \to 0 \), we must have that \(B(y) \to 0 \) as well.

We can now evaluate (33) as

\[
\| \tilde{P}(\phi_h \ast f)g - \tilde{P}(f)g \|_1 = \left| \int_{\Omega} \int \left(A(x, y) dx + B(y) \right) dy \right|
\]

Since we have shown that both \(\int_{\Omega} A \to 0 \) and \(B(y) \to 0 \) as \(h \to 0 \), the outer integral converges to 0 as well, and we have our result.

(2) The proof of this result is similar to the proof of result (1).

References

